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Abstract— Energy management systems (EMSs) are used for
operators to optimize, monitor, and control the performance of
a power system. In microgrids, the EMS automatically coor-
dinates the energy sources aiming to supply the demand. The
coordination is carried out considering the operating costs, the
available energy, and the generation and transmission capabilities
of the grid. With this purpose, the available energy of the
sources is predicted, and the operating costs are minimized.
Thereby, an optimal operation of the microgrid is achieved.
Often, the optimization procedure is executed throughout a
receding horizon (model predictive control approach). Such
approach provides some robustness to the microgrid operation.
But, the high variability of the nonconventional energy sources
makes the prediction task very complex. As a consequence, the
reliable operation of the microgrid is compromised. In this paper,
a scenario-based robust EMS is proposed. The scenarios are
generated by means of fuzzy interval models. These models
are used for solar power, wind power, and load forecasting.
Since interval fuzzy models provide a range rather than a
trajectory, upper and lower boundaries for these variables are
obtained. Such boundaries are used to formulate the EMS as a
robust optimization problem. In this sense, the solution obtained
is robust against any realization of the uncertain variables
inside the intervals defined by the fuzzy models. In addition,
the original robust optimization problem is transformed into
an equivalent second-order cone programming problem. Hence,
desired mathematical properties such as the convexity of the
optimization problem might be guaranteed. Therefore, efficient
algorithms, based, e.g., on interior-point methods, could be
applied to compute its solution. The proposed EMS is tested
in the microgrid installed in Huatacondo, a settlement located at
the north of Chile.
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I. INTRODUCTION

M ICROGRIDS have received much attention in recent
years due to their widely recognized capabilities in the

integration of distributed generation, such as photovoltaic and
wind-based generation. Likewise, since distributed generation
shortens the distance between the generation and load centers,
microgrids help to increase the efficiency of power systems.
According to [1], a microgrid is a low voltage grid with a
nominal capacity of around ten kilowatts, composed mainly
by loads, nonconventional energy sources (NCES), storage
systems, and a distribution grid. The operation of a micro-
grid commonly has a hierarchical structure including [2] the
following:

1) a relatively fast primary voltage and frequency control in
each energy source (often including a droop loop to share
the active and reactive power between the units);

2) a slower secondary control loop to restore the frequency
and the voltage of the overall system;

3) a tertiary control or energy management system
(EMS), used to achieve reliable and cost-effective
operation of microgrids by the dispatch and commitment
of the available generation units.

In general, primary and secondary control loops are
implemented using classic control schemes such as
proportional–integral controllers, while the tertiary control
loop is implemented using optimization-based control
techniques. As it can be observed, the coordination among
energy sources is carried out in the tertiary control level.
At this level, the most cost-effective combination of generation
units to meet the predicted load and reserve requirements
is defined [3]. This paper focuses on the tertiary control
of microgrids. Microgrids have many uses in the energy
field [5], for example, as an alternative for electrifying isolated
settlements; the case analyzedin this paper. However,
the uncertain nature of the NCES makes that the use
of a tertiary control does not guarantee a reliable
operation of a microgrid. One way to cope with the
uncertainty of the NCES is the use of energy storage
systems (ESSs). The use of ESS allows including the
NCES in the tertiary control as dispatchable energy sources.
But, exploiting the benefits of the ESS requires the proper
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design of an EMS since its performance depends upon:
1) the prediction of the available energy in the NCES and
2) the prediction of the load.

In the past decades, several optimization methods with
application to management and decision making under
uncertainty have been reported in the specialized literature
(see [6], [7], and the references therein). In [6] and [8]–[10],
these approaches have been classified as fuzzy, stochastic,
and mathematical programming. Following this classification,
fuzzy and mathematical programming problems have been
formulated considering robust programming as mathematical
framework. Robust programming is a class of optimization
problem where the parameters and/or constraints are uncertain
and prescribed into a defined set [11]. Thus, the following
conditions hold:

1) The use of probability density functions (pdfs) is not
required, i.e., only the mean value and the range of the
uncertain data is required.

2) The solution is robust against all realizations of
the uncertain data within a deterministic uncertain
set [7].

In stochastic programming, several realizations of the
uncertain variables are considered. Each realization has a
probability of occurrence. Depending on this probability,
a robust solution is obtained.

Among the identified alternatives, Wang et al. [6],
Wang and Huang [8], [9], and Nie et al. [10] investigated the
use of two-stage stochastic fuzzy programming for supporting
water resource management, for flood-diversion planning, and
for municipal solid waste management under uncertainty.
In two-stage stochastic fuzzy programming, an initial decision
is made considering a deterministic scenario. Then a second
decision is made considering a realization of the uncertain
variables. In the aforementioned references, interval-valued
membership functions were used to represent the uncertainty.
Thus, upper and lower values for the uncertain variables
were obtained. Given these values, the first decision was
made. Then, a feasibility test was performed to eliminate the
unfeasible solutions. Finally, the second decision was made
over the feasible solutions. At the end of the process, a set of
solutions was obtained.

In large-scale power systems, similar approaches have also
been reported. For example, in [7], [12], and [13], multistage
optimization-based methodologies were proposed for solving
the unit commitment considering wind-based generation and
price responsive demand and for dealing with the home
energy management demand problem. In [7] and [12], the
first decision stage consisted in the unit commitment. The
second decision stage consisted in the power dispatch. Only
in [12], a third decision stage was added. The additional stage
included the uncertainty in the price-elastic demand curve.
In [13], the optimization problem was separated according
to the different time scales of the system response. Specifically,
slow (hours) and fast (minutes) scales were considered.
Moreover, only uncertainty was included in the solution of
the optimization problem associated with the fast dynamics.
Such an optimization problem was solved using a stochastic
programming technique. Neither in [7] and [12] nor in [13],

fuzzy models were used to represent the uncertainty. Indeed,
in [12], time-independent intervals were proposed.

With regard to microgrid applications, model predictive
control (MPC) arises as an alternative for dealing with
the uncertainty [4], [5], [14], [15]. In this framework, the
optimization problem is solved through a prediction horizon.
Then, a sequence of units dispatch is obtained. The first
element of such a sequence is applied and the remaining
elements are used as the initial condition for the solution at
the next time step. In [4] and [14], neither the uncertainty
of the NCES nor the uncertainty of the load was considered.
By contrast, Zhang et al. [5] and Zhao et al. [15] proposed
two different robust EMS approaches, namely, one based on
robust programming and another one based on stochastic
programming. Unlike the methods reported in the literature
for large-scale power systems, the approaches in [5] and [15]
only required the solution of a single optimization problem.
However, in [5], time-independent intervals were considered
to represent the uncertainty of the NCES (as in [12]), and
in [15], pdfs were used to represent the uncertainty. Therefore,
the solution in [5] could be very conservative and the solution
in [15] was only robust against the realizations considered in
the formulation.

Notwithstanding the success of robust optimization in
management and decision making and, in particular, consider-
ing the amount of applications developed for large-scale power
systems, little attention has been paid to the combined use of
fuzzy interval models and robust programming to formulate
a robust predictive EMS. Until the literature review allowed
us to know, only in [16], a fuzzy inference model was used
in an EMS to determine the forecasting conditions, based on
the historical values of the prediction error. In this approach,
the power was classified as low, medium, and high. The cutoff
risk was also sorted out as no cutoff and cutoff risk. Based on
the aforementioned classifications, a probability of occurrence
was associated with the resulting sets of prediction errors.
In this way, the uncertainty in the prediction was included
in the optimization problem. This paper presents a robust
predictive EMS, where the predictions are carried out by
means of interval fuzzy models (INFUMOs). Those models
allowed handling the uncertainty present in the NCES and
in the load. In accordance with [17], INFUMOs are fuzzy
models whose output is an interval instead of a trajectory. The
width of the interval is determined by the desired confidence
level, or coverage probability, for representing the uncertainty
in the modeled phenomena. Thus, given a set of inputs,
the INFUMO provides upper and lower boundaries for the
trajectory of the phenomena under study. In contrast with the
interval-valued membership functions used in [6] and [8]–[10],
the INFUMO uses single-valued membership functions.
Consequently, the amount of data required for the parameter
identification is slightly diminished. Furthermore, the use
of single-valued membership functions also decreases the
complexity of the model, without compromising its ability to
represent the uncertainty.

In particular, in this paper, INFUMOs are used to predict the
trajectories of the solar power, the wind power, and the load.
Given the upper and lower boundaries for these variables,
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different scenarios are generated. The scenarios come from all
possible combinations of the trajectories provided by interval
model (eight scenarios in total). With the already defined
scenarios, the dispatch in a microgrid is formulated as a
robust programming problem. Note that each scenario defines
a possible power balance. Since unfeasible solutions might
arise, an additional term associated with the unserved power
is included in the cost function (as in [4]). Moreover, a slack
variable is also considered to relax the power flow equality
constraint. The use of an additional term and a slack variable
is motivated by the fact that in isolated microgrids, the power
balance is not always satisfied.

With the combination of both INFUMOs and robust
programming, and following the procedure in [11], the
original robust dispatch problem is transformed in an
equivalent second-order cone programming (SOCP) problem.
Since SOCP problems are convex, the solution can be
efficiently computed by means of, e.g., interior-point methods.
Furthermore, the convergence of the solution to the global
optimum might be guaranteed. In comparison with the mul-
tistage approaches previously described, the proposed robust
EMS requires the solution of a single optimization problem.
Moreover, with regard to the approaches in [4] and [14], the
proposed robust EMS includes the uncertainty associated with
the NCES and the load forecasting. Finally, with respect to
the approach in [5], the time dependency of the uncertainty
is considered in this paper. Such a dependency is given
by the dynamics of the system, which is here represented
by the INFUMO. Hence, the interval is wider where the
historical data exhibited more variability than where the
historical data exhibited less variability. This provides an
enhanced representation of the uncertainty and reduces the
conservativeness of the robust solution.

