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a b s t r a c t

This paper introduces a novel fuzzy model based structure for the characterisation of discharge processes
in lead-acid batteries. This structure is based on a fuzzy model that characterises the relationship be-
tween the battery open-circuit voltage (Voc), the state of charge (SoC), and the discharge current. The
model is identified and validated using experimental data that is obtained from an experimental system
designed to test battery banks with several charge/discharge profiles. For model identification purposes,
two standard experimental tests are implemented; one of these tests is used to identify the VoceSoC
curve, while the other helps to identify additional parameters of the model. The estimation of SoC is
performed using an Extended Kalman Filter (EKF) with a state transition equation that is based on the
proposed fuzzy model. Performance of the proposed estimation framework is compared with other
parametric approaches that are inspired on electrical equivalents; e.g., Thevenin, Plett, and Copetti.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The estimation of the remnant energy stored in Battery Energy
Storage Systems (BESS) is important for the evaluation of its future
performance. In this regard, many different battery-based appli-
cations have considered the problem of State-of-Charge (SoC)
estimation; e.g., microgrids [1], electric cars [2], wind-diesel sys-
tems, distribution grids [3], and Flexible Alternate Current Trans-
mission Systems (FACTS). Moreover, in microgrids, the SoC is
usually an input of the energy management system [1] and it is
required to optimise its performance. Additionally, the SoC is also
an important parameter for an adequate operation of electric cars
and drones, because it provides information that helps to estimate
their respective autonomy.
The SoC may be considered as the remnant energy in a battery
bank. The SoC is usually defined as a value in the interval [0,1],
where 0 indicates complete discharge of the battery and 1, full
charge. This work focuses on the problem of estimating the SoC in
lead-acid Batteries; a variable that is affected by charge/discharge
rates, temperature, usage time, hysteresis and self-discharge effects
(due to the internal impedance of the cell). There are a number of
aspects that have to be considered when implementing SoC esti-
mation procedures, and in this regard, we will solely focus on: (i)
the model of the battery that will be used, and (ii) the algorithm
that will be utilised to estimate parameters in non-linear/non-
observable systems. Several research efforts aim at providing a
solution for these issues using empirical, physicochemical, or
electric models in conjunctionwith estimation techniques based on
fuzzy logic [4], neural networks [5], or Bayesian approaches such as
the Extended Kalman Filter (EKF) [6,7] and particle filtering [8].

One of the main difficulties for SoC estimation is that the SoC
cannot be directly measured in a battery-based storage system.
Therefore, this valuemust be inferred from the observation of other
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variables such as the battery current, voltage, temperature, State-
of-Health (SoH) [8], and indicators associated with the self-
discharge phenomena [9e12]. The utilisation of more complex
electrochemical models for the estimation of the SoC is also
possible. However these techniques are only suitable for off-line
studies, mainly because these models (i) require a large number
of variables to represent the battery internal processes, (ii) assume
extremely accurate measurements [5,9], and (iii) have an elevated
computational cost [5,9]. Other options for SoC monitoring include
the open-circuit voltage (Voc) method [13]; where an equivalent
circuit model is developed using resistors, capacitors and voltage
sources to form a circuit network (such as polarisation-impedance-
based models or Thevenin-equivalent-based models). This
approach has the advantage of providing a direct relationship be-
tween battery SoC and voltagemeasurementse the higher the Voc,
the higher the SoC [14]. Unfortunately, the implementation of this
test requires long battery resting periods, and limiting its use for
online applications [5,9,12,14]. Similarly, Electrochemical Imped-
ance Spectroscopy (EIS) [9,15] is outlined as a non-invasive method
that intends to provide a complete characterisation of the battery
internal equivalent circuit. However, the implementation of an EIS
test requires the acquisition of costly equipment (usually available
only at laboratory test sites), which severely limits its wide spread
use in practice [16]. Moreover, data obtained using EIS, usually is
very noisy [6,16]. It is for this reason that current research efforts
are mostly focused on the development of SoC estimation algo-
rithms based on empirical models that incorporate relevant
phenomenological aspects of the process; i.e., the relationship be-
tween currents, voltages and temperatures of cells. Among these
methods, it is worthmentioning those that are based on fuzzy logic,
neural networks, and Bayesian approaches.

Fuzzy logic models have been used for SoC estimationmainly for
the identification of battery from EIS data [4,17,18] and to a lesser
degree, directly from voltage or discharge current measurements.
Salkind et al. in Ref. [4] propose a SoC estimator based on fuzzy
models for two battery storage systems: lithium/sulphur dioxide
and nickel/metal hydride. In this estimator, the relationships be-
tween the imaginary component of the impedance at 10.3 Hz,
41.01 Hz and 4101 Hz and the SoC of the cell are modelled using a
Sugeno fuzzy system. A similar approach for the SoC estimation of a
Ni/MH battery is presented in Ref. [17]. This paper also considers
the relationship between the imaginary component of the imped-
ance and the SoC using fuzzy clustering to obtain of the corre-
sponding fuzzy sets. Zenati et al. in Ref. [18] propose to use EIS
measurements for the SoC estimation of Li-Ion batteries. The
experimental work discussed in this paper considers temperature
variations and several battery charging levels. The influence of DC
current over the AC impedance during EIS measurement is ana-
lysed and interpreted by a fuzzy system. The methods proposed in
Refs. [4,17,18] could be used for on-line estimation of the SoC.
However, it requires access to electrochemical impedance spec-
troscopy (EIS) data. Moreover, because of the EIS disadvantages
previously discussed, methods to characterise the SoC using voltage
and current measurements have more advantages. In this regard, a
different approach that generates a SoC estimator from voltage
recovery profiles, without the need of impedance measurements, is
presented in Ref. [19]. Particularly, this method uses the minimum
battery voltage, at a fixed load current, as one of the fuzzy system
inputs. The other input is the difference between themaximum and
minimum voltage of the battery pack. This methodology is pro-
posed in Ref. [19] to estimate the SoC in batteries that undergo
constant charge/discharge profiles as for instance in batteries used
to feed portable defibrillators.

