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Battery Energy Storage Systems (BESS) are important for applications related to both microgrids and
electric vehicles. If BESS are used as the main energy source, then it is required to include adequate
procedures for the estimation of critical variables such as the State of Charge (SoC) and the State of
Health (SoH) in the design of Battery Management Systems (BMS). Furthermore, in applications where
batteries are exposed to high charge and discharge rates it is also desirable to estimate the State of
Maximum Power Available (SoMPA). In this regard, this paper presents a novel approach to the
estimation of SoMPA in Lithium-Ion batteries. This method formulates an optimisation problem for the
battery power based on a non-linear dynamic model, where the resulting solutions are functions of
the SoC. In the battery model, the polarisation resistance is modelled using fuzzy rules that are function
of both SoC and the discharge (charge) current. Particle filtering algorithms are used as an online
estimation technique, mainly because these algorithms allow approximating the probability density
functions of the SoC and SoMPA even in the case of non-Gaussian sources of uncertainty. The proposed
method for SoMPA estimation is validated using the experimental data obtained from an experimental
setup designed for charging and discharging the Lithium-Ion batteries.
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Nomenclature

Cn nominal capacity
I battery current
I� feasible points
Is operational current limit given by the manufacturer

(120 A for both charging and discharging processes)
ICmax maximum current at charging period
IDmax maximum current at discharging period
g coulombic efficiency
Rint internal resistance
Ts sampling period
V battery terminal voltage
Vs operational voltage limit given by themanufacturer (28.6 V

for charging process and 22.4 V for discharging process)

List of acronyms
AEKF adaptive extended Kalman filter
BESS Battery Energy Storage Systems

BEVs battery electric vehicles
BMS Battery Management Systems
DCIR direct current internal resistance
DEKF dual extended Kalman filter
EKF extended Kalman filter
HEVs hybrid electric vehicles
HPPC hybrid pulse power characterisation
NCRE non-conventional renewable energy
PDF probability density function
PF Particle Filtering
SoC State of Charge
SoH State of Health
SoMPA State of Maximum Power Available
SOA Safe Operating Area
Voc open circuit voltage
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1. Introduction

In recent years the interest in environmental protection and
energy sustainability has steadily increased; this fact has promoted
research activities and projects focused on non-conventional
renewable energy (NCRE) sources as a replacement for fossil fuels
[1–4]. In this context, the concepts of hybrid electric vehicles
(HEVs), battery electric vehicles (BEVs), and solar automobiles
are nowadays commonly found in electro-mobility companies.
Battery Energy Storage Systems (BESSs) are of paramount impor-
tance in the technologies where they fulfil the role of principal
energy source. In this regard, Lithium-Ion battery banks have been
widely used in electro-mobility applications due to of their high
energy density and excellent cycling performance [5–7]. For the
management of this sort of battery banks is important to use suit-
able Battery Management Systems (BMS), which consists of both
dedicated hardware and software, with the purpose of providing
monitoring, diagnosis, control, and estimation of relevant parame-
ters of the battery and improving the system reliability. Important
Fig. 1. The proposed SoC and S
parameters related to battery banks are: State of Charge (SoC),
State of Health (SoH) and State of Maximum Power Available
(SoMPA). The first is associated with vehicle autonomy, the second
provides information to the driver about the necessity of replacing
an old or damaged battery bank. In the case of electric (or hybrid)
vehicle applications, the third parameter, SoMPA, is useful for both
(i) the driver when he/she has to decide how to meet requirements
in terms of acceleration, regenerative braking, and gradient climb-
ing power (without fear of over-charging or over-discharging the
battery) [8,9], and (ii) the automotive companies for optimal
design of the battery banks in terms of power [10,11].

The SoMPA can be defined as the maximum power that is
possible to draw from or inject to the battery bank at a specific
operating point without violating the Safe Operating Area (SOA).
This zone is determined by temperature, current, voltage, and
SoC limits, which are usually provided by the battery manufacturer
in order to ensure a safe battery operation [8,10,12]. The SoMPA
cannot be directly measured in a battery-based storage system;
this parameter must be inferred from the observation of other
oMPA estimation scheme.
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Fig. 2. Equivalent Circuit Diagram used for the development of the Fuzzy Model.

Table 1
Feasible points in optimisation problems.

Feasible points Constraints KKT Constraints

I� ¼ Is l1 > 0 and l2 ¼ l3 ¼ 0 Satisfied

I� ¼ 0 l2 > 0 and l1 ¼ l3 ¼ 0 Not satisfied

I� ¼ � Vs�Voc SoCð Þ
Rint

l3 > 0 and l1 ¼ l2 ¼ 0 Satisfied

� Minus sign: discharging
� Plus sign: charging
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variables such as temperature, SoC and SoH [13,14]. Therefore, this
work focuses on the problem of estimating the SoMPA in a Lithium-
Ion battery bank during charging and discharging processes, where
SoMPA represents the maximum power that may be maintained
constant during the time interval [k; kþ Ts], where k is the present
time and Ts corresponds to the sampling period, based on the pre-
sent battery condition and without violating the preset operational
design limits on the battery current, voltage, SoC, or power. In this
particular research effort, which considers a nonlinear discrete-
time battery model, this quantity may be interpreted as the maxi-
mum instantaneous power that can be extracted from (or injected
to) the battery during each sampling period (Ts = 1 s). It must be
noted that both SoC and SoH should be also estimated, and thus a
scheme of SoMPA estimation necessarily requires the implementa-
tion of additional estimators for these two variables. Although there
are number of aspects that have to be considered when estimating
SoMPA, this paper will solely focus on: (i) the development of an
SoMPA estimator framework that will use the SoC as an input, (ii)
the development of a SoC estimator, and (iii) the use of a battery
model to include polarisation effects as a function of both the SoC
and the discharge/charge current.

In terms of SoC estimation, there exists a wide range of methods
that can be implemented, and have been summarized in [15]. In
particular, for electro-mobility systems, current research efforts
are mostly focused on the development of SoC estimation algo-
rithms based on electric models in conjunction with techniques
based on fuzzy logic [16,17], neural networks [18], or Bayesian
approaches such as the Extended Kalman Filter (EKF) [19–21]
and Particle Filtering (PF) [22,23].

