
DRAFT

MIXED LOGIT VS. NESTED LOGIT AND PROBIT MODELS

Marcela A. Munizaga and Ricardo Alvarez-Daziano
Departamento de Ingeniería Civil, Universidad de Chile. Casilla 228-3, Santiago, Chile.

mamuniza@cec.uchile.cl, ralvarez@cec.uchile.cl
http://tamarugo.cec.uchile.cl/~dicidet/

ABSTRACT

The development of transport demand modelling can be described as a search of flexible models
adapting to a greater number of practical situations. However, this search has been characterised by a
flexibility-estimability trade off. In one hand, there are the traditional models of the Logit family that
offer closed choice probabilities, but with restrictive assumptions that not always are properly justified.
On the other hand, the Probit model allows to work with an error structure general in principle, but its
estimation is quite complex and subject to identification restrictions. In this context, in addition by
technological advances in term of computer's power and numerical methods, the use of simplified
models has been questioned and it has appeared with force a new alternative of modelling: the Mixed
Logit model.

In this paper we study both theoretically and empirically the antecedents that sustain the formulation of
Mixed Logit model. Through an analysis of the covariance matrix we discuss how these models are
able to model conditions in which independence and homoscedasticity are violated. This analysis is
complemented with two numerical applications that allow to verify the real possibility of using this
model and its capacity to adapt to practical situations. In the simulation experiments data bases are
constructed so that it allows to objectively control the goodness of fit of the model, the reproduction of
the calibration sample and the level of answer to changes in the attributes of the alternatives. The
application with real data tries to validate the empirical study and to verify the feasibility to apply
sophisticated econometric tools. Although its estimation requires simulation, it is observed that in
general the model gives to a suitable reproduction of parameters and a good adjustment to the changes
of policy.

We conclude that Mixed Logit models constitute an interesting and powerful alternative for discrete
choice modelling. Nevertheless, as in the case of any flexible model, it is necessary to be rigorous in the
construction and implementation of a particular specification, justifying suitably the any assumption
done and knowing clearly its consequences previous to the estimation of the parameters.
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1.    INTRODUCTION

The so-called "Mixed Logit" Models have irrupted strongly in the theoretical environment of
transport demand modelling in the last years (Ben Akiva and Bolduc, 1996; Brownstone and Train,
1999). It is a modelling alternative that could be located between the Logit and the Probit model. Its
promoters claim it has the flexibility of Probit, keeping part of the simplicity of Logit. In this work we
analyse its formulation in detail, with an optic of impartiality, verifying the consequence of its
hypothesis.

In the context of discrete choice modelling, the most common approach is based on random utility
theory (McFadden, 1974). According to this theory, each individual n has a utility function Uin

associated to each of the alternatives i, choosing the one which maximises his (her) utility. This
individual function can be divided into a systematic component Vin, which considers the effect of the
explanatory variables (measurable or observable by the modeller attributes), and a random
component εin that takes into account all the effects not included in the systematic component of the
utility function; for example, the incapacity of the modeller to observe all the variables that have an
influence in the decision, measurement errors, differences between individuals, incorrect perceptions
of attributes and the randomness inherent to human nature. Depending on the assumptions made for
the distribution of the random error term, different models can be derived (Ortúzar and Willumsen,
1994).

Now, the models used the most are Multinomial Logit (McFadden, 1974), which is derived
assuming that the error terms εin are iid Gumbel and the Nested Logit (Williams, 1977), that is
derived as an extension of the last, where it is considered the existence of an additional error
component, which represents correlation in a group of alternatives. In synthesis, these models have
very simple structures of covariance (of the error term), which is a simplifying assumption that not
always is sustainable, but it allows to obtain models easy to understand and use.

The Probit model (Daganzo, 1979), on the other side, is derived assuming multivariate Normal
distributed random errors, allowing in theory any error structure (covariance matrix) that the data
permit to estimate, which imply a considerable level of estimation difficulty. This model, that appears
so desirable from that point of view, has been timidly incorporated to practice, even though there are
from some time ago powerful tools that yield its estimation by simulation (see Munizaga and Ortúzar,
1997).

It is in this context that in the last years appear Mixed Logit models (also known as Error
Component models or Logit Kernel Probit), as an intermediate alternative that is somewhere
between Logit and Probit. The main idea of this kind of models is to consider more than one random
component; in this way, apart from the iid Gumbel component, keeping the basic model as a Logit,
other components are added, allowing to model correlation and/or heteroscedasticity. This lets to
gain generality, but the estimation is not any more as simple as in the Logit case, and as in the Probit
case, simulation is required.

It has already been said that the distribution of the random disturbance plays a fundamental role in
discrete choice modelling, and that most common models suppose a homoscedastic and independent
Gumbel distribution. So, if the point is to incorporate models that allow more general error
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structures, it is important to analyse which structures would be desirable to be able to estimate and
why. We are talking about the possible existence of correlation and heteroscedasticity (different
variance) in the error term. In both cases, they can be between alternatives and between
observations. The case of correlation between alternatives (present for example when the user
perceive some alternatives as more similar between them than others) is assimilated under certain
restrictions by the Nested Logit model, yielding a block diagonal and homoscedastic covariance
matrix (see Munizaga and Ortúzar, 1999 a; b). However, many cases of correlation and
heteroscedasticity, easy to associate to practical situations, can not be treated properly with the
traditional models (Munizaga et al, 1997). So, it seems interesting to find a more general model
which adapts to more sophisticated situations.

2.    THE MIXED LOGIT MODEL

2.1 Formulation

The idea of Mixed Logit models is not new, models of these characteristics have been proposed
several years ago. For example, we can quote the works of Cardell and Dunbar (1980), and Boyd
and Melman (1980), where a model equivalent to the current Mixed Logit is described with the
name of Hedonic model. Its recent re-apparition with another name and renewed force can be due
to technological advances in computing and numerical methods allowing now its estimation in less
time. Recently this kind of models have been used to model diverse situations (Train, 1999;
Brownstone and Train, 1999; Algers et al., 1998).