Another fuzzy logic based SoC estimator for lead-acid batteries
is presented in Ref. [20]. In this case, an improved Coulomb metric
is augmented with a fuzzy inference rule which considers both the
temperature and the battery current level. However, the proposed
estimator is only validated by simulation experiments and it is not
tested with real data from an experimental system.

Neural networks have also been used to represent a non-linear
relationship between battery measurements respect to the evo-
lution of SoC in time; however, they usually require huge data sets
for the identification process [9,5,11]. A neuro-fuzzy system is
proposed for estimation of the SoC of a Li-Ion battery in Ref. [21].
The data is collected using Hybrid Pulse Power Characterisation
(HPPC) tests specified in the standard “Partnership for a new
Generation of Vehicles” [22]. In Ref. [21] an adaptive neuro-fuzzy
inference system (ANFIS) models the relation between SoC and
the open circuit voltage. Given that the estimator input corre-
sponds to the Voc, this method is not suitable for on-line appli-
cation. A slightly different approach was presented in Refs. [23],
where ANFIS models and Principal Components Analysis (PCA) are
used to estimate the SoC of Ni-MH batteries. In this method, the
main inputs of the ANFIS estimator are the discharge current,
battery terminal voltage and the battery energy released. Ac-
cording with Ref. [23] the proposed neuro-fuzzy model has several
advantages when compared with conventional neural network
estimator. However, huge data sets are required for training the
large number of parameters required by the proposed ANFIS sys-
tem. This may produce a substantial increase in the requirements
associated with the implementation.

A new learning structure called Merged Fuzzy Neural Network
(MFNN) is proposed in Ref. [24] to estimate the SoC of a lithium-
ion battery bank. The SoC of each battery cell is modelled by a
neural network using the battery terminal voltage, discharge
current and battery surface temperature as inputs. The parameters
of the MFNN are obtained using genetic algorithms. Although this
new approach allows the modelling of the whole battery bank, a
very large data set is required because measurements in each cell
have to be realised. Therefore, the complexity of this model is high,
increasing the difficulties associated with a real time
implementation.

In recent years there has been a growing interest in the use of
stochastic filtering techniques (unscented Kalman Filter [25],
extended Kalman Filter [6,7], and unscented particle filter [26]) to
estimate the SoC of battery cells. In fact, experience has demon-
strated that Bayesian estimators are well suited for real-time esti-
mation problems that incorporate dynamic state transition models
[6,8,16]. Particularly related to the proposed problem is a Stochastic
Fuzzy Neural Network (SFNN) presented in Ref. [27] to model the
Ni-MH battery behaviour. The SoC is estimated with extended
Kalman filters based on SFNNmodels. The load voltage is modelled
by the SFNN considering the charge and discharge currents, tem-
perature and SoC as inputs. The SFNN has a filtering effect on the
inputs and this improves the signal to noise relationship of the
output signals. In this case the validation discharge profile is very
similar to the training set. Therefore, the methodology proposed in
Ref. [27] has not been fully validated for different battery operating
conditions.

Particularly in this work, a novel estimator of the SoC for a lead-
acid battery bank is proposed. The SoC estimator is based on an
Extended Kalman Filter (EKF) that uses a fuzzy model as its
observation equation. The scheme of the proposed estimator is
shown in Fig. 1. The EKF uses the measurements of both voltage,
V(k) and current, I(k). The current measurements are used to esti-
mate the polarisation resistance Rint by using a fuzzymodel and this
is one of the inputs of the state estimator for generating the esti-
mated voltage. The voltage modelling error is used for updating the
SoC estimator. The proposed EKF based on a fuzzy model will be
described on detailed in Sections 3 and 4.



Fig. 1. Scheme of the proposed EKF based on a fuzzy model for SoC estimations.

Fig. 2. Training set used for parameter identification purposes.
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Two major contributions are highlighted:

� A new fuzzy model for the output voltage of a lead-acid battery
bank, which is inspired on the process phenomenology. The
polarisation resistance is modelled by a non-linear interpolation
(fuzzy based) of a set of available curves obtained experimen-
tally at different operating points of the battery bank. The re-
quirements for experimental data of this model are similar to
that required for the identification of classical circuital models of
battery banks.

� The proposed EKF is based on a fuzzymodel which requires only
one internal state in its formulation. This configuration allows
an efficient microprocessor implementation, with a reduced
number of numerical calculations.

The structure of the paper is as follows. Section 2 presents the
lead-acid battery models reported in the literature and their rela-
tionship with the problem of lead-acid battery SoC estimation. In
Section 3, the fuzzy model proposed by the authors is extensively
discussed. The use of an Extended Kalman Filter, based on a fuzzy
model, for SoC estimation is presented in Section 4. In Section 5, the
design of an experimental system used for system modelling and
validation is discussed. In Section 6, the experimental results are
shown. Finally, analysis, comments, and further research lines are
presented in the conclusions.

