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This paper presents a hybrid adaptive predictive control approach that includes future information in real-
time routing decisions in the context of a dynamic pickup and delivery problem (DPDP). We recognize in

this research that when the problem is dynamic, an additional stochastic effect has to be considered within
the analytical expression of the objective function for vehicle scheduling and routing, which is the extra cost
associated with potential rerouting arising from unknown requests in the future. The major contributions of this
paper are: first, the development of a formal adaptive predictive control framework to model the DPDP, and
second, the development and coding of an ad hoc particle swarm optimization (PSO) algorithm to efficiently
solve it. Predictive state-space formulations are written on the relevant variables (vehicle load and departure
time at stops) for the DPDP. Next, an objective function is stated to solve the real-time system when predicting
one and two steps ahead in time. A problem-specific PSO algorithm is proposed and coded according to the
dynamic formulation. Then, the PSO method is used to validate this approach through a simulated numerical
example.

Key words : pickup-and-delivery system; dynamic vehicle routing problem; hybrid predictive control; particle
swarm optimization

History : Received: March 2005; revisions received: April 2006, July 2007, October 2007; accepted: October 2008.

1. Introduction
One of the most studied problems in the literature
on logistics is the well-known pickup and deliv-
ery problem (with or without time windows), which
involves the satisfaction of a set of transportation
requests by a vehicle fleet initially located at sev-
eral depots (Desrosiers, Soumis, and Dumas 1986;
Savelsbergh and Sol 1995). A transportation request
consists of picking up a certain number of customers
at a predetermined pickup location during a depar-
ture time interval and taking them to a predetermined
delivery location within an arrival time interval. Load-
ing and unloading times are incurred at each vehicle
stop. The problem can be generalized to the dynamic
case, in which a subset of the requests is not known
in advance and dispatch decisions have to be made
in real time. The dynamic pickup and delivery prob-
lem (DPDP) has become of great interest in the last
decade, mainly due to the fast growth in communi-
cation and information technologies, as well as the
current interest in real-time dispatching and routing.
The problem can be characterized as a real-time routed
transit and has been treated mostly heuristically by
many authors under different policy schemes in the
past (as representative references see Psaraftis 1988;
Madsen, Raven, and Rygaard 1995; Bertsimas and

Van Ryzin 1991, 1993a, b; Malandraki and Daskin 1992;
Dial 1995; Gendreau et al. 1999).
In this scenario, if the objective were to transport

passengers, inefficient routing decisions could greatly
affect the performance of the system as perceived by
the users, resulting in a poor level of service, low
demand, and insufficient productivity. One of the
major issues for improving efficiency is the correct def-
inition of a decision objective function for dispatch-
ing, including total travel and waiting times for users
as well as a performance measure for vehicles. How-
ever, when the problem is dynamic, an additional
stochastic effect has to be considered when comput-
ing an analytical expression for any decision objective
function (whether it affects the user or the operator).
In other words, we recognize that current dispatch
actions taken in real time can be affected by poten-
tial rerouting decisions decided in the future, affecting
most customers already in the system, those waiting,
as well as those traveling.
The importance of this issue has been underesti-

mated in the dynamic vehicle-routing literature. One
assumption behind most of the proposed schedul-
ing-routing rules is that travel and waiting times
experienced by customers are considered fixed in the
objective function expressions, independent of future
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reroutings. In other words, as stated by Spivey and
Powell (2004), the complexity of real-time routing
schemes have generally restricted research to myopic
models (for example, see Wilson and Weissberg 1976;
Wilson and Colvin 1977; Psaraftis 1980, 1988; Madsen,
Raven, and Rygaard 1995; Gendreau et al. 1999;
Swihart and Papastavrou 1999).
However, some recent studies in the field of vehicle

routing and dispatching have tried to exploit infor-
mation about future events to improve decision mak-
ing (Ichoua, Gendreau, and Potvin 2006; Spivey and
Powell 2004). Solution approaches found in this line
of research are diverse, with formulations based upon
dynamic network models (Powell 1988), dynamic
and stochastic programming schemes (Godfrey and
Powell 2002, Topaloglu and Powell 2005), etc. Cortés
and Jayakrishnan (2004) propose a scheme for making
better dynamic decisions by estimating the effective
cost of a real-time request insertion based upon future
information. The authors realized that the problem
conceptually fits within a stochastic predictive control
framework, although they did not enter into the con-
trol formulation details.
In this paper, we formalize the approach suggested

by Cortés and Jayakrishnan (2004) by developing a
consistent framework based upon predictive control
theory for optimizing the performance of a DPDP
that is mainly oriented to passenger movements. The
formulation turned out to be highly nonlinear, with a
combination of integer/discrete and continuous vari-
ables to properly describe the future behavior of the
routing process. Hence, an efficient ad hoc algorithm
from the computational intelligence literature (parti-
cle swarm optimization, PSO) is developed to solve
the proposed formulation and to test the benefits of
incorporating demand patterns’ prediction in current
routing decisions under different scenarios.
Unlike others’ nonmyopic dynamic vehicle-routing

approaches, this formulation is based on state-space
variables. The system state is defined in terms of
departure time and vehicle loads (stochastic state-
space variables), the system inputs (control actions)
are routing decisions, the system outputs are effec-
tive departure time to stops, and the demand requests
are modeled as disturbances. We use a discrete model
with variable step size equal to the time between suc-
cessive calls (events). In order to include future and
unknown demand in the current decision, we solve
an objective function incorporating the predictive
effect via probabilities computed from historical data
regarding typical demand patterns.
In summary, we highlight two major contributions

of this paper: the development of a hybrid predictive
control framework to model the DPDP, and the devel-
opment of an ad hoc PSO algorithm to efficiently solve
the proposed formulation for real-size problems. This

line of research represents an innovative attempt to
develop control-based algorithms for modeling and
solving dynamic transportation problems in a realis-
tic context. Specifically, in this application we have
developed a new version of the PSO algorithm (orig-
inally conceived for solving continuous problems) in
order to add integer variables into the solution and
solve the DPDP efficiently. It is important to mention
that the proposed algorithm was conceived from the
hybrid predictive control scheme (HPC) to deal with
the DPDP developed here, and depends exclusively
on the structure of the HPC formulation, as shown
in §3.4.
The structure of the paper is as follows. In the next

section, the relevant background on dynamic vehi-
cle routing is presented. In §3, the dynamic pickup
and delivery problem is described in context, and
is formulated under an adaptive-predictive control
scheme. Thus, the specific state-space formulation for
the problem is developed, the associated dispatch
objective function is shown, and the solution algo-
rithms are developed to solve the proposed hybrid
predictive control scheme. In §4, a numerical example
is presented to show the benefits of applying predic-
tive control at least two steps ahead in time. Finally,
in §5, analysis, comments, and further research lines
are presented.

