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After Vickrey’s view, Mohring constructed a microeconomic model to determine
the optimal frequency of buses serving a corridor with fixed demand. The main result
was that frequency should be proportional to the square root of demand. The role of
users’ costs was shown to be crucial. This approach has evolved over the past decades,
improving our understanding of public transport operations. This paper describes and
analyses the evolution of microeconomic models for the analysis of public transport
services with parametric demand, leading towards a more comprehensive one. An in-
depth review of all the contributions in the academic literature is presented,
emphasizing both the treatment of variables and the form of the results mostly in terms
of frequency and fleet size. A series of partial new elements is also identified. An
extension of Jansson’s model for a single period is developed analytically, including
the effect of vehicle size on operating costs and the influence of crowding on the value
of time. Numerical simulations are used for comparison and analysis. A general model
is then proposed where bus operations are optimized accounting for a number of
simultaneous relations. Finally, the different models are discussed and compared.

1. Introduction
In the microeconomic analysis of urban public transport, two types of resources have

to be taken into account: those provided by the operators, as vehicles, fuel, terminals or
labour, and those provided by the users, namely their time, usually divided into waiting,
access and in-vehicle time. After Vickrey’s view (1955), Mohring (1972, 1976)
constructed a microeconomic model to determine optimal frequency of buses serving a
corridor with fixed demand. The main result was that frequency should be proportional to
the square root of demand, and this happened only because all resources (operators’ and
users’) were considered when finding the minimum cost operation. The role of users’ costs
was shown to be crucial. This approach has evolved along the last decades, improving our
understanding of public transport operations.

In this paper we describe and analyse the evolution of microeconomic models for the
analysis of public transport services with parametric demand, leading towards a more
comprehensive one. An in-depth review of all the contributions in the literature is
presented, emphasizing both the treatment of variables and the form of the results mostly
in terms of frequency and fleet size. This permits the formulation of a general model
where bus operations are optimized accounting for a number of simultaneous relations.

An extension of Jansson’s (1980, 1984) model for a single period is proposed,
including the effect of vehicle size on operating costs and the influence of crowding on the
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value of time. In this extended model, vehicle size is optimized in addition to fleet and
frequency, including a capacity constraint. Unlike the general model, this can be solved
analytically. Numerical simulations are used for comparison and analysis of the resulting
frequencies. Finally, a comparative analysis is presented in which the different models are
discussed and compared.

2. Mohring’s models
In his pioneering work based on Vickrey’s view (1955), Mohring (1972, 1976)

developed a microeconomic model to optimize bus operation in an isolated bus route. A
bus fleet B, with an operating cost c per vehicle-hour produces a frequency f. If Y
passengers per hour use the service and tw, tv and ta are the average waiting time in the
bus stop, in-vehicle time and access (walking) time, respectively, the total value of the
vehicle resources consumed (VRC) by operators and users per hour is:

VRC = Bc + PwtwY + PvtvY + Pa taY, (1)

where Pw, Pv and Pa are the prices of time (waiting, in-vehicle and access, respectively).
Note that a constant c implies a given bus size, which reveals an implicit assumption on
capacity enough to accommodate demand.

Cycle time tc is assumed constant in this model. It is related with B through frequency,
i.e.

B = f tc. (2)

Replacing (2) in (1), assuming that average waiting time is half the vehicle interval (h =
1/f) and assuming that tv and ta are constant, the VRC can be written as a function of
frequency only:

VRC = f tcc + Pw

1

2f
Y + Pv tv Y + Pa taY. (3)

This shows that increasing frequency has a double effect. It increases operators’ expenses
but diminishes waiting time (hence the importance of users’ costs), which can be easily
observed deriving expression (3).

�VRC

�f
= tcc–Pw

1

2f2
Y. (4)

Making it equal to zero, and noting that the second derivative is positive, the optimal
frequency is obtained as:

f* = ����Pw

2tcc
Y, (5)

which is known as the ‘square root formula’.
Mohring (1972, 1976) also presented a more complex model in which the number of

stops in the corridor is a variable as well, and where both the bus cycle time and users’
in-vehicle time depend on the number of passengers boarding and alighting. Moreover, a
probability of buses not stopping at a bus stop is also considered. Cycle time now is:
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tc = t
Y

f
+ tr + tp p (1 – e–n), (6)

where p is the number of bus stops in the route and

n =
2Y

fp
(7)

is the average number of passengers per bus that boards or alights at each bus stop.
The ratio Y/f is the number of passengers that board a bus within a cycle, while t is

boarding and alighting time. Thus, the first term in the right-hand side of equation (6) is
the total time each bus remains at the bus stops along a cycle. On the other hand, tr is the
time a vehicle is in motion during a cycle (including delays due to traffic interaction).
Delays due to speed reduction and acceleration at the bus stops are included in the third
term of the right- hand side. This is expressed as the product between this type of delay
time at a bus stop (tp), the number of bus stops (p) and the probability of actually stopping,
(1 – e–n).1