The techniques for SoMPA estimation can be divided in two
groups: (i) methods based on a characteristic map, and (ii) meth-
ods based on a dynamic battery model [8]. The first category
includes all the methods where mapping of the SoMPA as a func-
tion of the battery states is realised. This map is stored in the
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Fig. 3. Computed polarisation resistance for
BMS memory and is used for SoMPA estimation. It must be noted
that the experimental points for the generation of this map must
be obtained in a controlled environment, following the recommen-
dations proposed by some standards and regulations, as for
instance (i) the hybrid pulse power characterisation (HPPC)
method proposed by the Idaho National Engineering & Environ-
mental Laboratory [24,25], and (ii) the direct current internal resis-
tance (DCIR) method proposed by the Advanced Battery
Development Center and Hitachi Research Laboratory [26]. The
main advantage of characteristic map-based methods is their
simplicity, while the main disadvantages are: limited adaptive
capacity, static modelling of battery, and higher requirements of
memory storage [8]. The second group of SoMPA estimation tech-
niques includes all the methods that use a dynamic battery model
in their estimation/prediction algorithms [8]. These methods are
the most promising approaches due to their high adaptation
capabilities. Basically, the main difference among the methods that
could be grouped in the second category is the type of battery
model that is used. In the following, the main research efforts con-
cerning this particular topic are presented.

The most common approach used for SoMPA estimation is
reported in [24]. The proposed method consists of determining,
at each time instant, the maximum current during both charging
and discharging processes. This procedure is based on a simple bat-
tery model and operational design voltage limits (Vmax;Vmin). The
instantaneous SoMPA is computed using only the instantaneous
maximum current (charging or discharging) multiplied by the
operational design voltage limits (Vmax for charging, and Vmin for
discharging). Given that this model only considers voltage limits,
and it uses an open circuit voltage (Voc) source in series with a
constant internal resistance, its performance is not accurate; in
fact, safety or health issues may arise due to the over/under charg-
ing and discharging of the battery bank. Other disadvantages of
this method are: (i) design limits such as discharge current, SoC
and power are not considered in the formulation of the estimator;
(ii) the manner in which the SoMPA is computed heavily depends
on the sampling period Ts; and (iii) the battery model does not
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the discharging and charging processes.
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Fig. 4. (a) Solutions for the proposed optimisation problem using a simple battery model both for charging and discharging modes, (b) SoMPA as a function of the SoC in
charging and discharging modes (using simple model), (c) solution of the proposed optimisation problem using fuzzy battery model in charging and discharging modes, (d)
SoMPA as a function of the SoC for charging and discharging modes (using fuzzy model).
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consider polarisation effects. Plett in [27] improves the aforemen-
tioned method in the following aspects: (i) design limits of current
and SoC are added; (ii) the proposed method takes into account the
predicted value of the SoMPA at the next sampling time. Some of
the disadvantages of this method are: the battery model used is
still too simplistic; it assumes a constant internal resistance; and
the polarisation resistance is neglected. Also, the latter method
does not consider a SoC estimation scheme (it is assumed that
the SoC value is known). Sun et al. in [28] improve the Plett’s
method. The authors in this case take into account the polarisation
effects, using a Thevenin model with one RC branch [16]. Notice
that both the resistances and the capacitance are determined as
a function of the SoC. The following comments can be given for this
method: (i) the polarisation resistance is modelled as a function of
the SoC only, even though it also depends on the current level and
temperature [16,29,30]; and (ii) it does not consider the imple-
mentation of an online SoC estimation framework; in fact this is
proposed as future work. Xiong et al. in [9] develop a joint estima-
tor in order to compute both the SoC and the SoMPA in an online
manner. The SoC estimator uses an Adaptive Extended Kalman fil-
ter (AEKF)-based method, while the SoMPA estimator follows a
structure similar to other approaches reported in the literature
[8,9,16,24,25,27–30], the only difference being that the method
proposed in [9] generalizes the algorithm to sub-harmonics of
the sampling frequency. Notice that both estimation algorithms
are based on the one-branch Thevenin equivalent model, where
the parameters are determined as a function of SoC. However,
the current dependence of the polarisation resistance is not taken
in account.

None of the methods described above considers the dependency
of battery model parameters on the State of Health. Some research
efforts have considered this dependence in an online battery model
parameter identification scheme. Sun et al. in [31,32] improve their
previous work [28] by developing a SoMPA estimator that uses
information from an online SoC estimation module. In this work,
both estimators are based on an adaptive extended Kalman filter
algorithm and a Thevenin equivalent model, where an online
parameter identification frame is implemented using a time-
series approach. The proposed scheme was validated using exper-
imental data and for known conditions of the battery SoH. Pei et al.
in [33] proposed a SoMPA one-step ahead predictor based on a
Thevenin model, using a dual extended Kalman filter (DEKF). The
DEKF consists of two EKFs that run concurrently at each time
instant. One of these EKFs is used to determinate Thevenin equiv-
alent model parameters at every time step, and the other is used to
estimate the discharge current in the RC branch. This approach is
interesting because the algorithm is validated using experimental
tests designed to obtain the actual values of the peak power. The
authors in [34] proposed an improved Dynamic Matrix Control
algorithm in order to linearize RC equivalent Thevenin models
and predict (one-step ahead) the battery voltage. Results prove
that this method is suitable and useful for predicting the voltage,
and its application for SoMPA prediction is proposed as future
work. Notice that none of the previous works takes into account



Table 2
Theoretical solution for SoMPA based on the simplified model (19) and (20).
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Fig. 5. Experimental system.

Table 3
Parameters of experimental system.

Nominal power 4 kW
L1 2.5 mH
L2 2.5 mH
R 1X
C 6 0mF
Battery bank 8 Li-Ion cells (GBS-LFMP40Ah) in serial connection
Nominal capacity 40 AH
Nominal voltage 25.6 V
Switching frequency 10 kHz
Control platform TMS320F2808 Texas Instruments
Data acquisition system NI-USB-6009 National Instruments
Optical fiber transmitter HFBR-1521Z
Optical fiber receiver HFBR-2521Z
Current transducer LEM LA-100P Hall-Effect transducer
Voltage transducer LEM LV-20P Hall-Effect transducer
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the polarisation resistance dependence on the battery current
values and therefore these effects are not includes in the estima-
tion modules. In this regard, Waag et al. in [8] proposed a one-
step-ahead predictor of SoMPA based on an improved Thevenin
equivalent model. This model represents the dependence of the
polarisation resistance on the current level using an online param-
eter identification scheme. The disadvantage of this method is that
the dependence of the polarisation resistance on the SoC is not
considered.