2. The Dynamic Vehicle-Routing
Problem: Approaches and
Solution Methods

In this section, the objective is to provide a review
on the most relevant dynamic vehicle-routing prob-
lem (DVRP) variants, intensely studied by different
authors with different applications over the past 15
to 20 years. DVRPs are characterized by routes that
are constructed as unknown requests enter the system
in real time. Thus, DVRPs are formulated by assum-
ing that inputs may change or have to be updated
during the execution of the solution algorithm. Larsen
(2000) develops a nice characterization of the dif-
ferent dynamic problems, starting again from the
TSP (traveling salesman problem), which yields the
dynamic TSP (DTSP) introduced by Psaraftis (1988).
This work motivates the development of the dynamic
traveling repairman problem (DTRP), introduced by
Bertsimas and Van Ryzin (1991) and next extended by
Bertsimas and Van Ryzin (1993a, b). Lately, Swihart
and Papastavrou (1999), and Thomas andWhite (2004)
formulate and solve two variants of the DTRP.
The dynamic pickup and delivery problem (DPDP)

that is designed to solve the dynamic dial-a-ride
Problem (DDRP) has been intensely studied in the
last 20 years (Psaraftis 1980, 1988; Gendreau et al.
1999; Savelsbergh and Sol 1995). The final output of
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such a problem is a set of routes for all vehicles,
which dynamically change over time. With regard to
real applications, Madsen, Raven, and Rygaard (1995)
adapt the insertion heuristics by Jaw et al. (1986) and
solve a real-life problem for moving elderly and hand-
icapped people in Copenhagen, whereas Dial (1995)
proposes a modern approach to the many-to-few dial-
a-ride transit operation ADART (autonomous dial-a-
ride transit), currently implemented in Corpus Christi,
TX, USA.
With regard to solution methods to handle different

DVRPs, Gendreau et al. (1999) modify the tabu search
heuristics to solve the DVRP with soft time windows
motivated from courier service applications, which
is implemented in a parallel platform. Tabu search
methods are derived in more sophisticated versions,
such as granular tabu search (Toth and Vigo 2003) and
adaptive memory-based tabu search (Tarantilis 2005).
Tighe, Smith, and Lyons (2004) propose a priority-
based solver that considers subproblems of real-time
vehicle routing in order to obtain an optimal solution
in less time by using fuzzy decisions.
Evolutionary computation techniques have also

been proposed to handle such problems. Specifically,
genetic algorithms (GA) are applied for various VRP,
considering different chromosome representation and
genetic operators according to the particular problem
(Skrlec, Filipec, and Krajcar 1997 for the single vehicle
capacity VRP; Haghani and Jung 2005 for the multive-
hicle DVRP with time-dependent travel time and soft
time windows). Zhu et al. (2006) propose an adapted
partial swarm optimization (PSO) algorithm to solve
a static VRP with time windows.
Jih and Yung-Jen (1999) and Osman, Abo-Sinna,

and Mousa (2005) present a successful comparison of
the GA against dynamic programming (DP) in terms
of computation time. The former solve the DVRP with
time windows and capacity constraints, while the
latter solve a multiobjective VRP. Additionally, ant
colony methods, as new metaheuristics inspired by
the behavior of real ant colonies, have been applied
to DVRP (Montemanni et al. 2005, Dréo et al. 2006).
In dynamic as well as stochastic problems, two

approaches (myopic and nonmyopic) are found in the
literature; these differ based on how the future infor-
mation is considered in the generation of real-time
decisions. The myopic research line does not explicitly
consider the expected future information of the system
to improve the current solution (as shown the afore-
mentioned papers), whereas the nonmyopic option
considers a mechanism to update information regard-
ing the future to make better decisions at present. Such
future data may be imprecise or unknown, and there-
fore developing consistent information update tools
are essential for getting good predictions and making
better real-time dispatch decisions.

Powell and his team have worked for many years in
a nonmyopic line of research that incorporates explicit
stochastic and dynamic algorithms with the current
information and probabilities of future events to pro-
duce more efficient solutions than those obtained
through myopic deterministic strategies. They solve
the problem of dynamically assigning drivers to loads
that arise randomly over time, a scenario motivated
from long-haul truckload trucking applications.
Powell (1988) first considers the potential advan-

tages of relocating vehicles in anticipation of future
demands. He writes a two-stage stochastic program
including a recourse function representing the future
cost. Powell, Jaillet, and Odoni (1995) studies a mixed
assignment and fleet management problem, modeled
as a dynamic-stochastic network, which they solve
with a network simplex algorithm on a rolling horizon
basis. Spivey and Powell (2004) propose a very general
class of dynamic assignment models, and propose an
adaptive, nonmyopic algorithm that iteratively solves
sequences of assignment problems. Topaloglu and
Powell (2005) propose a distributed solution approach
to a certain class of dynamic resource allocation prob-
lems. Topolaglu and Powell (2007) show how to coor-
dinate the decisions on pricing and fleet management
of a freight carrier. The objective is to find the set of
prices that maximize the total expected profit over the
time horizon, considering random loads (whose distri-
butions depend on the prices) and the cost associated
with repositioning the empty vehicles. The authors
present a tractable method to obtain sample path-
based directional derivatives of the objective func-
tion with respect to the prices to search for a good
set of prices. Numerical experiments show that their
approach yields high-quality solutions.
In his thesis, Larsen (2000) investigates the use of

future information by relocating empty vehicles in
anticipation of future demands. Ichoua, Gendreau,
and Potvin (2006) develop a strategy based on prob-
abilistic knowledge about future request arrivals to
better manage a fleet of vehicles for real-time vehicle
dispatching. This problem is solved using a parallel
tabu search technique.
Figliozzi, Mahmassani, and Jaillet (2007) introduce

the VRP in a competitive environment (VRPCE) as
an extension of the traveling salesman problem with
profits (TSPP) to a dynamic competitive auction envi-
ronment. The authors develop a dynamic model to
compute optimal price expressions for the VRPCE
considering both, the expected change due to altering
the current fleet assignment scheme and the oppor-
tunity costs on future profits created by servicing a
new contract. Analytically, they propose an approx-
imate solution approach, using a finite look-ahead
horizon based on backward induction, which is com-
pared against a static approach with no look ahead.
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A simulation-based approach to evaluate service costs
is proposed, which not only outperforms a static pric-
ing, but it also price discriminates by market arrival
rate, time windows, and shipment features.
The analysis of these nonmyopic models that incor-

porate future information is crucial for our purposes,
because this paper formalizes the use of future infor-
mation in dynamic vehicle-routing problems through
a hybrid predictive control scheme. In the next sec-
tion, this scheme is presented in detail.

3. Hybrid Predictive Control
Approach to Solve the Dynamic
Pickup and Delivery Problem
(DPDP)

In the context of control theory, the notion of hybrid
systems arises when the problem conditions are char-
acterized by both continuous and discrete/integer
variables. In the last decade, hybrid systems have
been studied more intensely by researchers from sev-
eral study areas, such as computer science and auto-
matic control. A systematic methodology for a general
control design of hybrid systems has been devel-
oped by Bemporad and Morari (1999) and Bemporad,
Borrelli, and Morari (2002). Specifically, a hybrid sys-
tem can be expressed as a nonlinear state-space model
given by

x�k + 1� = f �x�k��u�k���

y�k� = g�x�k���
(1)

where x�k� are the continuous and/or discrete (inte-
ger) state-space variables, u�k� are the continuous
and/or discrete input or manipulated variables, y�k�
define the continuous and/or discrete system out-
puts, and f �g are nonlinear functions. In general, a
hybrid predictive control design minimizes the fol-
lowing generic objective function:

min
u�k�

J
(
u�k������u�k+N −1�� �x�k+1������ �x�k+N��

�y�k+1������ �y�k+N�
)
� (2)

where J is an objective function; k is the current
time; N the prediction horizon; �x�k + t� and �y�k + t�
are, respectively, the expected state-space vector
and the expected system output at instant k + t;
and �u�k�� � � � �u�k + N − 1�� represents the control
sequence, which corresponds to the vector of opti-
mization variables. Once expression (2) is optimized,
only the first element of the control vector u�k� is
used to update the system conditions, based upon the
receding-horizon methodology.
Next, we characterize the dynamic pickup and

delivery problem (DPDP) as a hybrid system to show
the advantages of this approach when predicting
future conditions under unknown dynamic demand.

