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Abstract—This work presents a novel design and development
of a fuzzy predictive supervisory controller, based on genetic algo-
rithms (GA), for gas turbines of combined cycle units. The control
design is based on an objective function that represents the eco-
nomic and regulatory performance of a gas turbine by using a
dynamic optimal set-point for the regulatory level. A fuzzy model
is considered in order to characterize the nonlinear behavior of the
gas turbine, which is used in two supervisory control systems. The
first fuzzy supervisory control design includes a fuzzy model, where
its parameters are held constant for the successive predictions. For
the second fuzzy supervisory control design, its parameters are up-
dated in each prediction and its nonlinear optimization problem is
solved using GAs. The proposed fuzzy supervisory controllers are
compared against a supervisory controller based on linear models
and a regulatory controller with constant optimal set-points. Re-
sults indicate that the fuzzy GA predictive supervisory controller
captures adequately the nonlinearities of the process, which, in
turn, provides a promising approach to improve the performance
of the combined cycle unit.

Index Terms—Fuzzy systems, gas turbines, genetic algorithms
(GA), predictive control.

I. INTRODUCTION

TRADITIONALLY, plant controller designers have devel-
oped regulatory control strategies, based on proportional-

integral-differential (PID) controllers in order to minimize costs
[1]. However, more advanced control strategies, like fuzzy con-
trol, neural control, or predictive control, could improve the
operational performance of the plants, especially under distur-
bances. As real power plants are faced with a wide range of
perturbations, one of the most common being the unexpected
environmental temperature fluctuations, the impact on the per-
formance of the plant could be significant.

Modern combined cycle units have an optimal mix of gas
and steam power production for a given output power (P ). Usu-
ally, manufacturers supply this mix under nominal operating
conditions. However, in practice, plants may deviate slightly
from these points due to external and internal disturbances. In
this work, a method for improving power plant operational ef-
ficiency, through the introduction of a fuzzy genetic algorithm
(GA) supervisory controller; without modifying the lower reg-
ulatory level; is proposed. The objective function is designed to
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represent the whole complexity of the plant, including profit, op-
erational costs, process energy consumption, and environmental
impact [1].

The supervisory controller provides the regulatory level set-
points, based on the optimization of the objective function. As a
modification of the regulatory controller usually implies higher
costs, it is a common practice in the industry to add a supervisory
level instead. This alternative also improves the regulatory level
by the dynamic set-points modification while process regulatory
settings are kept constant.

Recently, some papers have dealt with supervisory control
based on dynamic models. For example, de Prada [2] proposes
a predictive control strategy based on the optimization of an
economic index. This strategy is applied to a chemical reactor.
Katebi [3] describes a decentralized control strategy, based on
the optimization of a generalized predictive control objective
function. The corresponding objective function has only regu-
latory objectives and the control strategy is applied to a thermal
power plant simulator. Also, there are some industrial applica-
tions that give good economic results based on linear dynamic
models. For example, in [4], a dynamic matrix control (DMC)
supervisory controller is applied in a petrochemical process.

On the other hand, Bemporad [5] and Angeli [6] propose a
reference governor at the supervisory level. In that approach, the
objective function is given by the minimization of the reference
trajectory error. A different approach for a reference governor
based on a nonlinear prefilter, with the same objective function,
is proposed by Gilbert [7].

Tadeo et al. [8] propose a constrained predictive supervisory
controller dealing with the feedback loop of the PID controllers
at regulatory level. In this case, the typical model-based predic-
tive control (MBPC) objective function is considered.

Thermal power plants are nonlinear in nature; therefore, the
supervisory control design has to include nonlinear models. In
this work, we adopt fuzzy models, as these models are universal
approximates for any nonlinear system.

Sáez et al. [9] implemented a fuzzy supervisory control strat-
egy for the boiler of a combined cycle power plant, consid-
ering the fuzzy control design based on the linearized fuzzy
model. However, due to the nonlinearity of the optimization
problem, which arises from the nonlinear complete fuzzy pre-
dictive model, it becomes extremely complex to obtain a direct
solution.