On the other hand, if l is the average journey length and L is the route length, the
average travel time can be written as a function of cycle time:

tv = tc
l

L
. (8)

The average access time (ta) enters the model as a function of the number of stops (p) and
access or walking speed (va). Origins and destinations of passengers are assumed to be
homogeneously distributed along the route. On average, passengers will have to walk one-
quarter of the distance between stops (ratio between L and p) in their origins and in their
destinations. Thus,

ta =
L

2p va

. (9)

Replacing the last two equations in the VRC function (3) yields:

VRC = f tc (f, p) c + Pw

1

2f
Y + Pvtc (f, p) 

l

L
Y + Pa

L

2pva

Y. (10)

Equations (6), (7) and (10) make VCR a function of f and p. Increasing frequency
increases operators’ expenditure and diminishes both waiting and in-vehicle travel times
of the users. Increasing the number of bus stops increases both operators’ expenditure and
in-vehicle users’ travel time, but diminishes access time. Frequency does not influence
access time and the number of bus stops does not affect waiting time. Although the trade-
offs are quite clear, explicit optimum expressions for f and p can not be found analytically,
which is why Mohring finds them numerically.

3. Jansson’s models
Jansson (1980, 1984) simplifies Mohring’s model (equations 6–10) by eliminating the

number of bus stops as a variable and assuming buses always stop, but keeping the effect
of passengers boarding and alighting on travel time. This reduces cycle time to:
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tc = t
Y

f
+ T, (11)

where T is vehicle time in movement within a cycle, including interactions with other
vehicles and time to reduce speed and accelerate at each bus stop. On the other hand,
frequency is given by the ratio between fleet size and cycle time (B/tc), which combined
with equation (11) yields:

B = f T + tY. (12)

In this model, access time is a constant because neither route design nor the number of bus
stops are considered as variables and, therefore, access cost is not relevant to optimize the
service and may not be included in VRC. Recalling equations (1) and (8), the relevant total
value of the resources consumed (VRC) per hour is:

VRC = Bc + Pw

1

2f
Y + Pv

l

L
tc Y. (13)

Using equations (11) and (12), we can write expression (13) as a function of B, i.e.

VRC = Bc + Pw

T

2(B–tY)
Y + Pv

l

L �T + 
tTY

B–tY �Y. (14)

This expression shows that, ceteris paribus, increasing the number of vehicles diminishes
users’ costs but increases operators’ costs. Users’ cost reduction occurs because increasing
frequency diminishes both waiting and in-vehicle travel times, the latter because fewer
individuals board and alight per bus.

Minimizing VRC with respect to B yields the optimal fleet size B*, given by:

B* = tY + ���������TY

c � 1

2
Pw + PvtY

l

L � . (15)

From equation (12), the optimal frequency can be obtained as:

f* = ���������Y

cT � 1

2
Pw + PvtY

l

L � , (16)

which represents a modified version of the ‘square root formula’. According to this result,
optimal frequency increases proportionally to the square root of total demand if the second
term in the parenthesis is negligible relative to the first, but it can vary proportionally to
demand if the contrary happens.

The average number of passengers aboard each vehicle in this model is given by:

k =
Yl

fL
, (17)

which should be less than the vehicle capacity assumed for the calculation of c.
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An important limitation of the previous models is that they require homogeneous
conditions along time. In fact, variables like Y and T do vary during a day. Using these
models for each homogeneous period makes the value of c debatable. If, as a result of the
optimization procedure, the same number of buses was obtained for each period, then a
common (single) value for c would be appropriate (unless for the observation in the
previous paragraph). However, if more buses were needed in the peak period, c would
have to be larger for that period, because the capital cost for the off-peak period would be
nil (no need for a new bus). Besides, crew cost per hour for the operator would be larger,
as the firm would need extra drivers in the peak hour in this case. These reasons made
Jansson (1980) estimate that the cost of running an extra bus during one off-peak hour
represents between one- and two-thirds the cost of running one extra bus exclusively for
the peak hour. Along these lines, Jansson expanded his model considering two periods
during the day: peak and off-peak, concluding that in general it would be optimal to
consider the same number of buses (fleet size) for both periods. Because of practical
considerations regarding scheduling, Jansson stated that a common frequency was the
most appropriate operating rule; note that a lower cycle time in the off-peak period would
imply that less buses would be required. A further modified version of the square root
formula is obtained, i.e.

f* = ����������Ȳ

cTP � 1

2
Pw + PvtYP

l

L � , (18)

where YP and TP are the values that Y and T have in the peak period, respectively, and Y
is the weighted average of the hourly demand (considering peak and off-peak periods).
Thus, the optimal frequency depends both on the peak and off-peak demands.