3.1. Problem Statement
In this paper, we formulate a generic DPDP as a
hybrid predictive control problem, following the the-
ory explained above, recognizing that the dynamic
routing process behind the real-time dispatch deci-
sions includes discrete/integer and continuous state-
space variables, as well as discrete input variables.
Conceptually, the hybrid predictive control frame-

work used to model the DPDP incorporates stochastic-
ity into the routing dispatch rules by considering the
impact of future reassignments on the performance
of already-scheduled customers. The stochastic pre-
diction allows the dispatcher to incorporate a more
realistic measure of effective travel (waiting) time
experienced by the users into the decision objective
function expression (see §3.3 for details). The focus
here is on passenger routing; however, the scheme
could be generalized to freight, too.
Let us assume an influence area A, with a service

network of length D in distance units. Suppose we
have a set of vehicles V of size F . The fleet of vehi-
cles is currently in operation traveling within the area
according to predefined routing rules. The demand
for service is unknown and comes up in real-time
(assume a rate � of calls per time unit). Quick routing
and scheduling decisions are needed to handle such
demand with the available vehicles. At any time k,
we assume that each vehicle j ∈ V has been assigned
a control action that includes pickups and deliveries,
and can be represented by a function uj�k� = Sj�k� =
	s1

j
�k� · · · si

j
�k� · · · swj �k�

j
�k�
T , in which the ith element of

the sequence represents a specific ith stop along vehi-
cle j’s route, and wj�k� is the number of stops.

The complete control action or manipulated vari-
able u�k� = S�k�, as the dispatching decision, can be
represented by the set of sequences assigned to every
vehicle at instant k. Analytically,

u�k� = S�k� = {S1�k�� � � � � Sj �k�� � � � � SF �k�
}
� (3)

Vehicles will travel according to the predefined
sequence vector S�k − 1� while no new calls are
received. When a new service request (call) comes in,
the controller or central dispatcher calculates the con-
trol sequence in the next step S�k� for the fleet of
vehicles, including the stops requested by the new
customer. Then, each sequence Sj�k� remains fixed
during the whole time interval �k� k + 1�, unless a
vehicle reaches a predefined pickup or delivery stop
during such an interval, in which case its sequence
will decrease in size to show that the scheduled task
has been accomplished. Thus, in this scheme it is nec-
essary to formulate the problem in terms of a vari-
able time step (triggered by events), which represents
the time interval between two consecutive requests,
that is to say, the predictive controller makes a routing
decision when a new call enters the system.
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The state of the system at instant k is associated
with the previous sequences S�k − 1� (the new call is
not considered). In the DPDP problem, the state-space
variables include the clock time of departure T i

j �k�
and the vehicle load Li

j �k�, after vehicle j leaves stop i,
both computed at instant k. At this point, let us de-
fine, for each vehicle j ∈ V , the load and departure-
time vectors as follows:

Lj�k�=[L0
j �k� L1

j �k� ··· L
wj �k−1�

j �k�
]T

�wj �k−1�+1�×1 (4)

Tj�k�=[T 0
j �k� T 1

j �k� ··· T
wj �k−1�

j �k�
]T

�wj �k−1�+1�×1 (5)

Thus, the set of state-space variables for the entire
system at instant k can be written as x�k� =
�L�k��T �k��, where L�k� and T �k� represent the set
of load and departure-time vectors, respectively;
that is, L�k� = �L1�k�� � � � �Lj�k�� � � � �LF �k�� and T �k� =
�T1�k�� � � � � Tj�k�� � � � � TF �k��� The output set y�k� is rep-
resented by the vector of observed departure times of
vehicles at stops, T �k�.
In summary, under this hybrid predictive control

approach, Equation (1) can be written for the DPDP
by recognizing the dependence of the routing pro-
cess on the following associated variables: x�k� =
�L�k��T �k��� y�k� = T �k�� u�k� = S�k�. The hybrid pre-
dictive control scheme proposed in this paper can be
represented by a generic flow chart shown in Figure 1.
In the figure, the predictive controller is represented

by the dispatcher and the routing is solved by min-
imizing an objective function that considers the user
cost based upon total travel and waiting time spent
by the users, and a component as a proxy of the
operational cost, as explained in §3.3. The routing
process is defined by the online dispatching deci-
sion (S�k − 1�) under uncertain demand (�), which
results in observed departure times (y�k�). An adap-
tive mechanism is also added in the figure due to the

Objective function

Predictive controller
(dispatcher)

Adaptive
mechanism

Routing process

x(k) = {L(k), T(k)}

y (k)S(k–1)

μ

Figure 1 Overall Block Diagram of a Hybrid Predictive Approach for
DPDP

variant parameters of the system and dimension of the
departure-time and vehicle load models ��L�k��T �k���.
Next, this model is analytically described, highlight-

ing the treatment of both the departure-time and load
components.

3.2. Predictive Dynamic Model
This research considers a predictive dynamic model
based on state-space representation for both the vehi-
cle load and the departure time at stops (as a function
of segment travel times). Both the clock time of depar-
ture T i

j �k� and the vehicle load Li
j �k� are stochastic vari-

ables, because they depend on the evolution of the
system affected by uncertain demand. Therefore, and
in order to work with deterministic values, reason-
able estimations of the load and departure-time vec-
tors have to be obtained. The prediction of when a new
request will occur is given by the expected value of the
state-space vector for vehicle j , �xj�k + 1�. Analytically,

�xj�k + 1� =
[

E�Lj�k + 1�/k�

E�Tj�k + 1�/k�

]
=
⎡
⎣ L̂j �k + 1�

�Tj�k + 1�

⎤
⎦

=
[

fL�Lj�k�� Sj�k��

fT �Tj�k�� Sj�k��

]
∀ j = 1� � � � � F (6)

where the functions fL and fT are the state-space mod-
els to be defined in Equations (8) and (9).
The dynamic system for a specific vehicle j can be

graphically represented by its sequence Sj�k� computed
at certain instant k, and the associated expected values
of the state-space variables in the next instant k + 1, is
shown in Figure 2.
The components of Sj�k� are

Sj�k�=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1j �k� 1−r1j �k� � 1
j �k� label1j �k�

���
���

���
���

r i
j �k� 1−r i

j �k� � i
j �k� labelij �k�

���
���

���
���

r
wj �k�
j �k� 1−r

wj �k�
j �k� �

wj �k�
j �k� label

wj �k�
j �k�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

(7)

L0
j(k+1), T0

j(k+1)

L1
j(k+1), T1

j(k+1)
i

vj

ˆ ˆ

L2
j(k+1), T2

j(k+1)ˆ ˆ

Li
j(k+1), Ti

j(k+1)ˆˆ

Li
j
+1(k+1), Ti

j
+1(k+1)ˆˆ

Lj
wj(k)(k+1), T j

wj(k)(k+1)ˆˆi+1

Sj(k)

Figure 2 Typical Vehicle Route at Time k and State-Space Variables
Estimated at k + 1



Cortés et al.: Hybrid Adaptive Predictive Control for a Dynamic Pickup and Delivery Problem
32 Transportation Science 43(1), pp. 27–42, © 2009 INFORMS

where r i
j �k� is a binary variable defined as follows:

r i
j �k� =

{
1 if stop i belonging to Sj�k� is a pickup�

0 otherwise�

The first and second columns represent a pair iden-
tifying if stop i is either a pickup 	1 0
 or a delivery
	0 1
, respectively.
The third column of the Sj�k� matrix represents the

external travel time function, where � i
j is the total

travel time between points i−1 and i plus the transfer
operation delay at node i.
For simulation purposes, we assume that vehicles

move at constant speed, and therefore their posi-
tion can be estimated at any moment. The last col-
umn, labelij , keeps the passenger identifier, which is
needed to check the feasibility of the sequence in
terms of precedence (the pickup must occur before
the delivery of the same client). Finally, the size of
the sequence matrix in Equation (3.2) is wj�k� × 4,
comprising wj�k − 1� rows for the previously sched-
uled stops, and two rows with the information (pickup
and delivery locations) of the last call.
Thus, the vehicle load behavior is obtained using

the following state-space model:

L̂j �k + 1� = fL�Lj�k�� Sj�k�� = AL Lj�k� + BL�Sj�k��� (8)

where the corresponding matrices in (8) are

BL�Sj�k��=B2
L ·�Sj �k�·B1

L��

AL =

⎡
⎢⎢⎢⎢⎢⎣

1 0 ··· 0

1 0 ··· 0
���

���
� � �

���

1 0 ··· 0

⎤
⎥⎥⎥⎥⎥⎦

�wj �k�+1�×�wj �k−1�+1�

�

B1
L =

⎡
⎢⎢⎢⎢⎢⎣

1

−1

0

0

⎤
⎥⎥⎥⎥⎥⎦� B2

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ··· 0 0

1 0 0 ··· 0 0

1 1 0 ··· 0 0

1 1 1
� � �

���
���

���
���

���
� � � 0 0

���
���

��� 1 0

1 1 1 ··· 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�wj �k�+1�×wj �k�

�

Both the vehicle sequence matrix Sj�k� and the
expected load vector L̂j �k+1�, change their dimen-
sion dynamically by adding two rows when a new
request occurs. Therefore, the matrix dimensions of
AL�B1

L�B2
L are variable. B1

L is designed to remove the
last two columns of the sequence vector, which are

not necessary for representing load changes from step
k to step k + 1. On the other hand, when a request is
satisfied, the first row of the sequence is eliminated.
In fact, the adaptive behavior is captured by these
techniques of expansion and reduction of matrix size.
The vehicle departure-time behavior is obtained by

using the same methodology. Analytically,

�Tj�k + 1� = fT �Tj�k�� Sj�k�� = AT · Tj�k� + BT �Sj�k��� (9)

where:
BT �Sj�k�� = B2

T · �Sj �k� · B1
T ��

AT =

⎡
⎢⎢⎢⎢⎢⎣

1 0 ··· 0

1 0 ··· 0
���

���
� � �

���

1 0 ··· 0

⎤
⎥⎥⎥⎥⎥⎦

�wj �k�+1�×�wj �k−1�+1�

�

B1
T =

⎡
⎢⎢⎢⎢⎢⎣
0

0

1

0

⎤
⎥⎥⎥⎥⎥⎦� B2

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 ··· 0 0

1 0 0 ··· 0 0

1 1 0 ··· 0 0

1 1 1
� � �

���
���

���
���

���
� � � 0 0

���
���

��� 1 0

1 1 1 ··· 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�wj �k�+1�×wj �k�

�

As in the load state-space model, the matrices
AT �B1

T �B2
T change their dimensions dynamically.

3.3. Objective Function
Here, the concept of an objective function is added
in order to have a performance measure for decid-
ing the optimal predicted vehicle routes by the con-
troller, considering users’ cost as well as a proxy of
operational cost, as explained next. The major issue in
the definition of the objective function is to define a
reasonable horizon for prediction N , which depends
on the studied problem, and also on the intensity of
the unknown events entering the system in real time.
In cases where the decision is made at instant k, but
considering a predictive horizon greater than one, the
decision maker (controller) adds the predictive feature
into the formulation, because decisions made at k + 1
will depend on possible events (new service requests)
occurring at future instants (k + 2� k + 3� � � � � etc.).
Thus, the central dispatcher (controller) computes the
control decisions for the entire control horizon N , i.e.,
�S�k�� � � � � S�k + N − 1��, and applies just the next step
sequence set S�k�, based on a receding horizon con-
trol. The routing decisions will depend on how well
the system predicts the impact of rerouting passengers
due to unknown insertions.
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The objective function for a generic prediction hori-
zon N can be written as follows:

Min
S�k�

J =
N∑

t=1

F∑
j=1

H�k+t�∑
h=1

p
�T �k+t�
h

(
�Cj �k + t� − Cj�k + t − 1���Sj �k+t−2��h

)
�

(10)

Cj�k+t��
Sj �k+t−2��h

=
wj �k+t−1�∑

i=1

{
	L̂i−1

j �k+t�+1
��T i
j �k+t�− �T i−1

j �k+t��︸ ︷︷ ︸
Jtravel time

+r i
j �k+t−1���T i

j �k+t�−T 0
j �k+t��︸ ︷︷ ︸

Jwaiting time

}∣∣∣∣
Sj �k+t−2��h

� (11)

where k + t is the instant at which the tth request
enters the system, measured from time interval k.
H�k + t� is the number of probable requests at instant
k + t, p

�T �k+t�
h is the probability of occurrence of the

hth request type (associated with a specific pair of
zones, as discussed later in this section) during time
interval �T �k + t�, noting that �T �k + t� specifies
the time interval to which time step k + t belongs.
Cj�k + t��Sj �k+t−2��h in Equation (11) is a function associ-
ated with vehicle j at instant k + t, which depends on
the decision sequence Sj�k + t −1�, given the previous
known sequence Sj�k + t − 2� associated with a poten-
tial request h with probability p

�T �k+t�
h . wj�k + t − 1�

is the number of stops estimated for vehicle j in
sequence Sj�k + t − 1�. Cj�k + t�, as shown in Equa-
tion (11), can be split into two pieces: a travel time
(Jtravel time� and a waiting time (Jwaiting time� component.
Both components are written as functions of the load
and departure time. The former is computed as the
difference between the departure time of consecutive
stops, multiplied by the vehicle load (represented by
the number of passengers plus the vehicle driver),
whereas the latter considers the customers’ waiting
time while each vehicle moves on each segment of
its assigned route. For the sake of flexibility and eco-
nomic consistency, the waiting cost component is
weighted by a coefficient, . Analytically, L̂i−1

j �k + t�
denotes the expected load over the segment from stop
i − 1 to i; the difference �T i

j �k + t� − �T i−1
j �k + t� mea-

sures the expected vehicle travel time on segment
�i − 1� i�, including the transfer delay at node i; and
the difference �T i

j �k + t� − T 0
j �k + t� measures the vehi-

cle expected travel time to reach stop i from its current
position plus the expected transfer delay at node i.
r i
j �k + t − 1� corresponds to the same binary variable
used to identify pickup and delivery points in the
sequence expression (3.2), but in this case is associ-
ated with the future sequence Sj�k + t − 1�. In the con-
text of the objective function formulation, this binary
variable can be interpreted as a waiting time factor.

Note that in the first component of the objective
function expression in Equation (11), the expected
travel time is weighted by L̂i−1

j �k + t� + 1. In such
a computation, the expected load captures the user
cost associated with travel time, whereas the added
one roughly incorporates a proxy for the operational
cost through the total time traveled by vehicles, even
though some of them do not carry any passenger on
certain segments of their routes.
The probabilities of occurrence of each scenario

p
�T �k+t�
h are parameters in the objective function, and
they are computed based on either real-time data, his-
torical data, or a combination of both. In this particu-
lar application, we use a simple way to compute these
probabilities from historical data (offline implemen-
tation). To do that, let us define the call mass center
as the geographical location of the most likely call
to occur during a specific time period, and within a
specific area. As described in the problem formula-
tion, what we really need is the probability that the
expected new request will occur between two spe-
cific zones (pickup and delivery) within a certain time
interval.
In order to apply this methodology, the zone of

study has to be split into smaller subareas (clusters).
How to choose the zoning will depend upon the
demand intensity associated with each specific prob-
lem. The probability that a new call will appear for
a specific pair of clusters h� �1� � � � �H�k + t�� within a
time interval �T �k + t� is computed using the follow-
ing expression:

p�T �k+t�
h = N

�T �k+t�
h∑H�k+t�

g=1 N
�T �k+t�
g

� (12)

where N
�T �k+t�
h is the total number of travel requests

belonging to a specific origin-destination pair of
clusters h over a set of pairs �1� � � � �H�k + t��,
within a specific time interval �T �k + t�. Note that∑H�k+t�

h=1 p
�T �k+t�
h = 1, as expected.