The remainder of this paper is organized as follows.
In Section II, the robust predictive control based on scenarios
is described. With this aim, the INFUMO is introduced and
the scenarios arising from the use of the INFUMO are
explained. In Section III, the formulation of the EMS as
a robust predictive control based on scenarios is presented.
Finally, Sections IV and V gather the simulations results and
concluding remarks. In this paper, the microgrid installed
in Huatacondo, north of Chile, was used to evaluate the
performance of the proposed robust EMS.

II. ROBUST PREDICTIVE CONTROL BASED

ON INTERVAL FUZZY MODELS

A. Scenario-Based Robust Predictive Control

Consider an optimization problem where the objective
is to minimize the cost function J (x) = ‖Ax − b‖. Let
A ∈ R

m×n , x ∈ R
n×1, and b ∈ R

m×1, where A and/or b are
the random variables with a pdf describing their variations.
Such an optimization problem recasts in the minimization of
the expected value of J (x). Thus, it becomes in an expected
value problem whose solution depends on the uncertainty
description. In fact, in many applications, the resulting
optimization problem is not tractable. For this reason,
uncertainty description by means of polytopes or

norm-bounded models is proposed in the literature (see [18]
for details).

An specific case where the expected value problem is
solvable is the worst case problem (WCP). In WCP, the
uncertainty is described by a set of possible values for A and b.
Given these values and assuming the worst conditions for
the uncertainty, the value of x minimizing J (x) is computed.
Thereby, the expected value becomes a min–max optimization
problem. The WCP have been widely studied in [19]–[23].
But notwithstanding its advantages, often WCP belongs to
robust nonlinear programming (RNLP) problems. With the
present computation resources, it is almost impossible to find
the exact solution of RNLP problems in real time [24]. Then,
in general, linear approximations of the system dynamics are
used in robust control applications. In this way, the complexity
of WCP is significantly reduced.

At time step k, let x(k) ∈ R
n , u(k) ∈ R

m , and y(k) ∈ R
z

denote the states, inputs, and outputs of a given system,
respectively. Let x̃(k) = [xT (k), . . . , x T (k + Np)]T and
ũ(k) = [uT (k), . . . , uT (k + Nu )]T , with Np and Nu the pre-
diction and control horizons, respectively [often the constraint
u(k + j) = u(k + Nu), Nu ≤ j ≤ Np , is added for extending
ũ(k) along Np , i.e., ũ(k) = [uT (k), . . . , uT (k + Np − 1)]T ].
Let ˜̂y(k) = [ŷT (k + 1), . . . , ŷT (k + Np)]T and
ỹref(k) = [yT

ref(k + 1), . . . , yT
ref(k + Np)]T denote the

predicted outputs of the system and the reference for the
controller, respectively. Then assuming a linear approximation
of the system dynamics, ˜̂y(k) is given by

˜̂y(k) = � + �ũ(k)

where � and � are, respectively, the matrices defining the
free and forced responses of the linear system throughout
Np [24], [25].

Since a linear approximation is being used, uncertainties
in both the free and forced responses of the system appear.
In fact, as the system moves away from the equilibrium
point used in the linearization, the uncertainties increase. Let
δ� and δ�, respectively, denote the uncertainties in free and
forced response of the system. Then ˜̂y(k) becomes

˜̂y(k) = (� + δ�) + (� + δ�)̃u(k). (1)

Assume that J (yref(k + l), ŷ(k + l), u(k + l), δ�, δ�) is a
quadratic function given by

J (yref(k + l), ŷ(k + l), u(k + l), δ�, δ�)

=
Np
∑

l=1

‖yref(k + l) − ŷ(k + l)‖2
Q

+
Np
∑

l=1

‖u(k + l)‖2
R +

Np
∑

l=1

‖�uu(k + l)‖2
S (2)

with Q, R, and S the positive definite diagonal matrices,
and with �uũ(k) the difference between the actual and the
previous value of the control action. The cost function (2)
penalizes the deviation of ŷ(k) from yref(k), the magnitude of
the control actions, and the changes in the control actions.
The following quadratic form for J (yref(k + l), ŷ(k + l),
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u(k + l), δ�, δ�) is obtained by replacing (1) into (2):
J (yref(k + l), ŷ(k + l), u(k + l), δ�, δ�)

= r + qũ(k) + ũT (k)Pũk (3)

where

P = �T Q� + �T Qδ� + δ�T Q�

+ δ�T Qδ� + R + �T
u S�u

q = (� − ỹref(k))T Q� + (� − ỹref(k))T Qδ�

+ δ�T Q(� + δ�) − u(k − 1)T S�u

r = Jmin + �T Qδ� + δ�T Q� + δ�T Qδ�

Jmin = ỹref(k)T Qỹref (k) + �T Q� − 2ỹref(k)T Q�

+ u(k − 1)T Su(k − 1).

In (3), u(k − 1) = [uT (k − 1), 0T ]T . Note that P = P + δP ,
q = q +δq , and r = r +δr , with P = �T Q�+ R +�T

u S�u ,
q = (� − ỹref(k))T Q� − u(k − 1)T S�u , r = Jmin, δP =
�T Qδ� + δ�T Q� + δ�T Qδ�, δq = (� − ỹref(k))T Qδ� +
δ�T Q(� + δ�), and δr = �T Qδ� + δ�T Q� + δ�T Qδ�.
Hence, there is a mapping from the model to the uncertainty
in the parameters of J (yref(k + l), ŷ(k + l), u(k + l), δ�, δ�).
Specifically, associated with each pair (δ�, δ�), there exists a
tuple (δP, δq, δr) and therefore a tuple (P, q, r).

Let �� : = {δ�1, . . . , δ�M } and �� : = {δ�1, . . . , δ�M }.
Then, the set of tuples

T : = {(P1, q1, r1, �1,�1), . . . ,(PM , qM , rM , �M ,�M )} (4)

defines all the possible scenarios arising from �� and ��

i.e., T includes all realizations of � and �. (In this paper, these
values are generated by means of the INFUMO. A detailed
description is provided in Section II-C.) Let F denote the set
of tuples (Pi , qi , ri ), i = 1, . . . , M , coming from �� and ��.
That is, F : = {(P1, q1, r1), . . . , (PM , qM , rM )}. In accordance
with [11], the associated worst case error ewc(̃u(k)) of a
candidate approximate solution ũ(k) is given by

ewc(̃u(k)) : = sup
(P,q,r,�,�)

{

ũT (k)Pũ(k) + 2qũ(k)

+ r | (P, q, r) ∈ conv{F}} (5)

where conv{F} denotes the convex hull of F. Recall that
P = �T Q�+ R +�T

u S�u . Since δ� and δ� have associated
different values of � and �, Pi , i = 1, . . . , M is symmetric.

Therefore, ũT (k)Pi ũ(k) = ‖P(1/2)
i ũ(k)‖2. Following the

procedure presented in [11], scenario-based RMPC can be
written as the epigraph minimization problem:

min
ũ(k),t, f

t + f

s.t.
∥

∥

∥P
1
2

i ũ(k)
∥

∥

∥

2
≤ t

t + 2qi ũ(k) + ri ≤ f
⎡

⎢

⎢

⎢

⎢

⎣

I
−I
�u
�u
�i−�i

⎤

⎥

⎥

⎥

⎥

⎦

ũ(k) ≤

⎡

⎢

⎢

⎢

⎢

⎢

⎣

ũmax
−ũmin

�̃umax + u(k − 1)
�̃umax − u(k − 1)

ỹmax − �i

−ỹmin + �i

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (6)

Note that the minimization problem (6) includes the intrinsic
uncertainty of linear models. Nevertheless, its solution might

result conservative since the system is not always operating
at the worst case conditions. Furthermore, how conservative
is the solution of (6) depends on the selection (or definition)
of the sets �� and ��. For dealing with these disadvantages,
in this paper, INFUMOs are proposed as prediction model.
Being that the INFUMO provides an interval rather than a
system trajectory, the uncertainty is accurately characterized.
Consequently, it is expected that the solution of (6) is less
conservative. In the next section, INFUMOs are introduced
and briefly explained.

B. Interval Fuzzy Models

Often, system modeling regards the reconstruction of state
and/or output specific paths. However, in the presence of
large uncertainties having a range could be more useful than
having an specific trajectory. Indeed, if the range is designed
in such a way that the dynamic behaviors of the states and/or
outputs of the system are represented. Then system dynam-
ics and system uncertainties are both included in a single
model. In accordance with [17], the aforementioned procedure
is called interval modeling. In this procedure, families of
functions are approximated given a finite set of input
and output measurements. The approximation is carried out
considering a confidence level. Given the desired confidence
level, the width of the interval is determined.

There are two considerations in interval modeling [17].
1) The interval model should be identified with a confidence

band as narrow as possible.
2) The resulting model should also generate a band that

contains a high percentage of the data.
In the literature, several interval modeling approaches have
been proposed [26]–[29]. Mainly, they are based on a
multimodel representation of the system. The use of a single or
multiple models depends on the degree of uncertainty and/or
the strength of the nonlinearity of the system. For instance,
Škrjanc et al. [17] proposed the use of Takagi–Sugeno (TS)
models, which belong to multimodel approaches. The reason
for the selection of TS models lies in the fact that they are
able to approximate a large class of nonlinear systems, despite
the type of nonlinearity [30].