Mixed Logit models assume a utility function Uin conformed by a deterministic component Vin,  a
random component εin independent and identically distributed, and one or more additional random
terms. These additional error terms can be grouped together in an additive term inη , that can be

function of the data (attributes of alternatives), and that potentially models the presence of correlation
and heteroscedasticity. So, the utility function is defined as:

 inininin VU εη ++=  (1)

where εin ~ Gumbel(0, λ) and ηin ~ f(η/θ*), with f a general density function and θ* are fixed
parameters that describe it (eg mean and variance)1. As ε  is iid Gumbel, then the probability
conditional in η of individual n choosing alternative i corresponds exactly to the Multinomial Logit
model:
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So, the probability of choosing the alternative corresponds to the integral of the conditional
                                                                

1 In practical terms, the distribution of the random terms is usually assumed Normal, existing a variety of
justifications behind this assumption. Another distribution that has been used is the log-normal, specially in
those cases where sign restrictions (for a specific parameter) are necessary.
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probability over all the possible values of η, which depends on the parameters characterising the
distribution, this is:

 ∫= ηθηη dfLP inin *)/()(  (3)

As a particular case, it can be assumed a utility function with the following specification2:
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In this expression the assumption is that the deterministic component of the utility is linear in the β
parameters that multiply the attributes x in. Furthermore, it is assumed that η depends of certain
parameters (µin) and data observed related to alternative i (zin), relation which is also supposed lineal
in the parameters. An additional assumption is that the µ  term is a property of the individual, with no
variation over alternatives. The latter means:

in
t
nin zµη = (5)

This specification is the one that has been used in the mayor part of the previous studies (Ben Akiva
and Bolduc, 1996; Brownstone and Train, 1999).

2.2 Covariance Matrix

Given a utility function like (4) and considering also the usual assumption (5), let nz be the matrix of

dimension JK ×  that contains the  vectors inz  for each alternative belonging to the choice set of the

individual ( nCi ∈ ) and nε a random vector iid Gumbel with covariance matrix εΣ  containing each

inε . If it is assumed that each term of nµ  has a density function with zero mean and 2
kσ  variance,

and that the vector has a joint covariance matrix Ω , then the covariance matrix of the model (Σ ),
can be written as:

Izzzz n
t
nn

t
n

2
εε σ+⋅Ω⋅=Σ+⋅Ω⋅=Σ (6)

It is clear that the matrix is positive definite and that its dimension is well defined3 and from this
general expression it can be concluded that the model is capable to model correlation and
heteroscedasticity between alternatives. In effect, if we obtain the covariance between two
                                                                

2 β is a vector of parameters of dimension L (there are explanatory variables L in the deterministic component of
the utility function); xin is a vector of attributes of dimension L; µin is a random vector of dimension K which
components have zero mean and covariance matrix Ω; zin is a vector of attributes associated with alternative  i and
individual n, and has dimension K; finally, εin is a random variable that represents the stochastic error.

3 The covariance matrix is of dimension JJ × . In effect, as Ω  is of dimension KK ×  (with K the number can

of random components), and nz  has dimension JK × , then n
t
n zz ⋅Ω⋅  is a matrix of dimension JJ × ; Then

adding this last to εΣ , which is of dimension JJ × , finally ( ) JJzz n
t
n ×=Σ+⋅Ω⋅=Σ εdimdim .
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alternatives, for nCji ∈,  with ji ≠ :
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which in general will be different from zero if for at least one k, 02 >kσ  and 0, ≠kjnkin zz . In that

case, there will be presence of correlation between alternatives i and j.

For the variance,
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Then if )var()var( jnin UU ≠ it will be heteroscedasticity between those alternatives.

We can see that this is a different form to justify a particular model. The usual form is to make
assumptions directly over the covariance matrix of the error term inε , like for example in the case of

Probit. While in a Mixed Logit model an error structure is built adding terms that are source of
correlation and/or heteroscedasticity.

2.3 Properties of the Mixed Logit

Probably the more interesting property of this model is that under certain regularity conditions any
random utility model has choice probabilities that can be approximated as close as wished by a
Mixed Logit (McFadden and Train, 2001). As a matter of fact,  a Mixed Logit model with Normal
random distributed parameters can approximate a Probit model.

Furthermore the Mixed Logit model, allowing the presence of correlation between alternatives, is
capable to release the assumption of independence of irrelevant alternatives, characteristic of the
Multinomial Logit model. In other words, the substitution patterns between alternatives are flexible.
In effect, given a Mixed Logit probability (9), it can be shown that the ratio between probabilities of
two alternatives depends on all the set of available alternatives.
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2.4 Estimation

The choice probability of a Mixed Logit model, like the presented in equation (3), does not have a
mathematical closed expression as in the Multinomial or Nested Logit. Even more, the integral can
not be solved analytically and simulation must be used. Nevertheless, the fact that the conditional
probability (2) has a Multinomial Logit form can be exploited.
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Then, if R values of η are obtained from its density function *)/( θηf , then for each of this
repetitions it is possible to calculate
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with r=1, ..., R. Accordingly to this, it is possible to obtain an average probability
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and with it to build the simulated likelihood function
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Under regularity conditions, the simulated maximum likelihood estimator is consistent and
asymptotically Normal. Even though (12) is an unbiased estimator of the probability, its natural
logarithm results to be biased (Brownstone and Train, 1999); nevertheless, when the number of
repetitions increases faster than the square root of the number of observations, the estimator is
asymptotically equivalent to the maximum likelihood estimator (Hajivassilou and Ruud, 1994).

3.    MIXED LOGIT COMPARED TO NESTED LOGIT

A subject that has been matter of confusion is that a particular Mixed Logit specification could be
equivalent to a Nested Logit model. This last model was conceived to deal with correlation between
alternatives, grouping similar alternatives into nests within which the iid assumption does hold
(Williams, 1977). The aggregation into nests implies a particular structure of the covariance matrix,
because if two or more alternatives are grouped in a nest, the corresponding off diagonal elements
will be different from zero.

Brownstone and Train (1999) present a Mixed Logit model that they call “analogue” to a Nested
Logit. This particular model is built grouping the alternatives into nests; then, in the utility function a
dummy variable is added for each nest indicating if the alternative belongs or not to it. A common
random parameter is associated to each one of these variables. In this way the model has a
correlation structure such that in the alternatives belonging to the same nest an off diagonal term
appears. The authors conclude that in that way the pattern of correlation is equal to that of the
Nested Logit. Nevertheless, the correct thing to do is to compare the covariance matrix in both
models.

For example, let us suppose a case where three alternatives are available for a particular individual.
These alternatives are car, bus and metro (underground). Let us also suppose that bus and metro are
correlated, because of being perceived as more similar between them than car. This case, that
corresponds to a Nested Logit with a public transport nest could be modelled as a Mixed Logit with
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the following specification according to Brownstone and Train (1999):
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where µ  is a random term with zero mean and variance 2
µσ , and ⋅ε  is an iid Gumbel term with

variance 2
εσ . It is easy to see that the covariance matrix of this model is:
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This matrix has off diagonal terms indicating correlation between bus and metro alternatives;
however, it is heteroscedastic. So this model is not really equivalent to the Nested Logit in terms of
error structure, because the latter is homoscedastic by definition.

The correlation between bus and metro alternatives is given by:
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Then,

• If 22
εµ σσ << , then 0, →metrobusρ

• If 22
εµ σσ = , then 5.0, =metrobusρ

• If 22
εµ σσ >> , then 1, →metrobusρ

From the shown cases, it is clear that larger the deviation of µ  compared to that of the iid Gumbel
error, larger will be the correlation obtained. This is a reasonable result, because µ  is the common
term that imposes the presence of correlation between alternatives bus and metro.

