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Abstract—Dynamic thermal rating (DTR) has been seen as an
important tool for planning and operation of power systems, and
recently, for smart-grid applications. To implement an effective
DTR system, it is necessary to install monitoring stations along
the studied lines, with a tradeoff between accurate estimations
and equipment investments. In this paper, a novel heuristic is
developed for identifying the number and locations of critical
monitoring spans for the implementation of DTR. The heuristic
is based on the use of historical-simulated weather data, obtained
from a Mesoscale Weather Model, and the statistical analysis of
the thermal capacities computed in each span along the line. The
heuristic is applied to a line that is 325 km long in North Chile.
Optimal monitoring sets, including the number and location
of required monitoring stations, are determined for different
confidence levels in all line segments. The results are compared
to an equidistant monitoring strategy. The proposed heuristic
shows robustness since it outperforms the equidistant monitoring
strategy in all of the analyzed cases, especially for the longer line
segments, which are subject to more complex weather patterns.

Index Terms—Critical spans and hot-spot identification,
dynamic thermal rating (DTR), smart grids, weather model
applications in power systems.

I. INTRODUCTION

S INCE THE first developments of real-time thermal rating
systems for overhead transmission lines [1], dynamic

thermal rating (DTR) has been seen as an important driver to
improve the planning and operation of power systems. Today,
DTR is also considered to be a fundamental tool in smart-grid
applications [2].

The transmission capacity in overhead lines is typically lim-
ited by the conductor temperature effect in the sag clearance [3],
which varies in time and along the line spans. This variability
is mainly due to weather condition fluctuations [4], which are
time and space dependent.
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Considering that weather conditions are not always possible
to measure or to estimate, thermal line ratings have been
traditionally computed using conservative assumptions. These
ratings are then used by the Independent System Operator in
the dispatch process independent of the actual meteorological
conditions [5].

Usually, the use of these conservative assumptions may un-
derestimate the line capacity and, in some cases, it may overes-
timate it, depending on the real characteristics and variability of
the weather patterns to which the line is exposed [6].

During the last two decades, several methods and technolo-
gies have emerged, which enable real-time measurements of
weather conditions and line operating parameters [7], making
the use of DTR in the system operation and economic dispatch
feasible, including online rating estimations and transmission
capacity predictions [8]–[12].

Developments in DTR have also been used to reduce inter-
vention in generation schedules [13], improve the utilization of
remote generation facilities that may provide power at lower
costs [14], enhance power system reliability, and support wind
power integration [13], [15].

The theoretical determination of the line DTR requires ob-
taining the minimal value of the actual thermal capacities in
all of the spans within the line [16]. However, monitoring the
values for each span could be very expensive, impractical, or
even impossible.

To implement a DTR system in an overhead line requires, at
least, defining a monitoring strategy. It is critical to decide what
to monitor, and the number of monitor stations and their loca-
tions, due to the existing trade off between accurate estimations
and equipment investments, especially for long lines exposed to
variable weather conditions.

There are several international examples of DTR applica-
tions. Some of them, for which the number of monitoring sta-
tions used is reported, are listed in Table I. However, in these
reports there is not much information about the criteria used to
determine the number of stations, nor the methodology applied
to select their locations.

On the other hand, there are some studies which describe
allocation strategies for monitoring stations. Black et al. [23]
detailed the successful installation of DTR equipment by the
Northern Ireland Electricity Company, which included mea-
surement points located in low wind/sheltered areas that may
experience the least cooling. In [24], monitor stations were
located based on the manufacturer’s engineering judgment
and upon span orientation and wind sheltering. Pytlak and
Musilek [25] indirectly consider the identification of hot spots,
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TABLE I
EXAMPLES OF INTERNATIONAL EXPERIENCES DEPLOYING DTR SYSTEMS

which may be considered as possible locations for monitoring
stations, based on weather model data analysis.

In this paper, a novel heuristic is presented for developing a
monitoring strategy, including the definition of the number and
location of the monitoring stations.