At time step k, let x p(k), and x(k), respectively, denote
the vectors of premises and consequences in a TS model.
Let z(k) = [x T

p (k), x T (k)]T denote the vector of input
variables, and β j (x p(k)) be the normalized activation degree
of the j th rule. The normalized activation degree satisfies
β j (x p(k)) >= 0, j = 1, . . . , MTS,

∑MTS
j=1 β j (x p(k)) = 1,

MTS being the number of rules, whereby depending on its
fulfillment, β j (x p(k)) assigns a value between zero and one
to the consequence of the j th rule. Let θ j denote the vector
of parameters of the linear model associated with the
consequence of the j th rule. Then, in accordance with [17],
the output of a TS model is given by

ŷ(k) =
MTS
∑

j=1

β j (x p(k))θT
j x(k). (7)

The objective of interval modeling is to find the upper
and lower boundary functions f (z(k)) and f (z(k)), such that
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f (z(k)) ≤ y(k) ≤ f (z(k)) (here the inequality indicates an
element-to-element relationship). Assume that f (z(k)) has the
form: f (z(k)) = ∑MTS

j=1 β j (x p(k))θT
j x(k). Then the vectors

θ j and θ j define the upper and lower boundaries of f (z(k)),
respectively. The values of θ j and θ j are obtained by solving
optimization problems [17]

min
θ j

max
i

⎧

⎨

⎩

|yi (k) −
MTS
∑

j=1

β j (x p(k))θT
j x(k)|

⎫

⎬

⎭

s.t. yi (k) −
MTS
∑

j=1

β j (x p(k))θT
j x(k) ≥ 0 (8)

min
θ j

max
i

⎧

⎨

⎩

|yi (k) −
MTS
∑

j=1

β j (x p(k))θ
T
j x(k)|

⎫

⎬

⎭

s.t. yi (k) −
MTS
∑

j=1

β j (x p(k))θ
T
j x(k) ≤ 0 (9)

where yi (k) denotes the i th measured data used
in the model identification procedure. Let t1 : = maxi {|yi (k)−
∑MTS

j=1 β j (x p(k))θT
j x(k)|} and t2 : = maxi {|yi(k) −

∑MTS
j=1 β j (x p(k))θ

T
j x(k)|}. From (8) and (9), θ j and θ j

are obtained, respectively, as the solution to

min
θ j , t1

t1

s.t. yi (k) −
MTS
∑

j=1

β j (x p(k))θT
j x(k) ≤ t1

yi (k) −
MTS
∑

j=1

β j (x p(k))θT
j x(k) ≥ 0 t1 ≥ 0 (10)

min
θ j , t2

t2

s.t. − yi (k) +
MTS
∑

j=1

β j (x p(k))θ
T
j x(k) ≤ t2

yi (k) −
MTS
∑

j=1

β j (x p(k))θ
T
j x(k) ≤ 0 t2 ≥ 0. (11)

From optimization problems (10) and (11), and since
f (z(k)) is defined as f (z(k)) = ∑MTS

j=1 β j (x p(k))θT
j x(k),

the upper and lower boundaries of ŷ(k) are determined
by f (z(k)) = ∑MTS

j=1 β j (x p(k))θ
T
j x(k) and f (z(k)) =

∑MTS
j=1 β j (x p(k))θT

j x(k), respectively. Since, with a certain
confidence level, f (z(k)) and f (z(k)) define all possible
realizations for ŷ(k), the procedures as proposed in [31] can
be used to generate scenarios with a reduced computational
burden. Indeed, instead of exploring all the possible operating
conditions, the pdf could be defined only within the interval
defined by the INFUMO.

C. Interval Fuzzy Model-Based Robust Predictive
Control Formulation

From (7), the predicted output of a system is given by

ŷ(k) =
MTS
∑

j=1

β j (x p(k))θT
j x(k)

where θ j is a vector containing the parameters of the model
associated with each rule. Then the fuzzy MPC is given by

min
ũ(k)

Np
∑

l=1

J (yref(k + l), ŷ(k + l), u(k + l − 1))

s.t. ŷ(k + l) =
MTS
∑

j=1

β j (x p(k + l))θT
j x(k + l)

umin ≤ u(k + l) ≤ umax

‖u(k + l) − u(k + l − 1)‖ ≤ �umax

ymin ≤ ŷ(k + l) ≤ ymax. (12)

Often, linear consequences are used in the TS models.
Indeed, consequences consisting of AutoRegressive models
with eXogenous variable (ARX) are usual. Assume that the
consequence of the j th rule of the TS model (7) has the form

ŷ j (k) + A j
q−1 ŷ j (k − 1) + · · · + A j

0 ŷ j (k − q)

= B j
q−1u(k − 1) + B j

q−2u(k − 2) + · · · + B j
0 u(k − q).

(13)

The corresponding controllable form of (13) is given by

⎡

⎢

⎣

x1(k + 1)
...

xq(k + 1)

⎤

⎥

⎦
=

⎡

⎢

⎢

⎢

⎣

0 I . . . 0
... 0

. . .
...

0 . . . 0 I

−A j
0 −A j

1 . . . −A j
q−1

⎤

⎥

⎥

⎥

⎦

︸ ︷︷ ︸

A j
TS

⎡

⎢

⎣

x1(k)
...

xq(k)

⎤

⎥

⎦

︸ ︷︷ ︸

x̄(k)

+

⎡

⎢

⎢

⎢

⎣

0
...
0
1

⎤

⎥

⎥

⎥

⎦

︸︷︷︸

B j
TS

u(k)

ŷ j (k) =
[

B j
0 B j

1 . . . B j
q−1

]

︸ ︷︷ ︸

C j
TS

⎡

⎢

⎣

x1(k)
...

xq(k)

⎤

⎥

⎦
. (14)

Let ˜̂y j (k) denote the predicted output given (14). Then
⎡

⎢

⎣

ŷ j (k + 1)
...

ŷ j (k + Np)

⎤

⎥

⎦

︸ ︷︷ ︸

˜̂y j (k)

=

⎡

⎢

⎢

⎣

C j
TS A j

TS
...

C j
TS

(

A j
TS

)Np

⎤

⎥

⎥

⎦

x̄(k)

︸ ︷︷ ︸

� j

+

⎡

⎢

⎢

⎣

C j
TS B j

TS
...

. . .

C j
TS

(

A j
TS

)Np−1
B j

TS . . . C j
TS B j

TS

⎤

⎥

⎥

⎦

︸ ︷︷ ︸

� j

⎡

⎢

⎣

û(k)
...

û(k + Np − 1)

⎤

⎥

⎦

︸ ︷︷ ︸

ũ(k)

.

(15)

At time step k, assume x p(k) is equal to its measured
value throughout Np , then β j (x p(k)) is also constant.
From (15), the predicted trajectory for ˜̂y j (k) can be
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written as ˜̂y j (k) = � j + � j ũ(k). Since β j (x p(k)) is
assumed constant, the predicted output of the system is
given by ˜̂y(k) = ∑MTS

j=1 β j (x p(k))[� j + � j ũ(k)]. Let

� = ∑MTS
j=1 β j (x p(k))� j and � = ∑MTS

j=1 β j (x p(k))� j . Then
˜̂y(k) = � + �ũ(k).

Although the use of TS models into the MPC formulation
provides a better approximation of nonlinear system dynamics,
uncertainty still remains unmodeled. Since the uncertainty
covers both the free and the forced system response
˜̂y(k) = (� + δ�) + (� + δ�)̃u(k) (as in Section II-A). In this
particular case, the INFUMO is used as a prediction model.
Hence, θ = {�,�} and θ = {�,�}, where � and �, and
� and � are the matrices associated with the free (� and �)
and forced (� and �) responses of the INFUMO, respectively.
Consequently, f (z(k)) =∑MTS

j=1 β j (x p(k))[� j + �
j
ũ(k)] and

f (z(k)) =∑MTS
j=1 β j (x p(k))[ � j + � j ũ(k)].

Let δ�, δ�, δ�, and δ� be the uncertainties that
generate the upper and lower boundaries of ˜̂y(k). Then,
� = � + δ�, � = � + δ�, � = � + δ�,
and � = � + δ�. In this manner, �� = {δ�, δ�},
�� = {δ�, δ�}, T = {(P, q, r , �,�), (P, q, r , �,�)}, and
F = {(P, q, r ), (P, q, r )}. In accordance with the robust
formulation presented in Section II-A, the associated worst
case error ewc(̃u(k)) of a candidate approximate solution ũ(k)
is given by

ewc(̃u(k)) : = sup
(P,q,r)

{̃uT (k)Pũ(k) + 2qũ(k)

+ r | (P, q, r) ∈ conv{F}}. (16)

Thus, the fuzzy MPC (12) is reformulated in its robust
programming form as (17). Note that in (17), the uncertainty

of ˜̂y(k) is explicitly included into the optimization problem.
Moreover, such an optimization problem is convex and can
be efficiently solved by numerical algorithms. In addition, it
could be guaranteed that the solution converges to the global
optimum

min
ũ(k),t, f

t + f

s.t.
∥

∥

∥P
1
2

i ũ(k)
∥

∥

∥

2
≤ t

t + 2qi ũ(k) + ri ≤ f
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

I
−I
�u

�u

�

−�
�

−�

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ũ(k) ≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ũmax
−ũmin

�̃umax + u(k − 1)

�̃umax − u(k − 1)

ỹmax − �

−ỹmin + �
ỹmax − �

−ỹmin + �

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (17)

It is important to remark that several methodologies can be
used for generating the scenarios. In fact, the Monte Carlo
simulation can be performed for generating several
different situations within the interval provided by
the INFUMO. Accordingly, several other scenarios could be
included since a model is available to perform the predictions.