The covariance matrix shows terms outside the diagonal indicating correlation between the alternative
bus and metro. However, it is heteroscedastic. Therefore, this model is not in fact equivalent to the
Nested Logit in terms of the error structure, since the latter is homoscedastic by definition. It is
necessary to notice that this situation can be overcome adding an additional error component in the
not nested alternative, that is to say:
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where µ1, µ2 are iid N(0,σ2
µ).

Accordingly to this:
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However, this additional term is difficult to justify and it doesn't have a direct theoretical
interpretation.  Also, the problem has not been overcome in fact. Indeed, let us suppose the
presence of a new alternative, for example car companion - and let us think, then that car refers to
car driver -. In practical terms one can argue car driver and car companion are considered as similar
alternatives for the individual. This situation can be modelled by a Nested Logit:
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where εauto-ch, εauto-ac are iid Gumbel(0,λ1) – with variances σ2
ε1 – and εbus, εmetro are iid

Gumbel(0, λ2) – with variance σ2
ε2 –. µ1 y µ2 distributes according to the suppositions of Nested

Logit4, with equal variances a σ2
µ1 y σ2

µ2, respectively.  Scale parameters λ1 y λ2 must be chosen so
that σ2

µ1 + σ2
ε1 = σ2

µ2 + σ2
ε2 = π2/6β, that is the joint variance associated to an error term ξin iid

Gumbel(0,β). That yields the following covariance structure:
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If we define φ1=β/λ1 y φ2=β/λ2, then:
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It can be seen that the matrix is homoscedastic, that is possible to identify two nests and that the
correlation within each nest does not have to be the same among different nests.

                                                                

4 A distribution so that µkn + maxi εin ~ Gumbel (0,β)
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If we model the same situation with a Mixed Logit structure, then
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where µ1 ~ N(0,σµ1
2), µ2 ~ N(0,σµ2

2) and εin is iid Gumbel(0,λ) with variance σε
2. The covariance

matrix associated to this model is:
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This matrix would be of a heteroscedastic nature, unless we assume σµ1
2 = σµ2

2 = σµ
2.

Nonetheless, under this additional supposition, the correlation within each nest must be the same.
That is, we will consider an equivalent matrix with the one of NL, only if φ1=φ2. Therefore, in the
described Mixed Logit structure there is a clear trade off between correlation and heteroscedasticity
that it is not observed in the Nested Logit. Again, it is possible to consider additional independent
error terms, seeking a homoscedastic matrix. However, the structure obtained is even more
complicated and less intuitive than the previous example. By the way, it can be demonstrated that if
we consider the matrix presented in (), only one parameter can be estimated. If we differentiate the
model, the covariance matrix is so that only the sum 2

2
2
1 µµ σσ + can be identified. This complicate the

analysis of a Nested Mixed Logit with two nests.

4.    MIXED LOGIT COMPARED TO PROBIT

As mentioned before, the Mixed Logit model is built assuming additional error terms that may imply
a heteroscedastic and correlated covariance matrix. On the other side, in the case of Probit only one
error term is assumed with a general covariance matrix. In effect, a multinomial Probit model is
derived assuming that given a utility function ininin VU ε+= , the vector ( )t

Jnnn εεε ,,1 K=
distributes multivariate Normal with general Σ  covariance matrix.

The Probit model does not have a closed expression of the choice probability either, so it becomes
necessary to use some kind of approximation or simulation. The more used estimation method is the
simulated maximum likelihood with the Geweke-Hajivassilou-Keane (Börsch-Supan and
Hajivassilou, 1993) simulator, which recursively reduce the dimension of the integral up to an
equivalent problem where repetitions of a truncated unidimensional normal are required. The
simulated probabilities of this form are unbiased, continuous and differentiable. The simulation for the
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Probit and Mixed Logit models have different dimension: J-1 for the case of Probit5 and K for case
of Mixed Logit. In this way, if K<J-1 there is an advantage over Probit because the simulation has a
smaller dimension. This will happen when the number of random parameters incorporated to the
Mixed Logit model is smaller than the number of alternatives.

5.    SIMULATION ANALYSIS

5.1 Experimental Design

Following the methodology of Williams and Ortúzar (1982), it was carried out a simulated
experiment with the purpose of checking the real feasibility of application of the model. We elaborate
different synthetic databases considering means and deviations of the attributes from a real database
for Santiago de Chile. It was considered a situation of modal choice with four alternatives (car, bus,
metro and taxi) and four explanatory variables (travel cost, travel time, access time,  income
dummy).

Table 1: Taste Parameters

Car Metro Taxi Travel Cost Travel Time Access Time
Income
Dummy

-0.40 0.20 -0.45 -0.005 -0.08 -0.16 1.2

It is sought to model the case where the alternative bus and metro are considered similar. To build
the stochastic part of the utility function we worked with the Nested Mixed Logit described above
and outlined by Brownstone and Train (1999). It was considered an error term iid Gumbel(0,l) and,
additionally, an error term µn distributed Normal(0,σµ

2) with the purpose of modelling correlation. In
the first place it was only considered this last one in the alternative bus and metro, obtaining a
heteroscedastic covariance matrix. Also we considered iid Normal errors  for the non nested
alternatives seeking to obtain a homoscedastic matrix corresponding to a structure theoretically
modelable with a NL. If we assume that µn ~ N(0,σµ

2), then it is possible to say that µn = snσµ with
sn standard Normal distributed. As σµ is unknown, then we shall estimate its value, with which its
distribution is completely described. Notice that as there is a Gumbel error term, the estimate
parameter will be scaled so that µµ λσσ =ˆ .

For the estimation of the Multinomial and Nested Logit Models, as well as Probit, we used a self-
made code programmed in Gauss (Aptech Systems, 1994) based on the maximum likelihood
routine. For the estimation of Mixed Logit we used a flexible code programmed in Gauss by
Kenneth Train, available in his web page6.The Mixed Logit estimations where made with 200
repetitions using numbers based on Halton sequences (Train, 1999; Bhat, 2000). For the Probit
case, we considered 10 repetitions of the GHK simulator. The reported values correspond to runs in
a personal computer with a 450 MHz Pentium II processor and 64 MB RAM.

                                                                

5 Because it’s based on the differences ij εε − , with i the chosen alternative and j each of the rest J-1

alternatives.
6 http://elsa.berkeley.edu/~train/software.html
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In Table 2 the policy changes considered for the response analysis of the models are reported
(Williams and Ortúzar, 1982); it may be seen that the defined policies correspond to strong changes
in the attribute values, increasing up to double or diminishing to a half some values on each case.