In this work, a novel SoMPA estimator for a Lithium-Ion battery
bank is proposed. As this estimator uses a nonlinear discrete-time
battery model, SoMPA may be interpreted here as the maximum
instantaneous power that can be extracted from (or injected to)
the battery during each sampling period (Ts = 1 s). The SoMPA
estimator is developed within the structure of an online SoC
estimation module based on Bayesian nonlinear filtering algo-
rithms. The schematic diagram of the proposed estimator is shown
in Fig. 1. In this scheme, the SoC is estimated at each time instant
based on a Particle Filtering (PF) algorithm; the PF algorithm uses
the measurements of both voltage and current, while the voltage
estimate is provided by a fuzzy model of the battery. The output
at each time step corresponds to the probability density function
(PDF) of the SoC. Then, this PDF is evaluated using a look-up table
that represents the relationship between the SoC and the
maximum power available. Also, the output at each time instant
is a PDF for the SoMPA. Finally, the procedure to obtain the rela-
tionship between the SoC and the SoMPA requires to solve a non-
linear optimisation problem.

Three major contributions are highlighted:

� All the previous works related with SoMPA estimation
assume that the maximum power available is given by the
maximum available current, multiplied by operational
design voltage limits. However, a mathematical proof for this
assumption is missing. For this reason, in this work a
mathematical formulation is developed to provide sufficient
theoretical background for the computation of the SoMPA as
the solution of a nonlinear optimisation problem where the
SoC is an input variable.
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Table 4
Parameters of Voc-versus-SoC curves depicted in Fig. 6a, based on (1).

Mode vL v0 c a b

Discharging 4.971 26.792 0.556 �2.631 0.508
Charging 5.033 26.750 0.556 �2.733 0.567
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� The battery model used in the estimation scheme considers
the dependency of the polarisation resistance on both
current level and SoC.
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� The proposed SoMPA estimation scheme is suitable for non-
Gaussian sources of uncertainty, and the output of the mod-
ule at each time instant is an empirical PDF instead of a sim-
ple expectation.

2. Theoretical background

2.1. Fuzzy battery model

A fuzzy model for the output voltage of a Lithium-Ion battery
bank is described. The polarisation resistance is modelled by a
non-linear interpolation (fuzzy based) of a set of available curves
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Table 5
Parameters of Simple model.

Rint ðXÞ RMSE

Discharge 0.0562 0.20540
Charge 0.0483 0.18326

Table 6
Parameters of Fuzzy model.

Discharge r5 r10 r15 a b RMSE
2.0000 3.1631 2.0000 15.9494 17.3438 0.10869

Charge r4 r10 r20 a b RMSE
2.1623 2.3876 3.0000 19.9748 26.5422 0.081629
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Table 7
Performance indices (RMSE) for Simple and Fuzzy models using validation sets #1, #2
and #3.

Validation set #1 Validation set #2 Validation set #3

Simple model 0.28453 0.29306 0.39797
Fuzzy model 0.16384 0.26738 0.41271
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obtained experimentally at different operating points (SoC and
current rates) of the battery bank.

The proposed fuzzy model is based on an equivalent circuit
shown in Fig. 2, where the terminal voltage depends on the SoC,
current and temperature [16]. Temperature variations are not
considered in this research effort, since the battery bank
was located in an environment where those variations were negli-
gible and because the experimental setup did not include a
temperature-controlled chamber that could allow validation of
temperature-dependent model structures. In Fig. 2, the polarisa-
tion resistance is modelled as a non-linear function depen-
dent on both the SoC and the charge/discharge current. It is
important to note that this equivalent circuit does not consider
capacitances. Thus, the polarisation voltage drop modelled by the
fuzzy resistance is attributed to the ohmic resistance and static
(steady-state) electrolyte polarisation; i.e., it is used mainly to
describe the steady-state behaviour and low-frequency responses
in the battery bank.

The source voltage VocðSoCkÞ represents the open circuit volt-
age, which is obtained by:

Voc SoCkð Þ ¼ vL þ v0 � vLð Þ � ec� SoCk�1ð Þ þ a � vL SoCk � 1ð Þ þ � � �
þ 1� að ÞvL e�b � e�b�

ffiffiffiffiffiffiffi
SoCk

p� �
: ð1Þ

Quantities vL;v0; c;a and b are model parameters to be estimated
offline according to the procedure detailed in [23]. It must be noted
that the Voc curve presents hysteresis effects [35]; where the curve
exhibiting higher voltage values is related to a battery charge pro-
cess, while the curve that exhibits smaller voltage values is related
to a battery discharge process. In real applications, the open circuit
voltage could be located at any point between these charge and
discharge curves [36] and, in this regard, it is important to note that
this research effort does not consider these hysteresis effects in the
model structure. Instead, our approach incorporates this hysteresis
effect as part of model uncertainty sources that affect the evolution
in time of the dynamic nonlinear system. These uncertainty sources
are instantaneously quantified, and adjusted, using information that
is extracted from online voltage/current measurements at battery
terminals and Bayesian suboptimal filtering algorithms (see Fig. 1).

Our model also assumes noisy SoC estimates based on empirical
computations based on the integral of the instantaneous current.
Thus, the discrete-time model for the SoC is given by (2).

SoCk ¼ SoCk�1 � g
TsIk�1

Cn
: ð2Þ

In (2), Cn is the battery bank nominal capacity (34 Ah for the battery
under study), Ts the sampling period (1 s in this study), Ik the
current at instant k, and g the Coulombic efficiency, which is 1 in
the discharging process and 0.98345 in the charging process (these
values have been calculated using experimental data). Notice that Ik
is considered positive for discharging current. Based on Fig. 2, the
voltage at the battery terminals in discrete-time is given by:

Vk ¼ Voc SoCkð Þ � Ik � Rint SoCk; Ikð Þ; ð3Þ
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Fig. 10. Performance of the SoC estimator on validation sets.
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where the voltage source VocðSoCkÞ is given by (1). Then, the value
of the polarisation resistance can be obtained using (3) as:

Rint SoCk; Ikð Þ ¼ Voc SoCkð Þ � Vk

Ik
: ð4Þ

To obtain the polarisation resistance for this model, a series of
experimental tests at a number of fixed current levels were
performed using the experimental system built for this work (this
is further discussed in Section 4.1, ‘‘Experimental Results”). The
polarisation resistance of (4) has been estimated considering exper-
imental data obtained by charging the battery bank with current
ðIkÞ regulated at constant values of 4 A, 10 A, 20 A and 30 A
(see Fig. 3b), its corresponding voltage response (Vk) and the Voc
vs. SoC curve for charging process. On the other hand, the polarisa-
tion resistance in discharging process is calculated using experi-
mental data obtained by discharging the battery bank with
current ðIkÞ regulated at constant values of 5 A, 10 A, 15 A and
20 A (see Fig. 3a), its corresponding voltage response (Vk), and the
Voc vs. SoC curve for discharging process.