The proposed heuristic allows determining an optimal
number and location of the monitoring stations, subject to the
requirement of estimating the line thermal capacity with a given
confidence value. These aspects comprise the main contribution
of the proposed approach.

The heuristic is based on the use of weather model data. The
main objective of the proposed heuristic is to determine an ad-
equate number of monitoring stations required to estimate the
DTR with a given confidence level, and to identify the corre-
sponding monitoring station locations.

As a case study, the method was applied to a line 325 km
long in North Chile, and compared to an equidistant monitoring
strategy.

The results show the influence of the geographic and weather
conditions in the DTR implementation, where coastal lines with
high and uniform ventilation required a lower number of mon-
itoring stations than inland lines with more variable weather
patterns. Furthermore, the proposed heuristic shows robustness
since it outperforms the equidistant monitoring strategy in all
of the analyzed cases, especially for the longer line segments,
which are also subject to more complex weather patterns.

II. PROPOSED HEURISTIC

The heuristic for determining an optimal number of and lo-
cations for the monitoring stations for a given confidence value
is based on analysis of the thermal capacity that would be ob-
served along the line over a relevant time period.

In this paper, historical series of the thermal capacities
for each span within the line were computed from simulated
weather conditions obtained from pre-existing weather model
databases.

In this way, if the weather model data reproduces the dynamic
of the weather conditions to which the line is exposed, it could
be expected that the dynamic of the thermal capacities of the
spans would also be properly characterized and represented.

In Sections III and IV, the weather model used, the dynamic
thermal capacity determination, and the critical spans identifi-
cation mechanism are presented. This comprises the proposed
heuristic that determines the monitoring strategy, including the
number and location of monitoring stations.

A. Weather Model

In coastal Central Chile, near-surface atmospheric circula-
tions are strongly influenced by the local topography and the
land-sea interface. This leads to spatiotemporal wind and tem-
perature patterns that exhibit pronounced daily and seasonal cy-
cles, and abrupt spatial decorrelation in transition regions (e.g.,
from coast to inland, or from high to low topography). Op-
erational weather monitoring networks are widely spaced and
cannot adequately capture this regional variability. Thus, the use
of a global weather model is necessary to obtain realistic estima-
tions of weather conditions along the power-line path analyzed.

In this study, the weather model conditions were generated
with the Weather Research and Forecasting (WRF) [26], [27]
mesoscale atmospheric model. WRF is a next-generation,
limited area, nonhydrostatic modeling system, with terrain fol-
lowing eta-coordinate mesoscale designed to serve operational
forecasting and atmospheric research needs.

The WRF provides a complete representation of the atmos-
phere in the sense that practically all key atmospheric processes
that influence the weather are included in the model equations,
as terms in the dynamic core of the model in its many physical
parameterization schemes.

For the power line analyzed, in particular, the simulated his-
toric weather conditions were computed from WRF pre-existing
databases, which were generated to compose a wind energy atlas
for central and Northern Chile [28]. This WRF database consists
of simulations at 1-km resolution and 10-m vertical resolution.

The simulation period includes four separate months (Jan-
uary, April, July, and October) of a single year (2010). The
months were chosen in order to obtain some degree of repre-
sentation of the seasonal cycles.

For thermal capacity estimation, the relevant variables were
saved at hourly intervals, including horizontal wind velocity
vector components, ambient temperature, and solar radiation.
These data were interpolated linearly to the midpoint of each
span in the line. Wind velocity and temperature data were also
interpolated vertically to a height of 16 m, which was the av-
erage height of the line conductor.

Among the meteorological variables that influence thermal
capacity, wind speed has the greatest influence [12], [29]. Fig. 1
shows the map of average wind speeds in the study area.

The complexity of the simulated wind field is readily evident,
and is characterized by strong winds along the coastal zone and
a sharp decrease inland. As shown in Fig. 1, wind speeds gen-
erally remain strong day and night in the coastal region. In con-
trast, inland sites exhibit a clear afternoon maximum (related to
strong surface heating during the day), but drop off considerably
at other times.