On the other hand, GAs have been used successfully in non-
linear optimization problems [10]. A main advantage is that
the genetic optimization does not need the objective gradient
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Fig. 1. Combined cycle power plant with control system.

calculation, that could represent significant savings in compu-
tational effort.

There are few works about nonlinear predictive control de-
sign, based on GA. For example, Al-Duwaish [11] proposes a
nonlinear model predictive control using GAs where the pre-
dictor is based on Hammerstein and Wiener models. Fabro [12]
describes a fuzzy predictive control using GAs where the opti-
mization variables are given by the fuzzy set parameters of the
controller.

This work proposes the design and development of a new
fuzzy GA predictive supervisory control strategy for gas turbines
based on nonlinear predictions using the fuzzy model. Also, in
order to solve the nonlinear optimization problem and as a new
contribution, GAs are used as a very good tool.

The paper is organized in five sections. In Section II, the
gas turbine process with its corresponding control system is
described. Section III analyzes the proposed supervisory con-
trollers for gas turbines. Section IV explains the fuzzy supervi-
sory predictive control based on GAs. Next, in Section V, ap-
plications to a gas turbine are presented. Finally, in Section VI,
the work conclusions are presented.

II. GAS AND STEAM TURBINE MODELS OF COMBINED CYCLE

THERMAL POWER PLANTS

A. Combined Cycle Power Plant

Combined cycle power plants have high efficiencies and re-
quire comparatively lower investment costs than other technolo-
gies. These plants consist of a gas turbine, a boiler, and a steam
turbine to generate electricity [1]. The exhaust gases from the
gas turbine are used to provide the necessary heat for the boiler
steam production. Finally, this steam is fed to the steam turbine.

Although the generated power of the plant is assigned by the
economic dispatch, the generation share of each turbine can be
modified within the space of the technical constraints of the
thermodynamic process. The challenge for plant operators is to
deliver the assigned power by the central economic dispatch (P )
by satisfying the constraints and minimizing the total cost.

In Fig. 1, the traditional control configuration for a com-
bined cycle power plant is presented. In this diagram, the set-
points for the gas turbine power P r

mech−G and the steam turbine
power P r

mech−S satisfy P r
mech−G + P r

mech−S = P . Both tur-
bines have a regulatory level given by proportional-integral (PI)
controllers.

This work deals with the optimization of the economical cost
of the combined cycle power plant, i.e., minimization of gas
turbine cost as well as steam turbine cost. The mathematical

Fig. 2. Supervisory control diagram for a combined cycle power plant.

formulation of this problem is very complex, and a decoupling
of the steam and gas stages is adopted in this work. We use the
fact that the most important economical cost of the combined cy-
cle power plant is given by the production cost of the gas turbine
power, i.e., the cost of the fuel (natural gas or diesel). Thus, the
combined cycle power plant is economically optimized by us-
ing the dynamical set-point for the gas turbine power P r

mech−G.
The corresponding set-point for the steam turbine P r

mech−S is
given by the difference between the dispatched power (P from
the system operator) and the optimal dynamic set-point for the
gas turbine, i.e., P r

mech−S = P − P r
mech−G. The proposed su-

pervisory scheme is shown in Fig. 2.
In order to accommodate the resulting power in the steam

turbine (P r
mech−S), it may be necessary that additional fired

burners be available for the boiler. As these actions may impose
an additional cost given by the fuel in the steam burners, we
limit the allowed deviation by imposing the minimization of the
set-point trajectory error. Finally, from the efficiency point of
view, it is always desirable to get the maximization of the gas
turbine power production by using the least amount of fuel.

As a consequence, the objective function used in this work
is a combination of three components: 1) minimization of gas
fuel consumption, 2) minimization of the regulatory criterion
associated to the trajectory error and control action effort, and 3)
maximization of gas turbine power. For simplicity, the objectives
1) and 3) are treated together in an economic criterion. On
the other hand, objective 2) is treated as a standard regulatory
criterion. A detailed formulation of the objective function is
presented in Section III.