Finally, Jansson extended his model to determine the optimal size of vehicles, using
a linear relation between c and vehicle size (K) that he found appropriate for both running
and standing costs, i.e.

c(K) = c0 + c1 K, (19)

where c0 and c1 are constants. Vehicle size is equal to the number of passengers aboard
each vehicle (k) in the peak period, given by equation (17) with Y = YP. This was
introduced in the previous model, obtaining a new optimal frequency rule:

f* = �����������������1

c0TP �Y � 1

2
Pw + PvtYP

l

L � + 
c1Et(YP)2l

L � , (20)

where E is the length of the operation period. Two differences emerge in this new
expression: first, in the denominator of the square root c is replaced by c0, and, second,
a new term related with c1 appears. Both differences work to rise f* in comparison with
the situation where the bus size is given (equation 18).

4. Other models
The optimization of isolated bus corridors has received further attention from other

viewpoints as well. Kraus (1991) developed a pricing model that considered an interesting
new aspect, namely the effect of crowding inside the vehicle by means of a time price
related with the passenger/capacity ratio. He considered a bus line that ran between the



458 S. R. Jara-Dı́az and A. Gschwender

CBD and the periphery; the users board along the route and alight at the end. The effect
of crowding on the time price is set such that:

Pv = �Pv if the passenger boards before stop i0

Pv + Ph if the passenger boards after stop i0 (21)

where i0 is the bus stop where all seats are occupied. Thus, Ph > 0 is the extra time price
perceived by those that have to travel standing because all seats are occupied. Therefore,
the users that board at the first bunch of bus stops and seat cause a larger marginal (user)
cost (through Ph on those that have to stand) than those who board when there are no
empty seats left. This is in essence why the pricing model of Kraus (1991) yields higher
optimal fares for those that board first. The frequency is an exogenous parameter in this
model.

Using elastic demand, Oldfield and Bly (1988) developed a model to determine
optimal bus size considering passenger congestion, making waiting time dependant on
vehicle occupancy. Demand depends on the generalized cost, under a constant elasticity
form. The treatment of waiting time is particularly interesting as it depends not only on
the service frequency, but also on the vehicles occupancy rate ø = k/K, which affects the
probability of a passenger not being able to board the bus, increasing waiting time.
Thus,

tw = tw (f, ø). (22)

The model includes three alternative functional forms for the average waiting time:
constant occupancy rate, product form and additive form. In the first case:

tw =
�

f
, (23)

where � is a constant that depends on the level at which ø is set. If it is low and passengers
arrive randomly, � will be close to 0.5. The larger ø, the larger will be �. The product and
additive functions are:

tw =
�

f
. (1 – zø�)–1 and (24)

tw =
�

f
+ zø�, (25)

respectively, where �, z and � are parameters. In both cases, increasing ø increases average
waiting time and, for sufficiently low values of ø (depending on the values of both z and
�), the average waiting time collapses to �/f. As in Jansson (1980, 1984), the operating
cost is assumed proportional to vehicle size.

The model includes two type of externalities. On one hand, increasing the number of
bus users decreases the number of car users, reducing vehicle congestion and travel time
for all users. On the other hand, increasing bus frequency increases congestion and travel
time.

The objective is to find vehicle size (K) and frequency (f) as to maximize social
welfare, which in this model has three components: consumers’ surplus, externalities
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and producers’ surplus. Both externalities are assumed linear (with respect to demand
and frequency, respectively). This permits to find an implicit function for vehicle
size.

Using elastic demand as well, Evans and Morrison (1997) included two new
variables, namely disruption or non-scheduled delay (d) and accident risk (r). The latter
is measured through the level of risk perceived by the users. Both characteristics are
inversely valued by the users (they prefer low risk and little delay) and both mean a
cost for the operators. Thus, users want them small and operators would like to spend
little on them. Demand depends exponentially on generalized cost GC, which is
specified as:

GC = P + Pw tw (f) + Pvtv + Prr + Pdd, (26)

where tv is constant and waiting time depends on frequency. Users value risk and delays
at Pr and Pd, respectively. P is the service fare.

