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this paper two different approaches are tested over eight different scenarios. Both method-
ologies solve the same problem, the former based on a deterministic optimization over a
long-term rolling horizon, while the latter proposes a hybrid predictive approach consider-
X ing a shorter horizon and a stochastic evolution of the system. The comparison is con-
Transit systems . . . . . . L.
Transit control ducted through scenarios that include three different dimensions: (i) bus capacities
Performance comparison which can be reached or not, (ii) service frequencies, considering high and medium
Vehicle bunching frequency services and (iii) different load profiles along the corridor. The results show that
the deterministic approach performs better under scenarios where bus capacity could be
reached frequently along the route while the hybrid predictive control approach performs
better in situations where this does not happen.
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1. Introduction

The absence of a control system in a bus transit network tends to result in vehicle bunching due to the stochastic nature of
traffic flows and passenger demand at bus stops. It also leads to an evident increase in bus headway variance and a conse-
quent worsening of both the magnitude and variability of average waiting times. This in turn impacts heavily on the level of
service as perceived by users given that their subjective valuation of this component of total trip time is higher than that of
any other (access time, in-vehicle time) (Boardman et al., 2001).

In this study we address the problem of determining a bus control strategy for the various stops or stations in a transit
system that will minimize the total time users must devote to making a trip. Historically, the literature in this field has
evolved from the study of pre-planned fleet assignment and scheduling strategies, to the analysis of real-time control
strategies, assuming that real-time information is available through on-vehicle equipment such as Automatic Passenger
Counters (APCs) and Automatic Vehicle Location (AVL) devices. The first group of strategies works as a complement to a
properly pre-planned bus schedule, since they are defined to deal with well-known demand imbalances at an aggregated
level, in specific route sections and periods (for a deep description of these strategies, such as short turning, restricted zonal
service and deadheading, among others, see Furth and Day, 1984). The second group of strategies has been designed to allow
the operator to react dynamically to real-time system disturbances. Due to its simplicity and effectiveness, the most studied
strategy of this type in recent years is the holding strategy, in which vehicles are held at specific stations for a certain time, in
most cases oriented to keep the headway between successive buses as close as possible to a predefined value.
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In terms of the spatial configuration of the different control strategies, Eberlein (1995) classified them into three catego-
ries: (i) station control, including bus holding and stop skipping; (ii) interstation control, such as operating speed control, bus
overtaking and traffic signal priority mechanisms; and (iii) other control measures such as adding vehicles.

This study will focus on strategies for vehicle holding that determine which buses are to be held where and for how long.

There are two types of bus holding, one based on schedules and the other on headways. The first type is used when the sys-
tem has a predefined schedule, which is typical of services with long headways. The second type, on the other hand, is employed
in the absence of a predefined schedule. This is commonly the case for services with short headways (e.g. less than 10 min).

As regards headway-based holding, the type that will concern us here, Barnett (1974) early research developed a simple
holding model at a given control station, where the sum of total waiting time plus the extra delay of passengers on board
deadheaded vehicles is minimized. Turnquist and Blume (1980) identified conditions under which holding results are attrac-
tive. The appearance of new information and communication technologies made possible the development of more complex
models that determine the optimal holding time for each vehicle so as to minimize total passenger waiting time at stops, or a
combination of this factor and in-vehicle delay of passengers due to holding. Fu and Yang (2002) present a formulation along
these lines that minimizes average waiting time at stops but ignores both in-vehicle holding delay and bus capacity con-
straints. In such a case the results demonstrate that the optimal policy is to apply holding at a single stop. Sun and Hickman
(2004) state the same problem in two dimensions, with holding of multiple buses but at a defined set of control stations.
They show that if holding is applied at various stations, bus headways can be regularized and greater cost reductions thereby
achieved compared to single station holding. The study of Hickman (2001) presented a stochastic holding model at a given
control station. The author formulated a convex quadratic program in a single variable corresponding to the time lapse dur-
ing which buses are held. More recent research has explored holding models that rely on real-time information, mainly refer-
ring to vehicle location (Eberlein, 1995; Eberlein et al., 2001). Zhao et al. (2003) propose a control model based on
negotiation between two agents, one aboard the bus and the other at a stop. Simulation results indicate that the negotiation
algorithm is robust for a variety of operating conditions. The vehicle capacity constraint approach is addressed in Zolfaghari
et al. (2004), who formulate a problem in which the objective function minimizes the waiting times both of users who arrive
at a stop and those who have to await more than one bus due to the activation of the capacity constraint. They do not, how-
ever, consider the extra waiting time endured by passengers held at a stop. Puong and Wilson (2004) extend this case by
including the latter factor in their objective function in the context of interruptions in train service. They propose a non-lin-
ear mixed-integer model in which dwell time is assumed to be constant at any given station. The problem is solved in a rea-
sonable amount of time using a branch-and-cut strategy. Delgado et al. (2012) address this problem using a model that
considers holding at each stop and a capacity constrained heterogeneous fleet without using integer variables.