For validation, the model data were compared with the sta-
tions that are part of local networks for air quality, agricultural,



1004 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 27, NO. 2, APRIL 2012

Fig. 1. Average wind speeds computed from the WRF model data.

Fig. 2. Observed and modeled mean wind speeds at monitoring stations.

or wind energy monitoring. None of the stations are actually lo-
cated along the transmission lines under study, but they are all
fairly close 20 km) and can be considered to be representa-
tive of model performance.

While there are no simultaneous meteorological observations
available for the simulation time period, it is still possible to
compare climatological statistics, such as mean wind speed and
daily cycles. Fig. 2 shows a scatter plot of observed versus sim-
ulated mean wind speed. In the graph, the model values are av-
erages of all hourly data over the four-month simulation period.
Observed data are averaged over the period of data availability.

A strong correlation (0.88) can be seen between the data and
the model. It is clearly possible to distinguish between areas of
relatively high and low winds.

The differences between the observed wind speeds and the
WRF’s (which are considerable in a few cases) are likely due
to the differences in the time periods examined, model biases,
or problems in the observational data. It should be pointed out
that many sites measure winds very close to the surface (10 m,
or less in some cases), and these measurements may be affected

by local site characteristics (vegetation, obstacles) that cannot
be represented by the WRF model.

As can be seen in Fig. 1, the WRF simulations correctly cap-
ture the daily cycles at coastal and inland sites. Wind direc-
tion and temperature measures were also available at some sites.
While the presentation of a detailed comparison of these vari-
ables is beyond the scope of this study, results indicate that the
WRF model does well in predicting mean values and diurnal
cycles of these variables also. Solar radiation observations were
not available for comparison, but the influence of this variable
on the thermal capacity variability is small [29].

B. Dynamic Thermal Capacity Determination

To capture the temporal and spatial variability of the weather
conditions, the thermal capacity value is computed individually
for each span of the line.

The thermal capacity is obtained from the thermodynamic
heat balance of ohmic and solar heating against convective and
radiative heat losses [7] using the steady-state thermal rating
formula of the IEEE Standard 738-2006 [30]

(1)

where
• is the steady-state thermal rating formula

from the IEEE738 Standard;
• is the representative wind speed in span , including

magnitude and direction, at instant ;
• is the representative ambient temperature in span at

instant ;
• is the representative solar radiation in span at instant

;
• is the set of the conductor and other nontemporal param-

eters in span .
One of the relevant nontemporal parameters for the spans is

the maximum temperature allowed . In this study, corre-
sponds to the design temperature of the line. For this parameter,
it is ensured that the minimum clearance according to local stan-
dards is satisfied in each span.

The thermal capacity for each span was computed hourly for
the four months when the weather conditions were simulated.
This is performed assuming that the weather variable values are
representative of the given hour, and that the thermal steady state
in the conductor has been reached. This is consistent with the
expected transient times reported in [7] and [30].

Once the thermal capacity is computed for each span, the line
dynamic thermal rating is calculated as the minimum value
observed through all spans. This means

(2)

where is the set of all span indices in the line.

C. Critical Spans Identification

As is shown in (2), to obtain the line DTR, the thermal capac-
ities should be simultaneously calculated for all spans. On the
other hand, to determine the line dynamic thermal rating with a
given confidence level, it is only necessary to calculate a subset
of thermal capacities for some critical spans.
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Fig. 3. Heuristic flow diagram.

In this study, the term “critical span” refers to the one that
contributes relevant information for determining the global min-
imum and, therefore, a critical span is a good candidate for in-
stalling monitoring equipment capable of estimating the line
DTR.

To determine these critical spans, an optimization problem
can be formulated to select the minimal subset of spans that
estimate the line DTR subject to a given confidence level. This
formulation, however, requires solving an integer selection
problem with nonpolynomial (NP) complexity in terms of the
total and chosen number of spans, which may be impractical to
solve.