Table 2: Policy changes
Travel Cost Travel Time Access Time

Auto Bus Metro Taxi Auto Bus Metro Taxi Auto Bus Metro Taxi
P1 2.0
P2 2.0 1.5
P3 2.0 0.5
P4 0.5 1.5 2.0 0.3
P5 1.5 2.0
P6 2.0 0.5 0.5 1.5 2.0

The Chi squared index (Gunn and Bates, 1982)  is as a measure of error for each  policy change; it

is calculated as ∑ −
=

i i

ii

N
NN 2

2 )ˆ(
χ , where iN̂  is the number of individuals that choose alternative i

according to the prediction made by the model, and iN  is the number of individuals choosing

alternative  i according to the simulation model.

5.2 Influence of the number of repetitions

As we described Mixed Logit and Probit both require simulation for their estimate. This motivates a
convergence analysis, in the sense of observing the behaviour of the estimates considering variable
the number of repetitions for the simulation. To make operative this comparison in a context of
correlated alternatives, it was considered a database composed by 4,000 individuals and 4
alternatives, where two of those (specifically the alternatives 2 and 3) present a correlation coefficient
equal to 0.5. The database was built assuming a Nested Mixed Logit, with a homoscedastic
covariance matrix. The number of repetitions considered for the simulation took the following values:
5, 10, 25, 50, 100, 200, 250, 500, 750, 1000.

Fundamental aspects for the comparison are: time for convergence, loglikelihood, number of
iterations. It is also interesting to observe what happens to the level of reproduction of the
parameters with those the sample was created. Note that the dimension of integration of both Probit
and Mixed Logit are the same and equals three (The number of alternatives - 1 for  Probit; 3
additional error components for Mixed Logit: one shared that induces correlation and two
independent to achieve homoscedasticity with the other alternatives). To be able to compare the
predictive power of the models, it is considered a strong change in the value of certain attributes.
Then it is possible to calculate the predicted market shares by each one of the models and to
compare them with the observed (modelled) shares. To define the attribute changes we considered
P4 from the policy plan defined. For the case of Mixed Logit we considered both, estimation with
pseudorandom numbers (MLR) and based on Halton sequences (MLH).
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The results for Probit are reported in Table 3, varying the number of repetitions for the GHK
simulator. In general terms, the parameters stay stable even for a low number of repetitions.

Table 3: Probit, 4000 Observations with correlated alternatives. ρρ  = 0.5
Target 5 10 25 50 100 200 250 500 750 1000

Car -0.40 -0.2148
(-2.674)

-0.2747
(-3.298)

-0.3017
(-3.823)

-0.3292
(-3.753)

-0.3179
(-3.597)

-0.3260
(-3.746)

-0.3287
(-3.720)

-0.3279
(-3.656)

-0.3273
(-3.886)

-0.3287
(-3.753)

Metro 0.20 0.2370
(3.965)

0.2263
(3.662)

0.2533
(3.880)

0.2560
(3.889)

0.2542
(3.913)

0.2539
(3.900)

0.2541
(3.878)

0.2544
(3.874)

0.2530
(3.885)

0.2554
(3.894)

Taxi -0.45 -0.2292
(-3.193)

-0.2637
(-3.621)

-0.2943
(-4.525)

-0.3247
(-4.250)

-0.3097
(-4.042)

-0.3203
(-4.214)

-0.3229
(-4.242)

-0.3227
(-4.183)

-0.3204
(-4.358)

-0.3234
(-4.286)

TCOST -0.005 -0.0033
(-5.006)

-0.0033
(-4.888)

-0.0036
(-4.955)

-0.0037
(-4.894)

-0.0037
(-4.946)

-0.0037
(-4.912)

-0.0037
(-4.964)

-0.0038
(-4.991)

-0.0037
(-4.970)

-0.0038
(-4.989)

TTIME -0.08 -0.0584
(-14.960)

-0.0616
(-15.487)

-0.0638
(-18.368)

-0.0655
(-16.022)

-0.0647
(-15.942)

-0.0652
(-16.312)

-0.0656
(-16.323)

-0.0656
(-16.122)

-0.0654
(-16.874)

-0.0656
(-16.582)

ATIME -0.16 -0.1230
(-15.027)

-0.1283
(-15.848)

-0.1357
(-18.709)

-0.1395
(-16.927)

-0.1376
(-16.313)

-0.1388
(-16.748)

-0.1394
(-17.028)

-0.1395
(-16.796)

-0.1391
(-17.460)

-0.1397
(-17.334)

Income
Dummy

1.2 0.9480
(10.063)

1.0156
(10.422)

1.0721
(11.662)

1.1193
(10.671)

1.1000
(10.469)

1.1126
(10.472)

1.1165
(10.704)

1.1176
(10.578)

1.1140
(10.964)

1.1183
(10.839)

σµ 0.9069 0.5263
(3.564)

0.6254
(4.749)

0.7382
(7.246)

0.8053
(6.854)

0.7746
(6.292)

0.7920
(6.580)

0.8024
(6.864)

0.8030
(6.767)

0.7947
(6.967)

0.8049
(7.010)

Nº Iter. 10 7 6 6 6 6 6 6 6 6

Loglik. -1.05450 -1.04922 -1.04560 -1.04472 -1.04586 -1.04604 -1.04533 -1.04516 -1.04525 -1.04519

Time for
convrg.

25.06983 15.48433 23.95383 41.51167 72.73317 130.4957 136.2673 325.0023 438.8447 684.3543

The model presents certain difficulty to reproduce the parameter associated to correlation; however,
it detects its presence for a considerably low number of repetitions, demonstrating the power of the
Probit model.

The results for Mixed Logit are shown in Tables 4 and 5, considering simulation with Pseudo Monte
Carlo method (MLR) and Quasi Monte Carlo (MLH), respectively.

With a low number of repetitions correlation is practically not detected. As a matter of fact, for very
low values of the repetitions, the parameters cannot be compared directly with the target values that
appear in the respective tables. This is explained by the fact that we considered a total variance such
that if it is considered only an error Gumbel iid to explain it, then the scale parameter equals one.
However, under the assumption of Mixed Logit, the error term has been divided into a Normal
distributed component plus the Gumbel error term. Thus, the Gumbel term for the Mixed Logit
explains a smaller portion of the total variance and, therefore, its scale parameter greater than one.
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Table 4: MLR, 4000 Observations with correlated alternatives. ρρ  = 0.5
Target 5 10 25 50 100 200 250 500 750 1000

Car -0.5657 -0.2448
(-2.668)

-0.2456
(-2.676)

-0.2503
(-2.685)

-0.3769
(-2.833)

-0.4420
(-3.571)

-0.5063
(-3.908)

-0.5166
(-3.952)

-0.5235
(-3.975)

-0.5241
(-3.971)

-0.5231
(-3.969)