To calculate the polarisation resistance for any current in the
range of operation, a fuzzy model is used to interpolate between
the resistance curves for the discharging process or the curves
for the charging process. Fuzzy modelling is a systematic frame-
work for approximating a large class of non-linear systems
[37,38]. The premises are based on fuzzy sets, and the conse-
quences are non-linear or linear models that can represent differ-
ent operating points of the system. The elements of the fuzzy
systems belong to a discourse universe with a membership func-
tion associated with each fuzzy set. The membership function
assigns a membership degree between 0 and 1 to each element
of the fuzzy set. The most commonly used membership functions
are triangular, trapezoidal and Gaussian shape.

In this case, the proposed fuzzy model is as follows:

Rule j : If Ik is AIj ;j then Rintj ¼ f j SoCkð Þ;

Rint SoCk; Ikð Þ ¼
Pr

j¼1wj Ikð Þ � f j SoCkð ÞPr
j¼1wj Ikð Þ ¼ FuzzyðSoCk; IkÞ;

ð5Þ

where wj is the activation degree of rule j (in this case, equal to the
membership degree of the fuzzy set AIj ;j) and f j is a non-linear func-
tion adjusted for the resistance values Rintj , as a function of SoCk at a
fixed current level Ij. In this model, Gaussian membership functions
are used for the fuzzy sets AIj ;j considering currents of 5 A, 10 A and
15 A (discharging) and 4 A, 10 A and 20 A (charging). This was
inspired by the fact that each Gaussian membership function
requires the tuning of only two parameters (the mean value and
the standard deviation). In this particular case, the mean value of
the Gaussian functions is defined as Ij, while their standard
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Fig. 11. Performance of the SoMPA estimator on validation sets.
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deviation (rx) must be tuned to minimize the mean square error of
the model. This minimisation problem is solved using genetic algo-
rithms. For extreme values of currents (20 A discharging and 30 A in
charging), the sigmoid functions (with parameters a; b) are used for
the fuzzy sets AIj ;j. Note that the fuzzy battery model is a multi-
model, due to the fact that one model was proposed for discharging
process and one for charging process. The discharge and charge
models are based on the Voc vs. SoC curve represented by (1) and
the polarisation resistances derived based on a fuzzy model.

Finally, it is important to mention that the performance of this
model structure has been successfully validated and compared
with other models that are available in the literature (such as The-
venin, Plett and Copetti models) in [16]. Provided those results, this
research effort will not replicate efforts and will assume the afore-
mentioned nonlinear fuzzy model structure to characterise the
battery behaviour.
2.2. Particle-filtering-based estimator for battery state of charge

Particle Filtering (PF) are a class of algorithms designed to obtain
samples from a target state probability distribution pk x0:kð Þ sequen-
tially. These methods are aimed at generating a set of N � 1

weighted particles wðiÞ
k ; xðiÞ0:k

n o
i¼1...N

; wðiÞ
k > 0; 8k P 1, such that
XN
i¼1

wðiÞ
k ukðxðiÞ0:kÞ !

N!1

Z
ukðx0:kÞpkðx0:kÞdx0:k; ð6Þ

in probability, and where uk is any pk-integrable function. Typi-
cally, the target distribution is chosen as pk x0:kð Þ ¼ p x0:kjy1:kð Þ, the
posterior probability density function (PDF) of the state vector
x0:k, conditional to noisy observations y1:k.

As in any Bayesian process, the estimation procedure involves
two main stages: prediction, and update. In the prediction
stage, the state vector paths x0:k�1 are extended using an arbitrary
importance distribution q ~x0:kjx0:k�1ð Þ, where ~x0:k ¼ x0:k�1; ~xkð Þ. In

the update stage, the new weights wðiÞ
k are evaluated from the

measurement likelihood as wðiÞ
k / wðiÞ

k�1 � p ykj~xkð Þ � p ~xkjx0:k�1ð Þ=
q ~x0:kjx0:k�1ð Þ, where

PN
i¼1w

ðiÞ
k ¼ 1. The most basic PF implementa-

tion, the sequential importance sampling particle filter [39],
assumes that p ~xkjx0:k�1ð Þ ¼ q ~x0:kjx0:k�1ð Þ. This procedure generates
an empirical representation of the target distribution.

epN
k x0:kð Þ ¼

XN
i¼1

wðiÞ
0:kd x0:k � ~xðiÞ0:k

� �
: ð7Þ

This research considers the implementation of a particle-filtering-
based estimator for battery State-of-Charge that provides real-
time information about the condition of the energy storage device.



Fig. 12. Convergence process of SoC and SoMPA estimator in the validations sets.
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This estimator utilizes state-space model (8) and (9) to define the
prior state PDF, and incorporates an improved version of the
open-circuit voltage curve (i.e., Eq. (1)) as the system measurement
equation [23]. The structure of this state-space model offers a mod-
ification to the observation Eq. (9) that incorporates most of the
nonlinearities found in Li-Ion open-circuit voltage discharge/charge
curves, while simultaneously enabling the implementation of reli-
able off-line estimation procedures for the estimation of all of its
parameters [23].

Eqs. (8) and (9) present the state transition model and the mea-
surement equation, respectively.