To obtain a feasible and optimal solution in reasonable com-
putational time, a heuristic is proposed, especially for long lines.
As expected, there is no way to ensure that the optimal subset
obtained from the heuristic is the global optimal for the original
NP problem.

The applied criteria ensure that if the monitored span set is
built by adding one chosen span at a time, the selected span
maximizes the confidence level of the new monitored span set.

The iterative procedure of the heuristic is shown in Fig. 3. It
starts computing the thermal capacity of each span and for the
whole line, after which the first critical span is selected as the
one which estimates the line DTR in the best way. From there,
the set of critical spans is built by adding one span at a time,
ensuring that the quality of the estimation of the line DTR is
improved.

In this study, the quality of the estimation of the thermal ca-
pacity is measured using Pearson’s correlation coefficient [31],
which also provides the confidence level value of the estimation.
Then, and according to Fig. 3, the first span to be selected is the
one for which the correlation between its thermal capacity
and the line thermal capacity is maximized

(3)

where is the optimal index for the first span selected as the
measuring point.

For short and very homogeneous lines, a single measuring
point could be sufficient to estimate the line DTR, if the cor-
relation value in (3) is reasonably close to 1. Nevertheless, in

general, to reach an acceptable correlation value, the estimation
of the line DTR may require more than one measuring point.

If more than one span is monitored, then the estimated value
of the line thermal capacity at a given time is computed as the
minimum of all the values observed, i.e.,

(4)

where is the set of indices of the monitored spans, which is
a subset of , and is the estimated line thermal capacity
value.

As before, the correlation between and quantifies
how well the measuring set can estimate the line thermal
capacity. At the limit, when both sets and are identical,

and are identical functions, and the correlation value is
1. Formally

(5)

The selection of an optimal monitoring set should
maximize the correlation value in (5), for a given maximum
cardinality

(6)

where represents the cardinality of the set (i.e., the
number of elements on it). Or, inversely, for a desired corre-
lation value, the cardinality of the monitoring set should be
minimized

(7)

Solving (7) directly is an integer selection problem,
where is the total number of spans in the line, and is the
cardinality of the monitoring set.

Following the idea of the proposed heuristic, it is assumed
that there is an optimal monitoring set , with cardinality ,
and it would be desirable to add a new monitoring span, with
index , forming in this way a new monitoring set .

Formally, the new monitoring set is defined as the union of
the previous set and a new monitoring span with index

(8)

Hence, there are possible new sets , including
all of the spans that are not part of the set. Using a similar
criterion to the one applied to select the first critical span in
(3), the optimal selection of the next critical span should
maximize the correlation between the line thermal capacity and
the estimation of the next monitoring set

(9)

where is the optimal index of the next critical span and

(10)

is the next monitoring set.
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Fig. 4. Single-line diagram for the analyzed Nogales–Pan de Azúcar line, which interconnects the North and South SIC systems.

In short, the incremental heuristic proposed here selects new
monitoring spans by maximizing the correlation of the resulting
estimated thermal capacity from the expanded monitoring set
and the line thermal capacity, starting with the selection of the
first span as in (3) and following the process as in (9). This
means that instead of solving the original integer se-
lection problem, problems of order need to be solved.

Since it is desirable to use the minimal number of monitoring
spans, the process will be stopped when the correlation value
between the estimated value from the monitoring set
and the thermal capacity computed for the line reaches the
desired confidence value.

III. CASE STUDY

The line “Nogales–Pan de Azúcar” (NPDA) included in this
study is located in North Central Chile, and is part of the Chilean
Interconnected Power System (SIC). It is 325 km long. Four
wind farms are connected (Canela I, Canela II, Totoral, and
Monte Redondo) to busbars Limarí 220 kV and Las Palmas 220
kV, with a total installed capacity of 164 MW, and with expected
expansions in the near future of up to 300 MW.

Fig. 4 shows the simplified unilineal diagram for the NPDA
line. As can be observed, two segments of the line are located
inland (near busbar Pan de Azúcar 220 kV and Nogales 220
kV), and the main part of the line is located near the coast, which
causes the analysis of the entire line to be done in four distinctive
transmission segments.