Yu and Yang (2007) present a dynamic holding strategy, in which the on-time performance of the early bus operation at
the next stop is considered and the holding times of the held bus at the stop is optimized. A model based on support vector
machine (SVM) for forecasting the early bus departure times from the next stop is also developed. Furthermore, in order to
determine the optimal holding times, a model aiming to minimize the total user costs is developed. Genetic algorithms are
proposed to optimize holding times.

Lately, an adaptive control scheme aiming to provide quasi-regular headways while maintaining as high a commercial
speed as possible is proposed by Daganzo (2009) and Daganzo and Pilachowski (2011). In Daganzo (2009) the control
dynamically determines bus holding times at a route’s control points based on real-time information about the passage
of the previous bus. Although the method proves to be efficient under small disturbances, under large perturbations it re-
duces performance. To overcome this problem, Daganzo and Pilachowski (2011) continuously adjust bus cruising speed
based on a cooperative two way looking strategy based on the spacing of the front and back buses. The cooperative control
shows to be effective in preventing bunching. Since in both cases they aim at maintaining regularity, their proposed ap-
proach is not well suited for operations in which vehicles reach their capacities. The cooperative control shows to be effective
in preventing bunching. Bartholdi and Eisenstein (2012) abandon the idea of any a priori target headway, allowing the nat-
ural headway of the system to spontaneously emerge when disturbances appear by implementing a simple holding rule at a
control point.

As for strategies to increase bus operating speed, one of the most studied is stop-skipping Suh et al. (2002), Fu et al.
(2003), Sun and Hickman (2005). Saez et al. (2012) present a hybrid predictive controller in which holding and stop-skipping
control actions are taken each time a bus arrives at a stop. The problem is solved using genetic algorithms in which holding
time may only take some discrete values. On a similar combination of strategies, Delgado et al. (2009) present a continuous
version of stop-skipping in which a certain fraction of passengers is prevented from boarding at each stop.

The major focus of this paper is to compare two different approaches for optimizing the real-time control for the oper-
ation of a bus system on a single-service corridor. One methodology based on Delgado et al. (2012) takes each single decision
by solving a deterministic long-term prediction model while the other, based on Saez et al. (2012), utilizes a hybrid predic-
tive control methodology on a shorter horizon based on a stochastic evolution of the system conditions. Both approaches are
embedded on a rolling horizon framework. Although both methodologies have been applied with a wider variety of control
strategies, such as holding, station skipping, overtaking, and boarding limits, for comparison purposes, in this paper we focus
only on holding, which is the most commonly implemented control strategy and widely studied in the literature. This com-
parison should allow us to detect the scenarios under which each of the two methods present advantages, highlighting their
respective strengths for further construction of an integrated approach. We have made an effort in this document to present
both approaches with a common nomenclature.
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In Section 2 the problem formulation is described. In Sections 3 and 4, the deterministic and hybrid predictive control
strategies are described respectively. Next, experiment simulations are shown in Section 5. Finally Section 6 presents the
conclusion and further research.

2. Problem formulation

The system underlying our model is a high passenger demand one-way loop transit corridor with P stops operated by a
single high-frequency service consisting of b homogeneous buses, with a limited capacity denoted by L4 (see Fig. 1). Vehi-
cles start their run at a terminal defined as Stop 1, visiting all stops downstream (2, 3, ..., P) before returning to the same
terminal (P + 1) where all remaining passengers must alight. The buses are numbered in strict order of advance along the
corridor, bus 1 being furthest ahead and b furthest behind.

The proposed model incorporates the following assumptions:

¢ A homogeneous fleet of buses.

e Buses serve all stops, and overtaking is not permitted.

o Passenger arrival rates for each stop and travel times between stops are deterministic, known and fixed over the period of
interest.

e Boarding time dominates alighting time at most stops. An estimate of boarding time based on predicted boarding passen-
gers will therefore be used for dwell time. In all those stops were alighting time dominates boarding time, dwell time will
be underestimated in both models when compared with the simulation.