Metro 0.2828 0.3857
(4.574)

0.3856
(4.572)

0.3853
(4.556)

0.3769
(4.261)

0.3783
(4.011)

0.3808
(3.885)

0.3830
(3.888)

0.3843
(3.882)

0.3856
(3.885)

0.3845
(3.874)

Taxi -0.6 -0.1777
(-2.510)

-0.1785
(-2.520)

-0.1826
(-2.528)

-0.2640
(-2.662)

-0.3904
(-3.696)

-0.4697
(-4.239)

-0.4823
(-4.297)

-0.4931
(-4.348)

-0.4978
(-4.370)

-0.4959
(-4.364)

TCOST -0.0071 -0.0041
(-5.268)

-0.0041
(-5.262)

-0.0041
(-5.242)

-0.0044
(-4.918)

-0.0050
(-4.918)

-0.0054
(-4.936)

-0.0054
(-4.914)

-0.0055
(-4.936)

-0.0056
(-4.952)

-0.0056
(-4.954)

TTIME -0.1131 -0.0820
(-22.066)

-0.0821
(-22.046)

-0.0824
(-21.373)

-0.0877
(-15.310)

-0.0955
(-16.367)

-0.1000
(-16.739)

-0.1005
(-16.752)

-0.1011
(-16.738)

-0.1014
(-16.718)

-0.1014
(-16.704)

ATIME -0.2263 -0.1660
(-31.079)

-0.1661
(-31.041)

-0.1668
(-29.073)

-0.1787
(-15.923)

-0.1978
(-17.160)

-0.2094
(-17.603)

-0.2108
(-17.574)

-0.2123
(-17.534)

-0.2132
(-17.502)

-0.2131
(-17.502)

Income
Dummy

1.6971 1.2229
(14.685)

1.2229
(14.673)

1.2315
(14.276)

1.3408
(10.473)

1.5239
(10.812)

1.6381
(10.845)

1.6518
(10.833)

1.6672
(10.801)

1.6738
(10.779)

1.6746
(10.774)

σµ 1.2825 0.0185
(0.361)

0.0486
(0.610)

0.1379
(0.770)

0.5799
(0.2358)

0.9624
(5.501)

1.1639
(6.930)

1.1889
(7.056)

1.2124
(7.170)

1.2251
(7.228)

1.2235
(7.222)

Nº Iter. 5 5 12 13 6 3 3 3 3 3

Loglik. -1.04785 -1.04783 -1.04780 -1.04770 -1.04650 -1.04507 -1.04492 -1.04488 -1.04483 -1.04485
Time for
convrg.

0.43567 0.769 8.919 24.68983 24.6615 32.0005 32.23033 55.1425 94.5285 113.0605

Table 5: MLH, 4000 Observations with correlated alternatives. ρρ  = 0.5
Target 5 10 25 50 100 200 250 500 750 1000

Car -0.5657 -0.2440
(-2.660)

-0.3010
(-2.879)

-0.4861
(-3.855)

-0.5220
(-3.973)

-0.5337
(-4.017)

-0.5321
(-4.028)

-0.5351
(-4.033)

-0.5375
(-4.048)

-0.5375
(-4.047)

-0.5375
(-4.047)

Metro 0.2828 0.3868
(4.587)

0.3798
(4.362)

0.3788
(3.903)

0.3887
(3.926)

0.3882
(3.883)

0.3877
(3.884)

0.3880
(3.878)

0.3885
(3.880)

0.3884
(3.877)

0.3885
(3.879)

Taxi -0.6 -0.1777
(-2.510)

-0.2335
(-2.767)

-0.4516
(-4.231)

-0.4929
(-4.341)

-0.5122
(-4.455)

-0.5083
(-4.492)

-0.5130
(-4.495)

-0.5138
(-4.512)

-0.5154
(-4.519)

-0.5155
(-4.520)

TCOST -0.0071 -0.0041
(-5.277)

-0.0043
(-5.105)

-0.0054
(-5.047)

-0.0055
(-4.902)

-0.0057
(-4.948)

-0.0056
(-4.968)

-0.0057
(-4.966)

-0.0057
(-4.961)

-0.0057
(-4.962)

-0.0057
(-4.962)

TTIME -0.1131 -0.0820
(-22.055)

-0.0858
(-18.147)

-0.0991
(-17.130)

-0.1009
(-16.735)

-0.1022
(-16.786)

-0.1021
(-16.951)

-0.1023
(-16.895)

-0.1023
(-16.932)

-0.1024
(-16.921)

-0.1024
(-16.921)

ATIME -0.2263 -0.1661
(-31.010)

-0.1745
(-20.783)

-0.2067
(-18.510)

-0.2124
(-17.389)

-0.2154
(-17.573)

-0.2150
(-17.881)

-0.2156
(-17.782)

-0.2158
(-17.820)

-0.2160
(-17.818)

-0.2161
(-17.818)

Income
Dummy

1.6971 1.2226
(14.678)

1.2971
(12.409)

1.6039
(11.310)

1.6567
(10.772)

1.6975
(10.792)

1.6892
(10.905)

1.6964
(10.866)

1.6985
(10.877)

1.7003
(10.876)

1.7002
(10.877)

σµ 1.2825 0.0299
(0.268)

0.4666
(2.552)

1.1105
(7.186)

1.2121
(7.072)

1.2632
(7.433)

1.2514
(7.625)

1.2621
(7.609)

1.2651
(7.657)

1.2686
(7.676)

1.2683
(7.673)

Nº Iter. 6 14 3 3 3 3 3 3 3 3

Loglik. -1.04786 -1.04735 -1.04485 -1.04495 -1.04449 -1.04437 -1.04444 -1.04434 -1.04434 -1.04434
Time for
convrg.

0.5145 2.11733 1.04633 2.0185 14.45367 24.03817 28.67117 91.88383 141.4167 168.4447
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The number of iterations stabilises in 6 for Probit, starting from 25 repetitions.  The Mixed Logit that
considers Halton sequences (MLH) also stabilises from 25 repetitions, but this time in a value equals
to 3. The same number of iterations is the one that we can observe for a Mixed Logit with random
numbers (MLR), but now it stabilises in this number starting from 200 repetitions.

Graph 1: Number of iterations vs repetitions
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Time for convergence is notoriously bigger for Probit. In fact, only considering 5 repetitions, this
takes approximately half an hour, in comparison to the less than a minute that is observed for MLH
and MLR. Although times for Probit are high, they do not discard their use, except for a very high
number of repetitions, case for which the time for convergence overcomes ten hours.