SoCk ¼ SoCk�1 � g � Ik�1 � Ts � C�1
n þwk; ð8Þ
Vk SoCk; Ikð Þ ¼ vL þ v0 � vLð Þ � ec�ðSoCk�1Þ þ a � vL SoCk � 1ð Þ þ � � �
þ ð1� aÞvLðe�b � e�b�

ffiffiffiffiffiffiffi
SoCk

p
Þ � Ik � Rint SoCk; Ikð Þ þ ek;

Vk SoCk; Ikð Þ ¼ Voc SoCk; v0;vL; c;a; bð Þ � Ik � Fuzzy SoCk; Ikð Þ þ ek:
ð9Þ

In (8) and (9), g is the Coulombic efficiency (g ¼ 1 and 0.98345 dur-
ing discharging and charging processes, respectively, for this partic-
ular case study), the discharge current Ik (measured in amperes) and
the sampling time Ts (measured in seconds) are input variables, and
the battery voltage Vk (measured in volts) is the system output. Cn

is the battery nominal capacity equal to 34 Ah. Process noise (wk)
and measurement noise (ek) are assumed Gaussian. The static func-
tion Fuzzy(�; �Þ represents the fuzzy model structure described in
Section 2.1.

The implementation of a particle-filtering-based SoC estimator
allows to obtain, in real-time, the information associated with
the remnant amount of energy stored in the battery. As the
open-circuit voltage curve depends directly on the SoC, this infor-
mation allows to compute the maximum power that could be
extracted/injected from the battery at the present time. Moreover,
as particle filtering provides an empirical characterisation of the
state PDF, it is possible to measure the uncertainty associated with
any nonlinear transformation of the random variable that is being
estimated; SoMPA in this case, whose calculation procedure may
be considered as the equivalent of a nonlinear transformation of
the battery SoC. The latter is a task difficult to achieve using other
suboptimal Bayesian SoC estimation approaches such as the
extended Kalman filter or the unscented Kalman filter [40]. The
procedure that needs to be followed in order to compute the max-
imum power available at time k (subject to the battery SoC and
physical constraints related to the minimum operational voltage
and maximum discharge currents) is described in detail in
Section 3.

A pseudo-code that helps to illustrate the implementation of
PF-based SoC estimation algorithms is presented (based on filter-
ing schemes described in [41–43].

(1) Initialization: k = 0
Let us assume that the number of particles used in the algo-
rithm implementation is N, the variance of the Gaussian pro-
cess noise is Rw, the variance of the measurement Gaussian
noise is Rv , and let ‘‘x” be the state of the system (in this case,
the State of Charge).

� For i ¼ 1 . . .N, draw particles xi0 from a Gaussian distribu-

tion N �x0;r2
0

� �
, where �x0 is the expectation of the initial

SoC condition and r2
0 its variance.

� Set initial importance weights xi
0 ¼ 1

N

(2) For k = 1,2, . . .

� Draw N particles ~xik; i ¼ 1 . . .N using state transition

model (8) where wk is a sample from Gaussian process
noise with variance Rw; i.e., generate N particles ~xik such
that ~xik ¼ f xik�1; Ik

� �þwi
k

� Calculate the likelihood of each particle as follows:

Lik ¼ exp � 1
2Rv

yk � h ~xik; Ik
� �� �2� �	 ffiffiffiffiffiffiffiffiffiffiffiffi

2pRv
p

; ð10Þ

where yk is the voltage measurement from de battery bank,
and h ~xik; Ik

� �
corresponds to the evaluation of particle ~xik in

measurement Eq. (9).
� Compute the importance weights as follows:

~xi
k ¼ xi

k�1 � Lik:
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� Normalize the updated importance weights as follows:

xi
k ¼

~xi
kPN

i¼1 ~xi
k

:

(3) Resampling
� Let bNeff ðkÞ ¼ 1PN

i¼1
xi

kð Þ2. If
bNeff P Nthres, with Nthres a fixed

threshold (typically Nthres ¼ 0:85NÞ, then xðiÞk , ~xik.
� Otherwise, sample an index jðiÞ distributed according to

the discrete distribution satisfying PðjðiÞ ¼ lÞ ¼ xi
k,

(l ¼ 1; . . . ;N ). Set xðiÞk , ~xjðiÞk and xi
k , N�1
(4) Output (Conditional Expectation): At each time instant,
the particle filtering algorithm generates a PDF estimate
for SoC. Therefore the state expectation can be computed
as:
x̂k ¼
XN
i¼1

xi
k � xik:

Steps 1–4 are executed iteratively. It is important to note that
this algorithm takes about 1.246 ms to complete one itera-
tion using 100 particles on a Intel(R) Core(TM) i7-4790 CPU
@ 3.60 GHz, 8 GB RAM; a fact that facilitates its implementa-
tion and execution on real-time devices.
3. Proposed approach for the computation of maximum
available power as a function of SoC

The aim of this section is to characterise the relationship
between the maximum available power of the battery bank
and the state of charge. It is important to note that in real-
time applications, where the initial state is typically unknown,
or in cases where the system is used for extended time periods,
it is not appropriate to determine the SoC only based on the
integral of the instantaneous current. In the latter case, the main
issue is the numerical errors caused by noisy battery current
measurements. Given that we propose to determine the maxi-
mum power at instant k based on the information available until
instant k � 1, it is necessary to consider a SoC estimator, which
in this case is represented by the implementation of a particle
filter algorithm, described in Section 2.2. In the following, the
methodology for determining the maximum power available in
the battery bank is derived for the charging and discharging
processes. The methodology is based on the optimisation prob-
lem formulation that uses the battery model described in
Section 2.1.

3.1. Formulation of the optimisation problem and KKT conditions

In this section, we derive the analytical solution of the maxi-
mum available power based on a simple model of a battery bank.
Most of previous research efforts available in the literature present
a solution for the SoMPA problem that is based on this simple
model, although the theoretical aspects associated to the deriva-
tion of this solution are typically omitted. We believe that it is
important, for completeness purposes, to include this background
as the starting point of our analysis.