B. Gas Turbine

The works by Cohen et al. [13] and Shobeiri [14] present
very detailed models of the gas turbine. These are distributed
parameter models, where the gas flow dynamics is described
for different sections of the turbine. Hung [15] and Biss
et al. [16] present simpler models, using steady-state equations
derived experimentally. Undrill [17], [18] present models for
grid dynamic studies based on a set of thermodynamic curve
fits. Similarly, Agüero et al. [19] present dynamic models for
gas turbines. Pourbeik [20] describes gas turbine models for
power system studies based mainly on linear models. On the
other hand, Ordys et al. [1] describe an intermediate model for
the gas turbine that permits supervisory control strategy design.
This model includes the main dynamics of the gas turbine for a
wide range of operating conditions.

Our work considers a phenomenological gas turbine model
proposed by Ordys et al. [1], [21], which is used a base for a
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Fig. 3. Validation tests for the simulator model.

Fig. 4. Gas turbine control system.

Matlab-Simulink simulator. This simulator has been tested by
using practical and experimental verification in a 350-MW com-
bined cycle thermal power plant, named Nueva Renca, located
in Santiago, Chile. In Fig. 3, theoretical and experimental re-
sults are shown for the gas turbine. Mass flow and exhaust gas
temperature have been selected as critical variables to show the
performance of the simulator used in this paper.

From the tests in Fig. 3, the error calculated for mass flow is
in the range of 2%, whereas, for the temperature, it is less than
1%. Similar results for other variables were also verified.

C. Control System Strategy

For a gas turbine, controlled variables are exhaust gas tem-
perature (TTout), the power of the gas turbine (Pmech−G), the
frequency (ω), and the NOx concentration in the exhaust gases
(gcNOx). The manipulated variables are the air flow to the com-
pressor (wa), the fuel flow (Fd), and the steam flow injected into
the combustion chamber (wis). A detailed diagram, showing the
control for the gas turbine, is shown in Fig. 4.

This work deals mainly with the power control (the governor)
through Fd. This control system, which includes the switching
controllers [F1(u)], uses the minimum signal of PI controllers
(PI2, PI3, and PI4) in order to calculate the fuel flow control
action (Fd).

III. SUPERVISORY PREDICTIVE CONTROL DESIGN

FOR GAS TURBINES

The supervisory control level is given by a predictive con-
troller that provides the optimal dynamic set-points of the regu-
latory level (control system) of a process. The supervisory level
allows to improve the power plant efficiency without modifying
the control strategy at lower regulatory level.

Particularly, as shown in Fig. 2, the supervisory level gives
the optimal set-points for the gas turbine power (P r

mech−G) in
order to optimize an objective function. In this application, the
proposed objective function contains two terms. The first term
is related to the economical performance, in this case, the plant
profit (JCp). The second term is a regulatory criterion (JCr ),
which takes into account the set-point trajectory error and the
control action effort. The regulatory criterion ensures that the
solution is stable within technical constraints. Then, the total
objective function to be optimized at the supervisory level is
given by

Max J = JCp − ηJC r (1)

where η is a practical weighting factor.
The proposed economic objective function (JCp) is

JCp =
N∑

i=1

CpP̂mech−G(t+i−1)−
N∑

i=1

CfFd(t + i − 1) − CF

(2)
where Cf is the fuel price, Cp is the power price factor, CF

stands for fixed costs, and N is the number of intervals of the
prediction horizon (typically less than a minute).

The proposed regulatory-level objective function (JCr ) is

JCr =
N∑
j=1

(P̂mech−G(t+j)−P ∗
mech−G)2+λ

N∑
i=1

∆F 2
d (t+i−1)

(3)
where P̂mech−G(t + j) is the j-step ahead prediction for the
gas turbine power and λ is a weighting factor for the fuel-
flow deviation. The reference trajectory P ∗

mech−G for the gas
turbine power is a constant value in order to ensure that this
power will be within the space of the technical constraints of
the thermodynamic process.