Graph 2: Convergence time vs repetitions
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For a reduced number of repetitions, the lowest times of convergence are associated to the MLH.
However, as the number of repetitions increases the convergence of the MLH becomes slower in
comparison to the MLR. A tentative explanation is that the storage of the Halton sequences occupies
an important amount of the memory dedicated to carry out the calculations.
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For Probit a curious situation is observed. The highest value in the average log-likelihood is obtained
for 50 repetitions (-1.04472), lowering for further repetitions and being stabilised in a relatively
smaller value to the reached maximum (-1.04519 for 1000 repetitions).

The MLH achieves loglikelihood values bigger than -1.045 for 25 repetitions, coming closer to -
1.044 as these increase. On the other hand, the MLR reaches values bigger than -1.045 starting
from 250 repetitions.

Graph 3: Average log-likelihood vs repetitions
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In the response analysis, the Probit achieves values under 10 of the Chi squared index starting from 5
repetitions (see Table 6). A 10 value is considered the threshold for acceptable predictions, given the
inherent randomness of the process. Even from 10 repetitions it achieves values under the critical
value of the index (χ2

95%,3 = 7,815). Even more it is quickly stabilised in very low values, near 3.5.
On the other hand, the MLH achieves values under the critical index starting from 25 repetitions,
while MLR do it from 200 repetitions. By the way, the MLH is stabilised in an index 5,4 (100
repetitions) and the MLR makes it in 5,8 (500 repetitions).

Table 6: χχ 2  index 4000 Observations, correlated alternatives . ρρ  = 0.5
5 10 25 50 100 200 250 500 750 1000

Probit 8.20 5.39 4.02 3.49 3.70 3.57 3.26 3.46 3.57 3.73

MLR 17.60 13.96 6.16 5.81 5.43 5.40 5.44 5.40 5.44 5.44

MLH 17.67 17.52 17.16 12.49 8.12 6.12 5.96 5.83 5.82 5.76

This situation is graphically represented in Graph 4. Note how Probit responses quite well to the
considered policy. ML has an adequate behaviour but it requires more repetitions than Probit.
Certainly both simulators are different but they are inspired in Monte Carlo methods. The GHK
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simulator reduces the dimension of the integral up to an equivalent problem and requires repetitions
of a truncated unidimensional normal deviate. The simulation required for ML is based on random
draws that permit to calculate a well behaved function (the Logit expression for the probability).

Graph 4: χ2 index vs repetitions
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The Market Shares for P4 are shown in Table 7. All the models present only low differences
between different number of repetitions for the simulation. Note that the χ2 index reported above is
calculated from the Market Shares presented in this table.

Table 7: Market Shares, 4000 Observations, correlated alternatives. ρρ  = 0.5
Modelo Modos 5 10 25 50 100 200 250 500 750 1000

Auto 1548 1548 1548 1548 1548 1548 1548 1548 1548 1548
Bus 68 68 68 68 68 68 68 68 68 68

Metro 1761 1761 1761 1761 1761 1761 1761 1761 1761 1761B
A

SE

Taxi 623 623 623 623 623 623 623 623 623 623
Auto 1571 1557 1550 1540 1539 1543 1541 1538 1537 1538
Bus 90 86 84 83 84 83 83 83 83 84

Metro 1720 1734 1745 1750 1751 1750 1751 1754 1755 1755P
ro

bi
t

Taxi 622 625 627 623 626 624 624 625 625 625
Auto 1527 1526 1525 1525 1526 1527 1525 1525 1526 1525
Bus 102 98 87 87 86 86 86 86 86 86

Metro 1755 1760 1774 1773 1772 1772 1773 1773 1773 1773M
LH

Taxi 616 616 614 615 615 615 615 615 615 615
Auto 1526 1526 1526 1524 1523 1525 1526 1525 1524 1525
Bus 102 102 102 97 91 88 87 87 87 87

Metro 1756 1756 1756 1765 1772 1772 1772 1773 1774 1773M
L

R

Taxi 616 615 615 615 614 616 615 615 615 615
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For the specific case of Probit skewed punctual parameters are obtained, in the sense that even
increasing the number of repetitions, the parameters are stabilised in a value different from the real
parameter. This is observed clearly in Graph 5, where the recovery of the parameter σµ can be
appreciated.

Graph 5: Correlation parameter recovery. Probit Model
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However, the confidence intervals appear appropriate (the real parameter is contained in the interval)
starting from 50 repetitions. On the other hand, an excellent behaviour of the model is observed for a
quite low number of repetitions (starting from 10 repetitions). It can be concluded for Probit that an
excessively high number of repetitions is not required.

Graph 6: Correlation parameter recovery. MLR
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When considering a Mixed Logit with simulation based on pseudorandom numbers (MLR), the
estimation of  σµ  is appropriate starting from 100 repetitions (see Graph 6). By the way, it should be
noticed that although in general the confidence interval for this same parameter is adequate, it
presents a strange behaviour for 50 repetitions, motivated by an increase in the t-values. For the
response analysis, good results are obtained from 200 repetitions.

When using Halton sequences for the simulation of the Mixed Logit (MLH), it is observed that the
parameter that induces correlation is unbiased, in the sense that when increasing the number of
repetitions, it is stabilised in a quite near value to the real parameter (Graph 7). These results are
observed starting from an inferior number of repetitions in comparison with the MLH (25 repetitions
against 100 of the MLH). Also, the model responds appropriately to policy changes starting from 25
repetitions.

Graph 7: Correlation parameter recovery. MLH
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5.3 Detailed Analysis for correlated alternatives

A case with 8000 observations is presented considering a correlation coefficient equals to 0.5
between alternatives bus and metro7, where σµ = σε (Munizaga and Alvarez, 2000). First we
consider a heteroscedastic database, while the second database is homoscedastic. The total error
variance was chosen so that the scale parameter when considering only an iid Gumbel disturbance
equals 1, assuring an experiment not completely deterministic nor completely random.

The  results for the estimation process of the Multinomial Logit (MNL), Nested Logit (NL), Probit
and  Mixed Logit (ML) are shown in Table 8, where the reference values are also reported. The

                                                                

7 We also considered higher correlation coefficients, but we prefer to report this particular experiment, because
practical correlation is not substantially high.
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table shows the estimations of the parameters for each model, the t statistic of significance and the t
test over the reference value of the parameter for the ML model. For the NL, the reference value of
φ  is calculated from the simulated correlation.

The ML model allows to recover properly all the values of the taste parameters with which the
database was generated, which is shown by the t statistic, that is less than 1.96 in all cases (see
Table 8, () t-value against zero, [] t-value against target).

