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Abstract

The microeconomic analysis of public transportation involves the optimisation of all
resources, both users’ and operators’. This has been applied to optimise frequency and fleet

size for isolated transit lines, as well as to study optimal spacing for multiple lines serving a
single destination. In this paper the spatial structure of transit services is analysed within
the context of multiple origins and destinations. Direct services (no transfers) are compared

against transit corridors for simple though illustrative spatially diversified demands. The
best transit structure is shown to depend upon the demand volume, the relative time values
and on network related parameters. Optimal fleet size preserves the ‘‘square root rule’’.
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Introduction

In the microeconomic analysis of urban public transport (optimal pricing
and design of services), two types of resources are considered as necessary:
those provided by the operators, as vehicles, fuel, terminals, or labour, and
those provided by the users, namely their time, usually divided into
waiting, access, and in-vehicle time. In his pioneering work based on
Vickrey’s view (1955), Mohring (1972, 1976) constructed a microeconomic
model to determine optimal frequency of buses serving a corridor with
fixed demand. The main result was that frequency should be proportional
to the square root of demand, and this happened only because all
resources (operators’ and users’) were considered when finding the
minimum cost operation.

Mohring (1972, 1976) then moved into a more complex model in which
the number of stops in the corridor is also a variable, and where both the
bus cycle time and users’ in-vehicle time depend on the number of
passengers boarding and alighting. Moreover, a probability of buses not
stopping at a bus stop is also considered. The resulting total cost
(including users’ time) can not be minimised algebraically, and Mohring
solves it numerically. Jansson (1980, 1984) simplifies this model by
eliminating the number of bus stops as a variable and assuming buses
always stop, but keeping the effect of passengers boarding and alighting
on travel time. The analytical solution of the resulting cost minimisation
problem yields a modified version of the ‘‘square root formula’’ for
optimal frequency. This is then extended to two periods, regarding vehicle
size as a new variable. The optimisation of isolated bus corridors has
received further attention within the context of elastic demand. Oldfield
and Bly (1988) consider congestion, making waiting time dependent on
vehicle occupancy. Evans and Morrison (1997) include two new variables,
namely accident risk and disruption or non-scheduled delay.

Isolated corridor analysis has played an important role in establishing a
rigorous microeconomic approach to public transport analysis. Never-
theless, the spatial dimension is indeed important. As stated by Jansson
(1979), public transport analysis has to include a network perspective.
Along this line, Kocur and Hendrickson (1982), and Chang and Schonfeld
(1991) considered an area served by parallel, equally spaced, bus lines.
Both frequency and the spatial separation between lines were considered
as optimisation variables. Bus cycle time and passenger travel time were
regarded as independent of the number of users, which made it possible to
obtain analytical solutions (though approximated). The main result (both
articles) is that both the optimal interval between buses and the optimal
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spacing between lines are inversely proportional to the cubic root of
demand. This result shows that when it is possible to act on the bus lines
density, the optimal reaction to demand increases has two dimensions:
increase lines density and increase bus frequency. Because of this, in this
case (cubic root) optimal frequency grows less than in the isolated corridor
case (square root).

When analysing single bus lines, all origin-destination (OD) pairs are
included within that line, such that no transfers are needed. This is a big
limitation indeed if one wants to explore the elements that determine the
optimal spatial structure of a bus system serving a network in which
passengers travel between many points in a two-dimensional space. But
introducing trips with different origins and destinations within an area
poses a great analytical difficulty, because bus lines can be organised in
many different ways. One possible option to serve a demand pattern with
non-aligned OD pairs is to design a set of bus corridors such that users can
make the necessary transfers to reach the corresponding destinations. But
it is also possible to design a set of routes that follow closely the spatial
pattern of demand, with direct bus lines serving the main OD pairs,
causing some overlapping. When demand is relatively low, such a ‘‘full
coverage’’ may be neither in the interest of the bus company nor in that of
the passengers because of the low frequencies that would very probably
result. However, if demand is very large it may well happen that direct
services can operate with sufficiently high frequencies and avoiding
transfer time. This is of common occurrence in most Latin American
capital cities, where public transport demand is very high and direct
services have been observed to operate with fairly dense and connected
networks.1 Thus, in the case of a set of corridors, transfers induce a cost
for the users, while direct services would reduce waiting, walking, and in
vehicle times because of fewer transfers, but more buses could be required.
It is then unclear which type of lines structure, direct or in corridors, is
associated with the minimum total cost.