In this case, the set-points gr
cNOx

and T r
Tout for the controlled

variables gcNOx and TTout, respectively, will be constant, be-
cause they do not affect the economic objective function JCp

(2).
In order to solve the optimization problem at the supervi-

sory level, the gas turbine can be modeled as a linear model
or as a nonlinear fuzzy model. The regulatory level is typically
composed of linear PI controllers.

A. Linear Model

The dynamic of the gas turbine power was identified using
the “autoregressive integrated with exogenous variable” (ARIX)
discrete models [22].

The ARIX discrete model for the gas turbine (Pmech−G [in
megawatt]), was obtained with data generated by a fuel-flow
excitation signal (Fd [in kilogram per second]) applied to a gas
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turbine simulator. The sampling time was Ts = 1 [in second].
Thus, the ARIX model is given by the following expression:

A(z−1)Pmech−G(t) = B(z−1)Fd(t) +
e(t)
∆

(4)

where e(t) is the white noise, A(z−1) = 1 + a1z
−1 + a2z

−2,
and

B(z−1) = b1z
−1 + b2z

−2.

B. Takagi and Sugeno Models

Fuzzy models have been used successfully for the identifica-
tion of nonlinear systems [23]. This paper considers the use of
the Takagi and Sugeno fuzzy models. In this case, the assump-
tions are based on fuzzy sets and the consequences are linear
models for different operating points.

The Takagi and Sugeno fuzzy model for the gas turbine power
(Pmech−G [in megawatt]) using the same data set as for linear
modeling, generated by a fuel-flow excitation signal (Fd [in
kilogram per second]) applied to a gas turbine simulator is con-
sidered. Therefore, the fuzzy model is given by the following
rules:

R1 : If Pmech−G(t − 1) is A1
1 and Pmech−G(t − 2) is A1

2

and Fd(t − 1) is A1
3 and Fd(t − 2) is A1

4

then Pmech−G(t) = γ11Pmech−G(t − 1) + γ12Pmech−G(t − 2)

+ γ13Fd(t − 1) + γ14Fd(t − 2) + γ10

(5)

R2 : If Pmech−G(t − 1) is A2
1 and Pmech−G(t − 2) is A2

2

and Fd(t − 1) is A2
3 and Fd(t − 2) is A2

4.

then Pmech−G(t) = γ21Pmech−G(t − 1) + γ22Pmech−G(t − 2)

+ γ23Fd(t − 1)+γ24Fd(t − 2)+γ20

Fig. 5 presents the corresponding membership functions for
fuzzy model inputs Pmech−G(t − 1), Pmech−G(t − 2), Fd(t −
1) and Fd(t − 2). In this work, the premise (Ar

i in Fig. 5) param-
eters for the fuzzy modeling are obtained by using fuzzy cluster-
ing, and the consequence [γri in (5)] parameters are obtained by
the Takagi and Sugeno method based on least squares [23], [24].

The output of the fuzzy model presented in (5) is

P̂mech−G(t) =

(
2∑

r=1

wr(t)γr1

)
Pmech−G(t − 1)

+

(
2∑

r=1

wr(t)γrn

)
Pmech−G(t − 2)

+

(
2∑

r=1

wr(t)γrn

)
Fd(t − 1)

+

(
2∑

r=1

wr(t)γrn

)
Fd(t − 2)+

(
2∑

r=1

wr(t)γr0

)

(6)

Fig. 5. Membership functions.

TABLE I
PREDICTION ERROR Ē

where wr(t) is the normalized activation degree for rule r.
Equation (6) may be written as

P̂mech−G(t) = d1(t)Pmech−G(t − 1) + d2(t)Pmech−G(t − 2)

+ d3(t)Fd(t − 1) + d4(t)Fd(t − 2) + d0(t)

(7)

where all di are a function of the activation degree wr(t) and
correspond to the fuzzy model factors of (6).