3. Deterministic control strategy (DC)
The problem of vehicle holding with real time information assumed that at any time instant we have real-time informa-

tion on the position of every bus and an estimation of the number of passengers aboard each bus as well as the number of
passengers waiting at the various stops. The system is then completely determined by the following state variables:

d; distance between bus i and the last stop upstream from it (meters). (by “upstream” is meant a stop the bus has
already visited).
e; stop immediately upstream from bus i. If bus i is at stop p then e;=p — 1.

By,  number of passengers on bus i who boarded at stop p.
I, number of passengers waiting at stop p.

Regarding passenger demand, we assume, for each stop, that the average passenger arrival rate and the expected propor-
tions vector that distributes the trips originating at that stop among all downstream ones by their respective destinations are
known. Note that these two factors are specified separately for each stop that originates trips.

The following additional variables and parameters are used in the model:

i index of buses, i=1,...,b.

p index of stops,p=1,...,P+1.

t current time, instant when the control decision needs to be made.

0, weight factors included in the objective function (z=1, 2, 3, 4).

Linax bus passenger capacity.

Jp average passenger arrival rate at stop p (passengers per minute).

tp passenger boarding time (minutes per passenger).

Tp distance between stops p and p + 1 (meters).

Up bus operating speed between stops p and p + 1 while the bus is moving (meters per minute).
Tvip travel time between stations p and p + 1 (minutes) (Tvip = 1%)

I?iqp expected fraction of passengers boarding bus i at stop g whose destination is stop p (Vq < p).

Stop P 1

Stop P

Fig. 1. Transit system model.
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The following auxiliary variables regarding the evolution of the system during the rolling horizon can then be estimated:

[l.p total number of passengers traveling in bus i when it reaches stop p.
Zmiqp number of passengers boarding at stop q and traveling in bus i when it reaches stop p (Vq < p). Notice that
Lmiqeﬁl = Bip-
Sip available capacity in bus i when it reaches stop p (number of passengers).
Td: departure time of bus i from stop p.
ip

Ap number of passengers who alight bus i at stop p.
EP% number of passengers who board bus i at stopp (p=e;+1...P).

Epip number of passengers who board bus i at stopp (p=1...¢;).

B, number of passengers who board bus i at stop p.

Wl_p number of passengers prevented to board bus i at stop p.

Trip dwell time of bus i at stop p (minutes).

H length of time measured as the moment bus i departs stop p minus, the largest between t, and the moment bus

P i—1 departs stop p.

We consider the following single set of decision variables for the control strategy:

hi, holding time of bus i at stop p (minutes).

We now formulate a deterministic mathematical programming problem that determines the holding times of the buses at
the various stops along the corridor during the rolling horizon.

The main objective of the controller is to minimize the total travel times of passengers from the moment they arrive at a
stop to the moment they reach their destination. Since vehicle running times are assumed to be constant, the objective is to
minimize both in-vehicle and at-stop waiting times. These components can be written in the following way:

01~ZZFP~%+92~{
i P
P-1

b . b
+ 04 - {Zzwip~§ip+1 +ZWiP'§i1} M)

i=1 p= i=1

1 b-1 [

Lipi-hip + L ‘hiP} +03-0> " > Wy -Hyp+ ZI: Wiy - Hep
P

b P
=1 i=1 p=e;_q)+1 p=ep+1

i=1 p=1

;Lp'(Tdfpftk)‘i’zrD p:ei‘i‘],---,e(;‘q); i=1...b
f”: AP'(Tdip_Tdi—lp) p=ein+1,....e5 i=2...b
ip‘(?dlp—fdbp) p=e,+1,...,6

Tdy, -ty p=e+1,...e.1; i=1

I

ip= Tdip—fd,-,lp p=ein+1,....e5 i=2...b
Tdi,—Tdyy p=ep+1,....e

The first term in (1) refers to the at-stop waiting time (Wg,s) experienced by passengers as they wait for the first bus to
arrive after t. It distinguishes between the waiting time for passengers at stops where bus i is the first one to arrive, and that
for passengers at a stop p that has already been visited by a bus (i — 1). It also distinguishes between passengers already
waiting at the stop from those that have not arrived yet by t,. The term also lends the objective function its non-linear nature
given that total waiting time for all users is proportional to the square of bus headway. As for the second term in (1), it states
the in-vehicle waiting time (Wi, _ven) for passengers aboard a bus i being held at stop p. The third term, indicates the extra
waiting time (Wexra) Of passengers who are prevented from boarding bus i because it is at capacity. Finally, the fourth term
represents a penalty (PE) for passengers prevented from boarding when there is still capacity in the bus (boarding limits).
The weight associated to this term will be large enough for this never to be allowed. Each of the four terms are multiplied
by a different weighting factor, 0y, 05, 03 and 0,4.