The objective of this paper is twofold: first, to depart from the single
line analysis in order to explore the Mohring–Jansson approach for
relatively simple OD network structures; second, to discuss the potential
advantages or disadvantages of a transfer-based transit system against
direct services. The idea is to gain insight on the type of solutions for the
optimal transit service spatial patterns, including the optimisation rules

1According to the last OD survey (2001) in Santiago, Chile, there are more than 4.3 million daily bus

trips. They are served mostly with direct lines. During the peak hour, frequency is high, coverage is

full, and many of the buses circulate at full capacity. The total fleet is 8,000 vehicles, organised in 350

lines with a typical average frequency of 8 buses per hour.
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relating frequencies and fleet size. We will show that using the
aforementioned approach it is possible to compare overall resources
consumption (operators and users) for different line structures. To achieve
this, we will start in section two with Jansson’s model (1980, 1984) for a
single corridor, and we will extend it in sections three and four to simple
networks involving non-aligned OD structures and alternative spatial
organisations of bus services. One of the main results is that optimal
frequency keeps a square-root-like solution, involving case specific
parameters that depend on relative time values, among other things.
Most important, the microeconomic model permits the identification of
the most efficient spatial transit pattern among those analysed. Finally,
neither direct services nor transit corridors appear as a systematically
superior alternative. The optimum depends, among other things, on the
level of demand as expected.

The Single Line Model

Following Jansson (1980, 1984), let us consider a corridor served by one
circular bus line of L kilometers long, operating at a frequency f with a
fleet of B vehicles. This service is used by a total of Y passengers per hour,
homogeneously distributed along the corridor where each travels a
distance l: If T denotes time in motion of a vehicle within a cycle, and t is
boarding or alighting time per passenger, then cycle time tc is

tc ¼ Tþ 2t
Y

f
: ð1Þ

On the other hand, frequency is given by the ratio between fleet size and
cycle time ðB=tcÞ; which combined with (1) yields

B ¼ f Tþ 2tY: ð2Þ

If c is the cost per bus-hour for the operator, and Pw and Pv are the values
of waiting and travel time respectively, then the total value of the resources
consumed (VRC ) per hour is

VRC ¼ Bcþ Pw
Y

2 f
þ Pv

l

L
tcY; ð3Þ

where the first term of the right-hand side of equation (3) corresponds to
the operator expenses, and the second and third are users’ waiting and
travel time value respectively. Note that access time is not included in VRC
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because route design is not a variable and, therefore, access cost is a
constant that is not relevant to optimise the service. Note also that c has
been assumed independent of vehicle size, a variable that is ignored in this
formulation.

Using equations (1) and (2), we can write expression (3) as a function of
B; that is,

VRC ¼ Bcþ Pw
T

2 B� 2tYð Þ
Yþ Pv

l

L
Tþ

2tTY

B� 2tY

� �
Y: ð4Þ

This expression shows that, ceteris paribus, increasing the number of
vehicles diminishes users’ costs but increases operators’ costs. Users’ cost
reduction occurs because increasing frequency diminishes both waiting
and in-vehicle travel times, the latter because fewer individuals board and
alight per bus.

Minimising VRC with respect to B yields the optimal fleet size B �;
given by

B � ¼ 2tYþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TY

c

1

2
Pw þ Pv 2tY

l

L

� �s
; ð5Þ

which from (2), yields the optimal frequency

f � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y

cT

1

2
Pw þ Pv2tY

l

L

� �s
; ð6Þ

known as the ‘‘square root formula’’ (Jansson, 1980, 1984). According to
this result, optimal frequency increases proportionally to the square root
of total demand if the second term in parenthesis is negligible relative to
the first, but it can vary proportionally to demand if the contrary
happens.