C. Model Analysis

For the gas turbine power, Table I presents the one-step ahead
and 10-step ahead prediction errors using the linear model, ob-
tained in Section III-A, and the fuzzy model, obtained in Sec-
tion III-B. The prediction error corresponds to the mean value
of the instant error according to

Ē =Avg [E(t)]=Avg

[
100 · P̂mech−G(t) − Pmech−G(t)

Pmech−G(t)
%

]
.

(8)

From Table I, the fuzzy model exhibits better results than the
linear model.

The control strategy proposed in this work uses the 10-step
ahead prediction. For this strategy, Table I shows that the gas
turbine fuzzy model error is less than half of the linear model
error. Thus, the Takagi and Sugeno fuzzy models are chosen to
represent the nonlinearities of the gas turbine.

D. Regulatory Level

In Fig. 4, the PI3 controller has gas turbine power (Pmech−G)
as input, which is assumed to be in ON state to avoid the need
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for switching. This assumption is based on empirical experience
from the real operation of combined cycle units.

The PI3 for fuel-flow controller, as a function of gas turbine
power, is given by

Fd(s) =
(

kp +
ki

s

)(
P r

mech−G(s) − Pmech−G(s)
)

(9)

where kp is the proportional gain and ki is the integrator gain.
The corresponding PI3 discrete model, using sampling time
Ts = 1 [in second], is(

1 − z−1
)
Fd(t) =

(
α + βz−1

) (
P r

mech−G(t) − Pmech−G(t)
)

(10)

where α = Ts ki

2 + kp and β = Ts ki

2 − kp.

E. Linear Supervisory Controller

The linear supervisory controller for gas turbines is based on
the optimization of the objective function (1) by using the linear
models (4) and the regulatory level (9).

Constraints associated to the predictions for gas turbine
power, by using the ARIX model (4), are

P̂mech−G(t + j) + (a1 − 1)P̂mech−G(t + j − 1)

+ (a2 − a1)P̂mech−G(t + j − 2) − a2P̂mech−G(t + j − 3)

− b1∆Fd(t + j − 1) − b2∆Fd(t + j − 2) = 0

for j = 1, . . . , 10 and ∆ ≡ 1 − z−1 (11)

From (10), the fuel-flow increments for the prediction horizon
(N ) satisfy the following constraints:

∆Fd(t+i − 1)−αP r
mech−G(t + i − 1)−βP r

mech−G(t + i−2)

+ αP̂mech−G(t + i − 1) + β
�

Pmech−G(t + i − 2) = 0

for i = 1, . . . , 10. (12)

Finally, the optimization problem of the linear supervisory con-
troller has a quadratic objective function (1) and linear con-
straints, given by the process model (11) and PI 3 discrete con-
troller model (12). The resulting optimization problem is solved
by using quadratic programming [25].

IV. FUZZY SUPERVISORY PREDICTIVE CONTROL

BASED ON GAS

A. Fuzzy Supervisory Controller

For the fuzzy supervisory control strategy, the same objective
function (1) and the same linear model of PI 3 controller (9) are
used. However, for the gas turbine, the fuzzy model of (7) is
used.

In order to solve this problem, two approaches are considered.
In the first case, the fuzzy model factors (7) are assumed constant
for next predictions, i.e., the fuzzy model is linearized for the
current instant. In the second alternative, the prediction of gas
turbine power is obtained by using the complete fuzzy model,

i.e., the fuzzy model factors are updated at each prediction. The
corresponding equations are as follows:

1) For the linearized fuzzy model, the fuzzy model predictions
of (7) are

P̂mech−G(t + j) − (d1(t) − 1)P̂mech−G(t + j − 1)

+ (d1(t) − d2(t))P̂mech−G(t + j − 2)

+ d2(t)P̂mech−G(t + j − 3)

− d3(t)∆Fd(t + j − 1) − d4(t)∆Fd(t + j − 2) = 0

for j = 1, . . . , 10 (13)

Note that as the activation degree wr(t) are assumed con-
stant for the prediction horizon, it follows that di(t) =
di(t + j).
The resulting optimization problem is solved again by
quadratic programming.

