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ABSTRACT

The development of transport demand modelling can be described as a search of flexible models
adapting to a greater number of practical situations. However, this search has been characterised by a
flexibility-estimability trade off. In one hand, there are the traditional models of the Logit family that
offer closed choice probabilities, but with restrictive assumptions that not always are properly justified.
On the other hand, the Probit model alows to work with an error structure general in principle, but its
estimation is quite complex and subject to identification restrictions. In this context, in addition by
technological advances in term of computer's power and numerical methods, the use of simplified
models has been questioned and it has appeared with force a new dternative of modelling: the Mixed
Logit modd.

In this paper we study both theoretically and empiricaly the antecedents that sustain the formulation of
Mixed Logit model. Through an analysis of the covariance matrix we discuss how these models are
able to model conditions in which independence and homoscedadticity are violated. This analysis is
complemented with two numerical applications that adlow to verify the real possibility of using this
model and its capacity to adapt to practica Stuations. In the simulation experiments data bases are
congructed so that it alows to objectively control the goodness of fit of the model, the reproduction of
the cdlibration sample and the level of answer to changes in the attributes of the aternatives. The
application with red data tries to vaidate the empirica study and to verify the feasibility to apply
sophisticated econometric tools. Although its estimation requires smulation, it is observed that in
genera the model gives to a suitable reproduction of parameters and a good adjustment to the changes

of palicy.

We conclude that Mixed Logit models congtitute an interesting and powerful aternative for discrete
choice modelling. Nevertheless, asin the case of any flexible modd, it is necessary to be rigorous in the
congruction and implementation of a particular specification, justifying suitably the any assumption
done and knowing clearly its consequences previous to the estimation of the parameters.
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1. INTRODUCTION

The so-cdled "Mixed Logit® Modds have irrupted strongly in the theoretica environment of
transport demand modelling in the last years (Ben Akiva and Bolduc, 1996; Brownstone and Train,
1999). It is amoddling aternative that could be located between the Logit and the Probit modd. Its
promoters clam it has the flexibility of Probit, keeping part of the smplicity of Logit. In this work we
andyse its formulation in detall, with an optic of impartidity, verifying the consequence of its
hypothes's.

In the context of discrete choice modelling, the most common approach is based on random utility
theory (McFadden, 1974). According to this theory, each individua n has a utility function Ui,
asociated to each of the dternatives i, choosng the one which maximises his (her) utility. This
individua function can be divided into a systematic component Vi,, which consders the effect of the
explanatory variables (measurable or observable by the moddler atributes), and a random
component g, that takes into account al the effects not included in the systematic component of the
utility function; for example, the incgpacity of the modeler to observe dl the variables that have an
influence in the decison, measurement errors, differences between individuas, incorrect perceptions
of attributes and the randomness inherent to human nature. Depending on the assumptions made for
the digtribution of the random error term, different models can be derived (Ortlizar and Willumsen,
1994).

Now, the modds used the most are Multinomia Logit (McFadden, 1974), which is derived
assuming that the error terms g, are iid Gumbe and the Nested Logit (Williams, 1977), that is
derived as an extenson of the last, where it is consdered the existence of an additiona error
component, which represents correlation in a group of dternatives. In synthesis, these models have
very smple structures of covariance (of the error term), which is a smplifying assumption that not
adwaysis sustainable, but it allows to obtain models easy to understand and use.

The Probit modd (Daganzo, 1979), on the other Sde, is derived assuming multivariate Normal
digributed random errors, dlowing in theory any error structure (covariance matrix) that the data
permit to estimate, which imply a congderable level of estimation difficulty. This modd, that appears
50 desirable from that point of view, has been timidly incorporated to practice, even though there are
from some time ago powerful toolsthat yidd its estimation by smulation (see Munizaga and Ortlzar,
1997).