With regard to the step size to be used in the predic-
tion, George and Powell (2005) develop and discuss
many interesting methods to incorporate a good esti-
mate of optimal step size (such as a Kalman filter). We
realize that none of these methods properly replicate
the DPDP conditions, considering that in addition
to representing a good estimate of the time between
calls, what we really want to calibrate is a parame-
ter for optimizing the system performance function
over time, which can lead to the optimal routing strat-
egy including future information. To do that, a sen-
sitivity analysis was conducted from simulated data
to find the step-size value that minimizes the objec-
tive function for more than one step ahead. It is very
important to highlight the fact that these variables
are continuous; nonoptimal behavior could occur if
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they are not properly adjusted by sensitivity analy-
sis. For the two-steps-ahead application (see §4), this
parameter is denoted by � ; as discussed above, phys-
ically it represents the expected time for a predicted
request to happen. However, what � really represents
is the best instant for inserting the future expected call
in order to optimize the routing scheme. In general,
these parameters are tunable for each step ahead of
prediction.
In the context of this paper, we compare a myopic

strategy (one-step-ahead) with the two-steps-ahead
predictive approach that includes future information
from the system to show the improvements in rout-
ing when considering a predictive component in the
routing decisions under a DPDP system.
The one-step-ahead strategy means that the pre-

diction horizon is N = 1, and H�k + 1� = 1 because
the new requirement is one and known, and there-
fore its probability is equal to 1. This results in the
following expression for the objective function using
Equation (10):

Min
S�k�

J =
1∑

t=1

F∑
j=1

H�k+t�=1∑
h=1

p
�T �k+t�
h �k + t�

· �Cj�k + t� − Cj�k + t − 1���Sj �k+t−2��h

=
F∑

j=1

=1︷ ︸︸ ︷
p

�T �k+1�
1 �k + 1� ·�Cj�k + 1� − Cj�k���Sj �k−1��1

=
F∑

j=1

(
Cj�k + 1� −

known
constant︷ ︸︸ ︷
Cj�k�

)∣∣∣
Sj �k−1��1

(13)

where

Cj�k+1��
Sj �k−1��1

=
wj �k�∑
i=1

{
	L̂i−1

j �k+1�+1
��T i
j �k+1�− �T i−1

j �k+1��︸ ︷︷ ︸
Jtravel time

+r i
j �k���T i

j �k+1�−T 0
j �k+1��︸ ︷︷ ︸

Jwaiting time

}∣∣∣∣
Sj �k−1��1

(14)

Note that the difference �Cj�k + 1� − Cj�k���Sj �k−1��1 is
evaluated considering the control action in the pre-
vious instant, represented by Sj�k − 1�. Conceptu-
ally, J represents the insertion cost when the system
accepts a new call, computed in real time and consid-
ering the entire vehicle fleet.
The two-steps-ahead prediction’s objective function

is different from the previous one, because it includes
a prediction of where the following call is going to
fall, and with what probability. The controller selects

the vehicle’s sequence that minimizes the general two-
steps-ahead objective function, which is as follows,

Min
S�k�

J

=
2∑

t=1

F∑
j=1

H�k+t�∑
h=1

p
�T �k+t�
h �k+t�

·�Cj�k+t�−Cj�k+t−1��
∣∣
Sj �k+t−2��h

=
F∑

j=1

[
Cj�k+1�

∣∣
Sj �k−1��1

−Cj�k�

+
H�k+2�∑

h=1

p
�T �k+2�
h �k+2�·Cj�k+2�

∣∣
Sj �k��h

−

=1︷ ︸︸ ︷
H�k+2�∑

h=1

p
�T �k+2�
h �k+2�·

independent of h︷ ︸︸ ︷
Cj�k+1�

∣∣
Sj �k−1��1

]

=
F∑

j=1

[H�k+2�∑
h=1

p
�T �k+2�
h �k+2�·Cj�k+2�

∣∣
Sj �k��h

−
known
constant︷ ︸︸ ︷
Cj�k�

]
�

(15)

where

Cj�k+2��Sj �k��h

=
wj �k+1�∑

i=1

{
	L̂i−1

j �k+2�+1
��T i
j �k+2�− �T i−1

j �k+2��︸ ︷︷ ︸
Jtravel time

+r i
j �k+1���T i

j �k+2�−T 0
j �k+2��︸ ︷︷ ︸

Jwaiting time

}∣∣∣∣
Sj �k��h

� (16)

3.4. Solution Method
Traditional optimization methods are not very effi-
cient and, in most cases, useless for solving prob-
lems like the one-step- and two-steps-ahead formu-
lations presented above. This is mostly due to the
high nonlinearity of the objective function expres-
sions, in addition to the hybrid (discrete-continuous)
nature of the variables. The optimization problem for
both one-step- and two-steps-ahead strategies could
be solved by using explicit enumeration (EE) that con-
siders all feasible insertion solutions whenever a call
request enters the system. However, this inefficient
method is neither appropriate for a large vehicle fleet
nor for long prediction horizons, due to a compu-
tational capacity constraint. For those scenarios, the
application of such control algorithms solved with EE
is not feasible in real-time routing. Instead, we propose
a new ad hoc algorithm to solve the mixed-integer
problem behind the DPDP formulation proposed here.
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The scheme is based on the particle swarm optimiza-
tion (PSO) algorithm, which is a new type of evo-
lutionary computation method that has performed
quite well in previous applications, not only in terms
of solution accuracy, but also in computation time
savings (Kennedy and Eberhart 2001). PSO has been
inspired by the social behavior of animals and insects,
specifically on the behavior of a swarm of particles
over a multidimensional search space.
After reviewing the literature, we highlight Coelho,

de Moura Oliveira, and Cunha (2005), who present
a predictive controller based on recursive linear mod-
els where the optimization problem is solved by PSO.
A good performance of PSO is shown in compari-
son with genetic algorithms (GA) and classical quasi-
Newton methods. Wang and Xiao (2005) describe a
PSO-based predictive controller based on a radial
basis function (RBF) neural network model, obtain-
ing slightly better results than those from GA and a
quasi-Newton method. In the context of vehicle rout-
ing, Zhu et al. (2006) propose a PSO scheme to solve
a static vehicle-routing problem with time windows.
The effectiveness, in terms of precision and compu-
tational time, is shown by experimental results. Next,
a description of the basic PSO algorithm is presented,
to close the section with a detailed description of the
proposed PSO-based algorithm for the DPDP.

PSO Algorithm. The PSO algorithm, used to solve
complex nonlinear optimization problems, consists of
a particle swarm, which represents a population of
candidate solutions. The particles are initialized ran-
domly, and then move iteratively within the search
space in order to find new solutions. The particles
have a fitness associated with the solution quality,
usually given by the objective function to be opti-
mized. Each particle is characterized by a position xi

(i is the index of the particle) and a velocity vi (both
are d-dimensional, where d is the dimension of the
solution vector). Each particle records its best previ-
ous position x#

i �t� and the best position among all
the particles belonging to the swarm, namely x∗�t�,
with t representing the current iteration. The particles
are updated according to their cognitive and social
behavior from the following equations:

vi�t + 1� = � · vi�t� + c1 · �1 · �x#
i �t� − xi�t��

+ c2 · �2 · �x∗�t� − xi�t���

xi�t + 1� = xi�t� + vi�t + 1��

(17)

where � is the inertia factor, c1 is the self-cognitive
constant, and c2 represents the social component fac-
tor (��c1� c2 > 0 are tuning parameters). Furthermore,
�1 and �2 are uniformly distributed random num-
bers in the range �0�1�, which help us preserve the
diversity of the swarm. From Equations (17), parti-
cles move according to their inertia, their experience,

and the experience of the most successful particle of
the swarm. The search is conducted over a subset of
the entire space (depending on the problem) to effec-
tively guide the particles in the search space towards
the optimum by keeping the velocity clamped inside
a predefined range.
The above description of PSO was originally con-

ceived for solving continuous problems. In our appli-
cation, we completely adapted the PSO code in order
to add integer variables in the solution. Next, the spe-
cific PSO we developed to solve the DPDP problem
is described.