2) In the second alternative, predictions of gas turbine power
are established from (7) as follows:

P̂mech−G(t + j)−(d1(t + j − 1) − 1)P̂mech−G(t + j−1)

+ (d1(t + j − 2) − d2(t + j − 2))P̂mech−G(t + j − 2)

+ d2(t + j − 3)P̂mech−G(t + j − 3)

− d3(t + j − 1)∆Fd(t + j − 1)

− d4(t + j − 2)∆Fd(t + j − 2) = 0

for j = 1, . . . , 10 (14)

Note that as the activation degree wr(t) are updated at each
prediction, it follows that

di(t+j) = di(P̂mech−G(t + j−1), P̂mech−G(t + j−2),

× Fd(t + j − 1), Fd(t + j − 2))

forj = 1, . . . , 10 and i = 1, 2, 3, 4. (15)

In order to solve this nonlinear optimization problem, we
propose GAs [10].

B. Fuzzy GA Supervisory Controller

GAs are typically considered for nonlinear optimization prob-
lems [10]. The classic GAs start by encoding the proposed
solutions (or initial population) into a binary or a real string
(codification).

Convergence of the GAs depends mainly on a right formula-
tion of the fitness function The fitness function could be given
by the objective function, which is ordered by linear scaling or
ranking.

Typical recombination techniques are crossover and muta-
tion. The crossover is given by the cross (or reciprocal inter-
change of a part of the string) between two parents or individuals
from the current population. For the mutation, the individuals
interchange bits, or genes of the encoded string with a low
probability, in order to create two new offspring. The offspring
performance is evaluated in the next iteration or generation using
the fitness function.
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Once the new generation is obtained through a recombination
process, all individuals are evaluated using the fitness function.
A criterion is defined in order to select the next parent genera-
tion. The better individuals for the next generation are selected
from parents and offspring, or the parents are selected with
a defined high percentage (60–80%) of the better individuals
from parents and offspring. The remaining percentage is se-
lected from the other individuals with a probabilistic method as
roulette wheeled selection (RWS) or stochastic universal sam-
pling (SUS).

The solution of fuzzy predictive control requires a nonlinear
optimization algorithm [26]. In summary, the proposed algo-
rithm for solving the fuzzy predictive control (14)–(15) based
on GAs has two main steps:

1) Codify the vector of manipulated variables into a binary
string.

2) Apply the GA algorithm to solve the nonlinear optimiza-
tion problem.

V. SIMULATION TESTS

A. Evaluation Basis

The proposed supervisory controllers of Sections III and Sec-
tions IV are compared with a standard control strategy based on
constant optimal set-points. The corresponding set-points are
obtained from static optimization of the objective function de-
fined in (1). Then, the static set-points are

P r
mech−G = P ∗

mech−G − CpKPg − Cf

2ηKPg
(16)

where Kpg is the static gain for the gas turbine power, which,
in turn, is a function of fuel flow.

In order to produce different operating conditions, a distur-
bance in the temperature of the air-mass flow into the compres-
sor is introduced. The values for the disturbance move between
276 and 294 [in Kelvin] considering a time span of 450 s. As
we recollect from the field experience of plant operators, this is
a very common event as the environment of the plant experi-
ences temperature fluctuations hourly, which, in turn, affect the
combustion mix and efficiency.

In order to quantify the improvement of the proposed strategy,
a standard profit indicator, based on the comparison of the con-
trol strategy with constant set-point, is used as follows [9], [27]:

Profit = 100 ×
(

1 − JCpwith supervisory level
JCpwith constant set-points

)
% (17)

where JCp is given by the economic objective function in (2).