Finally, replacing optimal fleet size from (5) into (4), the minimum of
VRC is obtained, that is, the cost function C:

C ¼ 2tcYþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTY

Pw

2
þ Pv 2tY

l

L

� �s
þ PvTY

l

L
: ð7Þ

It is interesting to note that operators’ cost corresponds to the first term
plus half of the second (the square root), and the users’ cost includes the
square root plus the third term.
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Extension to a Network

In this section we show how to use the modelling approach presented
above to face the problem proposed and formulated in the introduction.
Now we will deal with a network setting in which known passenger flows
travel between non-aligned OD pairs. They have to be served with a bus
fleet that can be spatially organised in different ways. Therefore, we have
to compare total cost (operators and users) for each line structure.

In isolated corridor models like the one synthesised in the previous
section, total resources consumed are optimised with respect to the
number of vehicles (B). Now we have OD flows in a network, and it is
necessary first to assign optimally a parametrically given fleet size among
lines, in order to optimise B as a second step. This can be done for
different line structures, finding the corresponding minimum total cost and
then comparing across structures. Thus, the problem can be formulated in
two stages that have to be solved for each lines structure. These structures
will be assumed to cover the same space (links) such that passenger access
time is constant across designs (transfers will be assumed to increase
waiting time only). Thus, regarding users’ costs, only waiting and in-
vehicle time are relevant for optimisation and comparison.

In the first stage we consider a given fleet size B of vehicles that have to
be distributed in quantities Bi among the different lines. Waiting times (twj)
and travel times (tvj) corresponding to each O-D pair j can be calculated as
a function of the number of vehicles assigned to each line as well as other
parameters of the problem, that is,

twj ¼ twj ð ~BBÞ; tvj ¼ tvjð ~BBÞ; ð8Þ

where ~BB is the vector of fleets Bi: From (8), average travel and waiting
times (over all OD pairs) can be calculated as a function of all Bi and other
parameters.

�ttw ¼

P
j twjð

~BBÞYj

Y
¼ �ttwð ~BBÞ; �ttv ¼

P
j tvjð

~BBÞYj

Y
¼ �ttvð ~BBÞ; ð9Þ

where Yj is flow (passengers/hour) on OD pair j and Y is total flow. Then,
taking into account restriction B ¼

P
i Bi; we can minimise VRC over all

Bi with VRC given by

VRC ¼ cBþ Pw �ttwð ~BB ÞYþ Pv �ttvð ~BB ÞY; ð10Þ
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with c; Pw and Pv defined as above. As B is exogenous on this stage, we
obtain

B �i ¼ B �i Bð Þ: ð11Þ

Replacing (11) in (9), we obtain the optimal waiting and travel times as a
function of B; that is,

�tt �w ¼ tw½B
�ð ~BBÞ� ¼ �tt �w Bð Þ; �tt �v ¼ tv½ ~BB

�ðBÞ� ¼ �tt �v Bð Þ: ð12Þ

For the second stage, these results are replaced in (10), obtaining VRC as a
function of B:

VRC ¼ cBþ Pw �tt �w Bð ÞYþ Pv �tt �v Bð ÞY: ð13Þ

Minimising with respect to B yields the optimal number of vehicles
B �ðc;Pw;Pv;YÞ: Finally, replacing the result in (13) the minimum cost Cl

for each line structure can be obtained:

Cl ¼ cB � c;Pw;Pv;Yð Þ þ Pw �tt �w B � c;Pw;Pv;Yð Þ½ �Yþ Pv �tt �v B
� c;Pw;Pv;Yð Þ½ �Y

¼ Cl c;Pw;Pv;Yð Þ ð14Þ

from which the structure with minimum overall cost can be identified.

Application

The cases

As mentioned above, a given network and OD flow pattern can be served
with different line structures. Each structure implies different amounts of
resources consumed. In what follows, we will name direct lines a structure of
bus services in which there is at least one line serving each OD pair directly,
that is, a system in which transfers are unnecessary. Note that this structure
does not imply as many lines as OD pairs, because one line can serve many
aligned OD pairs. On the other hand, we will name corridor lines a structure
of bus services in which lines do not overlap. Thus, if the origin lies along
one corridor and the destination lies along a different one, a transfer is
mandatory. As is evident, these two structures just defined are extreme
cases, which will be shown to be helpful for analysis and discussion.

In this section we will define some OD structures and networks that
could be taken as aggregate representations of a street network serving
urban zones. In so doing, we will privilege those assumptions that permit a
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clean analytical solution. Figure 1 shows a simple network with four arcs
(a-b; b-d; e-b; b-c) on which passengers have to travel from different
origins to different destinations.