In the next section, the formulation of the proposed robust
predictive EMS is presented.

III. PROPOSED SCENARIO-BASED ROBUST ENERGY

MANAGEMENT SYSTEM

A. Energy Management System

The proposed system is based on the EMS presented in [4].
The objectives of such an EMS are as follows:

1) to provide online power set-points for each generation
units;

2) to adequately manage the water consumption;
3) to send the consumption signals to the customers

according to the demand side management policies.
In this paper, the adequate management of the water
consumption is not considered, thereby the proposed robust
EMS is in charge of the following:

1) providing the power set-points for each generation unit;
2) sending the consumption signals to the customers

according to the demand side management policies.
Nevertheless, the robust formulation can be easily adapted
for including the signals for the water supply system. Unlike
in [4], the proposed EMS uses the INFUMO for including
the uncertainty of the NCES and the load in the optimization
problem.

In the same way as in [4], the robust EMS minimizes the
operational costs over a two-day horizon. At time step k, let
PD(k), PB(k), and SL(k), respectively, denote the reference
for the diesel and the battery bank and the demand signal
for the customers. Let PS(k), PE (k), and PL(k), respectively,
denote the predicted solar-based power, wind-based power, and
demand. Let C(k), CS(k), CNS, and CH (k) denote the cost of
diesel generation, the cost of starting up the diesel generator,
the price of the unserved energy, and the cost of discharging
the battery bank, respectively. Let Ts and PNS(k) denote the
sample time and the unserved power, respectively. Then the
EMS in [4] is formulated as

min
PD(k+l),PB (k+l),
PLo(k+l),SL (k+l)

Ts

Np
∑

l=1

C(k + l) +
Np
∑

l=1

CS(k + l)

+ CNSTs

Np
∑

l=1

PNS(k + l) + CH (Np)

s.t. PD(k + l) + PI (k + l) + PNS(k + l)

= PL(k + l) − PLo(k + l) − PS(k + l) − PE (k + l)

V min
D ≤ VD(k + l) ≤ V max

D

Emin ≤ E(k + l) ≤ Emax

Smin
L ≤ SL (k + l) ≤ Smax

L

PD(k + l), PNS(k + l) ≥ 0

PLo(k + l) ≤ 0 (18)

where PI (k) and PLo(k) are the powers provided by the
inverter and the unused power, respectively; VD(k) and E(k)
are the volume of diesel and the energy of the battery
bank, respectively; V min

D , Emin, and Smin
L are the minimum
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allowed values for the volume of diesel, for the energy of
the battery bank, and for the customers’ signal, repectively;
and V max

D , Emax, and Smax
L are the maximum allowed values

for the volume of diesel, for the energy of the battery
bank, and for the customers’ signal, respectively. Note
that PLo(k) is a slack variable used to relax the power
balance equality constraint. Physically, this variable indicates
the energy to be dissipated for maintaining the balance in the
microgrid.

With the purpose of solving the minimization problem (18),
expressions that relate: 1) the costs C(k) and CS(k); 2) the
powers PI (k) and PNS(k); 3) the volume VD(k); and 4) the
available energy on the battery bank E(k), with the decision
variables PD(k), PB(k), SL(k), and PLo(k) being required.
Therefore, prediction models for PI (k), qD(k), VD(k),
and E(k) must be derived.

From [4], the cost associated with the diesel generation
is proportional to the amount of diesel used, i.e.,
C(k) = CDqD(k), with CD and qD(k) being the average diesel
price and the diesel fuel consumption, respectively. Moreover,
PD and qD(k) are related by a nonlinear nonconvex function.
Such a relationship is approximated by a set of piecewise
linear functions. Let BD(PD(k)) denote the weighting function
that defines the contribution of each piecewise linear model,
and θD and θPD be the matrices containing the intercept and
the slope of each linear model. Then the relation between
PD and qD(k) is expressed as

qD(k) = BD(PD(k)) (θD + θPD PD(k)). (19)

As in Section II, assume BD(PD(k)) to be constant over Np .
Using (19), the diesel consumption throughout the prediction
horizon is given by
⎡

⎢

⎣

qD(k + 1)
...

qD(k + Np)

⎤

⎥

⎦

︸ ︷︷ ︸

˜̂qD(k)

=
⎡

⎢

⎣

BD(PD(k))
. . .

BD(PD(k))

⎤

⎥

⎦

︸ ︷︷ ︸

B̃(PD(k))

×

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎣

θD
...

θD

⎤

⎥

⎦

︸ ︷︷ ︸

�q D

+
⎡

⎢

⎣

θPD
. . .

θPD

⎤

⎥

⎦

︸ ︷︷ ︸

�q D

⎡

⎢

⎣

PD(k + 1)
...

PD(k + Np)

⎤

⎥

⎦

︸ ︷︷ ︸

P̃D(k)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The evolution of the diesel consumption is linked to VD(k).
In fact, the amount of diesel cannot exceed the maximum
and minimum values of VD(k). As aforementioned, at time
step k, let VD(k) be the measured volume of diesel. Then,
its variations can be estimated as the difference between
the measured volume and the amount of diesel used in the
generation process. Mathematically, this is formulated as

VD(k + 1) = VD(k) − qD(k + 1).

Let ṼD(k) = [VD(k + 1), . . . , VD(k + Np)]T be the predicted
trajectory of the diesel volume throughout Np . Substitut-
ing expression (19) for qD(k), the resulting expression for

predicting the trajectory of VD(k) becomes
⎡

⎢

⎣

VD(k + 1)
...

VD(k + Np)

⎤

⎥

⎦
= I VD(k) −

⎡

⎢

⎣

BD(PD(k))θD
...

Np BD(PD(k))θD

⎤

⎥

⎦

︸ ︷︷ ︸

�VD

−
⎡

⎢

⎣

BD(PD(k))θPD
...

. . .
BD(PD(k))θD . . . BD(PD(k))θD

⎤

⎥

⎦

︸ ︷︷ ︸

�VD

⎡

⎢

⎣

PD(k + 1)
...

PD(k + Np)

⎤

⎥

⎦

with I an identity matrix, I ∈ R
Np×Np. The prediction model

for computing ṼD(k) is the following:

ṼD(k) = �VD + �VD P̃D(k). (20)

In the case of the battery bank, the power provided by the
inverter PI (k) is determined by the charging and discharging
features of the battery. Let PIo denote the internal power
consumed by the inverter. Let ηd and ηc denote the inverter
losses in both operation modes, namely, discharge and charge
modes, respectively. Assume that PB(k) ≥ 0 if the battery
bank is being discharged and that PB(k) < 0 if the battery
is being charged. Then the power provided by the inverter is
given by [4]

PI (k) =
⎧

⎨

⎩

ηd PB(k) − PIo, PB(k) ≥ 0
PB(k)

ηc
− PIo, PB(k) < 0.

(21)

Expression (21) has a discontinuity in PB(k) = 0. Such
a discontinuity may affect the solution of the minimization
problem (18). Thus, an approximated model for PI (k) is
proposed. Let P+

B (k) and P−
B (k) be auxiliary variables such

that P+
B (k) ≥ 0, P−

B (k) ≤ 0, and P+
B (k)P−

B (k) = 0.
Then (21) can be rewritten as

PI (k) = ηd P+
B (k) + P−

B (k)

ηc
− PIo. (22)

In (22), the constraint P+
B (k)P−

B (k) = 0 prevents charging
and discharging the battery at the same time. Let P̃I (k) =
[PI (k +1), . . . , PI (k + Np)]T and �I = [−PIo, . . . ,−PIo]T ∈
R

Np , and �+
I , and �−

I be the diagonal matrices whose
elements are ηd and 1/ηc, respectively. Then the predicted
trajectory of the power provided by the inverter is given by

P̃I (k) = �I + �+
I P̃+

B (k) + �−
I P̃−

B (k)

with P̃+
B (k) = [P+

B (k + 1), . . . , P+
B (k + Np)]T and

P̃−
B (k) = [P−

B (k + 1), . . . , P−
B (k + Np)]T .

With the addition of P+
B (k) and P−

B (k), two more
constraints arise, namely, 0 ≤ P+

B (k) ≤ Pmax
B and Pmin

B (k) ≤
P−

B (k) ≤ 0. These constraints are related with the maximum
power the battery is able to provide and with the maximum
power the battery demands in the charging process. In the first
case, the maximum power is limited by the current constraints
of the inverter. But in the second case, the power demanded
by the battery is a function of the state of charge (SoC). Such
a dependency obeys a nonlinear relationship [4]. However,
in this paper, piecewise linear functions are used to make
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an approximation. Let E(k) denote the available energy in
the battery bank. Then

Pmin
B (k) = BB(E(k)) (θE + θPB E(k)) .

Let ηB denote the efficiency of the battery bank. Then an
energy balance yields

E(k + 1) = E(k) − Tsη
+
B P+

B (k + 1)
−Tsη

−
B P−

B (k + 1) + TsηB PIo (23)

where η+
B = ηBηd and η−

B = (ηB/ηc) are the efficiency
coefficients of the battery bank in the charging and discharging
processes, respectively. Let Ẽ(k) = [E(k + 1), . . . ,
E(k + Np)]T and �E = I E(k) − Ts�I . Then the estimated
energy over Np is determined by

Ẽ(k) = �E − Ts�
+
I P̃+

B (k) − Ts�
−
I P̃−

B (k).