Proposed PSO Algorithm for Solving the DPDP.
The proposed algorithm based on PSO utilizes par-
ticles that belong to R2. For a new call requesting
service, the method finds the best insertion positions
for the new pickup and delivery points along a cer-
tain vehicle sequence. The algorithm is run for each
vehicle, to finally apply the new sequence to the vehi-
cle showing the lowest insertion cost as based on the
objective function. In this problem, a particle is associ-
ated with an insertion within a sequence for a specific
vehicle.
Let us consider a vehicle j with an associated

sequence Sj�k−1�. When a new call comes up at k, the
PSO algorithm generates possible sequences S�

j �k�,
with each one associated with a particle that finally
determines the insertion position of the incoming call
� = �pu�de� within the sequence, where pu corre-
sponds to the pickup, and de to the delivery. Thus, a
sequence generated by PSO is given by

S�
j �k�

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1j �k� 1−r1j �k� � 1
j �k� label1j �k�

���
���

���
���

r
pu
j �k� 1−r

pu
j �k� �

pu
j �k� labelpuj �k�

���
���

���
���

rdej �k� 1−rdej �k� � de
j �k� labeldej �k�

���
���

���
���

r
wj �k�

j �k� 1−r
wj �k�

j �k� �
wj �k�

j �k� label
wj �k�

j �k�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

wj �k�×4

�

(18)

where the puth row and deth row are the positions of
the new pickup and delivery, respectively. Note that
each potential sequence in Equation (18) must be fea-
sible in terms of precedence. Every particle provided
by the PSO is two dimensional (both components
are continuous) and has an associated insertion pair
� = �pu�de�. Because the particles are real pairs, each
component is approximated to the next integer. When
particles are either initialized or updated, they might
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not be feasible in terms of precedence, or because
they could fall outside the allowable range (pickup
out of 	1�wj�k� − 1
, and delivery out of 	2�wj�k�
�.
In these cases, the particles are repaired to get a feasi-
ble sequence.
The PSO algorithm specifies a function (detailed

in the description of the PSO-based algorithm to fol-
low) to translate each particle into a feasible insertion
position, defining a possible sequence to be followed
by the vehicle. An example is shown in (19).

Swarm

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Particle 1

Particle 2

Particle 3

Particle 4

Particle 5

Particle 6

Particle 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1 = �0�7�3�9�

x2 = �0�2�6�2�

x3 = �4�1�4�9�

x4 = �2�6�4�9�

x5 = �−0�8�7�4�

x6 = �3�1�1�1�

x7 = �1�9�3�2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1 = �pu1�de1�

�2 = �pu2�de2�

�3 = �pu3�de3�

�4 = �pu4�de4�

�5 = �pu5�de5�

�6 = �pu6�de6�

�7 = �pu7�de7�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1�4�

�1�6�

�4�5�

�3�5�

�1�6�

�2�3�

�2�4�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇔

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3+ → 1+ → 2+ → 3− → 1− → 2−

3+ → 1+ → 2+ → 1− → 2− → 3−

1+ → 2+ → 1− → 3+ → 3− → 2−

1+ → 2+ → 3+ → 1− → 3− → 2−

3+ → 1+ → 2+ → 1− → 2− → 3−

1+ → 3+ → 3− → 2+ → 1− → 2−

1+ → 3+ → 2+ → 3− → 1− → 2−

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� (19)

In this example, for Particles 1, 4, and 7, a simple
rounding up generates a feasible sequence in both
precedence and allowable range. In the cases of Par-
ticles 2 and 5, a simple rounding up generates a
sequence feasible in terms of precedence but outside
the allowable range; thus, the sequence is repaired. For
Particles 3 and 6, a simple rounding up generates a
sequence within the allowable range, but unfeasible
in terms of precedence. Once again, the sequence is
repaired.

For all feasible particles, a PSO fitness value is eval-
uated in terms of the corresponding objective func-
tion as defined in Equation (10). Note that when a
sequence is unfeasible in terms of capacity, it is not
repaired; rather, a penalized fitness is used instead.
Without loss of generality, the proposed algorithm

based on PSO is described for a two-steps-ahead
horizon. The algorithm is written as a function of
three major procedures: GEN_PAR, REP_PAR, and
MOD_PAR. With GEN_PAR the particles associated
with potential sequences are randomly generated.
REP_PAR takes the particles and generates their asso-
ciated feasible sequences. Finally, MOD_PAR corre-
sponds to the core of the evolutionary PSO algorithm,
updating the particles for the next iteration according
to the best previous solutions. The algorithm iterates
first at one-step-ahead and then at two-steps-ahead,
as detailed below:

PSO-Based Algorithm
Step 0. Initialize parameters PSO, like n = number

of particles, � = inertia weight, c1 = cognitive weight,
c2 = social weight.
Step 1. Assume that the predefined sequence set

S�k − 1� is known. A new service request (call)
enters the system. Then, the functions GEN_PAR and
REP_GEN based on PSO are utilized to generate
n potential sets of sequences S�l �k�, with l� 1�2� � � � �n
(particles). Note that 	n/F 
 particles are associated
with each vehicle, which means that the insertion of
the new call falls in the specific vehicle sequence (F is
the fleet size).
Step 2. For each particle S�l �k�, consider H�k + 1�

probable requests. Then, GEN_PAR and REP_GEN
based on PSO are applied to generate n potential
sequences S�m�k + 1��h, m� 1�2� � � � �n, for each proba-
ble request pattern h� 1�2� � � � �H�k + 1�.
Step 3. Provided that S�l �k� is known, evaluate

the fitness function C�k + 2��S�l �k��h − C�k + 1��S�k−1�,
defined in Equations (14) and (16), for all potential
sequences S�m�k + 1��h. If S�m�k + 1��h is unfeasible for
capacity, penalize its fitness. Then, the best set of par-
ticles S�∗

m�k + 1��h for h� 1�2� � � � �H�k + 1� associated
with the minimum fitness function is selected.
Step 4. If a tolerance criterion (maximum num-

ber of iterations of Steps 3 and 4) is satisfied, then
proceed to Step 5. Otherwise, update the position
and the velocity of all particles by using the func-
tion MOD_PAR (evolutionary stage). With the func-
tion REP_GEN, generate the sequences S�m�k + 1��h,
m� 1�2� � � � �n for h� 1�2� � � � �H�k + 1� and go back to
Step 3.
Step 5. Given that S�l �k� is known, and by using

S�∗
m�k + 1��h for h� 1� � � � �H�k + 1� obtained in Step 3,

evaluate the two-steps-ahead objective function (fit-
ness) in Equation (15). If S�l �k� is unfeasible for capac-
ity, penalize its fitness.
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Step 6. From the fitness computed for each particle
S�l �k�, l� 1�2� � � � �n, record the best sequence S�∗

l �k�.
Step 7. If a tolerance criterion (maximum number

of iterations Steps 2 to 7) is satisfied, then STOP and
S�∗

l �k� is the optimum. Otherwise, by using the func-
tion MOD_PAR (evolutionary stage), update the posi-
tion and the velocity of all particles for l� 1�2� � � � �n.
By using REP_GEN, generate S�l �k�, l� 1�2� � � � �n, and
go back to Step 2.
The detailed procedures involved in the algorithm

are explained next:

GEN_PAR
This procedure is performed for the first iteration,
t = 1.
For every vehicle j , 	n/F 
 particles are assigned.

Then, for every particle l associated with a given vehi-
cle j , the following features are set:
Initialize random positions and velocities for the

particles.

xl�1� = �x1l�1�� x2l�1���

�x1l�1�� x2l�1�� ∈ 	0�wj�k� − 1
 × 	1�wj�k�
�

vl�1� = �v1l�1��v2l�1���
(v1l�1��v2l�1�� ∈ 	−wj�k�/2�wj�k�/2


× 	−wj�k�/2�wj�k�/2
�

REP_PAR
This function is required to convert a particle l into a
feasible sequence. Thus, for every particle l associated
with a vehicle j , the repair procedure is as follows:

Round and repair particle out-of-range.

pul =max�min�
x1l�t���wj�k� − 1��1��

del =min�max�
x2l�t���2��wj�k���

If pul < del, then �l = �pul� del�.