The three cases present increasingly complex OD structures where the
total number of passengers/hour that enters the system isY; which is equally
distributed across OD pairs. Thus, there are Y=2 passengers/hour on each
OD pair in case one, Y=4 in case two and Y=8 in case three. Note that this
demand distribution keeps the spirit of the single line cases, where a total
demand Y results from passengers that board the system in different places
but with the same trip length, implying the same number of passengers on
each OD pair. For each case, direct and corridor line structures are also
shown.2 The relevant efficiency question is which structure is better from the
viewpoint of total resources consumption (users and operators). To answer
this, we will construct the cost function for each structure in each case,
applying the two stages method introduced in the previous section, following
Jansson’s (1980, 1984) approach. Details will be shown only for the first
network, as the remaining algebraic derivations are similar.

First stage: fleet distribution

Let T0 be the round trip time between consecutive nodes required by a
vehicle (not including boarding and alighting), and let t be the time each
passenger has to assign to either board or alight. Let fi be service
frequency of line i: As discussed previously, in the first stage we have to
distribute B among the lines in order to calculate the average travel and
waiting times as a function of B: Let us analyse the first case.

In Case 1 (which could be looked at as a centre-to-periphery case), the
direct lines structure presents a symmetric case for the assignment of
demand to lines. The optimal distribution of the fleet is to assign B=2 buses
to each line. Cycle time on each line is then given by

tci ¼ 2T0 þ 2t
Y=2

fi
; ð15Þ

where 2T0 corresponds to the vehicle cycle time with no passengers
boarding or alighting. In the second term, the ratio between Y=2 (total
number of passengers/hour) and the line frequency yields the passengers
that board and alight each vehicle during a cycle. Therefore, this number
times 2t is the total time each vehicle remains at the bus stops on each
cycle.

2Note that in all three cases cyclical single line services passing through node b many times could

accommodate all OD flows, but cannot be taken as cases of interest in this network context.
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On the other hand, frequency is also the ratio between the number of
vehicles and cycle time. As we have B=2 vehicles on each line, using (15) we
obtain

fi ¼
B=2

2T0 þ 2tðY=2=fiÞ
; ð16Þ

from which

fi ¼ fI ¼ fII ¼
B� 2tY

4T0
: ð17Þ

As frequency is the same for both lines, passengers in both OD pairs will
experience the same average waiting time, given by half the interval

Figure 1
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between vehicles (the inverse of frequency). Thus, the average waiting time
for each user, as a function of B and other parameters, is

�tt �w ¼
1

2fi
¼

2T0

B� 2tY
: ð18Þ

In-vehicle time is also equal for all users, given by

�ttv ¼ T0 þ
t

2

Y=2

fi
: ð19Þ

The first term corresponds to vehicle in motion, that is, the time it takes to
travel along the two consecutive arcs. The second term is the time the
passenger has to wait on average while others alight at the destination,
taken as half the total alighting time. Note that waiting after boarding
should not be included because this was already accounted for in total
waiting time. Replacing frequency from (17) in (19) we get the average
travel time as a function of B and other parameters:

�tt �v ¼ T0 þ
T0tY

B� 2tY
: ð20Þ

For the corridor lines structure in this same Case 1, demand assignment is
no longer symmetric and the trivial distribution of vehicles disappears.
Cycle times for each line now are

tcI ¼ 2T0 þ 2t
Y

fI
; tcII ¼ T0 þ 2t

Y=2

fII
; ð21Þ

respectively, because corridor I is twice as long as corridor II, and all
passengers have to board at a; but half of them have to transfer at b: As
frequency is the ratio between the number of vehicles and cycle time, from
(21), the following expressions obtain for frequency on each line as a
function of the corresponding number of vehicles

fI ¼
BI � 2tY

2T0
; fII ¼

BII � tY

T0
: ð22Þ

For each OD pair (a-d and a-c) average waiting times are

tw a-dð Þ ¼
1

2fI
; tw a-cð Þ ¼

1

2fI
þ

1

2fII
: ð23Þ

The second term for trips on the a-c pair is due to the necessary transfer in
b: As both O-D pairs have the same number of passengers by construction,
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then the average waiting time as a function of frequencies is