Based on the predicted available energy Ẽ(k), the expected
maximum power demanded by the battery in the charging
process is computed as

P̃min
B (k) = �B + Ts�

+
B P̃+

B (k) + Ts�
−
B P̃−

B (k) (24)

where P̃−min
B (k) = [P−min

B (k + 1), . . . , P−min
B (k + Np)], and

�B =
⎡

⎣

BB(E(k))
. . .

BB(E(k))

⎤

⎦

×
⎛

⎝

⎡

⎣

θE
...

θE

⎤

⎦+
⎡

⎣

θPB
. . .

θPB

⎤

⎦�E

⎞

⎠

�+
B = −

⎡

⎣

BB(E(k))
. . .

BB(E(k))

⎤

⎦

⎡

⎢

⎣

θPB
. . .

θPB

⎤

⎥

⎦
�+

I

�−
B = −

⎡

⎢

⎣

BB(E(k))
. . .

BB(E(k))

⎤

⎥

⎦

⎡

⎢

⎣

θPB
. . .

θPB

⎤

⎥

⎦
�−

I .

Thus, the inequality Pmin
B (k) ≤ P−

B (k) ≤ 0 becomes
(Ts�

−
B − I )P̃−

B (k) + Ts�
+
B P̃+

B (k) ≤ −�B and P̃−
B (k) ≤ 0.

With the models previously derived, the optimization
problem (18) becomes (25), shown at the bottom of the page.
In (25), vectors Ṽ max

D , Ṽ min
D , Ẽmax, Ẽmin, and P̃max

B ∈ R
Np

denote the maximum and minimum values of their respective
variables. Furthermore, the operation P̃+

B (k) · P̃−
B (k) indicates

the component to component product.
Note that computing the solution of (25) requires the

values of P̃S(k) = [PS(k + 1), . . . , PS(k + Np)]T , P̃E (k) =
[PE (k + 1), . . . , PE (k + Np)]T , and P̃L(k) = [PL(k + 1), . . . ,
PL(k + Np)]T. These values are needed for the power
balance constraint. In the next section, how to obtain
these values is addressed, taking into account their inherent
uncertainty.

B. Prediction Models for Renewable Energy
Sources and Load Forecasting

A relationship between the different variables involved into
the optimization problem (25) is derived in Section III-A.
But in such a relationship, deriving a function that relates the
unserved power P̃NS(k) with the decision variables in (25) is
still needed. From (25)

P̃NS(k)= P̃L(k)− P̃Lo(k) − P̃S(k) − P̃E (k) − P̃D(k) − P̃I (k).

Then, the prediction of the unserved energy is closely related
with the available energy in the NCES and the load forecast-
ing. Therefore, the expressions for computing P̃S(k), P̃E (k),
and P̃L(k) should be found. In general, P̃S(k) and P̃E (k)
depend on the accuracy of the weather forecasting models
(among others wind speed and direction, solar radiation, and
temperature), while P̃L(k) depends upon the consumption
patterns of the customers.

In [32]–[34], several weather forecasting models have been
reported. These models cover both numerical and empirical

min
P̃D(k), P̃+

B (k),

P̃−
B (k), P̃Lo(k),S̃L(k)

Ī T (TsC̃(k) + C̃S(k) + CNSTs P̃NS(k)
)+ CH (Np)

s.t. P̃NS(k) = P̃L(k) − P̃Lo(k) − P̃S(k) − P̃E (k) − P̃D(k) − P̃I (k) Power balance

P̃I (k) = �I + �+
I P̃+

B (k) + �−
I P̃−

B (k) Inverter power

q̃D(k) = B̃(PD(k))
(

�q D + �+
q D P̃D(k)

)

Diesel consumption

�VD P̃D(k) ≤ Ṽ max
D − �VD

−�VD P̃D(k) ≤ �VD − Ṽ min
D

}

Diesel storage constraints

−Ts�
+
I P̃+

B (k) − Ts�
−
I P̃−

B (k) ≤ Ẽmax − �E

Ts�
+
I P̃+

B (k) + Ts�
−
I P̃−

B (k) ≤ �E − Ẽmin

(Ts�
−
B − I )P̃−

B (k) + Ts�
+
B P̃+

B (k) ≤ −�B

P̃+
B (k) ≤ P̃max

B

P̃+
B (k) · P̃−

B (k) = 0

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

Battery constraints

S̃L (k) ≤ S̃max
L , −S̃L(k) ≤ −Smin

L
PD(k + l), PNS(k + l), P̃+

B (k) ≥ 0
PLo(k + l), P̃−

B (k) ≤ 0

⎫

⎬

⎭

Operating constraints (25)
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prediction models. Once weather conditions are predicted,
they must be transformed into available energy. For estimat-
ing the demand, correlations are made for adapting parame-
ters of autoregressive models according to the season and
predicted weather conditions. But, notwithstanding the amount
of approaches reported in the literature, uncertainty in NCES
and load forecasting remains as an open issue. This motivates
the use of the INFUMO rather than identifying exact demand
and NCES models. The INFUMO allows taking into account
both the dynamic behavior and the uncertainty present in
NCES and load forecasting processes. In the literature, several
confidence interval modeling approaches have been proposed.
Mainly, they are based on multimodel representation of the
system [26]–[29]. In this paper, the methodology described
in Section II-B is considered.

At time step k, let x pS(k), x pE (k), and x pL(k) denote the
premise variables of the fuzzy models representing the solar
power, the wind power, and the load, respectively. For these,
let xS, xE , and xL denote the variables of the consequences,
βS j (x pS(k)), βE j (x pE (k)), and βL j (x pL(k)) be the normalized
membership function, and θS j , θE j , and θL j denote the
parameters of the linear model associated with the j th rule.
Then the prediction models for the available solar power, wind
power, and demand are given by the following expressions:

PS(k) =
MS
∑

j=1

βS j (x pS(k))θT
s j xS(k) (26)

PE (k) =
ME
∑

j=1

βE j (x pE (k))θT
E j xE (k) (27)

PL(k) =
ML
∑

j=1

βL j (x pL(k))θT
L j xL(k). (28)

Based on expressions (26)–(28) and on the procedure intro-
duced in Section II-A, a set of parameters θ S j, θ E j, θL j and
θ S j, θE j, θL j are obtained in such a way that the trajectories
of PS(k), PE (k), and PL(k) are bounded above and below
with a certain confidence level.

With regard to the modeling of the NCES, let
BS(x pS(k)) = [βs1(x pS(k)), . . . , βs MS(x pS(k))] and also
let BE (x pE (k)) = [βE1(x pE(k)), . . . , βE ME (x pE (k))].
Besides, assume that BS(x pS(k)) and BpE (x pE (k)) are
constant throughout Np . Then the predicted output of each
rule in the fuzzy models (26) and (27) can be written
as (15). As a consequence, the prediction models for the
solar and wind-based energy sources are (respectively)
as follows: P̃S(k) = �pS + �pS R̃(k) and P̃E (k) =
�pE + �pE ν̃(k). In this case, �pS = ∑MS

j=1 βS j (x pS(k))�
j
S ,

�pE =∑ME
j=1 βE j (x pE (k))�

j
E , �pS =∑MS

j=1 βS j (x pS(k))�
j
S ,

and �pE = ∑ME
j=1 βE j (x pE (k))�

j
E , and R̃(k) and ν̃(k)

being the radiation and the wind speed sequences over the
prediction horizon. In this paper, it is assumed that a data
base with the values of radiation and the wind speed is
available.

Due to �S, �pE ,�S, and �pE , respectively, depend only
on θS and θE , the upper and lower boundaries are computed as

a function of θ S and θ E , and θ S and θ E ,
with θS and θE being the matrices whose elements are
the parameters of the solar-based and wind-based fuzzy
models (26) and (27), respectively. Let P̃ S(k), P̃ E (k), P̃ S(k),
and P̃ E (k) be the upper and lower boundaries for
P̃S(k) and P̃E (k), respectively. Then according to the
corresponding INFUMO P̃ S(k), P̃ E (k), P̃ S(k), and P̃ E (k)
have the form (29)–(32). In these expressions, �S,�S, �S,
and �S are obtained from θ S and θ S , respectively,
while �E ,�E , �E , and �E are, respectively, obtained
from θ E and θ E

P̃ S(k) = �S + �S R̃(k) (29)

P̃ E (k) = �E + �E ν̃(k) (30)

P̃ S(k) = �S + �S R̃(k) (31)

P̃ E (k) = �E + �E ν̃(k). (32)

With regard to the load forecasting model, let BL(x pL(k)) =
[βL1(x pL(k)), . . . , βL ML (x pL(k))]. As in the case of the
NCES, assume that BL(x pL(k)) is constant throughout Np .
Then the predicted output of each rule of the load forecasting
model (28) has the form (15). Consequently, the predicted
demand is given by P̃L(k) = �pL + �pL T̃ (k), where
�pL = ∑ML

j=1 βL j (x pL(k))�
j
L , �pL = ∑ML

j=1 βL j (x pL(k))�
j
L ,

and T̃ (k) is the temperature over the prediction horizon. Just
as in the case of the NCES, �pL and �pL depend only on θL ,
a matrix whose elements are the parameters of the fuzzy
model (28). Then the upper and lower boundaries for P̃L(k)

are computed based on θ L and θ L . Let P̃ L(k) and P̃ L(k)
denote the upper and lower boundaries for P̃L(k), respectively.
Then in accordance with the INFUMO, P̃ L(k) and P̃ L(k) have
the form

P̃ L(k) = � pL + �pL T̃ (k) (33)

P̃ L(k) = � pL + �pL T̃ (k). (34)

Since in [4] the demand is defined as the product
P̃L(k) · S̃L(k), with abuse of notation, let redefine
P̃L(k) = (�pL + �pL T̃ (k)) · S̃L(k), with the product x · y
indicating the element to element product. Note that P̃L(k)
depends only on the estimated demand and the expected load
shifting S̃L(k). Thence, it is possible to assume that P̃L(k)
only has a forced response, that is, P̃L(k) = �L S̃L(k), where
�L is a diagonal matrix whose elements are given by the
fuzzy model �pL + �pL T̃ (k). Thus, from (33) and (34), the
upper and lower boundaries for the demand (including the load
shifting action) are given by

P̃ L(k) = �L S̃L(k) (35)

P̃ L(k) = �L S̃L(k) (36)

with S̃L(k) ∈ R
Np the sequence of load shifting factors over

the prediction horizon, and �L and �L the values of �L

computed with θ L and θ L , respectively. In the next section,
the proposed robust EMS is described.