2. Classic models for batteries

This work presents a comparison between the performance of
the proposed fuzzy model with respect to other well-known bat-
tery models (Thevenin, Plett, and Copetti). Thus, we present in this
section a brief analysis of all these models, as well as their main
features.

2.1. Open circuit voltage curve

There is a well-known relationship between the open-circuit
voltage (Voc) and the state-of-charge (SoC) [22,28,29]. Most of the
times, this relationship is obtainedusing anexperimental test known
as “voltage relaxation”: a procedure that basically applies a known
discharge profile to the battery for a given period, then forces null
discharge current (open circuit) for an appropriate “rest” time (usu-
ally an hour), and then measures the (Voc) output voltage [28].
In particular, the Voc-SoC curve in lead-acid batteries can be
modelled using a linear-in-the-parameters structure [30], as shown
in Eq. (1).

Vock ¼ anSoCnk þ an�1SoC
n�1
k þ…þ a1SoCk þ a0; (1)

where ai(i¼ 1,…, n) are model parameters. In this model, the SoC is
empirically calculated as the integral of the instantaneous current.
The discrete model is given by:

SoCkþ1 ¼ SoCk �
Ts
Cn

Ik; (2)

where Cn is the cell nominal capacity (which can be experimentally
obtained [22]), Ts is the sampling time, and Ik is the instantaneous
discharge current.
2.2. Thevenin circuital equivalent model

The Thevenin circuital equivalent model consists of a controlled
voltage source (whose valuedepends on the SoC), a series RC branch,
and a series resistance [31e35]. Using this topology and assuming a
positive current for battery discharging, a discrete model for the
output voltage (as a function of the current) is given by:

Vk ¼ Vock þ ½Vk�1 � Vock�1�$e
�Ts

R0$C0

�
�
R0 � ðR0 þ RintÞ$e

�Ts
R0C0

�
$Ik�1 � Rint$Ik;

(3)

where Vock is obtained from Eq. (1), Rint is the polarisation resis-
tance of the battery, C0 is the capacitance between the electrodes,
and R0 is a non-linear element that represents the contact resis-
tance between the electrodes and electrolyte. For parameter
identification purposes, the voltage relaxation test is used for
determining the curve SoCeVoc and a test shown in Fig. 2 is used in
order to obtain the model resistances and capacitor values.

The Thevenin model can be improved by modifying the polar-
isation resistance, according to the battery operating point; e.g.,
assuming different Rint for charging and discharging [33].
2.3. Plett model

Plett in Ref. [36] presents a model for a battery bank that de-
pends explicitly on the SoC. In this structure, the output voltage is
given by:
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Vk ¼ K0 � RintIk �
K1

SoCk
� K2SoCk þ K3 ln½SoCk�

þ K4 ln½1� SoCk�;
(4)

where K0 represents the polarisation effects, Rint is the constant
polarisation resistance of the battery storage system and Ki(i¼ 1,…,
4) are the model coefficients. All the terms associated with Ki

represent the relationship between VoceSoC, and thus the relaxing
test is not required as these terms are directly obtained from the
experimental tests.

An EKF implementation based on a Plett model has been used in
Ref. [37] for the estimation of the SoC in ion-lithium batteries. In
this case, only one state variable was included, which is the SoC.
This estimator was tested for values higher than 40%. Notice that
the Plett model (4) could have numerical errors for SoC near to zero.
2.4. Copetti model

The Copetti model [38,39] considers an equivalent circuit for the
battery that contains a constant voltage source and a variable
polarisation resistance Rint(SoC, I, T). The voltage source represents
the relationship between Voc and SoC, while Rint represents the
battery electrochemical effects that oppose to the current flow. The
Copetti model describes four operation modes for the battery sys-
tem; a charging zone, a discharging zone, an overcharging zone and
an intermediate zone representing a soft transition between
charging/discharging modes. In this work only the discharging
zone is studied; therefore, the analytical expression for the output
voltage is given by:

Vk ¼ ½V0d � K0dð1� SoCkÞ�

� Ik
C10

"
P1d

1þ IP2dk

þ P3d
SoCP4dk

þ P5d

#
½1� qdDT �;

(5)

where Pid(i ¼ 1, …, 5) are unknown coefficients associated to the
polarisation resistance. C10 corresponds to the battery capacity (in
AH) for 10 h [39] and qd relates the model with the temperature
variation (DT).The term [V0d � K0d(1 � SoCk)] models the rela-
tionship VoceSoC. If temperature effects are neglected, the Copetti
model equation is:

Vk ¼ Vock �
Ik
C10

"
P1d

1þ IP2dk

þ P3d
SoCP4dk

þ P5d

#
: (6)

Also, in this model, the curve VoceSoC is defined using Eq. (1).
Parameters associated with the battery polarisation resistance are
identified using data from the training set shown in Fig. 2.

As well as the Plett model, the Copetti model (6) also presents
discontinuities when the SoC is near to zero.
Fig. 3. Circuital representation of the fuzzy model.
3. Fuzzy modelling of lead-acid batteries

The classical models discussed above, have disadvantages (e.g.,
polarisation resistance is assumed to be constant, numerical errors,
discontinuities in the vicinity of SoC near to zero), which could limit
their performance in a SoC estimation procedure.