Operators expenses have two additional terms, cr and cd, which represent the cost of
achieving a certain risk level r and delays d, respectively. The risk-reduction cost function
cr is empirically specified as:

cr = –�1 ln�1 + 
�2r – �3

�4
�, (27)

such that reducing risk from a base level (cr = 0) has a positive cost. The cost of reducing
non-scheduled delay is simply specified as:

cd =
�5

d
, (28)

where the �i (�i > 0) represent different parameters.
Social benefit is maximized, and it includes consumers’ surplus, producers’ surplus

and one negative externality, namely accidents induced by the bus service on the non-
users. This externality is expressed as the number of equivalent fatalities (m), which
depends on service frequency (f) and on the operators’ expenses on safety (cr). Deaths and
injuries weighted by severity are included in m, which is valued in the social benefit
expression at a price Pm. Various financial constraints are considered in a numerical
maximization.

Economies of scale are present in public transport essentially due to the reduction in
waiting time as demand increases. An interesting result from Evans and Morrison (1997)
is that these economies are increased after risk and delays are taken into account. Among
other things, this is due to the larger expenses in safety that are allowed after a demand
increase, which benefits all users.

As seen, isolated corridor analysis played an important role in establishing a rigorous
microeconomic approach to public transport analysis. Nevertheless, the spatial dimension
is indeed important. Along this line, Kocur and Hendrickson (1982) and Chang and
Schonfeld (1991) considered an area served by parallel, equally spaced, bus lines. Both
frequency and lines spacing were considered as optimization variables. Bus cycle time and
passenger travel time were regarded as independent of the number of users, which made
it possible to obtain analytical solutions. In Chang and Schonfeld (1991) the optimal
frequency for a single period is:



460 S. R. Jara-Dı́az and A. Gschwender

f* = 3 ����P2
wvaY

WtccPa

, (29)

where W is the width of the area served by parallel bus lines (an extension is developed
for multiple periods). Both papers conclude that both the optimal interval between buses
and the optimal spacing between lines are inversely proportional to the cubic root of
demand. This result shows that when it is possible to act on the bus lines density, the
optimal reaction to demand increases has two dimensions: increase lines density and
increase bus frequency. Because of this, in this case (cubic root) optimal frequency grows
less than in the isolated corridor case (square root). On the other hand, the spatial
distribution of demand has been taken into account by Jara-Diaz and Gschwender (2003),
who analysed the optimal size and assignment of a bus fleet to a set of bus lines serving
either along non-overlapping corridors (transfers are needed) or as a set of direct (point-to-
point) services; a new version of the ‘square root formula’ for fleet size was found,
including some coefficients that affect waiting and travel time averages, representing both
the spatial structure of demand and the bus lines structure. In another field of spatial
investigation (optimization of the physical location of bus routes), Chien et al. (2001)
proposed a genetic algorithm approach that finds an approximation to the optimal bus
route location and frequency for a feeder route. In this recent contribution user and
supplier costs are considered and, not surprisingly, the optimal frequency happens to
follow a ‘square root formula’.

5. New model to optimize frequency and capacity including crowding
In what follows, an extension of Jansson’s (1980, 1984) model for a single period is

shown, including the effect of vehicle size on operating costs and the influence of crowding
on the value of in-vehicle time. In this model, vehicle size is optimized in addition to fleet
and frequency, including a capacity constraint. The problem to be solved is:

Min
f, K

VRC = ftc (f)c(K) + Pw

1

2f
Y + Pv(ø) 

l

L
tc(f)Y, (30)

subject to

k(f) ≤ K, (31)

where

ø =
k(f)

K
(32)

is the occupancy rate that affects the value of in-vehicle time. A linear form will be used
for Pv(ø), i.e.

Pv(ø) = Pv0 + Pv1 ø. (33)

A linear form, given by equation (19), is used for c(K) as well. Cycle time is given by
equation (11), and the number of passengers aboard each vehicle (k) is given by
equation (17).
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The analytical solution of this problem presents two cases, depending on the relative
values of c1 and Pv1. If the former is smaller than the latter then constraint (31) is not
active, otherwise it is. For the inactive capacity restriction we have:

c1 < Pv1 ⇒�f* = ��������������Y

c0T�
Pw

2
+ tY

l

L
(2 ����c1Pv1 + Pv0)� (34)

K* = ���Pv1

c1

k(f*)

In the case where constraint (31) is active we get:

c1 ≥ Pv1 ⇒�f* = ��������������Y

c0T�
Pw

2
+ tY

l

L
(c1 + Pv1 + Pv0)� (35)

K* = k(f*)

In both cases k(f*) is given by equation (17). The optimal fleet size (B*) can be obtained
using equation (12).