In all four transmission segments, the heuristic for identifying
the critical spans, described in the previous section, was applied.

For comparison, an equidistant monitoring placement
strategy was also applied to the NPDA line. This strategy is in-
cluded as a simple benchmark in this paper since in the absence
of any other criteria, equidistant monitoring placement is, in
general and in many fields, the selected approach to follow.
This could be the case, for example, when the information about
the line weather conditions, where DLR would be applied, is
simply not available or is inadequate.

A. Equidistant Monitoring Placement Strategy

When the equidistant placement strategy is applied, for a
given number of monitoring spans, a monitoring set is built
choosing span indices equally spaced by .

Fig. 5 shows the correlation values between thermal capacity
of different segments and the estimated capacity from the
monitoring sets, as a function of the number of monitoring sta-
tions corresponding to the cardinality of the monitoring sets .

Fig. 5. Thermal capacity correlations for equidistant placement strategy.

As observed from Fig. 5, the correlation values reached with a
given number of monitoring spans for the shorter coastal seg-
ments (Los Vilos–Las Palmas 220 kV and Las Palmas–Limarí
220 kV) are much higher than for the longer inland ones (No-
gales–Los Vilos 220 kV and Limarí–Pan de Azúcar 220 kV).

As shown in Fig. 5, inland lines exhibit nonmonotonic be-
havior. Increasing the number of monitoring spans does not al-
ways increase the correlation value of the resulting monitoring
set. Thus, a small number of monitoring stations may estimate
the line thermal capacity better than a monitoring set with larger
cardinality.

This effect is more exacerbated when a reduced number of
monitoring stations is available. This reveals the importance of
choosing the correct monitoring locations, for a better estima-
tion of hot-spots within the line.

The nonmonotonic behavior can be explained by the fact that
by increasing the cardinality of the monitoring set, from to

, the resulting monitoring set will be different from
the previous monitoring set. And if in the set there were
some critical or hot-spot locations, the next set , by using
a different separation between spans, may miss them.

When the cardinality of the monitoring set gets large enough,
the nonmonotonic effects tend to disappear, and there is a small
gain in the correlation values obtained for the larger monitoring
sets.

The effectiveness of the equidistant strategy may be accept-
able for short lines with uniform weather patterns, such as the
coastal lines. But for long lines with more variable weather con-
ditions, such as those inland, the equidistant location strategy
may be impractical or at least very expensive to implement.
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TABLE II
EQUIDISTANT MONITORING STATIONS NEEDED FOR DIFFERENT �

Fig. 6. Thermal capacity correlations for the critical span monitoring strategy.

Table II describes the total number of monitoring stations
needed for a given confidence level in each segment (Stations
column) and indicates the ratio between the monitored spans
and total spans (Ratio column). In fact, as presented in Table II,
to reach a reasonable confidence value of 0.9 in the two coastal
segments (Los Vilos–Las Palmas 220 kV and Las Palmas–Li-
marí 220 kV) 12 and 3 monitor stations are needed, respectively.
In contrast, for the two inland segments (Nogales–Los Vilos 220
kV and Limarí–Pan de Azúcar 220 kV), to reach the same confi-
dence levels, up to 68 and 141 monitors are needed, respectively.
For a confidence level of 0.95, the difference in the cardinality
of the monitoring sets is even greater.

B. Critical Span Monitoring Strategy

Fig. 6 shows the correlation between the thermal capacity
of each segment and the capacity estimated by the proposed
heuristic in Section II, as a function of the number of moni-
toring stations located following the heuristic. The monotonic
behavior for the four segments can be observed. Thus, the mon-
itoring set estimation confidence improves as the number of
monitoring sets are constructed and the number of spans in them
is increased. This effect is more pronounced in the inland seg-
ments, which, as previously described, are longer and subject to
more variable weather patterns then the coastal ones.