If we keep the objective function as expressed above (i.e. the total waiting time experienced by all passengers during the
planning horizon), we encourage the model to leave more passengers at stops by the end of the planning horizon than those
strictly needed to improve performance. This happens because the waiting times experienced by those passengers are not con-
sidered in the objective function. We prevent this problem by minimizing instead the average waiting time per passenger in the
objective function. Therefore we divide the total waiting time by the total number of passengers involved which is given by:
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Thus, we obtain the objective function for the proposed model:
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Constraints (2)—(4) determine the departure times from downstream stops for each bus, the former associated to the stop
immediately downstream from the bus’s current location while (3) and (4) to the rest of the stops.

Constraints (5)-(8) establish the number of passengers traveling in bus i before arriving at stop p who boarded at some
previous stop q. In (9) and (10) the total number of passengers in bus i before it arrives at stop p is stated simply as the sum of
those who boarded at previous stops, while (11) relates the available capacity of a bus before arriving at a stop to the total
number aboard the bus and its capacity.

Constraints (12)-(14) establish potential passenger demand at a given stop for a particular bus. Constraint (15)-(17) re-
lates the total number of passengers who alight from a bus at a given stop to the estimated probability each of them gets off
at that stop given the stop they boarded at.

Constraints (18) and (19) address the capacity constraint. They indicate that the quantity of passengers prevented from
boarding at a given stop p must be equal to or greater than the number prevented from boarding bus i because it was at capacity.

In (20) and (21), the quantity of passengers who are allowed to board bus i at stop p is given as the difference between
potential demand and the number prevented from boarding there. In (22) and (23), dwell time for a bus i at a stop p is the
sum of boarding times for all passengers allowed to board. And finally, constraints (24)-(27) establish that buses cannot
overtake each other.

For a detailed explanation of the constraints of this model and its implementation see Delgado et al. (2012).

The objective function in (1) is quadratic in h;, and not convex, whereas the model’s constraints are linear.

4. Hybrid predictive control strategy (HPC)

The objective of this section is to summarize the HPC approach proposed in Saez et al. (2012) and Cortés et al. (2010) for a
real-time bus system optimization. To be efficient in terms of computation time, the HPC framework is written in discrete
time. The problem is then formulated as a hybrid predictive system, where events are triggered by specific actions. Unlike
traditional HPC formulations written for a fixed step-size, this scheme is based on the occurrence of relevant events (corre-
sponding to the instants at which control actions have to be taken); in this case the formulation results in a variable step-size
as a proxy for expected bus arrival times at bus stops.

Specifically, the events are triggered when a bus arrives at a bus stop, which determines a variable time-step. Hereafter,
the following variables and parameters are used in the state space model:

t continuous time.

k discrete event associated with the arrival of a specific bus to a specific bus stop.

tx continuous time at which event k occurs.

xi(t) position of the bus i at any continuous instant t.

i index of buses,i=1,...,b

T,»(t) expected remaining time for the bus to reach the next stop.

hi(k) holding time of bus i at event k.

Z,»(k +1) estimated passenger load once the bus departs from its current stop, associated with the bus i that triggered
event k.

ﬁi(k 1) estimated departure time once the bus departs from its current stop, associated with the bus i that triggered
event k.

Ei(k) expected number of passenger that will board bus i while it is at the stop.

;\i(k) estimated number of passenger alighting from bus i at event k.

Ui bus instantaneous speed as a function of the continuous time.

ﬁi(k) estimated passenger transference delay (maximum between the boarding and alighting times).

Tv;(k) travel time between two consecutive stations.

I'y(k) estimated bus stop load.

p index of stops,p=1,...,P+1

0, weight factors included in the objective function (z=1, 2, 3).

N, prediction horizon.

Hik+0) headway of bus i that triggers the event k+ ¢ — 1.
H desired headway (set-point).

The analytical expressions for such a dynamic model associated with bus i that triggered event k can be summarized as
presented in Saez et al. (2012) and Cortés et al. (2010):

X0 =x(0) + [ () do (28)

Ti(t) = te + hi(k) + Tri(k) + Toi(k) =t 6 <t <teeg (29)
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Lk +1) = min{L, L;(k) + Bi(k) — Ay(k)} if bus i_triggered event k (30)
Li(k) otherwise
le_(k 1) = ty + hi(k) + Tri(k) if bus i.triggered event k (31)
Td;(k) otherwise

The demand estimator work with statistical analysis of data collected from sensors that should be located at stops and
buses. In our approach, these estimations are obtained from data of both a set of previous similar days (offline historical data)
and dynamic information occurring the same day (online data).