�ttw ¼
1

2

1

fI
þ

1

2fII

� �
: ð24Þ

On the other hand, average in-vehicle travel time for each pair is

tvða�dÞ ¼ T0 þ t
Y=2

fI
þ

t

2

Y=2

fI
¼ T0 þ

3

4

tY

fI
;

tvða�cÞ ¼ T0 þ
t

2

Y=2

fI
þ

t

2

Y=2

fII
¼ T0 þ

tY

4

1

fI
þ

1

fII

� �
: ð25Þ

In both cases, the third term of the expression in the middle corresponds to
the average time a passenger has to stay in the vehicle while other
passengers alight at their destination. The second term represents in-
vehicle time while others transship at b: For those that travel between a
and d; this corresponds to the whole alighting time of those that change
vehicle in order to go to c; while the former remain in the vehicle. For
those that go to c; instead, in-vehicle time at the interchange is half the
alighting time because they are part of the group. Then, average in-vehicle
travel time is

�ttv ¼
1

2
2T0 þ

tY

fI
þ

tY

4fII

� �
: ð26Þ

By replacing equations (22) in (24) and (26) the overall average waiting
and travel times can be calculated as a function of the number of vehicles
assigned to each line. But BII ¼ B� BI and, therefore, average times can
be expressed as a function of BI only:

�ttw ¼
1

2

2T0

BI � 2tY
þ

T0

2 B� BI � tYð Þ

� �
;

�ttv ¼
1

2
2T0 þ

2T0tY

BI � 2tY
þ

T0tY

4 B� BI � tYð Þ

� �
:

ð27Þ

Replacing these results into the expenditure expression (10) and
minimising over BI; the optimal fleet distribution is obtained as

BI
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ tY

r

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ
tY

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ tY

r Bþ

tY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ
tY

2

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ tY

r� �

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ
tY

2

r
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pw

Pv
þ tY

r

¼ aBþ g; ð28Þ
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where the parameters a and g depend on the ratio between waiting and
travel time prices, and also on the product tY: The parameters have a
peculiar expression, such that if the square roots values were similar, g
would vanish and a would be 2/3. This suggests a numerical sensitivity
analysis using actual values for the variables involved. After a number of
experiments (see appendix), we concluded that exact calculations are all in
the neighbourhood of

B �I �
2
3B; B �II �

1
3B; ð29Þ

which we adopted for comparison between line structures. Replacing these
values in (27) we obtain the overall waiting and travel times as a function
of B:

�tt �w ¼
3
2T0

2
3B� 2tY

; �tt �v ¼ T0 þ

5
4T0tY

2
3B� 2tY

: ð30Þ

Let us now see Case 2, in which both structures originate completely
symmetric systems, as shown in the figure. This makes the first stage very
simple, and fleet distribution is direct. Following similar procedures as for
Case 1, we obtain closed expressions for overall average waiting and travel
times. For the direct lines structure the results are

�tt �w ¼
4T0

B� 2tY
; �tt �v ¼ T0 þ

T0tY

B� 2tY
; ð31Þ

and for the corridor lines structure

�tt �w ¼
2T0

2
3B� 2tY

; �tt �v ¼ T0 þ

3
2T0tY

2
3B� 2tY

: ð32Þ

Case 3 is characterised by trips originating and ending at the intersection b
of corridors a-d and e-c: Again, both lines structures generate symmetric
systems, which permits the derivation of closed expressions for the average
waiting and travel times. For the direct lines structure we obtain:

�tt �w ¼
3T0

B� 2tY
; �tt �v ¼

3
4T0 þ

9
8T0tY

B� 2tY
; ð33Þ

Table 1

Waiting and Travel Time Parameters

Case Structure C d jw jv 1=d jw=d jvd

1 Direct 1 1 2 1 1 2 1

1 Corridors 1 2/3 3/2 5/4 1.5 2.25 1.875

2 Direct 1 1 4 1 1 4 1

2 Corridors 1 2/3 2 3/2 1.5 3 2.25

3 Direct 3/4 1 3 9/8 1 3 1.125

3 Corridors 3/4 4/5 2 3/2 1.25 2.5 1.875
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and for the corridor lines structure

�tt �w ¼
2T0

4
5B� 2tY

; �tt �v ¼
3

4
T0 þ

3
2T0tY

4
5B� 2tY

: ð34Þ

The results for all cases and line structures, synthesised by equations (18),
(20), (30–34), show that overall average waiting and travel times have the
same form:

�tt �w ¼
jwT0

dB� 2tY
; �tt �v ¼ cT0 þ

jvT0tY

dB� 2tY
; ð35Þ

where the parameters d;�;jw and jv take different values for each case.
These are shown in Table 1 where the values for the corridor lines
structure in Case 1 are approximated (equations (28) to (30)). Note that �
is the only parameter that has the same value for both structures in each
case.