Table III describes the total number of monitoring stations
needed for a given confidence level and indicates the ratio be-
tween the monitored spans and the total spans. As shown, the
number of critical spans is larger for the longer segments (Li-
marí–Pan de Azúcar 220 kV and Nogales–Los Vilos 220 kV).
In this case, inland segments are the most complex parts of the
line to monitor given the more variable weather conditions. Con-
trarily, due to the short length of the coastal segments, coupled

TABLE III
CRITICAL MONITORING STATIONS NEEDED FOR DIFFERENT �

with stable weather conditions in the region, it is possible to
determine thermal capacity with the same confidence level by
using a smaller number of monitoring stations.

In addition to the number of critical spans, the proposed
heuristic also determines their locations. For example, in the
case of the shorter line, Los Vilos–Las Palmas 220 kV, for a
confidence level of 0.9 (see Table III), the six critical spans that
were identified correspond to spans 10, 21, 29, 63, 127, and
193. In the case of the segment Las Palmas–Limarí- 220 kV,
to reach the same confidence level, the two monitoring stations
are strategically located at spans 8 and 54.

C. Discussion

When the equidistant monitoring strategy results are com-
pared to those of the proposed heuristic, the most notable dif-
ference is their marked nonmonotonic and monotonic behavior,
especially for the inland segments, as shown in Figs. 5 and 6.

As mentioned before, the nonmonotonic behavior observed
for the equidistant monitoring strategy can be explained by the
fact that between consecutive monitoring sets and ,
there are no common spans. On the other hand, for the proposed
heuristic, the monotonic behavior is ensured by construction,
since the monitoring sets are built by adding one new span at
a time, and preserving all of the previous ones. In this case,
increasing the cardinality always increases the information in
the set, and the quality of the line thermal capacity estimation.

By comparing Tables II and III, it is also clear that for the
given correlation values, the proposed heuristic always requires
fewer monitoring stations, especially for the inland segments.
For example, in the extreme case of the Limarí–Pan de Azúcar
220-kV segment, to reach a 0.95 confidence level, the equidis-
tant monitoring strategy requires 274 instrument spans while
with the proposed heuristic, only 66 monitoring stations are
needed.

This dramatic reduction is due to the proper identification of
the critical spans and the corresponding location of the moni-
toring stations.

The proposed heuristic also shows better performance since,
as can be seen in Fig. 6, it has faster convergence to the asymp-
totic value of 1.

IV. CONCLUSION

A novel heuristic was developed to identify an optimal mon-
itoring span set for dynamic line rating, including both, an op-
timal number, and optimal locations of the critical spans, which
are required to instrument and monitor.
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The heuristic is based on the use of historical simulated data
obtained from a Mesoscale Weather Model, iteratively identi-
fying the critical spans required to estimate the line thermal ca-
pacity with a given confidence level. The iterative nature of the
heuristic enables progressive implementation and verification of
the monitoring strategy.

The complexity of the heuristic presented is , where
is the total number of spans in the line and is the number

of selected monitored spans. This makes the heuristic feasible
and practical to use even for long lines, and contrasts with the
original integer selection problem complexity of .

The heuristic was applied to the four segments of the No-
gales–Pan de Azúcar transmission line in Chile (with a total of
851 spans and 325 km long), and showed robustness since it out-
performed the equidistant monitoring strategy in all cases ana-
lyzed, especially for the longer line segments, which are subject
to more variable weather patterns.

The heuristic shows desired monotonic behavior in terms
of the number of monitoring spans and the confidence level
reached in the estimation of the line thermal capacity. This
means that the quality of the line thermal rating estimation
always increased as the number of monitoring spans increased.

On the other hand, in some cases, and especially for long
lines, the equidistant monitoring strategy may lead to a con-
tradictory situation, where by considering more monitoring
stations, the quality of the line thermal capacity estimation
worsens.

The analysis of the proposed heuristic and the equidistant
monitoring strategy reveals the importance of properly defining
a monitoring strategy when designing a dynamic thermal rating
system.

This work also reveals the role and relevance of weather
models and statistical analysis of the weather patterns in the
planning, scheduling, and operation of power systems.
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