For the estimation of the maximum power available for the dis-
charging and charging processes, an optimisation problem is for-
mulated, considering the following battery model with a
constant internal resistance (RintÞ:
Discharging process
 Charging process
Vk ¼ VocðSoCkÞ � Rint � Ik
 Vk ¼ VocðSoCkÞ þ Rint � Ik
 (11)
where Ik is considered positive on both cases. Then, the power is
given by:
Discharging process
 Charging process
Pk ¼ VocðSoCkÞ � Ik � Rint � I2k
 Pk ¼ VocðSoCkÞ � Ik þ Rint � I2k
 (12)
Therefore, for determining the maximum power available, the
optimisation problem given by (13) incorporates, as a constraint,
the maximum current (IsÞ that can be extracted from (or injected
to) the battery (g1Þ (120 A, accordingly to manufacturer recom-
mendations [44]), the minimum current (g2Þ and the minimum
discharging/charging voltage of the battery (g3Þ. Please notice that
for the computation of the maximum instantaneous power avail-
able it is necessary to solve the optimisation problem shown in
(13), which includes hard constraints for battery voltages and cur-
rents. These hard constraints are particularly important when the
voltage discharge curve reaches its inflection point (at low SoC val-
ues); making it impossible to solve solely considering partial
derivatives of the Lagrangian.
Discharging process
 Charging process
Max f ðIkÞ ¼ VocðSoCkÞ � Ik � Rint � I2k
h i
Max f ðIkÞ ¼ VocðSoCkÞ � Ik þ Rint � I2k
h i
(13)
s.t.
 s.t.

g1 : Ik < Is
 g1 : Ik < Is

g2 : Ik > 0
 g2 : Ik > 0

g3 : Vk < Vk
 g3 : Vk > Vk
where Is ¼ 120 A is the
maximum current that
can
be extracted from the
battery and Vs ¼ 22:4 V
(both values
recommended
by the manufacturera).
where Is ¼ 120 A is the
maximum current that
can be injected from the
battery and Vs ¼ 28:6 V
(both values recommended
by the manufacturer).
a Lithium ion batteries model GBS-LFMP40AH.

The optimisation problem shown in (13) can be rewritten as a
minimisation problem in order to use the Karush–Kuhn–Tucker
conditions. The new optimisation problem is shown in (14).
Discharging process
 Charging process
Min f ðIkÞ ¼ � VocðSoCkÞ � Ik � Rint � I2k
h i
Min f ðIkÞ ¼ � VocðSoCkÞ � Ik þ Rint � I2k
h i
(14)
s.t.
 s.t.

g1 : Ik � Is < 0
 g1 : Ik � Is < 0

g2 : �Ik < 0
 g2 : �Ik < 0
g3 : Ik þ Vs�VocðSoCkÞ
Rint

< 0
 g3 : Ik � Vs�VocðSoCkÞ
Rint

< 0
The maximum current is obtained, at each SoC value, when the
optimisation problem is solved in order to determine the maxi-
mum power available. The accuracy of the optimisation problem
solutions depends on the complexity of the battery model used.

The optimisation problem (14) is solved using the Karush–Ku
hn–Tucker (KKT) conditions [45]. The Lagrangian is given by (15),
where f ðIkÞ are the objective functions shown in (14), giðIkÞ corre-
spond to the constraints of the optimisation problem, and lI are
the Lagrange multipliers.

L ¼ f Ikð Þ þ
X3
i¼1

li � giðIkÞ: ð15Þ
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Partial derivatives of the Lagrangian (15), with respect to the
current Ik, result in KKT conditions given by (16).

rf ðIkÞ þ
X3
i¼1

li � rgiðIkÞ ¼ 0 and li P 0: ð16Þ

The Lagrangian of the optimisation problems described in (14)
is stated as follows (notice that the plus sign is for discharging
and minus sign is for charging):

L Ik;l1;l2;l3

� � ¼ �Voc SoCkð ÞIk � RintI
2
k þ l1 Ik � Isð Þ � l2Ik

þ � � � þ l3 Ik � Vs � VocðSoCkÞ
Rint

� �
; ð17Þ

where l1;l2, and l3 are the Lagrange multipliers. Then KKT condi-
tions are:

@L Ik;l1;l2;l3

� �
@Ik

¼ �Voc SoCkð Þ � 2RintIk þ l1 � l2 þ l3 ¼ 0

and l1;l2;l3 P 0: ð18Þ
The feasible points ðI�Þ in these optimisation problem are shown in
Table 1.

Analysing the KKT conditions for the discharging and charging
processes, the following solutions can be derived, respectively:

IDmax ¼
Is if Voc SoCkð Þ > 2RintIs;

� ðVs�Voc SoCkð ÞÞ
Rint

if 2Vs > VocðSoCkÞ;

(
ð19Þ

ICmax ¼
Is if Voc SoCkð Þ > �2RintIs;
ðVs�Voc SoCkð ÞÞ

Rint
if 2Vs > VocðSoCkÞ:

(
ð20Þ

Based on experimental results, it was found that the conditions
shown in (19) and (20) are always true for the Li-Ion batteries that
were tested in this research effort. If we consider the nontrivial
solutions provided by (19) and (20) (i.e., those provided in Table 2),
we can obtain an expression for the maximum power available
that coincides with the one that is typically reported in the litera-
ture [8,10,12].

The value of the maximum battery current that is obtained by
solving KKT conditions and assuming different SoC values and a
simple battery model are shown in Fig. 4a, both for charging and
discharging processes. Fig. 4b shows the maximum power avail-
able for charging and discharging processes using the aforemen-
tioned solutions.

3.2. Solution of the optimisation problem using fuzzy battery models

In Section 2.1, a fuzzy structure was described allowing the bat-
tery polarisation resistance to be modelled as a function of both
SoC and battery current (during charging and discharging pro-
cesses). Following the general formulation for the optimisation
problem stated in Section 3.1, one can derive the KKT conditions
for the extreme point of the optimisation problem that charac-
terises the SoMPA problem, at any arbitrary time k, during dis-
charging and charging processes.

SoMPA for discharging processes:
Considering the fuzzy model of the battery bank described in

Section 2.1, that includes the polarisation model depending on
the SoC and current level, the optimisation problem for determin-
ing the maximum power available, is given by:

MaxfVoc v0;vL; c;a;b; SoCkð Þ � Ik � Fuzzy SoCk; Ikð Þ � I2kg
s:t:
g1 : Ik � Is < 0;
g2 : �Ik < 0;

g3 : Ik þ Vs � Voc v0;vL; c;a; b; SoCkð Þ
FuzzyfSoCk; Ikg < 0;

ð21Þ
where SoC is the state of charge estimate at time k; Ik is the dis-
charge current at that time instant, and Is ¼ 120 A; Vs ¼ 22:4 V for
the battery used in this work (recommended values according to
the manufacturer [44]).