Second stage: fleet optimisation and total costs comparison

The general forms found for average travel and waiting times in the first
stage, allows us to obtain a general expression for VRC in (13) by simply
replacing (35)

VRC ¼ cBþ Pw
jwT0

dB� 2tY
Yþ Pv �T0 þ

jvT0tY

dB� 2tY

� �
Y: ð36Þ

This can be minimised with respect to B in order to find the optimal
number of vehicles, which happens to depend on the parameters that
represent line structure, that is,

B � ¼ 2tY
1

d
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T0Y

c
Pw

jw

d
þ Pv

jv

d
tY

� �r
: ð37Þ

Finally, replacing B � in (36) we obtain a general expression for the
minimum VRC for each line structure l:

Cl ¼ 2ctY
1

dl
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cT0Y Pw

jl
w

dl
þ Pv

jl
v

dl
tY

� �s
þ Pv�T0Y: ð38Þ

Note that both B � and Cl follow the form obtained by Jansson (1980) in
equations (5) and (7) for an isolated corridor. The ‘‘square root formula’’
survives a network oriented, line structure analysis. This is an interesting
departure from the single line case.

Spatial Structure of Transit Services Jara-Dı́az and Gschwender

273



Now we have the elements to face the second challenge, namely which
line structure is most appropriate to serve a spatially segregated demand.
When comparing total cost Cl for each line structure for each case, the last
term in (38) cancels out, as � is equal for both structures. This
corresponds to the cost of ‘‘in motion’’ travel time. The other two terms
depend upon 1=d and on the ratios jw=d and jv=d; whose values are
shown in Table 1. In Case 1, these three terms are lower for the direct lines
structure, which means that it is this structure with no transfers that is
most convenient for such a network and such a demand pattern. The
comparison is less clear for Cases 2 and 3, in which both 1=d and jv=d are
lower for the direct lines structure, while jw=d is larger. Therefore, in both
cases we need to know the values of the rest of the parameters in order to
choose the most efficient lines structure.

For a general analysis of the three cases, it is convenient to note that the
first term in (38) is practically negligible compared to the second (see
appendix). It is the square root term that dominates for comparison.
Therefore, the condition in all three cases for the direct lines structure to be

the most efficient is

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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w
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dD
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< 2
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cT0Y Pw
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jC
v

dC
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� �s
; ð39Þ

where superscripts D and C stand for direct and corridor respectively.
Some algebraic manipulation turns the condition into
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jC
w
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� �
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jC
v
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�
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� �
: ð40Þ

If the left-hand side parenthesis is positive, it can divide the right-hand side
without changing the sign of the inequality. The sign will change if that
term is negative. Therefore, the conditions for the direct line structure to
be more efficient than corridors are
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This particular form of comparison is attractive because the left-hand side
involves demand related information, while the right-hand side expression
has only lines structure specific parameters. For Case 1, Table 1 shows that
the ratio between jw and d is larger for the corridors, which makes
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condition (42) the relevant one; replacing all parameter values a negative
result is obtained for the right-hand ratio, which is always lower than
Pw=PvtY (positive). This corroborates the result previously obtained:
direct lines should be preferred.

On the other hand, for Cases 2 and 3 condition (41) holds, because
jw=d is larger for direct lines. Replacing the values of the right-hand side
ratios from Table 1, we obtain 1.25 and 1.5, for Cases 2 and 3 respectively.
In each case, this value could be larger or smaller than the left-hand side
term. Thus, the direct lines structure is more likely to be the best the larger
the product tY (as expected) and the smaller the ratio between Pw and Pv

(that is, the smaller the relative value of waiting time). Note that the
difference between Cases 2 and 3 is the presence of a destination in the
node where corridors intersect in the latter case. Thus, everything else
constant, the right-hand side values show that it is (marginally) less likely
that direct lines are the answer in Case 2 when compared with Case 3. A
similar analysis can be done regarding fleet size (equation (37)), which
yields the same conclusions.