In this section a novel battery model is proposed. It is based on
fuzzy system and has the following advantages: i) it offers a non-
linear characterization of the battery polarisation resistance, (ii) it
requires a limited number of experimental tests for model identi-
fication purposes, and (iii) it does not present discontinuities for
SoC values in the vicinity of zero.
3.1. Fuzzy model based on rules

Fuzzy logic defines a fuzzy set A, whose elements belong to a
discourse universe X as the set of tuples A¼ [(x, mA (x))/x2X] where
mA(x) is denominated the membership function associated with
fuzzy set A. Themembership function assigns amembership degree
between 0 and 1 to each element of X. The most commonly used
membership functions are triangular, trapezoidal and Gaussian
shape. Based on this definition, a Takagi & Sugeno fuzzy system
corresponds to a set of rules of the form [40]:

Rule j : If x is Aj then yj ¼ fjðx; zÞ (7)

yðx; zÞ ¼
Pr

j¼1 wjðxÞ$yjðx; zÞPr
j¼1 wjðxÞ

; (8)

where Aj are the fuzzy sets, fj is a non-linear function for the rule j,
wj is the activation degree of rule j and r are the number of rules.
3.2. Fuzzy model for a battery bank

The fuzzy model proposed in this work is based on the circuit
shown in Fig. 3. It is assumed that the battery output voltage de-
pends on both, the SoC, and the battery current. Temperature var-
iations are not considered in the model, because the battery bank is
located in an environment with controlled temperature.

In Fig. 3, the polarisation resistance is modelled as a non-linear
function dependant on both the SoC and the discharge current. It is
important to note that this equivalent circuit does not consider
capacitances. In this regard, it is similar to the equivalent circuits
obtained from Plett and Copetti models. Therefore they are used to
describe the steady state behaviour of the battery bank.

Based on Fig. 3, the fuzzy model discrete equation is given by:

Vk ¼ Vock � Ik$bRintðSoCk; IkÞ; (9)

where the voltage source Vock is obtained from Eq. (1). Therefore,
the values of the proposed polarisation resistance can be obtained
using Eq. (9), i.e.:

bRintðSoCk; IkÞ ¼
Vock � Vk

Ik
: (10)

To obtain the polarisation resistance of the proposed model (see
Fig. 3), experimental tests at fixed discharge current levels are
performed (see Fig. 2). Fig. 4 shows the computed values of re-
sistances in function of SoC, using Eq. (10) and current values of
10 A, 15 A, 25 A, 32 A, together with the corresponding output
voltage measurements Vk. To calculate the equivalent polarisation
resistance for any value of discharge current within the operating
range, the proposed fuzzy model interpolates between the resis-
tance curves depicted in Fig. 4. Thus, the structure for the proposed
fuzzy model and its rules for the calculation of bRintðSoCk; IkÞ are:



Fig. 4. Polarisation resistance values at different current levels.
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Rule j : If Ik is AIj;j then bRintj ¼ fjðSoCkÞ; (11)

bRintðSoCk; IkÞ ¼
Pr

j¼1 wjðIkÞ$fjðSoCkÞPr
j¼1 wjðIkÞ

; (12)

where wj is the activation degree of rule j (in this case, equal to the
membership degree to the fuzzy set AIj;j) and fj is a non-linear
function adjusted for the resistance values bRintj in function of
SoCk at a fixed level of the current Ij (see curves from Fig. 4). The
fuzzy sets are obtained from the experimental data (Fig. 4) and they
are shown in Fig. 5.

Gaussian membership functions for the fuzzy sets AIj;j are pro-
posed in this work. Gaussian membership functions have been
selected because they only require two parameters (mean value
and standard deviation) to be completely defined. In this particular
case, the mean value of these functions is defined as Ij, and the
standard deviation is selected to minimise the model mean square
error.

Finally, it is important to mention that the fuzzy model imple-
mentation requires similar experimental data size than that
required for the implementation of Thevenin and Copetti models.

4. Extended Kalman filter based on fuzzy models for SoC
estimation

The proposed fuzzy model is important for the estimation of the
SoC using the Extended Kalman Filter algorithm. The classic
Fig. 5. Fuzzy sets for current values.
formulation of the EKF considers a non-linear stochastic system
that can be represented by the following discrete time state space
equations [7]:

xk ¼ f ðxk�1;uk�1Þ þ uk (13)

yk ¼ hðxk;ukÞ þ vk; (14)

where xkεR
n is the unknown state vector, ukεRr are known process

inputs, and ykεR
m are observation outputs. Process and measure-

ment noises are denoted by uk and vk (Gaussian), with variances Q
and R respectively; while f($) and h($) are non-linear functions that
characterise the state transition and measurement equations, in
that order.

The EKF has the same structure of the well-known linear Kal-
man filter [41]. Eqs. (13) and (14) are used to characterise the non-
linear state transition equation. These equations are linearised us-
ing the Taylor expansion, and only selecting its first term. Thus, the
expectation of the estimate state probability density function (PDF)
is given by:

bxk=k�1 ¼ f ðbxk;ukÞ þ uk (15)

The Pk/k�1 covariance matrix is obtained by calculating a deriv-
ative respect to bxk=k�1 as:

Ak�1 ¼ vf
vxk�1

����bxk=k�1;uk�1

(16)

Pk=k�1 ¼ Ak�1Pk�1=k�1A
T
k�1 þ Q : (17)

Once the prediction step is completed, the following equations
are computed:

~yk ¼ yk � h
�bxk=k�1;uk

�
(18)

Sk=k�1 ¼ CkPk=k�1C
T
k þ R; (19)

where Ck is given by:

Ck ¼
vh
vxk

����bxk=k�1

(20)

If (20) is evaluated at the prior state estimate bxk=k�1, then the
Kalman gain Kk is computed as in Eq. (21). This Kalman gain is af-
terwards used in Eq. (22) to generate the posterior estimate bxk=k.
Finally, the error covariance matrix Pk/k is calculated using Eq. (23).