Based on offline data, we are able to estimate ;\i(k) using the most frequent destination patterns from previous days over
the same period; then, those estimations are corrected with online destination data obtained from observed preferences
from passengers already in the system. E-(k) is computed based on both the estimated bus stop load I',(k) at instant k
and the bus capacity; it is estimated considering autoregressive moving average models for the arrival time of passengers
at stops.

In this case, we will pursue the minimization of expression (32) next, which comprises three components oriented to the
improvement of the passengers’ level of service by means of waiting time and penalty due to control actions. In this expres-
sion the first two terms are identical as the three first terms in expression (1). Analytically,

Np ~ Hitk+¢ - ~ 2
J=3"10:- r(k+e)%+92 Litk+ Ohi(k+0— 1) + 05 - (H,»(k+£) 7H) ] (32)
=1 i=i(k+0-1)
where {u(k),...,u(k+Np — 1)} is the control-action sequence with u(k+¢—1)=h,(k+¢— 1) when bus i triggers event

k+¢—1.N, is the prediction horizon and b is the number of buses in the fleet.

Note thati=i(k+¢—1) {1, ..., b}, if we consider that the future event k + ¢ — 1 is triggered by one bus i(k + ¢ — 1) arriv-
ing to a specific station downstream. In expression (32), ; are weighting parameters, and have to be tuned depending on the
specific problem to be treated and on the physical interpretation of the different components as well. Moreover, these
parameters allow the modeller to give different importance to the specific terms of J.

Note that expression (32) depends on the predicted headway between consecutive buses. By using the prediction of the
departure time as detailed in (29), it is possible to predict the headway ﬁ,-(k + ¢) of bus i that triggers the event k + ¢ — 1, with
respect to its precedent bus i — 1 when it reaches the same stop, which corresponds to event k + ¢ — z;_;. Analytically:

Ifll‘(k-‘rf):ﬁ(l<+f)—fai,1(l(+é—z,;1) (33)

where TAdi(k + ¢) is associated with the bus i that triggers the event k+ ¢ — 1, and ﬁi,-,] (k + ¢ — z;_1) represents the predicted
departure time of precedent bus i — 1 that triggers the event k + ¢ — z; 1 — 1, at the same stop. The variable z; ; represents the
number of events between the arrival of the previous bus i — 1 and the bus i, both reaching the same stop.

In expression (32), H is designed for servicing the system demand during a certain time period. Normally, the desired
headway H is related to the design frequency that directly depends on the segment loads, and can be determined as the min-
imum required for moving the passengers on the most loaded segment along the bus route. The first term in (32) quantifies
the total passenger waiting time at stops, and depends on the predicted headway along with the bus-stop load, which at the
same time quantifies the level of service. The second term in (32) measures the delay associated with passengers on-board a
vehicle when they are held at a control station due to the application of the holding strategy. The last term captures the reg-
ularization of bus headways, and that intends to maintain the headway as close as possible to the desired headway.

The predictive model of the public transport system must satisfy some physical and operational constraints.

The first constraint corresponds to the capacity constraint. This is a physical constraint in the sense that the bus cannot
transport more passengers than its maximum capacity. We can also apply a service policy by setting such a capacity differ-
ently in order to avoid overcrowding.

Both the precedence constraint and the demand consistency are relevant, because every passenger has a specific origin
and destination. Precedence constraints avoid passengers getting off before they get on any bus. With regard to the demand,
it is assumed that there are no transfer nodes, and therefore, once a passenger is on board a bus, he (she) will alight from the
same bus at his (her) destination stop. Also, once a passenger arrives at their destination, he (she) will always get off the bus
there (passengers want to minimize their travel time, so we assume that passengers do not stay on buses in loops).

Regarding bus operation, if the model determines a holding action at a certain stop, which is not physically appropriated
for such an operation, then the bus just stops during a lapse required for a normal passenger transfer operation.

Each bus is identified by a unique internal label. However, the model allows the indices to be updated when a bus arrives
at its next stop, sorted in such a way that bus i — 1 always precedes bus i. One important issue is that overtaking is allowed in
the model as the indices associated with buses (i and i — 1 for two consecutive buses) are set each time an event occurs and a
control action is applied; in such cases the indices are properly updated and sorted.