It is interesting to note that in both solutions the optimal occupancy rate (the ratio
between k(f*) and K*) does not depend on Y. On the other hand, whether or not constraint
(31) is active is also independent of Y. When parameters c1 and Pv1 have the same value,
both cases yield identical results, i.e. the solution is continuous on the ratio between these
two parameters. If c1 = Pv1 = 0, Jansson’s (1980, 1984) optimal solution for frequency
is obtained (equation 16), as expected.

Expression (34) shows that when the marginal cost of the vehicle capacity (c1) is
lower than the marginal value of the occupancy rate (Pv1), it is optimal to have excess
capacity. If the opposite occurs (c1 ≥ Pv1), the optimal vehicle capacity equals the number
of passengers per vehicle (expression 35). Using equations (17), (34) and (35), explicit
expressions can be obtained for the optimal vehicle size for each case:

c1 < Pv1 ⇒ K* =
l

L
���������������Pv1c0T

c1
�Pw

2Y
+ t

l

L
(2�����c1Pv1 + Pv0)�

–1

, (36)

c1 ≥ Pv1 ⇒ K* =
l

L
��������������c0T�Pw

2Y
+ t

l

L
(c1 + Pv1 + Pv0)�

–1

. (37)

These results show that the optimal vehicle size increases with demand at a decreasing
rate (concave in Y) and that K* is asymptotic to different values depending on each
case.

Using equations (32), (33) and the values for the optimal bus size in (34) and (35), the
optimal frequencies can be rewritten as:

f* = �������������Y

c0T�
Pw

2
+ tY

l

L
(Pv + ������c1Pv1)� and (38)
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f* = �����������Y

c0T�
Pw

2
+ tY

l

L
(Pv + c1)� , (39)

for cases (34) and (35), respectively. These equations can be compared against expression
(16) of Jansson’s (1980, 1984) single period and fixed capacity model. Two differences
can be seen: a new term related with c1 appears and, in the denominator of the square root,
c is replaced by c0 (c0 ≤ c). Thus, when vehicle capacity is optimized optimal frequency
is larger than in the fixed capacity case, as happened in the comparison between equations
(20) and (18).

Finally, it is worth noting that equations (35) and (39) correspond to an optimal vehicle
size equal to the load size k. As explained in Section 3, this is what Jansson assumes in
his model for two periods with vehicle cost depending on vehicle size. Then, it is not
surprising that the optimal frequency in this latter case (equation 20) collapses into
equation (39) if equal demands are considered for both periods.

6. Illustration and comparison
To have an idea of the differences among models, we have simulated the variation of

optimal frequency with total demand for four comparable cases, namely Mohring’s model
(equation 5), Jansson’s first model (equation 16) and ours (equations 34 and 35). Most (but
not all) of the parameters used for comparison were taken as those that are typically
observed in Santiago, Chile. These are shown in table 1. Note that as c1 < Pv1 the relevant
equation for the new model is (34). Nevertheless, equation (35) or its equivalent (39), can
be represented as well as it does not require a value for Pv1 but only for Pv for the
numerical experiments; note that a smaller value for Pv1 had to be assumed implicitly in
this case.

Figure 1 shows the simulated frequencies for each of the four cases (bold continuous
lines) as a function of total demand, which varies from 200 to 9200 passengers per hour.
Assuming the value of the parameters given in table 1, this implies passenger flows
between 33 and 1533 pax/h, which are low for a city like Santiago, where at least seven
corridors have passenger flows higher than 10 000 pax/h (in fact, as large as 30 000 in the

Table 1. Parameters for simulation

Parameter Value Units

c 12.07 US$/hr
c0 4.95 US$/hr
c1 0.09 US$/hr
l 10 Km
L 60 Km
Pv 2.70 US$/hr
Pv0 2.16 US$/hr
Pvl 0.54 US$/hr
Pw 8.11 US$/hr
t 5 Sec
T 2.72 hr
tc 3 hr
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main corridor, considering buses only!). The passenger flow (F) can be determined in
these models by:

F = Y
l

L
. (40)

The ratio F/f represents the average number of passengers aboard each vehicle (k), as can
be seen from equation (17).

The simulated results show that the three models tend to coincide for the lowest
levels of demand, particularly for Mohring’s and Jansson’s first model. The divergence
is evident when Y increases. The four curves can be analysed using equations (5), (16),
(34) and (35). First, recall that cycle time tc is considered constant in Mohring’s model
while the other three add boarding and alighting time (demand dependent) to the
vehicle time in motion T. Thus, for low levels of demand, time at the bus stops is less
important such that the models tend to coincide. However, T is always smaller than tc,
which makes optimal frequency always smaller for Mohring’s model. This is reinforced
when demand increases, as clearly seen through the second term in square roots (16),
(34) and (35).