SoMPA for charging processes:
The optimisation problem for the charging process is similar to

the discharging one (see (21)). Actually, the only differences corre-
spond to the operational ranges and model parameters that are
used to characterise the battery charging procedure. Based on this,
the optimisation problem is given by:

MaxfVoc v0; vL; c;a;b; SoCkð Þ � Ik þ Fuzzy SoCk; Ikð Þ � I2kg
s:t:
g1 : Ik � Is < 0;
g2 : �Ik < 0;

g3 : Ik � Vs � Voc v0;vL; c;a;b; SoCkð Þ
Fuzzy SoCk; Ikf g < 0;

ð22Þ

where SoC is the state of charge estimate at time k; Ik is the dis-
charge current at that time instant, and Is ¼ 120 A; Vs ¼ 28:6 V for
the battery used in this work (recommended values according to
the manufacturer [44]).

As this is a nonlinear optimisation problem, iterative search
algorithms must be utilised to find the extreme points. Specifically,
in this work, the optimisation function fmincon and the genetic
algorithm toolbox from MATLAB� have been used to solve the
aforementioned problem. The extreme point, which in every case
is numerically validated as the value where the objective function
reaches its minimum, can be computed for every SoC 2 [0,1], pro-
viding the answer in terms of the maximum discharge current IDmax

that can be extracted from the battery during discharge proce-
dures, or directly in terms of the SoMPA. A similar analysis can
be made for the case of charging process. In this regard, Fig. 4c
shows the solutions of the maximum current for charging (ICmaxÞ
and discharging (IDmaxÞ processes, while Fig. 4d illustrates the corre-
sponding SoMPA.

3.3. Particle-filtering-based estimator for maximum available power

Results described in Section 3.2 provide the basis for real-time
analysis of the battery performance in terms of the SoMPA, assum-
ing that the battery SoC can be measured on-line. However, as it
was mentioned in Section 2.2, that is not the case. Moreover, as
the internal resistor depends both on the SoC and the discharge
or charge current, any approximation for the battery output power
that assumes constant impedance, could incorporate significant
biases.

However, the implementation of Bayesian algorithms for real-
time estimation of the SoC allows to measure the uncertainty asso-
ciated with this physical quantity and, as a consequence, to estab-
lish probability intervals for the SoMPA. The concept is simple,
though effective and efficient.

As particle filtering provides an empirical characterisation of
the state PDF, it is possible to measure the uncertainty associated
with any nonlinear transformation of the random variable that is
being estimated. In this case, the mapping between SoC and SoMPA
that results from the optimisation process described in Section 3.2
(see Fig. 4d) can be considered simply a deterministic nonlinear
transformation that defines the random variable SoMPA as a func-
tion of the random variable SoC. Thus, a particle-filtering-based
estimator for the SoMPA can be implemented as two cascaded
modules (see Fig. 1). The first module consists of a particle-
filtering-based estimator for the SoC estimator, a subject widely
studied and well established in the literature [23]. The proposed
the SoC, while the second module is a look-up table built on the
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basis of the information provided in Fig. 4d. The output of this
module consists of an empirical PDF for the SoMPA and therefore,
it is possible to extract information related to the expectation of
the distribution, with 95% probability intervals and risk measures,
among other statistics; see Fig. 1. The precision and accuracy of
this empirical PDF is solely related to the number of particles used.
This approach can be easily implemented as real-time algorithms
running in embedded systems, since most of the existing micro-
processors can handle 100 particles in transition equations with
two states.
4. Experimental results

4.1. Experimental setup

The experimental system shown in Fig. 5 was designed and
implemented at the Power Electronic Lab of the University of
Waterloo (Canada). It is designed for charging or discharging a
Lithium-Ion battery bank with a given current profile which is reg-
ulated using a Digital Signal Processor control platform. The data
collected during these charging/discharging cycles has been used
to validate the methodology proposed in this work to estimate
the battery bank maximum available power.

The system shown in Fig. 5 is based on the experimental system
reported in [16]. The methodology to design the current and volt-
age control loops is similar to that reported in [16]. However, some
of the parameters (e.g., nominal power, inductances and switching
frequency) have been changed considering that in this work
Lithium-Ion batteries are used instead of the lead-acid technology
used in [16].

The parameters of the experimental system used in this work
are listed in Table 3. Because of completeness, a brief discussion
of the experimental rig depicted in Fig. 5 is realised in this section.
More information about this system is considered outside the
scope of this paper and the interested reader is referred elsewhere
[16].

The experimental system used in this work is based on IGBT
power electronic devices as shown in Fig. 5a. For battery charg-
ing/discharging purposes a constant positive/negative current Ibat
is regulated by a current control loop [46]. The power generated
by discharging the Lithium-Ion battery bank is dissipated in the
resistor R (see Fig. 5a). The control loops have been designed using
well-known linear control tools as Evan’s root locus.

For the control of the experimental system a Digital Signal Pro-
cessor (DSP) of 16 bit is used (see Table 3). Embedded in this pro-
cessor are 16 Analogue to Digital converter (ADC) channels with a
resolution of 12 bits each, providing a current measurement reso-
lution of 	±15 mA for the operating range considered in this work.
The currents/voltages are measured using high quality Hall effect
transducers with an overall accuracy of 0.4% (of the range) for
the current transducers and 1% of the range for the voltage trans-
ducers. Additionally, in the experimental system an interleaved
configuration arrangement is used for the charging/discharging
stage. With this topology a considerable reduction in the ripple
current circulating through the battery is achieved reducing the
overall losses in the system [16,46].

For DSP control purposes a sampling frequency of 10 kHz is
used. This high sampling frequency allows the implementation of
current/voltage control loops with a high dynamic response and
zero steady state error. To avoid an excessive DSP computational
burden a separate data acquisition unit based on a USB-
connected National Instruments device is interfacing the host-PC
to the experimental system. Eight high resolution (14 bits) ADC
channels are provided by this device, with a maximum sampling
frequency of 6 kHz per channel.
Using both, the DSP and the additional data acquisition unit,
high sampling frequencies of the voltage and currents could be
achieved. However, as stated before, this work is addressed to
study the behaviour of the battery bank in steady-state, low fre-
quency operating range. Therefore, a sampling frequency of 1 Hz
is considered appropriate and used to store data in the host PC
hard drive.
4.2. Design of experiment

In this section, the data obtained from the experimental system
discussed in Section 4.1 is used to identify the parameters of the
open circuit voltage versus SoC curve, Simple model, and Fuzzy
model.