C. Robust Energy Management System

Prediction models for the conventional energy
sources, for the NCES, and for the load were derived
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in Sections III-A and III-B. In these models, the predicted
behavior was related to the decision variables of the
minimization problem (18). Regarding the minimization
problem (18), these prediction models were also used to
express the constraints as functions of the decision variables.
Consequently, the minimization problem (25) was obtained.
Let ũ(k) = [P̃T

D (k), P̃+T
B (k), P̃−T

B (k), P̃T
Lo(k), S̃T

L (k)]T . With
the models derived in Sections III-A and III-B for P̃I (k),
P̃L(k), P̃S(k), and P̃E (k), the power balance constraint in (25)
becomes

P̃NS(k) = −(�S + �E + �I + �S R̃S(k) + �E ν̃E (k)
)

︸ ︷︷ ︸

�NS

+ [I −�+
I −�−

I −I �L
]

︸ ︷︷ ︸

�NS

ũ(k). (37)

In (37), the terms �S R̃S(k)+�E ν̃E (k) and �L are uncertain.
Accordingly, the uncertainty in the prediction of the unserved
power P̃NS(k) covers both its free and its forced response.
Thus, P̃NS(k) = (�NS + δ�NS) + (�NS + δ�NS) ũ(k).

Let P̃D(k) = C1ũ(k), P̃+
B (k) = C2ũ(k), P̃−

B (k) =
C3ũ(k), P̃T

Lo(k) = C4ũ(k), and S̃L(k) = C5ũ(k), with C1–C5
selection matrices with the adequate dimension. Since
C(k+l) = CDq(k+l), the diesel generation over the prediction
horizon turns into C̃(k) = CD�q + CD�qC1ũ(k), with
�q = B̃(PD(k))�q D and �q = B̃(PD(k))�q D . For CS(k),
in [4], an approach based on binary variables was suggested.
However, such an approach required the estimation of the
SoC and of the state of health of the battery bank, which
is an open issue in the specialized literature. For addressing
this drawback, in this paper, an alternative formulation is
proposed. Let λ denote the fixed cost for changing the operat-
ing mode of the diesel generator. Then CS(k) is defined as
CS(k) : = λ�PD(k), with �PD(k) = PD(k) −
PD(k − 1). Let PDo = [−PD(k), 0, . . . , 0]T and �PD be
defined as

�PD =

⎡

⎢

⎢

⎢

⎢

⎣

I

−I I

. . .
. . .

−I I

⎤

⎥

⎥

⎥

⎥

⎦

C1.

Then CS(k) is computed in terms of the decision variables ũ(k)
as CS(k) = �PDũ(k)+ PDo. With this definition, the following
conditions hold: 1) If �P̃D(k) > 0, the value of the cost
function increases. 2) If �P̃D(k) = 0, the value of the cost
function remains constant. 3) If �P̃D(k) < 0, the value of the
cost function decreases. With these considerations, once the
diesel generator is started, it is expected that the EMS tends
to maintain the same operating conditions or tends to
turn it OFF.

Finally, recall that CH (Np) denotes the cost of using the
battery bank. An expression for CH (Np) based on the estima-
tion of the SoC is proposed in [4]. Due to the aforementioned
issues with respect to the estimation of the SoC, in this
paper, an alternative formulation for CH (Np) is proposed.
At time step k, let CH (k) denote the cost of using the

battery bank. Let E f represent its maximum desired discharge
level. Also, let Ft denote the investment cost due to the
degradation of the battery bank. Then CH (k) is defined as
CH (k) : = Ft (E f − E(k)). With this formulation, it is
expected that the EMS maintains the energy of the battery
bank over E f . Indeed, the value of the cost function increases
if E(k) < E f . By contrast, with the formulation in [4],
the proposed definition of CH (k) penalizes the battery use
throughout Np . Therefore, a better use of this energy resource
is also expected. Let C̃H (k) = [CH (k+1), . . . , CH (k +Np)]T .
Then, C̃H (k) = �H + �H ũ(k), with �H = Fr (Ẽ f − �E ) and
�H = Ft (�

+
I C2 + �−

I C3).
Let Gi ∈ R

Np×Np , i = 1, . . . , Np , be the diagonal matrices
with their i th element of the diagonal equals to one and the
remaining elements equals to zero. Then the equality constraint
P̃+

B (k) · P̃−
B (k) = 0 can be equivalently written as the set of

quadratic constraints ũT (k)CT
2 Gi C3ũ(k) = 0, i = 1, . . . , Np .

Let t ∈ R be an auxiliary variable. Using the
Cauchy–Schwarz inequality, the equality constraint
ũT (k)Ḡ(1/2)

i ũ(k) = 0, i = 1, . . . , Np , is reformulated
as ‖Ḡi ũ(k)‖2 ≤ t . The formulation of the constraint
P̃+

B (k) · P̃−
B (k) = 0 as the norm constraint ‖Ḡi ũ(k)‖2 ≤ t

allows formulating (25) as an SOCP problem. From the
prediction models derived for the conventional energy
sources, and from the INFUMO deduced for the NCES and
the demand, the parameters q and r in (3) are given by

q = Ī T (TsCD�qC1 + �PD + TsCNS (�NS + δ�NS) + �H
)

r = Ī T (TsCD�q + PDo + TsCNS (�NS + δ�NS) + �H
)

.

Then, the cost function in (25) becomes J (̃u(k)) = qũ(k) +
r + t . Hence, using the INFUMO to define the uncertain set,
and relating this set with both q and r , the EMS problem (25)
can be equivalently written as (17).

Based on the their definitions, q is function of δ�NS and
r is function of δ�NS. Therefore, q = q̄ + δq and r = r̄ + δr ,
where q̄ = Ī T (TsCD�qC1 + �PD + TsCNS�NS + �H ),
r̄ = Ī T (TsCD�q + PDo + TsCNS�NS + �H ), δq =
Ī T TsCNSδ�NS, and δr = Ī T TsCNSδ�NS, thereby there is a
mapping from the model to the uncertainty in the parameters of
J (̃u(k)). Specifically, associated with each pair (δ�NS, δ�NS),
there is a pair (δq, δr) and therefore a pair (q, r). Let �� =
{δ�NS1, . . . , δ�NSM } and �� = {δ�NS1, . . . , δ�NSM }. Then,
the set of tuples

T = {(q1, r1, δ�NS1, δ�NS1), . . . , (qM , rM , δ�NSM , δ�NSM )}

defines all the possible scenarios arising from �� and ��.
In the proposed EMS, the total amount of scenarios is eight.
The scenarios arise from the combination of the upper and
lower boundary predictions provided by the INFUMO. These
scenarios are summarized in Table I.

Let F = {(q1, r1), . . . , (qM , rM )}. Then the worst case
error ewc(̃u(k)) of a candidate approximate solution ũ(k) is
given by

ewc(̃u(k)) = sup
q,r,�NS,�NS

{qũ(k) + r | (q, r) ∈ conv{F}}. (38)
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TABLE I

SCENARIOS GENERATED WITH THE INFUMO FOR PREDICTING

THE AVAILABLE ENERGY IN THE NCES AND FOR

THE LOAD FORECASTING

Hence, the robust EMS based on scenarios is given by the
SOCP problem

min
ũ(k),t,d

t + d

s.t. rm + qmũ(k) ≤ d, m = 1, . . . , 8
∥

∥

∥Ḡ
1
2
i ũ(k)

∥

∥

∥

2
≤ t, i = 1, . . . , Np

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

�VDC1
−�VDC1

−Ts�
+
I C2 − Ts�

−
I C3

Ts�
+
I C2 + Ts�

−
I C3

(Ts�
−
B − I )C3 + Ts�

+
B C2

−�NSm

C2
C5

−C5
−C1
−C2
C4
C3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ũ(k) ≤

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Ṽ max
D − �VD

�VD − Ṽ min
D

Ẽmax − �E

�E − Ẽmin

−�B

�NSm

P̃max
B

S̃max
L

−S̃min
L (k)
0
0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

m = 1, . . . , 8 (39)

where ‖Ḡi ũ(k)‖2 ≤ t, i = 1, . . . , Np , is the constraint
coming from the original restriction P̃+

B (k) · P̃−
B (k) = 0.

It is worth pointing out that (qm, rm) are time variant. Such
a variation obeys the dependence of these matrices on: 1) the
membership functions used for modeling the consumption of
diesel; 2) the maximum power demanded for the battery in
charging mode; and 3) the behavior of the demand and the
NCES. However, the parameters of the models are computed
offline and therefore can be assumed known. Let Adesm and
bdesm denote the matrices associated with the linear constraints
in (39). Then assuming that the parameters of the models are
known, the following steps are suggested for implementing the
proposed robust EMS.