On the other hand, the new model considers cycle time as in Jansson’s first, but adds
two additional features, namely, sensitivity of the value of travel time to the occupancy
rate of the vehicles and operating costs depending on vehicle size. Both features make the
solution dependent on K, which has to be optimized along frequency and fleet size. As
predicted in the discussion in Section 5, the resulting frequencies are larger for the new
model. Optimal vehicle size in the new model varies between four and 47 passengers per

Figure 1. Optimal frequencies in different models.
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vehicle for the ranges of demand in figure 1. From equations (36) and (37), K* can be
shown to grow asymptotically to:

lim
y → �

K* =
l

L
�������������Pv1c0T

c1
�t

l

L
(2������c1 Pv1 + Pv0)�

–1

if c1 < Pv1 and (41)

lim
y → �

K* =
l

L
������������c0T�t

l

L
(c1 + Pv1 + Pv0)�

–1

if c1 ≥ Pv1, (42)

which implies, for the values of the parameters considered, maximum vehicle sizes of 61
passengers per vehicle for the former case and 24 for the latter one. It is worth noting that
when c1 < Pv1, K* directly depends on the square root of Pv1/c1, which make the optimal
vehicle size highly influenced by these parameters. On the other hand, when c1 ≥ Pv1, the
optimal vehicle size simply coincides with the number of passengers aboard the vehicle
(k). Optimal operation at capacity suggests the comparison of all cases against ‘optimal’
frequency when only operators costs are considered, as in this case the minimum
frequency which satisfies demand will be used, i.e. f = F/K, which is the operating rule
that Mohring (1972) calls ‘make service frequency proportional to patronage’ (p. 594).
Assuming a capacity of 65 passengers per vehicle observed in Santiago, Chile, the dotted
line in figure 1 represents this rule, which happens to yield the lowest frequency for all
levels of total demand, as expected. Thus, all four cases in figure 1 generate optimal
frequencies that are larger than the minimum necessary, as required.

In all models but Mohring’s, the larger Y, the more important the second term in
frequency (the one that includes the value of in-vehicle time) relative to the first term (that
includes the value of waiting time). Thus, for large demand values optimal frequency
varies linearly with demand. Nevertheless, although the curves look linear after Y = 3000,
the first term is never negligible relative to the second within the range analysed. For
example, in the case of Jansson 1, the second term is only 42% larger than the first for Y
= 9200.

For synthesis, the numerical simulation clearly shows that optimal frequencies are
model sensitive indeed. When cycle time is considered constant and no provision is made
for the variation of operating costs with vehicle size, i.e. Mohring’s model, the resulting
optimal frequencies are the lowest for any given level of demand. On the other extreme,
when cycle time is sensitive to demand because of passengers boarding and alighting, and
when vehicle size is optimized, the largest optimal frequencies are obtained. The
consideration of users’ costs makes frequencies larger than the minimum necessary if only
operators’ costs were considered. Note, however, that when high frequencies are obtained,
the assumption of a constant travel time between stops becomes debatable and a
dependence of it on frequency seems necessary.

7. Towards a general model
Consider a route of length L and one period. All passengers are evenly distributed

along the route and travel an average distance l. Demand is represented parametrically
by Y, the number of passengers that require the system in 1 h. The problem to be
solved is:
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Min
f,K,cr,cd,p,cx

VRCT = VRCop + VRCU + VRCx, (43)

i.e. to minimize total value of the resources consumed (VRCT), which includes those
perceived by the operators (VRCop), those perceived by the users (VRCU) and those
incurred by society as externalities (VRCX). This is subject to a capacity restriction:

ømaxK ≥ k, (44)

where ømax is the maximum occupancy rate allowed. This could be less than 1 to leave a
capacity margin to account for random variations of demand. The actual occupancy rate
is evidently given by the ratio between the average number of passengers on each vehicle
(k) and their capacity (equation 32) with k given by equation (17).