With regard to the implementation of the HPC methodology, one difficulty inherent to the approach is in theory the
amount of information required to test the potential future scenarios in the prediction process.



108 J.C. Mufioz et al./ Transportation Research Part C 28 (2013) 101-113

If the objective is to evaluate the approach on a realistic transit system, with many buses and bus stops, the chance that a
near future event will happen close to a specific stop is low (for example, the one where the current event occurs); therefore,
if we predict to n steps ahead, the future events really affected by the current decision will be very few, reducing the pre-
dictive power of the approach. The premise is that the events analyzed in the future will most likely be distributed all along
the system which prevents us from focusing our analysis to the real impact of the current decision at the given stop. This
problem could be avoided by increasing the future steps n considerably to make sure that enough events that are really af-
fected by our decision are included; however this approach is not computationally feasible for real implementations.

To avoid the previous problem, we implemented a local analysis of the impact of the control actions to be compared,
avoiding a detailed picture of actions that will occur far from the current decisions to be made. Thus, the controller must
only predict the events that happen in a vicinity of bus stops around the one where the current event occurs. As a conse-
quence, we dissociate a future step for the controller from a future step in the simulator. Then, between the occurrences
of two events within the vicinity, many more events occur outside its limits, which are not really significant in the selection
of the best action to be applied. The conditions of the buses in the future outside the vicinity are approximated to average
values, mainly to avoid losing track of the position of the buses in the future due to this approximation.

5. Experiments

The proposed models are now applied, to a simulated transit corridor of 10 km of length, with 30 bus stops evenly spaced,
where the terminal is denoted by stops 1 and 31. Vehicle operating speed between stops for all of the buses is assumed to be
26 km/h, while boarding and alighting time per passenger is set at 2.5 and 1.5 s respectively. All passenger arrivals are gov-
erned by Poisson processes.

5.1. Scenarios

In order to evaluate and compare the proposed model under different operational conditions, two different load bus pro-
files are tested: (i) bus loads are concentrated in the center of the corridor; (ii) bus loads are concentrated at the end of the
corridor. On both scenarios, we also distinguish scenarios where: (i) bus capacities are reached; (ii) bus capacities are never
reached; and (iii) scenarios with high frequency services, i.e. short headways; and (iv) scenarios with medium frequency ser-
vices. Therefore, we considered eight scenarios as shown in Table 1.

5.2. Simulated control strategies

The objective function of the modeled scenarios is solved using three different control strategies. The first (without control,
WC) is a benchmark for purposes of comparison; the second is the deterministic control strategy, DC, proposed in Delgado
et al. (2012) with only holding in which high weights on the penalty for passengers left behind are implemented if there is
available capacity so that boarding limits are never implemented, see Eq. (1); and the last one HPC proposed in Saez et al.
(2012) but using just holding strategy. In all scenarios, all the components of travel times involved in objective functions (1)
and (32) are weighted equally; i.e. 01 = 0, = 03 = 1. The DC strategy was coded in AMPL and solved using MINOS, while the
HPC strategy was coded in Matlab with optimization toolbox.

Summarizing, we compare the three following control strategies:

e WC, Without control. That is the spontaneous evolution of the system, where buses are dispatched from the terminal at a
designed headway, without taking any control action along the route, therefore some holding is expected to occur at ter-
minal in which few passengers are affected.

e DC, Deterministic control strategy.

e HPC, Hybrid predictive control with 3 discrete holding values.