B. Supervisory Controllers

Fig. 6 shows the closed-loop responses of the gas turbine
system, for the four controllers under analysis, namely the reg-
ulatory controller with constant set-point, the linear supervisory
controller, the linearized fuzzy supervisory controller, and the
fuzzy GA supervisory controller. All the tests were carried out
considering η = 1in (1).

Notice that there are no significant differences between the
curves representing the responses to the linear supervisory con-

troller and the linearized fuzzy supervisory controller. This is
due to the fact that the linearization process in both approaches
renders a similar model. Thus, the fuzzy model linearization
diminishes the nonlinear prediction scope of the algorithm.

Also, from Fig. 6, it is clear that the fuel flow (Fd) for the three
supervisory controllers is almost constant. Therefore, the super-
visory control is the cause for the gas turbine power changes
in order to optimize the response of the plant, which is done
mainly by changing the air flow (wa). Thus, the control strategy
achieves the regulatory objective of minimization of the control
effort on the fuel flow.

A third element from Fig. 6, is that for all supervisory con-
trollers the resulting turbine power (Pmech−G) is slightly bigger
than the values obtained from the standard control strategy. In
fact, according to Fig. 6, the differences are around 1% for
the linear and the linearized fuzzy supervisory controllers, and
around 2% for the fuzzy GA supervisory controller. Thus, the
supervisory controllers maximize the power output while, at the
same time, they minimize the use of fuel, as dictated by (2).

Notice that the fuzzy GA controller has more power than
the other control strategies. This is because the GA controller
represents with more accuracy the nonlinear behavior of the gas
turbine, as shown previously in Table I.

C. Comparative Analysis

In Table II, the mean values of the objective functions (2)–(3)
and profit (17), for η = 1 and η = 0.5 are shown.

From Table II, simulation results show that the linear super-
visory controller gives a profit increment ranging from 0.83 to
2.1% as compared to a control strategy with optimum constant
set-points.

For the fuzzy linearized supervisory controller, which keeps
its parameters constant for the prediction horizon, a profit incre-
ment ranging from 0.87 to 2.15% was obtained when compared
with the standard control strategy. When a fuzzy GA supervi-
sory control was used, a profit increment ranging from 1.25 to
3.13% was obtained as compared with a standard control strat-
egy. This is the best result of Table II. A rough estimation, by
using typical economical data from combined cycle units, shows
that for operational costs of US$15 per megawatthour in units
of 350 MW, plant factor 0.8 (average power/maximum power),
the 3% of improvement in profit results in nearly US$1-million
saving, yearly.

Table II shows clearly that the fuzzy GA approach renders
the highest profit for a given η [see (1)]. This stems from the
fact that the nonlinearities of the process are captured in a more
efficient form by fuzzy methods as compared to simplified linear
expressions. This also confirms the results shown in Fig. 6.

Finally, from Table II, the profits increase when η is reduced.
This is expected as a smaller η implies a greater weight of the
economic criterion. However, under these conditions, the oper-
ating point deviates with respect to the nominal operating point
and, according to our simulation results, it may compromise the
stability of the algorithm. Therefore, there is a tradeoff between
the economic criteria JCp and the regulatory objective function
JCr, which has to be taken into account depending on the aim
of the plant control strategy.
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Fig. 6. Closed-loop response (η = 1).

TABLE II
SIMULATION RESULTS

VI. CONCLUSION

In this work, a novel fuzzy GA supervisory controller for a
gas turbine of a combined cycle power plant is proposed. The

design of the controller is based on an objective function that
combines an economic criterion, given by the plant profit, and
a regulatory criterion, based on turbine power and fuel flow.

In order to represent the nonlinearities of the plant, a novel
fuzzy model for gas turbine is proposed. The comparison with
conventional linear models of gas turbines indicates that the
fuzzy model exhibits the best performance.

Regarding the supervisory control, the fuzzy GA supervisory
control strategy is able to improve the performance of the plant
by nearly 3%.

Finally, future work will study the conditions for closed loop
stability and robustness of the proposed supervisory controller.
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