The objective function is minimized with respect to five design variables: frequency
(f), vehicle capacity (K), expenses to reduce accident risk (cr), expenses to diminish
schedule delay (cd),3 the number of bus stops (p) and expenses to reduce externalities (cx).
As the number of vehicles (B) is given by frequency times cycle time, B is implicitly
optimized through f. Operators expenses are defined as:

VRCop = c(K)ftc(f, p, ø) + cr + cd + cx. (46)

Following Mohring (1972, 1976), cycle time is specified as:

tc = tr (f) + tp p [1 – e–n] + t(ø,f)
Y

f
, (47)

with n defined as in (7).
Vehicle time in motion (tr) corresponds to the vehicle cycle time less time spent due

to bus stops. We put this as a function of f, which makes it possible to consider congestion.
In the case of buses, this function would be increasing beyond a certain frequency (the
model does not include car–bus interactions). The second term represents the extra time
a bus has to spend due to speed reduction and acceleration at bus stops within each cycle,
with tp the extra time due to one bus stop. The term in brackets is the probability of
stopping, which depends on the average number of passengers that wants to board or
alight at each bus stop (n), as explained in Section 2. This is more appropriate for bus
schedules than for underground services, which might be irrelevant in practice because n
is usually sufficiently high to make the term in brackets equal to 1. In any case, this term
multiplied times p yields the actual average number of stops a vehicle has to make in a
cycle.

The fraction of the third term is the number of passengers that board the bus within
each cycle. Once this is multiplied times the time each passenger takes boarding and
alighting (t), the total time a vehicle has to stop to permit passenger board and alight
within each cycle is obtained. The model accepts that this time can increase due to
passenger congestion. If the vehicle is carrying too many passengers, boarding and
alighting gets difficult. Also, this time can be affected by vehicle congestion at the bus
stop if, for instance, there is a queue of vehicles and the users have to walk to the
place where the desired bus is waiting. One has to take into account that t also depends
on vehicle design factors (i.e. number and size of the doors), on the fare collection
system, etc.
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Users’ costs can be written as:

VRCU = Pwtw (f, ø, d (cd)) Y + Pv (ø) tv (f, p, ø)Y +

+ Pata (p)Y + Pmr�f, cr, K, 
L

tr(f)
, d(cd)�. (48)

Average waiting time can be expressed as:

tw =
�

f
+ zø� + d(cd). (49)

The first and second terms follow Oldfield and Bly (1988). The first term represents
a general expression for the effect of frequency on waiting time, while the second takes
care of the congestion effect caused by demand randomness. The fuller the vehicles (the
larger ø), the larger the probability of a passenger not boarding the first vehicle arriving.
Thus, average waiting time increases with the occupancy rate. Finally, the function d(cd)
corresponds to the average schedule delay. Including this in the average waiting time
assumes that vehicles circulate according to a pre-established schedule or keeping regular
intervals.

In-vehicle time is given by expression (8) and, following Kraus (1991), its price
depends on the occupancy rate to represent the effect of crowding inside the vehicle.
Regarding average access time, in this case of an isolated route it depends on the number
of stops according to expression (9).

Finally, there is a last term related with the effect of accidents on the users. The
function r represents the risk faced by the users due to potential accidents. As in Evans and
Morrison (1997), deaths and injuries weighted by severity are included in r, which is
valued at a price Pm. Function r depends positively on frequency (more vehicles
circulating) and negatively on cr (operators’ expenses to diminish accident risk).
Dependence on K is because the heavier the vehicle, the less severe the consequences of
an accident for the passengers. It also depends on the average cruise speed (L over time
in movement), as the larger that speed the larger the probability and severity of an
accident. Lastly, r also depends on schedule delay, because higher exigencies in the
fulfilment of the schedule increase the probability of accidents.

The externalities cost (loss of resources) can be written as:

VRCx = Pmm�f, cr, K, 
L

tr(f)
, d(cd)� + Pxx�f, K, 

L

tr(f)
�. (50)

Function m is very similar to function r just described, but refers to the risk faced by non-
users, external to the system, as pedestrians and users of other modes. In this case, vehicle
size increases that risk, while the other variables follow the same type of relation as in r.
Function x represents a vector of externality levels of other sorts, as acoustic effects, gas
emissions, and so on. These depend on f, K and speed. Externality prices are contained in
the vector Px.
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The model can be easily extended to any number of periods, as in Chang and
Schonfeld (1991), taking into account that some variables are common to all periods (e.g.
K) while others are period specific (e.g. f).

The treatment of vehicle congestion in this model is somewhat limited. High
frequencies can cause delays because of interaction among vehicles serving the route only
(i.e. cars do not interact with public transport). This means that the model ignores two
effects. First, public transport vehicles could in fact share lanes with cars, causing
congestion and delays on car users. Second, if car users are attracted to public transport,
there would be a reduction in congestion.