Table 1

Simulation scenarios.
Scenario Capacity of buses reach Design headway Scenario load Scenario characteristics
1 Yes Short Center Headway = 140s; Bus capacity = 100 passenger
2 No Short Center Headway = 120s; Bus capacity = 100 passenger
3 Yes Medium Center Headway = 290s; Bus capacity = 150 passenger
4 No Medium Center Headway = 250s; Bus capacity = 150 passenger
5 Yes Short End Headway = 140s; Bus capacity = 100 passenger
6 No Short End Headway = 120s; Bus capacity = 100 passenger
7 Yes Medium End Headway = 290s; Bus capacity = 150 passenger
8 No Medium End Headway = 250s; Bus capacity = 150 passenger
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Table 2
Results for eight scenarios.
wcC DC Benefit % HPC Benefit %
Scenario 1. Capacity reached - Centered load - Headway = 140 s - Cap = 100 pax/bus
Wrst 0.65 0.15 76.75 0.24 62.81
(Std) (0.06) (0.05) (0.05)
Wextra 0.09 0.02 80.66 0.06 33.33
(Std) (0.04) (0.02) (0.03)
Wiotal 0.74 0.17 77.22 030 59.24
(Std) (0.07) (0.07) (0.07)
Reotal 10.01 9.62 3.96 9.70 3.10
(Std) (0.17) (0.16) (0.15)
Scenario 2. No Capacity reached - Centered load - Headway = 120 s - Cap = 100 pax/bus
Wiirst 0.31 0.07 78.69 0.13 57.28
(Std) (0.04) (0.02) (0.02)
Wextra 0.00 0.00 - 0.00 -
(Std) (0.00) (0.00) (0.00)
Wiotal 0.31 0.07 78.69 0.13 57.28
(Std) (0.04) (0.02) (0.02)
Reotal 8.73 8.62 1.24 8.85 ~1.40
(Std) (0.10) (0.10) (0.91)
Scenario 3. Capacity reached - Centered load - Headway = 290 s - Cap = 150 pax/bus
Wirse 0.90 0.12 86.26 0.67 25.86
(Std) (0.40) (0.09) (0.33)
Wextra 0.11 0.00 96.96 0.14 —27.60
(Std) (0.14) (0.00) (0.12)
Wiotal 1.01 0.13 87.42 0.81 20.04
(Std) (0.54) (0.09) (0.45)
Reotal 10.88 10.27 5.60 11.17 -2.70
(Std) (0.61) (0.23) (0.58)
Scenario 4. No Capacity reached - Centered load - Headway = 250 s - Cap = 150 pax/bus
Wirse 0.41 0.05 86.92 0.10 75.92
(Std) (0.29) (0.04) (0.13)
Woxtra 0.00 0.00 - 0.00 -
(Std) (0.00) (0.00) (0.00)
Wiotal 0.41 0.05 86.92 0.10 75.92
(Std) (0.29) (0.04) (0.08)
Reotal 921 9.02 2.04 9.00 228
(Std) (0.36) (0.17) (0.15)
Scenario 5. Capacity reached - Ended load - Headway = 140 s - Cap = 100 pax/bus
Wipse 0.58 0.11 80.77 0.14 75.93
(Std) (0.06) (0.03) (0.07)
Wextra 0.11 0.01 86.67 0.04 63.64
(Std) (0.05) (0.01) (0.02)
Wiotal 0.69 0.13 81.71 0.18 73.97
(Std) (0.09) (0.04) (0.03)
Reotat 10.48 9.96 498 10.13 3.34
(Std) (0.20) (0.18) (0.09)
Scenario 6. No Capacity reached - Ended load - Headway = 120s - Cap = 100 pax/bus
Wiprse 0.37 0.08 77.11 0.08 78.43
(Std) (0.06) (0.07) (0.05)
Wortra 0.00 0.00 - 0.00 -
(Std) (0.00) (0.00) (0.00)
Wiotal 0.37 0.08 77.11 0.08 78.43
(Std) (0.06) (0.07) (0.04)
Reotal 9.41 921 212 9.14 2.87
(Std) (0.16) (0.14) (0.12)
Scenario 7. Capacity reached - Ended load - Headway = 290 s - Cap = 150 pax/bus
Wirse 0.55 0.06 88.46 0.16 71.50
(Std) (0.26) (0.06) (0.01)
Wexira 0.18 0.02 89.64 0.11 38.89
(Std) (0.14) (0.02) (0.08)
Wiotal 0.73 0.08 88.75 0.27 63.41
(Std) (0.39) (0.09) (0.17)
Reotat 11.48 11.06 3.66 11.31 1.48
(Std) (0.43) (0.26) (0.29)

(continued on next page)
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Table 2 (continued)

wWC DC Benefit % HPC Benefit %
Scenario 8. No Capacity reached - Ended load - Headway = 250 s - Cap = 150 pax/bus
Werse 043 0.04 90.78 0.12 72.59
(Std) (0.20) (0.04) (0.15)
Wextra 0.00 0.00 - 0.00 -
(Std) (0.00) (0.00) (0.00)
Weotal 043 0.04 90.78 0.12 72.59
(Std) (0.20) (0.04) (0.09)
Reotal 10.11 9.73 3.70 9.81 2.97
(Std) (0.30) (0.16) (0.21)

Distance (Km)
Distance (Km)

Time (minutes) Time (minutes)

(a) WC (b) HPC

100 120
Fig. 2. Trajectories of buses for the different strategies: (a) WC; (b) HPC; (c) DC.