Table 8: Simulation Results

Heteroscedastic Database  Homoscedastic Database

Target MNL NL Probit
10 Rep

ML
200 Rep

Target MNL NL Probit
10 Rep

ML
200 Rep

Car -0.40 -0.3402
(-4.791)

-0.3872
(-5.469)

-0.2434
(-4.743)

-0.2946
(-5.168)
[1.848]

-0.40 -0.1489
(-2.143)

-0.2843
(-4.269)

-0.1921
(-3.2748)

-0.4619
(-7.982)
[-1.070]

Metro 0.20 0.3636
(5.848)

0.3171
(5.194)

0.2267
(5.322)

0.2512
(5.263)
[1.072]

0.20 0.4884
(7.982)

0.3605
(6.530)

0.2982
(6.768)

0.1731
(3.666)
[-0.569]

Taxi -0.45 -0.7007
(-12.557)

-0.7698
(-13.065)

-0.4831
(-12.957)

-0.5218
(-12.116)
[1.815]

-0.45 -0.1166
(-2.274)

-0.3101
(-5.905)

-0.2043
(-4.159)

-0.4610
(-10.967)
[-0.261]

TCOST -0.005 -0.0070
(-11.359)

-0.0070
(-11.279)

-0.0049
(-10.912)

-0.0055
(-11.011)
[-0.995]

-0.005 -0.0053
(-8.901)

-0.0052
(-8.453)

-0.0041
(-8.067)

-0.0049
(-9.721)
[0.232]

TTIME -0.08 -0.1044
(-36.560)

-0.1005
(-32.035)

-0.0702
(-30.768)

-0.0804
(-31.172)
[-0.148]

-0.08 -0.0835
(-31.464)

-0.0760
(-27.932)

-0.0614
(-21.918)

-0.0791
(-30.845)
[0.344]

ATIME -0.16 -0.2012
(-47.029)

-0.1954
(-41.264)

-0.1379
(-35.499)

-0.1563
(-36.078)
[0.860]

-0.16 -0.1765
(-44.919)

-0.1643
(-38.757)

-0.1323
(-23.712)

-0.1596
(-36.698)
[0.103]

Income
Dummy

1.2 1.4928
(24.094)

1.4755
(23.953)

1.0686
(21.306)

1.1776
(21.464)
[-0.409]

1.2 1.2454
(21.117)

1.2174
(20.828)

0.9998
(15.243)

1.1866
(21.842)
[-0.247]

φ 0.7071 0.8945
(23.953)

0.7071 0.7458
(22.558)

σµ 0.9069 0.5100
(4.597)

0.7601
(8.352)
[-1.613]

0.9069 0.5441
(5.880)

0.8472
(9.350)
[-0.658]

Iter. 5 5 6 3 5 5 7 2
l(θ) -0.93469 -0.93426 -0.93688 -0.93291 -1.03180 -1.02919 -1.03138 -1.02867
CPU
Time
[min]

0.6 0.8 35.5 42.5 0.7 0.8 35.2 152.5

It is worth noting that there is a relation between the parameters estimated with NL model and those
of the ML. The ratio between both parameters in each database, is relatively constant, and is larger
in the case of more correlation. This can be explained because the presence of heteroscedasticity
affects the scale factor that multiplies the parameters. In the case of the ML model the common error
component (µ) is fixed to a certain value on each repetition of the simulation, so, the scale factor of
the Gumbel distribution is corresponding to the ε random term only λ=π/ 6 σε. While, in the case of
the NL model, even dismissing the heteroscedasticity, it is the sum of both error components that is
supposed to be Gumbel distributed, and in that case the scale is smaller; if all the alternatives had the



20

same variance of the error term, then the scale factor of the NL would be )(6/ 22
µε σσπλ +=

(Munizaga and Alvarez, 2000).

Table 9: Market Shares
Heteroscedastic Database Homoscedastic Database

Alt. Base P1 P2 P3 P4 P5 P6 Base P1 P2 P3 P4 P5 P6
1 3225 2482 2556 2754 2961 2837 3818 3244 2542 2596 2837 2973 2919 3665
2 1056 1146 1190 2262 157 1341 157 918 1090 1113 2050 162 1290 158
3 2625 3017 2862 2103 3858 3327 2897 2498 2843 2729 1975 3626 3171 2799B

A
SE

4 1094 1355 1392 881 1024 495 1128 1340 1525 1562 1138 1239 620 1378
1 3227 2445 2495 2675 2941 2713 3806 3244 2512 2548 2820 3014 2836 3703
2 1055 1232 1266 2281 193 1393 162 918 1065 1093 1869 193 1239 159
3 2624 3034 2908 2166 3882 3398 2865 2498 2867 2758 2165 3557 3289 2717M

N
L

4 1094 1289 1331 878 983 496 1166 1340 1556 1601 1145 1236 636 1421
1 3217 2438 2500 2681 2927 2717 3743 3242 2510 2577 2847 3005 2859 3588
2 1058 1234 1269 2317 182 1391 157 919 1066 1097 1929 168 1228 145
3 2628 3037 2901 2116 3907 3391 2931 2499 2869 2735 2066 3594 3262 2843N

L

4 1096 1291 1329 887 984 502 1169 1340 1556 1591 1159 1232 650 1425
1 3238 2466 2513 2725 3000 2791 3752 3263 2545 2589 2860 3068 2895 3643
2 1067 1239 1275 2305 175 1405 150 932 1082 1115 1938 165 1270 139
3 2610 2984 2859 2103 3830 3324 2928 2478 2826 2709 2080 3528 3227 2784

PR
O

B
IT

4 1090 1318 1361 875 997 486 1170 1332 1553 1594 1129 1240 614 1435
1 3224 2439 2491 2715 2945 2780 3746 3245 2504 2579 2861 3013 2884 3570
2 1057 1221 1257 2297 180 1369 158 920 1065 1095 1927 167 1227 145
3 2625 3008 2877 2092 3889 3345 2948 2498 2864 2724 2059 3591 3255 2854M

L

4 1094 1332 1375 896 986 506 1148 1338 1568 1602 1153 1228 633 1431

The biggest differences between the predictions of the models and the simulated ones (virtual reality)
are obtained especially for the MNL in the heteroscedastic database. The predictions of the NL and
ML are quite similar and practically indistinguishable, for the homoscedastic case, being  both very
similar to the virtual reality. However, if the database is heteroscedastic we observed some small
differences among the predictions of both models.