Repair unfeasible particle in precedence.
If pul > del, then y = �pul − del�/2, pul = �pul − y,

del = 
del + y�, �l = �pul� del�.
If pul = del, then del = min�wj�k��del + 1�, pul =

max�del − 1�1�, �l = �pul� del�.

Finally, depending on the case (one-step- or two-
steps-ahead iteration), the sequence S�k� (or S�k + 1��
associated with the particle l is S�l �k� (or S�l �k + 1��h�.
MOD_PAR
This function corresponds to the evolutionary stage of
the PSO algorithm. Thus, for every particle l associ-
ated with a vehicle j , the procedure is as follows (for
iteration t + 1):

Update velocity:

vl�t + 1� = � · vl�t� + c1 · �1 · �x#
l �t� − xl�t��

+ c2 · �2 · �x∗�t� − xl�t���

If velocity is saturated, then set

�v1l� v2l� ∈ 	−wj�k�/2�wj�k�/2
 × 	−wj�k�/2�wj�k�/2
�

Update position:

xl�t + 1� = xl�t� + vl�t��

where xl�t��vl�t� are the position and the velocity of
particle l at iteration t, �1 and �2 are uniformly dis-
tributed random numbers in the range �0�1�, � is
the inertia weight, c1 is the cognitive weight, c2 is
the social weight, x#

l �t� is the best previous position
reached for particle l, and x∗�t� is the best position
among all particles belonging to the swarm.

4. Simulation Tests
4.1. Experiment Description
A discrete-event system simulation is conducted for a
three-hour period to evaluate the performance of the
proposed dispatch control algorithm for a dynamic
vehicle-routing system. The scheme considers a fleet
of nine transit vehicles, each with a capacity for four
passengers. Dispatch decisions are made in real-time
by the controller. Service requests are unknown; how-
ever, the average system pattern is supposed to be
known from historical data, obtained from the aver-
age demand measured over the preceding week.
The simulation scenario is not real. However, the

demand patterns follow a heterogeneous distribution
inspired by real data from the Origin-Destination Sur-
vey in Santiago, Chile, 2001. We consider an urban
service area of approximately 81 km2. Vehicles are
assumed to travel straight between stops at an aver-
age speed of 20 km/hr throughout the region. The
simulation was performed over three time intervals in
a representative work day during the morning peak
hour, i.e., Tp = (7:00–7:59, 8:00–8:59, 9:00–9:59), and the
demand distribution was assumed to follow various
patterns over the studied period, as discussed below.
The objective of the experiments was to test the per-

formance of the predictive algorithm under different
conditions and modeling assumptions. One major fac-
tor in the definition of the expected occurrence prob-
ability of future service requests is the spatial (and
temporal) disaggregation of the total area (and time
period).
Following the methodology, we generate historical

data assuming that 90% of the intervehicle trips occur
in six pairs of sectors (H = 6). Therefore, we con-
sider this subset of origin destination pairs for the
objective function computation. Next, the different ar-
rival rates per geographic pair-interval were obtained,
from which the corresponding occurrence probabili-
ties were generated. For simplicity, we assumed that
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Figure 3 Origin-Destination Trip Patterns (Nine-Zone Division)
Note. P\D: Pickup and delivery zones.

the probabilities do not change within each time inter-
val, but they do from one interval to the next.
First, we tested nine homogeneous zones where his-

torical data show that trips occur in the six most rel-
evant interzonal origin-destination pairs, as shown
in Figure 3. The probability associated with each
trip pattern is in the table underneath each figure.
For example, considering the schedule between 7:00
and 7:59 a.m., the chance that a trip from Zone 1 to
Zone 5 occurs is 0.2 among all trips occurring every-
where else within that time interval. The probability of
other trips between zones not considered among the
six most important pairs is assumed to be negligible.
For this zoning desegregation, intrazonal trips were
assumed to be negligible too.
A second experiment was to aggregate the spatial

area into four zones instead of the nine used in the
previous example, assuming the same trip patterns
as above. Figure 4 shows the scheme associated with
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Figure 4 Origin-Destination Trip Patterns (Four-Zone Division).
Note. P\D: Pickup and delivery zones.

this second case. Note that intrazonal trip probabili-
ties cannot be neglected in this case, due to the more
aggregated zoning.
In terms of demand, 120 calls were generated over

the whole simulation period of three hours, according
to a spatial and temporal distribution with the same
behavior as the historical pattern considered.
A distribution for the time interval between suc-

cessive calls is also assumed in order to compute
time-interval probabilities. In this case, we use a
negative exponential distribution, with rates of 0.5
[call/minute], 1 [call/minute], and 0.5 [call/minute]
for the first, second, and third hours of simulation,
respectively. In terms of spatial distribution, pickup
and delivery points were generated randomly within
each corresponding zone in order to replicate the
trip pattern and probabilities shown in Figures 3 and
4, depending on the experiment. Arbitrarily, vehicles
were initially located at the mass center of zones. This
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assumption does not affect the final statistics of the
tests, because a reasonable warm-up period was con-
sidered. Thirty replications of each experiment were
conducted to obtain global statistics, as shown in §4.2.
With regard to the objective function,  = 1 was used,
which means that the travel time is as important as the
waiting time in the objective function expression. The
one-step- and two-steps-ahead algorithms are then
evaluated and compared for both the four- and nine-
zone spatial disaggregation cases. The PSO algorithm
with no swapping was implemented in Matlab ver-
sion 7.0 with a Pentium IV processor. The parameters
of PSO used in this first approach were � = 1, c1 = 2,
c2 = 2.
As introduced in the previous section, one relevant

fine-tuning parameter is the predicted time between
call requests, � , which is relevant when evaluating
the performance function of the two-steps-ahead algo-
rithm. We find the optimal value of such a param-
eter by conducting a sensitivity analysis around the
observed interarrival times from the historical data
report. Figure 5 shows the mean value of the objec-
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Figure 5 Sensitivity Analysis for � (Nine- and Four-Zone Partitions)

tive function for different � values. Ten replications
were used in order to obtain the optimum values:
� = 4�8 for nine-zone partitions, and � = 2�4 for four-
zone partitions.

4.2. Analysis of Results
Figure 6 presents the computational time evolution
of both the EE and the proposed PSO algorithm as
the number of requests increases, keeping the fleet
size fixed at nine vehicles. Both algorithms are run
for the two-steps-ahead case. Moreover, PSO is tested
for 10 iterations of 10 particles (10–10) and for 20 iter-
ations of 20 particles (20–20). The figure graphically
shows our previous guess, confirming the impos-
sibility of using EE in real-size problems for real-
time dispatch, because the computational time rapidly
explodes as the number of requests surpasses 30.
The only real advantage of using EE is that we

can obtain the global optimum. However, the expe-
rience in the literature showed that in practice, the
gap between the optimal value and the PSO solu-
tion is quite small, a conclusion that was supported
by some tests we conducted (errors on the order of
2%–3% in 10–10 experiments). In addition, the pro-
cedure has to be run repeatedly in real time, which
further justifies the use of a procedure such as PSO
(or other procedures as discussed in §5) to solve
real-time vehicle-routing problems with a predictive
scheme. Our example considers 120 calls, and below
we present the results obtained from the proposed
PSO algorithm.
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Table 1 PSO Computational Time and Performance Comparison Using Different Parameters for Four Zones and Four
Probabilities

Total time
(waiting+ travel) (min) Operation time (min) Computational time (sec)

Two step ahead Mean Std Mean Std Mean Std

5 iterations, 5 particles 46.76 4.41 182.61 6.17 589�6 98�62
10 iterations, 10 particles 41.71 4.97 178.73 8.42 1�737�3 129�44
15 iterations, 15 particles 41.02 4.30 178.35 6.18 2�559�6 576�92