Kk ¼ Pk=k�1C
T
k

�
CkPk=k�1C

T
k þ R

��1
(21)

bxk=k ¼ bxk=k�1 þ Kk

�
yk � h

�bxk=k�1;uk
��

(22)

Pk=k ¼ ðI � KkCkÞPk=k�1 (23)

4.1. EKF based on a fuzzy model

The state space model that is proposed in this implementation
uses Eq. (2), which relates the SoC with the integral of the instan-
taneous current, as the state equation and the output voltage of the
proposed model (9) as the observation equation, respectively:



Fig. 6. Setup of the experimental system.

Table 1
Parameters of the experimental system.

Nominal power of the
experimental system

4 kW

Inductance for battery charging 30 mH
Battery bank 3 Trojan T-105. 18 V in total (nominal)
Nominal capacity 185 Ah
Switching frequency 4 KHz
Inductance and resistance

for battery discharging
15 mH, 1 U

Control platform DSK 6713, FPGA ACTEL A3P400
DC-link capacitance 2 Parallel-connected capacitors of

75 V, 33,000 mF each.
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dSoCk=k�1 ¼ dSoCk�1=k�1 �
TsIk�1
Cn

(24)

bVk=k�1 ¼ Voc

�dSoCk=k�1

�
� IkbRint

�dSoCk=k�1; Ik
�
: (25)

Therefore, the estimation of the SoC is obtained using the EKF
(see Eqs. (15)e(23)), which is based on the model described by Eqs.
(9)e(12). Thus the SoC is estimated using:

dSoCk ¼ dSoCk=k�1 þ Kk$
h
Vk � bVk=k�1

i
(26)

Kk ¼ Pk=k�1$C
T
k $

h
Ck$Pk=k�1$C

T
k þ R

i�1
(27)

Pk ¼ ½I � Kk$Ck�$Pk=k�1; (28)

where Ck is the first term in a Taylor expansion of the fuzzy model
(see Eqs. (9)e(12)):

Ck ¼
vVk
vSoC

����cSoCk=k�1

¼ vVOC

vSoC

����cSoCk=k�1

� IkPr
j¼1 wjðIkÞ

0@Xr
j¼1

wjðIkÞ$
vfjðSoCkÞ
vSoCk

����cSoCk=k�1

1A
(29)

and:

Pk=k�1 ¼ Pk�1=k�1 þ Q : (30)
Fig. 7. Experimental system topology.
In summary, the EKF described is based on a new fuzzy model
which it is used as the observation equation with just one state
defined by the SoC. Thus, the resulting algorithm is efficient and
entails low computational burden when programmed on a
microprocessor.
5. Experimental system

In this work an experimental system has been designed and
implemented in order to

� Validate the proposed methodology using experimental data,
obtained by discharging a lead-acid battery bank. The same
system is used to charge the batteries according to the charging
profile recommended by the manufacturers.

� Experimental data has been used to comparate the performance
of the proposed model respect to the performance of other
models reported in the literature.

� Experimental data has been used for comparate the perfor-
mance of the SoC estimator based on the fuzzy model and a SoC
estimator based on a conventional model.

The experimental prototype is shown in Fig. 6 and its topology
in Fig. 7. This converter topology is relatively inexpensive and
Fig. 8. Control system and associate hardware for battery charging.



Fig. 9. Control system for battery bank discharging.

Fig. 11. VoCeSoC relation.
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simple to implement. Information about the parameters of the
experimental system is provided in Table 1.

The input to the battery charging/discharging system (see
Fig. 7), is a variable output transformer designed to supply a voltage
of 40 V, 100 A. A bridge rectifier is required to feed a DC-link
capacitor bank of 66,000 mF. This DC-link is connected to two
blocks labelled “Battery charge” and “Battery discharge”. A Digital
Signal Processor (DSP), Texas Instrument DSK 6713 is used to
control the whole system. As shown in Fig. 8 this DSP platform is
connected to a host computer. An FPGA based board is utilised to
generate the IGBT switching pulses and for protection purposes. An
additional board with 10 ADs channels of 14 bits, 1 ms of conversion
time is provided. Hall-effect transducers are used to measure the
DC-link voltages, the voltage of the battery bank, the currents (IB1,
IB2) and the current in the resistance where the energy is dissipated
when the batteries are being discharged. The control systems
required to charge and discharge the battery bank are discussed
below.

5.1. Control system for charging the battery bank

To charge the battery bank, the control system and associate
hardware shown in Fig. 8 have been implemented in this work. To
operate with currents close to 100 A with minimum ripple in the
battery bank, two inductors are used with interleaved switching
signals. The switching frequency used to control the system is 4 kHz
for a sampling time (in the DSP implementation) of 250 ms. The host
computer is also used to acquire and store intermediate data, with a
sampling time of 1 s. This time is considered appropriate consid-
ering the relatively slow variation of the current profile. AMATLAB®

interface has been implemented to acquire and process the data
sent from the DSP.