Conclusions

Optimising transit services poses many questions: fleet size, lines
frequency, route structure, and vehicle capacity, are among the many
variables involved. The literature has emphasised frequency and fleet size,
based upon single bus lines analysis. However, urban demand structure
presents many non-aligned OD pairs even at an aggregated level, and this
introduces new aspects to understand and discuss. One such aspect is the
spatial organisation of the transit fleet, which can follow demand patterns
by means of direct services, or can rely upon passenger transfers among
services organised in corridors, to mention two extremes only as other
structures are possible. We have analysed simple OD structures in order to
expand the single line microeconomic framework and to investigate the
elements that determine the possible relative advantages of corridors
against direct services. The most interesting result is that the classical
square root expression for optimal frequency survives the expansion of the
single line case to bus networks.

Our results show that optimal transit patterns depend upon many
aspects, some related to the relative values of waiting and in-vehicle time,
and some related to the particular spatial shape of demand and its level.
Although it seems that there is no universal answer, large demand values
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tend to favour direct services. It is important to emphasise that the
advantage of the direct lines structure is, in principle, a matter of avoiding
transfers, diminishing users’ costs (transfer time for some, travel time for
others). On the other hand, corridors let users board any arriving vehicle.
If total fleet size was constant, this type of analysis would be sufficient.
However, fleet size is a variable whose optimal number depends on the
lines structure, as shown. What would be the best spatial structure of
services if users’ costs were not taken into account? Clearly, in that case
direct services would never be an undoubtedly superior solution (at most,
a tie). On the other hand, the analysis presented here has treated demand
parametrically, but users are sensitive to transfers indeed, which makes the
corridor structure sensitive to other type of variables such as climate, bus
stations design, pricing policy, and so on. Elastic demand analysis might
favour direct lines slightly, but this is something that should be
investigated further.

It has not been our objective to replicate actual urban public transport
networks. Effective, sophisticated and huge public transport models have
been built with that purpose. We have extended the microeconomic
framework for the one line case in order to understand the economic
underpinnings of bus services in a spatial setting. It has been proved to be
a useful approach to verify that the basic conclusions of the single line case
do survive the spatial expansion, which has other economic implications
(for example optimal pricing; see Jansson, 1984). Can these results be
generalised? We believe that this could be empirically explored, just as
other economic models have helped understanding of the basics of
production and consumption, setting the foundations of demand or
industry structure studies. An alternative would be to use large scale
models to analyse the relation between optimal fleet size and both the level
and pattern of demand. The normative analysis of public transport
systems will gain enormously from this potential verification.
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Appendix
Exact Calculation of a and g in
equation(28),with t¼ 2.5Seconds.

Y [pass/hr] Pw/Pv a g

2,000 3 0.686 �0.079

2,000 1 0.704 �0.154

1,000 3 0.678 �0.023

1,000 1 0.692 �0.052

200 3 0.669 �0.001

200 1 0.674 �0.003

If B¼ 30 vehicles, the calculation of BI with

the exact values of a and g differs in less than

1 vehicle form the approximation with a¼ 2/3

and g¼ 0.

Numerical Comparison of Both First Terms of the Cost Function (38).

T0 [hr] Y [pass/hr] Pv [US$/hr] Pw [US$/hr] x [US$/hr] z [US$/hr] z/x

3 2,000 4 12 24.8 2,517.4 102

3 2,000 2 6 24.8 1,780.1 72

1.5 1,000 2 6 12.4 847.2 68

0.5 500 2 6 6.2 336.8 54

0.5 250 2 6 3.1 234.9 76

0.2 200 2 6 2.5 132.5 53

Calculations were made considering t¼ 2.5 seconds, c¼ 8.9 US$/hr (Jara-Dı́az and Gschwender,

1997), d¼ 1, C¼ 1, jw¼ 2 and jv¼ 1; x corresponds to the first term in the cost function (38) and z to

the second one (with the square root).
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