1) Given the current operating point, determine the
membership functions βS j (x pS(k)), βE j (x pE (k)), and
βL j (x pL(k)) of the different models.

2) With the membership functions, determine the free
and forced responses of the conventional energy
sources.

3) With the membership functions, determine upper and
lower boundaries for the free and forced responses of
the NCES and of the demand.

4) Define the values for q and r as well as the values for
Adesm and bdesm .

5) Compute the optimal control sequence ũ∗(k) as the
solution of (39).

6) Apply the first element of ũ(k) and define the initial
condition for the next time step as uo(k + 1) = ũ(k)∗T

(the superscript ∗ denotes the optimal solution).
7) Go back to Step 1.

Note that the minimization problem (39) is a convex optimiza-
tion problem. Then, it is possible to guarantee that the solution
converges to the global minimum. In fact, efficient procedures
have been proposed for solving such a kind of optimization
problems. In Section IV, the proposed robust EMS is tested
through simulation in the Huatacondo microgrid.

IV. CASE STUDY

With the aim of evaluating the performance of the proposed
robust EMS, the microgrid installed in Huatacondo, Chile, was
used as a test bench. Huatacondo is a human settlement located
in the Atacama Desert. In this village, an isolated microgrid
was implemented in order to provide 24 h of electricity to
its inhabitants, instead of the 10-h electricity, they previously
had with only a diesel generator. The idea behind imple-
menting the microgrid was taking advantage of the distributed
NCES in the area for supplying the energy demanded by the
community. Thereby, a photovoltaic system with a maximum
capacity of PSmax = 22 kW, a wind generator system rated at
PEmax = 5 kW, and an ESS (connected to the grid through a
power inverter) were implemented to complement the existing
diesel generator, which has a PDmax = 120 kW. The demand
of Huatacondo is composed by a water pump (used as a
programmable load), the inhabitant’s power consumption, and
the street lights. Combining all consumption the maximum
demand PLmax is about 28 kW.

In Huatacondo, the energy sources are coordinated by means
of an EMS. The EMS is in charge of defining the power refer-
ences for the diesel generator and the battery bank. In addition,
the EMS defines when and how long the controllable loads
are fed. Fig. 1 shows a block diagram of the EMS installed
in Huatacondo. In that EMS, the inputs are: 1) the SoC of the
battery bank; 2) the weather conditions (sunlight and wind
speed mainly); and 3) the expected values of both the demand
and the water consumption.

Moreover, the weather conditions (and therefore the avail-
able energy in the NCES) and the demand are estimated
using historical data. These estimations do not consider the
uncertainty. Therefore, the reliability of the microgrid cannot
be assured. Based on the scheme shown in Fig. 1, and with the
aim of enhancing the reliability of the microgrid, the proposed
robust EMS has been implemented. In the implementation,
requirements such as: 1) a prediction horizon of two days
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Fig. 1. Block diagram of the EMS installed in the microgrid of Huatacondo.

for the demand, the wind-based, and the solar-based power;
2) generating the power references for the diesel and the
battery bank; 3) providing the load shifting signals to the
community; and 4) a sampling time of 15 min were consid-
ered. In the following sections, the models used and the results
obtained in the implementation are presented. Furthermore,
a comparison between the EMS and its robust version is
included. The comparison is done considering the operating
costs as the comparison index. In this paper, three robust
EMSs arising from Table I are compared, namely, the worst
case scenario that corresponds to scenario 4 in Table I,
a case in which scenarios 3 and 7 are considered (here only
uncertainty in the load forecasting is assumed), and a case in
which all scenarios are taken into account. In all the cases,
the EMS installed in Huatacondo was modified in order to
solve (39) considering the prediction conditions associated
with each EMS.

A. INFUMO for Demand, Solar Generation,
and Wind Generation in Huatacondo

In the proposed robust EMS, the identification of INFUMO
for the load, solar power, and wind power is required. These
are the main sources of uncertainty in the microgrid installed
in Huatacondo. Historical data of solar power, wind power,
and load measured in Huatacondo were used to identify
the INFUMO. Only in the case of the demand, exogenous
variables were not considered in the model. The reason for this
model selection was the independence of the load with respect
to external factors, such as weather conditions. In addition to
the parameter identification, the theorem in [35] and [36] was
used to verify the stability of the models. The stability was
verified to guarantee the same confidence level throughout
the prediction horizon. If the confidence level enlarges due
to the instability of one of the boundaries of the interval,
then unfeasible references for the units might arise steering the
system to undesirable operating conditions. Since the micro-
grid of Huatacondo provides energy to the inhabitants of the
settlement, having an undesirable and/or unexpected behavior
is not an option. Fig. 2(a)–(c) shows the INFUMO obtained for
the demand, the available solar-based power, and the available
wind-based power, respectively. The INFUMOs in Fig. 2

are obtained with the procedure described in Section II-B.
In these models, a confidence level of 95% is accomplished.
Moreover, the region defined by the INFUMO is wider enough
to represent the information contained in the data. Thus, the
INFUMO captured both the dynamics and the uncertainty
present in the data used in the parameter identification proce-
dure. Fig. 2(a)–(c) shows a comparison between the real data
and the INFUMO. In Fig. 2(a)–(c), the validation data set is
presented. The capabilities of the INFUMO are more evident
in the demand and wind-based generation, since the variability
of these variables is higher than the variability of the solar-
based generation. Those differences obey the conditions of the
Atacama Desert, where the radiation is almost the same the
whole year and the operating mode of the microgrid. Since
the microgrid is operating in isolated mode, any change in the
consumption pattern of the inhabitants has a notorious impact
in the measured load.

B. Worst Case Scenario

For comparison purposes, in this paper, the worst case
scenario is also considered. From Table I, the worst case
corresponds to the prediction scenario 4. In this scenario, the
expected demand is high (represented by the upper boundary
of the INFUMO), but the expected available energy in the
NCES is low (represented by the lower boundary of the
INFUMO of both energy sources). The comparison seeks to
demonstrate that a high variability in the operating costs is
obtained when the same prediction scenario is considered in
the EMS, as it is explained in Section IV-D. Fig. 3 shows the
operation of the microgrid when the worst case scenario is
used in the EMS.

As it can be observed in Fig. 3, the operating conditions
of the selected days are very diverse. The more notorious
difference lies in the load profile. The changes in the load
cause the EMS to use the battery bank to produce the
expected missing energy. Due to the intense use of the battery
bank, its minimum (allowed) energy value is reached several
times. Thus, a reduction of the lifespan of the battery bank
is expected, and therefore, an increasing in the investment
since the replacement of the banks should be scheduled
more often than planned. In addition, the use of the diesel
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Fig. 2. INFUMOs for the demand, for the photovoltaic generation, and for the wind-based generation in the microgrid of Huatacondo. (a) 95% of confidence
level INFUMO for the demand. (b) 95% of confidence level INFUMO for the photovoltaic power. (c) 95% of confidence level INFUMO for the wind-based
power.

generator increases. Indeed, Fig. 3(d) shows a case in which
the EMS started two times the diesel generator. This also
increases the operating costs of the microgrid. Remember that
Huatacondo is an isolated place in the Atacama Desert, and
therefore, carrying the diesel to this place is a very expensive
task.

With respect to the cost function, notwithstanding the
intensive use of the battery bank, its value is not severely
affected since the operating conditions of the diesel genera-
tor do not change very often. Indeed, only the second day
exhibits a considerable variation in the operating costs, as
it can be validated in Table II. The difference obeys the
amount of diesel used during this day. As shown in Fig. 3(b),
the diesel generator was started and remained providing the
total demanded energy during a long period, before being
turned OFF by the EMS. Given these results, it can be
concluded that the use of a single scenario in the EMS might
threaten the security and reliability of the microgrid. This
motivates even more the use of the robust EMS proposed in
this paper.

C. Proposed Robust EMS: Load Uncertainty

In this section, the results obtained considering uncertainty
only in the load forecasting are presented. In this case, the
prediction scenarios 3 and 7 of Table I are selected. These
prediction scenarios provide an upper and a lower boundary
for the prediction of the load. The reason for selecting these
scenarios is that, as in scenario 4, the prediction of the

TABLE II

OPERATING COSTS FOR THE WORST CASE SCENARIO

solar power is performed through the lower boundary model.
Thus, the effect of taking into consideration the uncertainty
in the EMS can be evaluated by comparing the results
obtained with both prediction scenarios (worst case and load
uncertainty). Note that in scenarios 3 and 7, the wind power is
predicted assuming the upper boundary of the interval, while
in scenario 4, the same prediction is performed using the lower
boundary. However, since the wind power is significantly less
than the solar power (during the experiments), the effects of
the variations in the prediction scenario were neglected.

Fig. 4 shows the results obtained with the implementation
of the proposed robust EMS. In Fig. 4, despite the variability
in the demand the use of the diesel generator remained
almost the same. Nevertheless, the use of the battery bank
significantly changed from one day to another. These changes
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Fig. 3. Performance of the Huatacondo microgrid. Here, the worst case scenario for the predictions was considered. Several load conditions were used to
assess the performance of the microgrid. (a) Performance of the microgrid in a type 1 day when the forecasting scenario is assumed the worst (m = 4).
(b) Performance of the microgrid in a type 2 day when the forecasting scenario is assumed the worst (m = 4). (c) Performance of the microgrid in
a type 3 day when the forecasting scenario is assumed the worst (m = 4). (d) Performance of the microgrid in a type 4 day when the forecasting scenario is
assumed the worst (m = 4).

are associated with the use of the battery and the diesel
generator as reserves. Thus, the variability of the NCES and
the load and their effects in the operation of the microgrid are
mitigated. In comparison with the results shown in Fig. 3,
including the scenarios produced a change in the way the
EMS scheduled the use of the battery. Indeed, both the
maximum charging and discharging powers are significantly
diminished. Therefore, in comparison with the worst case
scenario, the lifespan of the battery is increased. This fact is
important because if the battery life is extended, the investment
associated with maintenance and replacement could be
decreased.