% ‘ \:

100 120
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(9]
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(c) DC

5.3. Simulation results

For every combination of strategies and scenarios, simulations were carried for 30 replication runs, each of them repre-
senting 2 h of bus operations. The system was simulated, using and adaptation of the simulator developed by Cortés et al.
(2010), using common random numbers and the same initial conditions, corresponding to buses without passengers aboard
and evenly spaced along the corridor. A warm-up period of 15 min is considered for all scenarios, before any control strategy
is applied.
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For each simulation run, the following measures of performance were examined:

Whrse  waiting time experienced by passengers at stops as they wait for the first bus to arrive, prorated by all
passenger. Since there is a minimum waiting time for a given frequency which is unavoidable (i.e. half of the
average headway), Table 2 only presents the difference between the total waiting time until the arrival of the
first bus and this lower bound.

Wexra €Xtra waiting time of passengers that cannot board the first bus, prorated by all passenger.

Wtoml Wﬁrst Plus Wextra-

Riotat Wiotar Plus the individual travel time experienced by passenger on the bus (including holding).

6. Analysis of results and conclusions

From the analysis of the previous results shown in Table 2, we can obtain some conclusions with regard to the conditions under
which one methodology can perform better than the other and vice versa. We can also devise a combined method over long periods
in cases where the conditions change over time and therefore could utilize the benefits of either one or the other approach depend-
ing on the better option at each time. From Table 2, the following considerations and conclusions seem to be relevant:

- In all cases, independently of the scenario to be modeled and the method to be used, we observe a significant reduction in
the following indicators: W, Wioa. For the DC approach we also see a significant reduction of Weyrq and Ryoq for all
scenarios. For the HPC approach, Weyq and Ryoq; improves in all scenarios with the exception of scenario 3 for the former
and scenarios 2 and 3 for the latter. This shows the benefits of using control in operational decisions of real transit
systems.

120 120
100 100
80 4 80 i

5 5
S S
3 3
g g
- -

Stop
(b) HPC
120
100 |
80 4
<
©
e
o
©
o
-

Stop
(c)DC

Fig. 3. Bus load at different stops for the different strategies: (a) WC; (b) HPC; (c) DC.
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In order to understand why HPC performs worse than DC in most cases, and for some exceptional scenarios HPC appar-
ently seems to be worse than the WC strategy in some indicators, Fig. 2, shows the bus trajectories for scenario 2 for these
three strategies for a typical simulation run. While in the WC strategy buses tend to bunch up, increasing the waiting time for
passengers, the application of any of the proposed approaches improves headway regularity. If we compare the HPC with the
DC strategy we can observe that the former achieve a better headway regularity between buses than the latter, which is rea-
sonable as keeping regular headways is one of the objectives of HPC strategy. However, to increase regularity, too much
holding needs to be applied which explained the increase in travel time for passengers inside the bus. In any case, we should
recognize that users perceive in-vehicle travel time as significantly less relevant than waiting time. Thus, even though in this
scenario WC yielded a lower Ryar than HPC, the HPC trajectories are much more appealing than WC's.

The better headway regularity achieved by the two proposed strategy is also reflected in bus loads showing more uniform
patterns, compared with the WC situation, as shown in Fig. 3.

- Moreover, in all these cases the reduction in standard deviation of the indicators is even more noticeable. This is espe-
cially relevant since the focus in regularity is aimed at reducing the fraction of passengers experiencing long waiting
times.

- By comparing the two approaches (DC and HPC), we can see that HPC results in a better performance in terms of total
waiting time (holding included) in scenarios 4, and 6, while DC performs better under scenarios 1, 2, 3, 5, 7 and 8. This
conclusion shows that DC is convenient in cases where bus capacity could be reached frequently along the route while
HPC takes advantage of situations where this does not happen, with the exception of scenario 2 explained above. We
see two possible explanations for this.

- DC has a longer prediction horizon of future operational conditions than HPC; however, in DC the prediction is determin-
istic. This longer prediction horizon allows for preventive actions avoiding vehicles from reaching capacity downstream in
the corridor to be taken. On the other hand, HPC works with considerably less steps ahead, but with more precision than
DC and incorporates a term that looks for regular bus intervals (third term in expression (32)). These two elements appear
to allow HPC to achieve better results when bus capacity is never reached. However, this last term in the objective func-
tion could also negatively affect its performance when capacity is reached, since in these cases regular headways may not
be the best control strategy. The results also seem to show that the DC’s explicit treatment of capacity constraints in the
rolling horizon optimization model pays off in scenarios when these constraints are binding.
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