Table 10: χχ 2  Index
Heteroscedastic Database Homoscedastic Database

MNL NL Probit ML MNL NL Probit ML
Base 0.00 0.03 0.40 0.00 0.00 0.00 0.53 0.01
P1 10.21 10.62 9.00 6.01 1.78 1.79 0.67 2.52
P2 9.65 9.81 7.50 5.65 2.52 0.91 0.81 1.42
P3 4.32 3.41 1.16 1.41 34.34 11.79 11.88 11.37
P4 10.35 6.64 3.41 8.03 11.63 5.44 13.46 5.41
P5 8.99 8.24 3.96 5.16 9.23 8.25 1.54 6.01
P6 1.87 3.40 3.33 2.64 4.15 5.01 4.91 6.64
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6.    REAL DATA

As a way to validate the simulation analysis, an empirical study of a real database for the Las Condes
- CBD corridor was carried out (Ortúzar and Donoso. 1983). Theis database was chosen for its
quality as well as for the fact that it has been broadly studied. The sample consists in 697
observations and 9 alternatives. We worked with the following level of service variables: TT (travel
time). WALKT (walking time). WAITT (waiting time). C/w (cost divided by salary rate). The
correlation structures supposed are presented in Figure 1 and 2. We estimate MNL,  Independent
Probit, NL, homoscedastic Probit and two Nested Mixed Logit specifications. The first one
(HeNML), a heteroscedastic Nested Mixed Logit that considers only one additional term inside the
nest; while the second one (HoNML) is a homoscedastic model that considers also independent
error terms in the non nested alternatives. The correlation coefficient within each nest can be obtain
for the NL through the structural parameter φ, while for the Probit it corresponds to a parameter to
be estimated. In the case of ML, it can be demonstrated that:
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The results are reported in Tables 11 and 12. It is possible to verify that the parameters do not
possess remarkable variations among models. However, it is possible to observe important
differences in the correlation estimated by the different models.

Table 11: Nested estructure 1
MNL Ind Probit NL Probit HeNML HoNML

TT -0.0823
(-4.743)

-0.0554
(-4.031)

-0.0907
(-4.002)

-0.0550
(-1.774)

-0.0951
(-4.936)

-0.0909
(-4.783)

WALKT -0.1610
(-8.625)

-0.1077
(-8.662)

-0.1531
(-7.019)

-0.1067
(-7.702)

-0.1904
(-7.488)

-0.1807
(-7.007)

WAITT -0.2359
(-2.238)

-0.1475
(-2.028)

-0.2170
(-1.966)

-0.1484
(-0.800)

-0.2741
(-2.498)

-0.2641
(-2.426)

C/w -0.0244
(-3.647)

-0.0143
(-2.028)

-0.0228
(-2.854)

-0.0142
(-1.979)

-0.0253
(-3.318)

-0.0267
(-3.424)

SEX -0.2951
(-1.361)

-0.1531
(-1.169)

-0.2627
(-1.269)

-0.1479
(-1.049)

-0.2830
(-1.273)

-0.2923
(-1.305)

LICENCE 2.3606
(5.786)

1.4889
(5.902)

2.2018
(4.842)

1.4736
(1.730)

2.5321
(5.690)

2.5308
(5.496)

φ 0.9181
(6.575)

σµ 1.6061
(3.026)

0.8974
(2.191)

ρ 0.1571 0.0730
(0.299)

0.6106 0.3287

Iterations 6 9 5 27 6 8
Log

likelihood
-1.36456 -1.37835 -1.36439 -1.37828 -1.35857 -1.35989
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While with the NL and Probit very low correlation is obtained, the HeNML obtains a considerably
high value. This value practically reduces to a half when a homoscedastic structure is imposed. Two
possible explanations can be enunciated for this strange result. On one hand it can be postulated that
the database is in fact heteroscedastic and correlated. So when imposing homoscedasticity the
correlation is underestimated. On the other hand it can be that the number of observations of the
sample is not sufficiently high as to be able to recover in a correct way the covariance structure.

Table 12: Nested estructure 2
NL Probit HoNML HeNML

TT -0.0886
(-4.562)

-0.0581
(-4.533)

-0.0955
(-4.990)

-0.0962
(-5.010)

WALKT -0.1292
(-6.486)

-0.0978
(-7.240)

-0.1809
(-8.081)

-0.1813
(-8.082)

WAITT -0.1981
(-2.308)

-0.1464
(-2.378)

-0.3142
(-2.730)

-0.3149
(-2.731)

C/w -0.0228
(-2.801)

-0.0141
(-2.786)

-0.0224
(-3.143)

-0.0226
(-1.167)

SEX -0.2356
(-1.378)

-0.1366
(-1.164)

-0.2667
(-1.173)

-0.2660
(-1.167)

LICENCE 2.2306
(5.292)

1.5845
(5.468)

2.7949
(5.497)

2.7959
(5.476)

φ1 0.9369
(6.888)

φ2 0.6309
(6.012)

σµ 1.0358
(3.805)

1.4847
(3.781)

σµ 0.0219
(0.006)

ρ1 0.1222 0.0333
(0.132)

0.3948 0.5727

ρ2 0.6020 0.4840
(2.688)

0.3948 0.0003

Iterations 6 32 8 9
Log

likelihood
-1.35909 -1.37494 -1.35698 -1.35671

The results presented in Table 12 are quite strange, specially the one obtained for HeNML.
Nonetheless, this structure has related identification issues, as discussed above.
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7.    CONCLUSIONS

From our point of view the ML model is an interesting, very flexible and useful modelling alternative,
permitting to model and estimate correlation and heteroscedasticity with a personal computer in a
moderate time. In this context it can become a real competitor to Probit, usually considered as the
only or principal way to make more flexible the modelling of discrete choices. Nevertheless it is quite
important to know its properties and limitations and to justify properly any specific structure over the
basis of theoretical considerations prior to the estimation of the parameters.

The covariance matrix associated to ML depends on the specification given to the additional error
terms that and it can be as general as desired subject to identification restrictions. In this sense, it
offers a more flexible structure that other models, in particular it has the capacity of recognising
correlated alternatives and taste variations expressed through random parameters.

In this work two numeric applications are presented, one based on simulation experiments (including
a convergence analysis) and another one with real data, both in a context of similar alternatives,
implying a nesting error structure.

It is shown both  empirically and theoretically that the Nested Mixed Logit is not equivalent to
Nested Logit at least considering its covariance structure. However, for the reported correlation
level, if the ML is not adjusted to obtain a homoscedastic covariance matrix, then the predicted
market shares for both do not present severe differences. So we understand that these models could
approximate a situation like the one presented here. We concluded that the nested structure for the
Mixed Logit in theoretical terms always commits homoscedasticity when defining correlation. This
could be seen as a problem if you want to compare it with Nested Logit, or as an advantage for the
gain in flexibility.
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APPENDIX

Let i be an alternative belonging to nest k. Let us consider the utility of this alternative, using a
Nested ML structure: Uin = Vin + µkn + εin, where εin ~ Gumbel(0, λ) and µkn ~ f(0, σµ

2). It is easy
to see that Var(Uin) = σµ

2 + σε
2  and that Cov(Uin,Ujn) = σµ

2  iif  j ∈ k. This kind of covariance
structure implies the following correlation level:
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If µkn ~ N(0, σµ
2), then µkn = sknσµ with skn a standard Normal deviate and the estimated parameter

shall be so that µµ λσσ =ˆ . Let us consider (A.1) and the relation between the scale parameter and

the variance of the Gumbel distribution, then it is direct to demonstrate (24).
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