For this evaluation, the parameters of (1) have been identified
using the relaxation test [16] and genetic algorithms [47]. The
Voc-versus-SoC curve obtained experimentally for the charging
and discharging processes is shown in Fig. 6a. The parameters of
the Voc-versus-SoC curve are given in Table 4.
4.3. Performance analysis of the proposed approach

4.3.1. Parameter identification
The data used in the training and validation sets are obtained

from battery charging/discharging profiles programmed in the
DSP controlling the experimental platform. Note that the effect of
temperature was not considered in this work since the experimen-
tal setup was allocated in a room with rather constant tempera-
ture. The parameters required in the Simple and Fuzzy models
are identified using the training sets shown in Fig. 7.

Tables 5 and 6 show, respectively, the parameters of the Simple
model and the Fuzzy model, considering both charging and dis-
charging processes. Notice that the parameters rx represent the
standard deviation in each Gaussian fuzzy sets and the variables
a; b represents the parameters in the sigmoidal fuzzy sets. Fig. 6b
and c shows the fuzzy sets for discharging and charging processes.
4.3.2. Evaluating of the model performance using the RMSE criterion
In this work, three separated sets are used for validation pur-

poses. These validation sets are not correlated with training sets
#1 and #2 (see Fig. 7). A short description of each validation set
is given below.

Validation set #1 (Fig. 8): This validation set includes battery
discharge profiles obtained at different operating points and has
been designed to use instantaneous current levels different from
those of the training set #1 (see Fig. 7). Notice that at the beginning
of the test, the battery bank is completely charged; i.e., the SoC is
almost 100%.

Validation set #2 (Fig. 8): This validation set includes battery
charge profiles obtained at different operating points and has been
designed to use instantaneous current levels different from those
of the training set 2 (see Fig. 7). Notice that at the beginning of
the test, the battery bank is completely charged; i.e., the SoC is
almost 100%.

Validation set #3 (Fig. 8): This validation emulates the typical
operation of a battery bank used in an electric vehicle which have
negative and positive currents. The test is started with the battery
bank fully charged. At each discharge period, 4.85 AH are extracted
from the battery bank. Fig. 9 shows the profile used in this exper-
imental test; please notice that this profile is repeated until the
battery bank is fully discharged.

Table 7 shows the performance indices (RMSE) for Simple and
Fuzzy models, using the three aforementioned validation sets.
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4.3.3. SoC estimator
The particle filtering algorithm previously discussed is imple-

mented for SoC estimation purposes based on Fuzzy model. The
performance of the SoC estimator is experimentally validated using
validation sets #1, #2 and #3 (see Fig. 8). Notice that for all valida-
tion sets, the initial SoC is (arbitrarily) assumed to be 50%. This is
assumed to demonstrate the performance of the algorithm when
the initial conditions are unknown. The results obtained for each
validation set are presented in Fig. 10a–c, d–f and g–i respectively.

Fig. 10a, d and g shows the expectation of the SoC and the con-
fidence interval (of 95%) of the SoC estimate at each sampling time,
for validation set #1, validation set #2 and validation set #3,
respectively.

On the other hand, Fig. 10b and c shows the estimated SoC PDFs
for two different time instants within validation set #1: 0.2 h and
2 h, respectively. Fig. 10e and f shows the estimated SoC PDFs at
the same time instants, considering the validation set #2. Finally
Fig. 10h and i shows the estimation results for the SoC PDFs com-
puted at time instants 0.14 h and 1.94 h, respectively. Notice that
the proposed estimator provides the expectation of the SoC, as well
as the confidence interval of this estimation with a 95% confidence
level. Moreover, the PDF can be computed at any time instant.
4.3.4. SoMPA estimator
This section focuses on the results obtained with the proposed

SoMPA estimator. Notice that for all validation sets, the initial
SoC is arbitrarily initialized at 50% of the true value to analyse
the impact of erroneous initial conditions. The results for each val-
idation set are as follows.

Fig. 11 shows (i) the expectation of the SoMPA and the confi-
dence interval (of 95%) of the SoMPA estimate at each time instant,
and (ii) the PDF of SoMPA of the estimator at some arbitrary time
instants for validation sets #1, #2 and #3, respectively. The pro-
posed SoMPA estimator computes the expected value as well as
the confidence interval for a given confidence level.

The proposed framework allows us to compute the conditional
SoMPA PDF estimate at any arbitrary time instant. Fig. 11b and e
depicts the performance of the PF-based PDF estimate at moments
in which the filter has converged (uncertainty associated with the
estimate is mainly due to measurement noise), whereas Fig. 11c, f,
h, and i, depicts a condition in which the filter is updating a biased
estimate of the SoMPA (PDFs indicate that the particle population
is exploring areas of the state space associated with larger values of
the SoMPA). Overall, the robustness of the proposed framework
allows to correct for imperfections in the battery model and sensor
disturbances in an efficient manner. Notice that in Fig. 11h the PDF
support is in the domain of negative SoMPA. However, in Fig. 11i
the PDF support is in the positive zone of the SoMPA. This situation
happens due to the fact that validation set #3 has both positive and
negative currents.

Finally, Fig. 12 shows the convergence process for both SoC and
SoMPA estimators in all three validation sets (please be aware that,
as mentioned before, for all three validation sets the initial SoC is
incorrectly initialised at 50%). In this figure it is possible to notice
that both estimation algorithms converge to the true value of the
state even when the initial condition is incorrectly set.
5. Conclusions

This paper introduced a novel approach to the estimation of
both State of Charge (SoC) and State of Maximum Power Available
(SoMPA) in Lithium-Ion batteries. An optimisation problem was
formulated for the battery power based on a non-linear dynamic
model and the solutions were obtained as functions of SoC. In
the battery model, the polarisation resistance was modelled using
fuzzy rules that were functions of both SoC and current magnitude.
Particle filtering algorithms were used as an online estimation
technique, allowing approximation of the probability density func-
tions of the SoC and SoMPA even for non-Gaussian sources of
uncertainty. The proposed method for SoMPA estimation was val-
idated using the experimental data obtained from an experimental
setup.

As future work, we propose to consider the effects of tempera-
ture variations within the fuzzy model for the internal resistance.
In those cases, the polarisation resistance will be depend on the
SoC, current rate, and temperature. Thus, the fuzzy model should
characterise the resistance as a 3-D surface and not simply a curve
(as the one shown in Fig. 3). The effects of the SoH on model
parameters are also proposed as part of future work.
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