The reference charging current (see bottom left side of Fig. 8)
corresponds to a profile which is stored in the host computer. A PI
controller regulates the DC component of the voltage (see v2 in
Figs. 7 and 8) at the actuator output. Assuming that the two in-
ductors/IGBT legs are identical, the battery current IB is obtained as:
Fig. 10. Interleaved operation of the two legs used for battery charging.
IB ¼ 2
sL2

ðv2 � vBÞ: (31)

Using Eq. (31) and root-locus, it is relatively simple to design a
current control system. For this application a natural frequency of
un z 20 Hz and damping factor z ¼ 0.8 are used. This natural fre-
quency is considered sufficient for this application.
5.2. Control system for discharging the battery bank

To discharge the battery bank, the reference current regulated
by the control system of Fig. 8 is negative (i.e. I*B <0). Therefore in
steady state v2 < vB and the actuator is operated as a boost con-
verter, increasing the DC-link voltage Edc.

When the DC-link voltage is above a given value, the control
system shown in Fig. 9 is activated. A PI controller is used to
regulate the DC-voltage v1 which is applied to the load composed of
an inductor L and a resistance R (see “battery discharge” block in
Fig. 7). Neglecting the losses, in steady state the PI controller drives
the current IL to the value:

IL ¼ IT ¼ vBIB
E*

; (32)

where IT is the total current provided by the battery bank to the DC-
link.

Considering the large DC-link capacitance, the natural frequency
of this control loop is un z 5 Hz, with a damping coefficient of
z z 0.8.
Fig. 12. Validation set 1.



Fig. 14. Validation set 3. The subset 3 is defined from t ¼ 0 until t z 15 (see dotted
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5.3. Interleaved operation

In order to charge and discharge the battery bank, with a rela-
tively high current and low ripple, the two inductors available for
this work were connected for interleaved operation. This allows a
considerable reduction in the current ripple, maintaining the
inductor currents below the rating values. For interleaved opera-
tion the FPGA was programmed to switch each IGBT with identical
duty cycle but with a phase shift of 180�.

The waveforms are shown in Fig. 10 where the switching pulses
and its associated inductor currents are displayed in Fig. 10a and b.
Notice that the DC current components are identical in both in-
ductors, however part of the harmonic distortion is eliminated
when the currents IB1 and IB2 are added. More information about
interleaved operation of current control system is elsewhere [42].
line).
6. Experimental evaluation of the model performance

In this section data from experimental system discussed in
Section 5 is used to identify the parameter of all the models pre-
sented in Section 2. These are:
Fig. 13. a) Validation set 2, b) model comparison in validation set 2, c) model com-
parison in validation set 2, zoom for a time period.
� Open circuit voltage curve
� Thevenin model
� Plett model
� Copetti model
� Proposed fuzzy model

For this evaluation the parameters of Eq. (1) have been identi-
fied using the relaxation tests described in Section 2.1 and genetic
algorithms [43]. This VoceSoC curve was obtained experimentally
and it is shown in Fig. 11. This relationship can be mathematically
written as (see Eq. (1)):

Vock ¼ 3:755SoC3k � 5:059SoC2k þ 3:959SoCk þ 17:064 (33)

As described in Eq. (2), the SoC is calculated as the integral of the
instantaneous current with a sampling time of Ts ¼ 1 s and nominal
capacity (Cn) equal to 165 Ah, which is obtained from a capacity
experimental test at 10 A.

The comparative analysis of model performances is generated in
terms of the Root Mean Square Error (RMSE), which is given by:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

�
Vi � bV i

�2
N

vuut
; (34)

where N is the number of samples (from experimental data), Vi is
the actual output voltage (obtained using the experimental system
of Section 5) and bV i is the estimated output voltage obtained from
the battery bank model considered.
6.1. Parameter identification

The data used in the training and validation sets are obtained
from battery discharging profiles programmed in the DSP con-
trolling the experimental platform. Notice that temperature effects
in this work were not considered since the experimental setup was
allocated in a room with constant temperature. The parameters
Table 2
RMSE performance models on validation sets.

Models Set #1
RMSE [V]

Set #2
RMSE [V]

Set #3
RMSE [V]

Set #3*
RMSE [V]

Thevenin 0.1548 0.1259 0.2457 0.1584
Plett 0.1174 0.1087 2.8840 0.2096
Copetti 0.0717 0.0978 1.7005 0.0644
Fuzzy rules 0.0819 0.0866 0.0753 0.0589



Fig. 15. EKF estimators based on Copetti and fuzzy models in validation set 1. Fig. 17. EKF estimators based on Copetti and fuzzy models in validation set 3.

C. Burgos et al. / Journal of Power Sources 274 (2015) 355e366 363
required in the Thevenin, Copetti, Plett, and fuzzy models are
identified using the training sets shown in Fig. 2.

Using the discrete expression defined in Eq. (3) the parameters
of the Thevenin model are estimated as: Rint ¼ 0.019 U;
C0 ¼ 28,747.99 F and R0 ¼ 0.013 U.

Vk ¼ Vock þ ½Vk�1 � Vock�1�$e
�1

0:013$28747:99

�
h
0:013� ð0:013þ 0:019Þ$e �1

0:013$28747:99

i
$Ik�1

� 0:019$Ik;

(35)

The parameters of the Plett model (see (4)) are estimated as:
K0 ¼ 15.33, K1 ¼ 0.471, K2 ¼ �4.408, K3 ¼ �2.249, K4 ¼ �0.085 and
Rint ¼ 0.026 U.