However, from the cost function proposed in [4], the use of
scenarios to represent the uncertainty increases the operating
costs. Table III summarizes the operating costs associated with
the EMS in [4], with the worst case scenario EMS, and with
the proposed robust EMS bearing in mind only the uncertainty
in the load forecasting. As it can be noted, the use of several
scenarios allowed maintaining the same operating costs for all
days. Thereby, in the Huatacondo case, it is evidenced that the
proposed EMS adequately dealt with the uncertainty. Indeed,
it is validated the fact that robust programming provides
solutions that are robust against any realization of the uncer-
tain variable inside the range defined by the interval model

(in this case by the INFUMO), since all the cases shown
in Fig. 4 are defined by particular realizations of the load.

D. Proposed Robust EMS Considering Uncertainty in
Load, Solar Power, and Wind Power Forecasting

In this section, the results obtained with the robust EMS
are presented. In this case, unlike in Section IV-C, uncertainty
in the load, solar power, and wind power forecasting were
considered. Hence, given the measured values in the microgrid,
the cases presented in Table I were computed. Afterward, the
solution of (39) was obtained following the steps proposed
in Section III-C. Similar to Section IV-C, analogous operating
conditions to the used in the assessment of the worst case
scenario EMS were considered. In this sense, the results
obtained are comparable with each other.

Fig. 5 shows the results obtained with the proposed robust
EMS. According to the results presented in Fig. 4, considering
all scenarios in Table I allowed improving the use of the
battery bank. Indeed, in this case, the maximum power taken
from the battery bank is 5 kW, while in the worst case
scenario is 35 kW and in the load uncertainty case is 20 kW.
Furthermore, in the case of the robust EMS, a shallower
discharge of the battery is obtained than in the previous cases.
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Fig. 4. Performance of the Huatacondo microgrid when the scenario-based robust EMS coordinates the energy sources at different days of operation. Here,
only uncertainty in the load forecasting is considered. (a) Performance of the microgrid in a type 1 day. Here, the coordination of the energy sources is carried
out by the scenario-based robust EMS. (b) Performance of the microgrid in a type 2 day. Here, the coordination of the energy sources is carried out by the
scenario-based robust EMS. (c) Performance of the microgrid in a type 3 day. Here, the coordination of the energy sources is carried out by the scenario-based
robust EMS. (d) Performance of the microgrid in a type 4 day. Here, the coordination of the energy sources is carried out by the scenario-based robust EMS.

TABLE III

COMPARISON OF THE OPERATING COSTS FOR THE SAME PREDICTION SCENARIO UNDER DIFFERENT OPERATING CONDITIONS. REMS STANDS FOR

THE EMS DESCRIBED IN THIS PAPER, WC-EMS STANDS FOR THE EMS BASED ON THE WORST CASE SCENARIO, AND EMS STANDS

FOR THE EMS PROPOSED IN [4]. HERE, ONLY UNCERTAINTY IN THE LOAD PREDICTIONS IS CONSIDERED

This is evidenced by the power required for charging the
battery. In the worst case, for instance, the maximum power
required for charging the battery is 15 kW, but in the load
uncertainty and the current case, less than 10 kW is required.
As it was aforementioned in Section IV-C, since the battery
bank is used as an energy reserve, the depth in the battery
discharge is reduced. Thus, any energy surplus is used to
charge the battery bank. Consequently, the battery drain is
diminished enlarging its lifespan.

Although the proposed EMS allows achieving the desired
operating conditions in the microgrid, the use of the diesel

must be slightly improved. For instance, fast changes in the
power supplied by the diesel should be prevented (Fig. 5).
These changes appear because the robust EMS uses the diesel
generator as a spinning reserve to counteract the uncertainty
in the NCES, despite the increasing in the operating costs.
The operating costs associated with the EMS in [4], the worst
case scenario EMS, and the robust EMS are summarized
in Table IV. As expected, the EMS presents the highest operat-
ing costs. This is explained by the inaccuracy in the predictions
of the uncertain variables. Also, it is evident that, in almost
all the cases, the proposed EMS has higher operating costs
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Fig. 5. Performance of the Huatacondo microgrid, when the scenario-based robust EMS coordinates the energy sources at different days of operation. Here,
uncertainty in the load, the solar power, and the wind power forecasting is considered. (a) Performance of the microgrid in a type 1 day. Here, the coordination
of the energy sources is carried out by the scenario-based robust EMS. (b) Performance of the microgrid in a type 2 day. Here, the coordination of the energy
sources is carried out by the scenario-based robust EMS. (c) Performance of the microgrid in a type 3 day. Here, the coordination of the energy sources is
carried out by the scenario-based robust EMS. (d) Performance of the microgrid in a type 4 day. Here, the coordination of the energy sources is carried out
by the scenario-based robust EMS.

TABLE IV

COMPARISON OF THE OPERATING COSTS FOR THE SAME PREDICTION SCENARIO UNDER DIFFERENT OPERATING CONDITIONS. REMS STANDS FOR

THE EMS DESCRIBED IN THIS PAPER, WC-EMS STANDS FOR THE EMS BASED ON THE WORST CASE SCENARIO, AND EMS STANDS

FOR THE EMS PROPOSED IN [4]. HERE, IT IS ASSUMED UNCERTAINTY IN THE NCES AND IN THE LOAD FORECASTING

than in the worst case scenario. This result is mainly because,
as aforementioned, the robust EMS uses the diesel generator
as spinning reserve. However, in comparison with the results
presented in Table III, including more scenarios allowed
diminishing the operating costs. Only in the second day, the
robust EMS with uncertainty in the load forecasting performed
better than the EMS analyzed in this section. Nonetheless,
the operating costs remained almost the same despite the
changes in the operating conditions. Therefore, the proposed

EMS is an adequate alternative to address the uncertainty in
the coordination of energy sources in a microgrid.

V. CONCLUSION

In this paper, a scenario-based robust EMS was proposed for
coordinating the energy resources in an isolated microgrid. The
proposed EMS was formulated within the MPC framework.
Fuzzy prediction models were used to represent the
system dynamics. Specifically, TS models were considered.
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The selection of these models allowed deriving recursive
expressions to compute the predictions in an efficient way.
Thus, only the current measured values of the states and
outputs of the system are required to compute the optimal
control actions. This fact significantly reduced the computa-
tional burden of the proposed EMS.

Notwithstanding the capabilities of TS models, in micro-
grids, there are several uncertainties that these models are
not able to represent. Therefore, instead of using directly
TS models, in this paper, they were used as the basis to
formulate INFUMOs of the uncertain variables. The fuzzy
interval models provided upper and lower boundaries for
the trajectories of the uncertain variables. Thereby, within
the range delimited by these boundaries, any realization of the
uncertain variables was represented by the interval model. The
range covered by the model depends on the desired confidence
level. Thus, both the dynamic behavior of the microgrid and
its uncertainty were represented.

Taking into consideration the boundaries provided by the
INFUMOs, several feasible scenarios were generated. In fact,
the scenarios considered here corresponded to all combinations
of the extreme cases of the interval models, e.g., considering
the prediction using the upper boundary model of the NCES
and prediction using the lower boundary model of the load
determined one of the scenarios. Considering all possible
scenarios, the robust EMS was initially formulated as a robust
programming problem, and then, it was transformed into
an SOCP problem. In this sense, efficient algorithms were
available to solve the robust EMS problem. Furthermore, since
SOCP problems are convex, their solution is obtained in a
finite number of steps, and the convergence of the solution to
the global optimum might be demonstrated.

Although the problem of uncertainty in microgrids and,
in general, in power systems with NCES has been widely
investigated in the literature, several approaches are based
on the Monte Carlo simulation or in the use of probability
functions to generate the scenarios. In these approaches, the
solution is robust only against the realizations included in the
solution. By contrast, with the use of interval modeling plus
robust programming, the solution is robust against all possible
realizations, within the interval, of the uncertain variables.
In the literature, several approaches using fixed intervals or
intervals whose width changes according to the prediction
error for representing the uncertainty have been reported.
In comparison with these approaches, in this paper, the use
of fuzzy interval models for changing the boundaries of the
interval in accordance with the system dynamics is investi-
gated. The intervals have been associated with a confidence
level. The confidence level determines the width of the interval
and therefore the degree of representation of the uncertain
variables. Since the boundaries are adapted in accordance
with the system dynamics, the proposed EMS provides less
conservative solutions.

The assessment of the robust EMS was carried out using the
microgrid installed in Huatacondo. For comparison purposes,
the currently installed one and an EMS based on the worst
case scenario were considered. The comparison was done
using the operating costs as a comparison index. With respect

to the currently installed, the robust EMS performed better.
Specifically, the operating costs were reduced, and the security
and reliability were improved. In comparison with the worst
case scenario, the robust EMS provided a better use of the
battery and the costs remained almost constant despite the
changes in the operating conditions. However, since the diesel
generator was used as spinning reserve, the operating costs
(in terms of the cost function of the EMS) were higher
than in the worst case scenario, in almost all the cases
analyzed. Therefore, it was concluded that the proposed robust
EMS adequately addressed the uncertainty in the Huatacondo
microgrid.
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