8. Synthesis and conclusions
After a revision of most relevant microeconomic models for public transport

operations, a number of partial contributions to the original formulations by Mohring
(1972, 1976) and Jansson (1980, 1984) were detected. Some have been incorporated here
into a general model where travel times depend on the number of passengers boarding and
alighting, operating costs depend on vehicle size, access time depends on the number of
bus stops, accident risk and punctuality are interrelated, etc. Road congestion is included,
making speed dependent on frequency, and waiting time is affected by vehicle occupancy
when it approaches vehicle capacity. Safety, punctuality and externalities are considered
in the optimization of frequency, vehicle size and number of bus stops.

An extension of Jansson’s (1980, 1984) model for a single period has been developed
analytically, including the effect of vehicle size on operating costs and the influence of
crowding on the value of time. In this model, vehicle size is optimized in addition to fleet
and frequency, including a capacity constraint. The solution has two cases, depending on
whether or not the capacity constraint is active. A new richer version of the ‘square root
formula’ was obtained for optimal frequency. Comparing the expressions for the optimal
frequency in the different models (table 2), some interesting results arise.

When the spacing between lines and the frequency are optimized altogether, the
optimal frequency grows less (proportional to the cubic root of the demand) than in the
optimization of the frequency alone (proportional to the square root). This is explained by
the possibility of increasing both the frequency and the bus lines’ density, as a response
to demand growths. On the other hand, allowing the vehicle capacity to be optimized
increases the optimal frequency, both in the single period and in the two period’s cases.
Further, when two periods with different demands and travel times are considered, the
optimal frequency (equal for both periods) depends on the demands of both peak and off-
peak periods. Finally, when the occupancy rate is taken into account through the value of
in-vehicle time, the frequency for a given demand tends to be larger than in other cases
because there is yet another positive effect on users, diminishing their cost although
operators’ cost increases. Note, however, that there is also a positive effect on vehicle size,
which softens the effect on frequency.

Numerical simulations confirm that optimal frequencies get larger as users’ costs are
better represented. Differences can be substantial across models for the same total
demand. The effect of users’ costs is quite relevant, particularly in the new model where
optimal frequencies can get as large as three to four times that of the ‘minimum necessary’
rule. On the other hand, optimal vehicle size in the new model is larger when the marginal
effect of the occupancy rate on the value of time is larger than the marginal cost of size.
These make a clear case for a better understanding of the role of users’ costs and its
components on the optimal design of public transport systems.
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Table 2. Optimal frequencies in different models

Model Optimal frequency Assumptions

Mohring
f* = ����Pw

2tcc
Y

Constant cycle and
travel times. One
period.

Jansson 1
f* = ���������Y

cT �1

2
Pw + PvtY

l

L �
Cycle and travel
times depend on
frequency and
demand. One
period.

Jansson 2
f* = ���������Ȳ

cTP �1

2
Pw + PvtYP

l

L�
Cycle and travel
times depend on
frequency and
demand. Two
periods.

Jonsson 3
f* = ���������������1

c0TP�Ȳ �1

2
Pw + PvtYP

l

L� + 
c1Et(YP)2l

L �
Cycle and travel
times depend on
frequency and
demand. Two
periods. Operating
cost depends on
vehicle size.

Chang and
Schonfeld f* = ����P2

wvaY

WtccPa

Constant cycle and
travel times. One
period. Route
spacing is
optimised.

New Model
c1 < Pvt ⇒� f* = �������������Y

c0T�
Pw

2
+ tY

l

L
(2�����c1Pv1 + Pv0��

K* =����Pv1

c1

k(f*)

Cycle and travel
times depend on
frequency and
demand. One
period. Vehicle
size is optimised.

c1 ≥ Pv1 ⇒� f* = �������������Y

c0T�
Pw

2
+ tY

l

L
(c1 + Pv1 + Pv0)�

K* = k(f*)

Operating cost
depends on vehicle
size. Value of
travel time depends
on load factor.
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Notes
1. This probability is obtained assuming that the number of passengers to be served at a

bus stop is a random variable that follows a Poisson distribution with mean n. Thus, the
probability of x passengers wanting to board or alight a vehicle at a bus stop is given
by:

P(x) =
e–nnx

x!
.

The probability of a bus actually stopping is equal to he probability of somebody
wanting to board or alight, which in turn is equal to one minus the probability of
nobody wanting to be served, P(0). This yields:

1–P(0) = 1 – e–n.

2. It is worth noting that both variables are somehow interrelated, as risk could be
diminished allowing for some delays, or little delays regarding a set schedule could be
achieved increasing accident risk. This is not taken into account in the model.

3. This treatment of risk and schedule delays is an alternative to Evans and Morrison
(1997) seen above.
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