Vk ¼ 15:33� 0:026Ik �
0:471
SoCk

þ 4:408SoCk

� 2:249 ln½SoCk� � 0:085 ln½1� SoCk�;
(36)

The parameters of the Copetti model described in Eq. (6) are
estimated as: C10 ¼ 138.003 Ah, P1d ¼ 49.246, P2d ¼ 1.089,
P3d ¼ 0.063, P4d ¼ 2.082 and P5d ¼ 1.986.

Vk ¼ Vock �
Ik

138:003

"
49:246
1þ I1:089k

þ 0:063

SoC2:082
k

þ 1:986

#
; (37)

The fuzzy model rules obtained (based on the methodology
discussed in Section 3.2) are:
Fig. 16. EKF estimators based on Copetti and fuzzy models in validation set 2.
Rule 1 : If Ik is A10;1 then bRint1

¼ 0:070SoC4k � 0:382SoC3
k þ 0:619SoC2k

� 0:383SoCk þ 0:118

Rule 2 : If Ik is A15;2 then bRint2

¼ 0:067SoC4k � 0:338SoC3
k þ 0:529SoC2k

� 0:316SoCk þ 0:095

Rule 3 : If Ik is A25;3 then bRint3

¼ 0:031SoC4 � 0:219SoC3
k þ 0:391SoC2k

� 0:253SoCk þ 0:079

Rule 4 : If Ik is A32;4 then bRint4

¼ 0:083SoC4 � 0:284SoC3
k þ 0:374SoC2k

� 0:208SoCk þ 0:063

Fig. 5 shows the membership functions of the fuzzy sets AIj;j.
Therefore using AIj ;j (see Fig. 5) and Eq. (12), bRintðSoCk; IkÞ is ob-
tained as model output.
6.2. Evaluating of the model performance using the RMSE criterion

In this work, three separated sets are used for validating pur-
poses. These validation sets are not correlatedwith the training sets
(see Fig. 2). A short description of each validation sets is shown
below:

Validation set #1 (Fig. 12). It includes battery discharge profiles
obtained in different operating points. This validation set has been
designed to use instantaneous current levels different to those of
the training set.

Validation set #2 (Fig. 13a). It includes data from a battery dis-
charging current profile with three different levels of constant
power. This validation set has been designed to emulate the con-
sumption of electric vehicles operating at cruise speed [22].
Table 3
Performance indices on validation set 1.

Points EKF-Copetti [%] EKF-fuzzy rules [%]

IC1k IC2k IF1k IF2k

A1 0.40 1.19 0.17 0.47
B1 2.76 4.31 1.26 1.62
C1 4.93 4.68 0.17 0.18
D1 5.76 6.11 9.41 10.86



Table 4
Performance indices on validation set 2.

Points EFK-Copetti [%] EFK-fuzzy rules [%]

IC1k IC2k IF1k IF2k

A2 2.91 8.68 0.56 1.53
B2 0.77 1.52 3.51 5.68
C2 1.77 2.55 0.63 0.79
D2 1.63 1.67 5.49 6.62
E2 13.0 15.6 10.1 13.3
F2 15.2 27.2 17.5 19.5 Table 7

Convergence times in validation set 2 using EKF estimators.

Initial SoC Error EFK-Copetti [s] EFK-fuzzy rules [s]

0.1 90% 4.6 3.1
0.3 70% 1.8 2.9
0.5 50% 2.7 2.5
0.7 30% 2.0 2.5

Table 6
Convergence times in validation set 1 using EKF estimators.

Initial SoC Error EKF-Copetti [s] EKF-fuzzy rules [s]

0.1 90% 4.6 2.9
0.3 70% 1.8 2.9
0.5 50% 2.7 2.5
0.7 30% 2.0 2.6
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Validation set #3 (Fig. 14). It is generated by using a current
profile that consists of periods where the battery discharges 30 Ah
(using different discharge currents each time) with interspersed
periods of relaxation. This validation set has been designed to test
the performance of the model with different discharging current.

Notice that at the beginning of each experimental test, the value
of the SoC is 100%. Also, it must be noted that the charging profile
current recommended by the manufacturer, includes two stages. In
the first stage, the battery is charged at a constant current of 25 A;
while in the second stage constant voltage is applied to the battery
until the injected current is less than or equal to 5 A.

Table 2 shows the performance indices (RMSE) for Thevenin,
Copetti, Plett, and fuzzy model, using the three aforementioned
validation sets. Also, a subset of the set #3 (set #3*) includes only
SoC values between 0.1 and 1 to avoid the discontinuities that affect
both Plett and Copetti models. Fig. 13b and c shows the results of
the models for the validation set #2.

From Table 2, it is concluded that the best results in terms of the
RMSE index are obtained with the Copetti and fuzzymodels. Except
in set #1, the proposed fuzzy model behaves consistently better
than the other three circuital models. The proposed fuzzy model
has a slightly worse performance with validation set #1, because
this model has not been trained to operate with low discharging
currents (see Fig. 4). In all the cases where the proposed fuzzy
model has been adequately trained, the fuzzy model outperformed
the others models including the Copetti model.

Considering the results obtained using the validation tests, the
two models with the best performance are used in the next section
to investigate the performance of a SoC estimation algorithm based
on an EKF.
7. EKF estimators

To evaluate the performance of the EKF SoC estimators, the
following indices are defined

I1k ¼

���dSoCk � SoCk

���
SoCk

$100% (38)
Table 5
Performance indices on validation set 3.