We have chosen the mean and standard devia-
tion values of total travel and waiting times to mea-
sure the system performance in terms of user level
of service. Additionally, the average total time spent
by a vehicle in the system is also reported as a
proxy of the average operational cost. In Table 1
below, we show the PSO computational time and
performance comparison using different parameters
(iterations-particles) for four zones and four probabil-
ities. As expected, Table 1 shows a trade-off between
the solution accuracy and the PSO computational time
for the two-steps-ahead algorithm.
From the table, it seems reasonable to use 10 itera-

tions and 10 particles (10–10) in the following exper-
iments. Note that in terms of solution quality, we do
not obtain too much improvement (41.71 versus 41.02
and 178.73 versus 178.35) for adding five more par-
ticles and iterations. However, in computation time,
the cost of this change is quite considerable. In Fig-
ure 6, we can graphically see the low computational
effort needed to run the 10–10 PSO algorithm for the
two-steps-ahead case.
From such an observation, in Tables 2, 3, and 4,

the user and operator performance indicators for the
30 replications of the PSO algorithm with 10 particles
and 10 iterations are reported. These values capture
the differences of running both algorithms (one-
step-ahead versus two-steps-ahead) for both experi-
ments, nine zones (six probabilities), and four zones
(four probabilities), respectively. A warm-up period
of 20 minutes at both sides (the start and end of the
simulation period) was considered to measure system
performance under steady-state conditions.

Table 2 One-Step-Ahead and Two-Steps-Ahead Performance
Comparison Nine Zones, Six Probabilities

Waiting Travel Total
time (min) time (min) time (min)

PSO Mean Std Mean Std Mean Std

One step ahead 21.70 2.22 23.88 1.51 45.58 3.47
Two step ahead 20.03 3.33 23.17 1.33 43.20 4.23

Savings 1.67 0.71 2.38
Improv. % 7.68 2.98 5.22

Tables 2 and 3 show the performance of the two
algorithms over the whole three-hour period (exclud-
ing the warm-up interval). From the results shown
in the tables above, we appreciate that the predictive
(two-steps-ahead) algorithm systematically performs
better than the one-step-ahead algorithm, supporting
our initial guess regarding the necessity of adding a
predictive component into the real-time routing algo-
rithms applied to this kind of system.
The most important savings from the predictive

approach comes from the waiting time component
(13.23% in the best case). From this result, we can
infer that most prediction benefits are due to avoiding
extra waiting at future pickup points on scheduled
vehicle sequences, which is quite manageable by the
dispatcher once he can make routing decisions based
upon future potential requests.
From the example, improvements in travel time

from predictive algorithms are lower than those
obtained for waiting time (5.38% in the best case).
In addition, there is absolutely no observable improve-
ment in operational cost; it remains practically con-
stant, as shown in Table 4. We hypothesize that the
magnitude of the travel time benefits as well as sav-
ings in operational cost could be improved by con-
sidering further adjustments of the objective function
formulation. Actually, the current objective function
version does not take into account the real weight of
the operational cost compared with customer level
of service in terms of waiting and travel time as part
of the specification (see §5 for discussion of this topic
as part of planned further research).
Moreover, it seems that the most aggregated zoning

scenario (Table 3) results in a more efficient routing

Table 3 One-Step-Ahead and Two-Steps-Ahead Performance
Comparison Four Zones, Four Probabilities

Waiting Travel Total
time (min) time (min) time (min)

PSO Mean Std Mean Std Mean Std

One step ahead 21.92 4.52 23.98 1.53 45.90 5.33
Two step ahead 19.02 3.36 22.69 1.46 41.71 4.58

Savings 2.74 1.29 4.19
Improv. % 13.23 5.38 10.05
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Table 4 One-Step-Ahead and Two-Step-Ahead Comparison of
Operational Cost Per Vehicle

Vehicle travel
time (min/veh) 4 zones, 4 probabilities 9 zones, 6 probabilities

PSO Mean Std Mean Std

One step ahead 179.87 11.75 182.39 7.84
Two step ahead 178.73 8.42 183.41 13.06

scheme from the two-steps-ahead algorithm than the
solution obtained from the one-step-ahead case, when
compared against the nine-zone scheme (Table 2).
One of the explanations for this difference is that the
more aggregated the modeling area is, the more accu-
rate the prediction of probabilities. Thus, it is eas-
ier to find vehicle routes following well-known trip
patterns (as those shown in Figure 4), resulting in bet-
ter prediction of potential rerouting along those paths.

5. Summary, Conclusions, and
Further Research

This paper presents an analytical way of modeling
the impact of stochastic rerouting delays for dynamic
multivehicle pickup and delivery problems based on
a hybrid adaptive predictive control scheme to opti-
mize the vehicle dispatch and routing decisions by
including future information with regard to unknown
demand. Major contributions of this research include
the development of an adaptive dynamic state-space
model, including two well-used descriptive variables
(vehicle load and departure time) and an objec-
tive function for dispatching oriented to improve
the client level of service provided by the system.
By using prediction (two-steps-ahead method) within
the optimization scheme, a considerable improvement
with respect to myopic rules (one-step-ahead method)
was found empirically, showing the benefit of the
introduction of such schemes in real-time routing and
scheduling of flexible transit systems. We recognize
that the problem considered here has a hybrid nature,
in that it includes discrete variables (sequences and
load) as well as continuous variables (departure time)
that need to be adaptive along the system operation
time, yet must be predictive for improving the sys-
tem behavior by considering potential rerouting in the
near future. Although we could have used a longer
prediction horizon, a two-step-ahead prediction so far
seems sufficient to prove the benefits of the approach.
Another significant contribution of this work is the

development of a solution algorithm based on PSO
specifically designed to solve the DPDP. It finds near-
optimal solutions in reasonable computation time,
which allows the implementation of real-time sys-
tems. This scheme could still be improved after a
sensitivitys analysis in order to find the optimal

parameters of this algorithm (cognitive, social, and
inertia weight).
Experimental results show a considerable reduc-

tion in customer waiting times, along with a positive
(although small) improvement in travel time sav-
ings. Benefits of the predictive approach considerably
increase when the urban area is compacted into four
zones instead of the original partitioning, correspond-
ing to nine zones. This benefit of the aggregation most
probably came from decreasing the uncertainty by
involving fewer probabilities in the computations.
In further applications, several elements of the

approach must be improved. First, we expect to count
on a stricter analytical expression for the state-space
model, particularly the A and B matrices as depen-
dent on the vehicle sequence. In more sophisticated
applications, additional components could enrich the
state-space models as well as the objective function
formulation.
Second, and related to the previous issue, a more

complete rigorous expression for the objective func-
tion must be used. That should explore the inclusion
of time windows (hard and soft) and a better con-
sideration of operational costs. A sensitivity analy-
sis with regard to both parameters  and � is to be
investigated, when counting with more sophisticated
algorithms to solve the two-steps-ahead problem. We
claim that it is possible to improve the estimate of tun-
ing variables, such as the number of probable calls,
future step time prediction (� , which is unknown),
prediction horizon (N ), service policy, search over dif-
ferent feasible solutions structures, etc.
Third, because the proposed PSO is so much more

efficient than EE, we will be able to predict more
than two steps ahead. For the same reason, we plan
to allow partial swapping of the original vehicle
sequences to search a bigger feasible set, and get
solutions closer to the optimum. In addition, we are
working on a GA in an attempt to find an efficient
algorithm besides PSO to solve this problem.
Fourth, the way in which the system informa-

tion is internalized through probabilities can also
be improved through a more realistic scheme. This
requires a better understanding of the historical data
(fuzzy clustering). We also propose to combine histor-
ical data (offline) with online information in a more
elaborate model able to capture imminent events that
could affect the system performance.
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