Points EFK-Copetti [%] EFK-fuzzy rules [%]

IC1k IC2k IF1k IF2k

A3 2.38 8.32 0.46 1.53
B3 1.95 4.13 1.89 3.32
C3 2.70 3.54 4.65 5.61
D3 2.63 2.47 2.48 2.82
E3 6.47 6.08 0.45 0.48
F3 1.47 1.80 2.47 1.87
I2k ¼

���dSoCk � SoCk

���
2

ffiffiffiffiffiffiffiffiffi
Pk=k

q $100%; (39)

where Pk/k is the EKF covariance matrix (evaluated at the sampling
instant k). The index of Eq. (38) describes the error between the
estimated value dSoCk and the real value SoCk.

The index of Eq. (39) is based on the error of the estimated SoC
value respect to the length of the confidence interval at 95%. If both
indices are below a given threshold, the SoC estimation would be
close to its actual value.

The R (covariance of measurement noise) and Q (covariance of
process noise) matrices required in the Kalman filter (see Eqs.
(17)e(19)) were obtained using the data sheets of the corre-
sponding sensors, where information about the typical noise
introduced to the measurements is stated. For the voltage trans-
ducer, there is an error z0.9% with a noise variance of s2 ¼ (0.9/
2)2 ¼ 0.2025, then R ¼ 0.2 is used.

For determining the lower bound of R, the model error has to be
higher that the input variable error. For this application, the
instantaneous current is the input, and the associated sensor error
is 1%. Then the variance is: s2 ¼ (1/2)2 ¼ 0.25. As the matrix R
should be higher than 0.25 then Q¼ 0.5 is selected. Thus, the initial
covariance matrix is Po ¼ 0.5.
7.1. Performance of the EKF estimators based on Copetti and fuzzy
models

SoC EKF estimators based on both Copetti and fuzzy models
have been evaluated using the aforementioned validation sets.
Figs. 15e17 show the SoC ground truth (values that are considered
as actual SoC) and the results of EKF estimators, assuming the
battery is fully charged at the beginning of the experiment. SoC
ground truth was computed off-line by considering both the inte-
gral of the instantaneous current and battery open circuit voltage
after each relaxing period.
Table 8
Convergence times in validation set 3 using EKF estimators.

Initial SoC Error EKF-Copetti [s] EKF-fuzzy rules [s]

0.1 90% 4.7 3.4
0.3 70% 1.8 2.9
0.5 50% 2.8 2.7
0.7 30% 2.3 2.7



Fig. 20. Performance SoC estimator in validation set 3 (estimator is turn on in t ¼ 6 h).Fig. 18. Performance SoC estimator in validation set 1 (estimator is turn on in t ¼ 6 h).
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Tables 3e5 show the values obtained by evaluating the perfor-
mance indices of Eqs. (38) and (39) using the experimental data
depicted in Figs. 15e17. From Figs. 16 and 17, it can be noted that the
proposed estimators provide outputs that are consistent with the
ground truth that was acquired in an off-line manner (validation
sets #2 and #3).

According to what it was presented in Section 6.2, the estimator
accuracy is directly affected by the fact that the fuzzy model was
trained using datawith battery discharge currents higher than 10 A.
This issue becomes evident when analysing the estimator perfor-
mance using set #1 (see Fig. 15). Also, the EKF estimators are turned
off during the relaxation periods; i.e., when the discharge current is
null.

Additionally, the estimator performance is evaluated using three
validation sets for different values of the initial conditions of SoC
(30%, 50%, 70% and 90% of the initial SoC errors). Validation tests are
used to obtain the convergence times of both EKF estimators
(Copetti and fuzzy). The convergence time is defined as the time tc
when the estimator output gets into a predefined zone, based on an
upper and a lower band without leaving this zone again for t > tc.
Fig. 19. Performance SoC estimator in validation set 2 (estimator is turn on in t ¼ 6 h).
Tables 6e8 show the convergence times for both estimators. From
the information displayed in the aforementioned tables, we
conclude that a fast convergence for both EKF estimators is ach-
ieved. Also, note that convergence times are influenced by the
initial value assumed for the SoC.

Finally, Figs. 18e20 show the estimator performance consid-
ering all three validation sets. In these experiments, the proposed
SoC estimator is turned on after the battery bank has been dis-
charged for at least six consecutive hours approx. As shown in
Figs. 18e20, the estimator converges to the SoC ground truth values
after few iterations.

8. Conclusions

In this paper, a new fuzzy model for the estimation of lead-acid
battery bank SoCs has been presented. The fuzzy rules are based on
the battery polarisation resistance behaviour at different current
levels.

The fuzzy model has been compared with several conventional
models using the RMS error as goodness factor. In all the cases its
performance was better than that obtained by the conventional
models discussed in this work. Moreover, the proposed SoC esti-
mator does not have any numerical issues or mathematical dis-
continuities when the battery SoC is near to zero. This is certainly
an advantage of the proposed algorithm when compared to the
Plett and Copetti models.

In this work it has also been observed that the performance of
the models is improved by modelling the battery polarisation
resistance as a non-linear resistor whose value is dependant on the
SoC value and the discharging current. This is an additional
advantage of the proposed model when compared to other algo-
rithms where a fixed polarisation resistance value is assumed.

The fast converge of the proposed EKF estimator based on a
fuzzy model, allows on-line implementation. Moreover the fuzzy
model discussed in this work has converged to the correct SoC
value even when the initial SoC value has been very badly
estimated.
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