It is in this context that in the last years appear Mixed Logit modds (also known as Error
Component models or Logit Kernd Probit), as an intermediate dternative that is somewhere
between Logit and Probit. The main idea of this kind of models isto consider more than one random
component; in this way, apart from the iild Gumbel component, keeping the basic modd as a Logit,
other components are added, allowing to model correlation and/or heteroscedagticity. This lets to
gain generdity, but the estimation is not any more as Smple asin the Logit case, and as in the Probit
case, smulation isrequired.

It has dready been said that the distribution of the random disturbance plays a fundamenta role in
discrete choice modelling, and that most common models suppose a homoscedastic and independent
Gumbd didribution. So, if the point is to incorporate modes that dlow more generad error



Sructures, it is important to analyse which structures would be desirable to be able to estimate and
why. We are taking about the possble existence of correation and heteroscedadticity (different
vaiance) in the error term. In both cases, they can be between dternatives and between
observations. The case of corrdation between dternatives (present for example when the user
perceive some dternatives as more Smilar between them than others) is assmilated under certain
regtrictions by the Nested Logit mode, yielding a block diagona and homoscedastic covariance
matrix (see Munizaga and Ortlzar, 1999 a b). However, many cases of correation and
heteroscedadticity, easy to associate to practical Stuations, can not be treasted properly with the
traditional models (Munizaga et d, 1997). So, it seems interesting to find a more generd modd
which adapts to more sophigticated Stuations.

2. THEMIXED LOGIT MODEL
2.1 Formulation

The idea of Mixed Logit models is not new, modes of these characteristics have been proposed
severa years ago. For example, we can quote the works of Cardell and Dunbar (1980), and Boyd
and Mdman (1980), where a modd equivaent to the current Mixed Logit is described with the
name of Hedonic model. Its recent re-gpparition with another name and renewed force can be due
to technologica advances in computing and numerical methods alowing now its estimation in less
time. Recently this kind of modds have been used to modd diverse Stuations (Train, 1999,
Brownstone and Train, 1999; Algerset al., 1998).

Mixed Logit modds assume a utility function U;, conformed by a deterministic component V;,, a
random component g, independent and identically distributed, and one or more additional random
terms. These additional error terms can be grouped together in an additive term h,, that can be

function of the data (attributes of aternatives), and that potentially models the presence of correlaion
and heteroscedadticity. So, the utility function is defined as:

U V'n +hin +Qn (1)

where g, ~ Gumbd (0, | ) and hi, ~ f(h/qr), with f a generd dengty function and o are fixed
parameters that describe it g mean and variance)'. As € is iid Gumbdl, then the probability
conditiond in h of individud n choosing dternative i corresponds exactly to the Multinomia Logit
modd:

) eVin+hin

R.(/h) =L,M) =éT )

in " in

j

So, the probability of choosing the aternative corresponds to the integrd of the conditiona

Y In practical terms, the distribution of the random terms is usually assumed Normal, existing a variety of
justifications behind this assumption. Another distribution that has been used is the log-normal, specially in
those cases where sign restrictions (for a specific parameter) are necessary.



probability over al the possble values of h, which depends on the parameters characterising the
digribution, thisis

Pr = - () f(h/g*)dh 3)

Asapaticular cass, it can be assumed a utility function with the following specificatiory:

Uin = btxin + rTi‘nzin +e|n (4)
\Y] h;

In this expresson the assumption is that the deterministic component of the utility is linear in the b
parameters that multiply the attributes x;,. Furthermore, it is assumed that h depends of certain
parameters () and data observed related to alternativei (z,), relation which is dso supposed lined
in the parameters. An additiond assumption isthat the i term is a property of the individud, with no

variation over dternatives. The latter means;
hin = n:'Zin (5)

This specification is the one that has been used in the mayor part of the previous studies (Ben Akiva
and Bolduc, 1996; Brownstone and Train, 1999).

2.2 Covariance Matrix

Given a utility function like (4) and congdering aso the usud assumption (5), let z, be the matrix of
dimenson K~ J that containsthe vectors z,, for each aternative belonging to the choice set of the
individud (i1 C_) and e, arandom vector iid Gumbel with covariance matrix S, containing each
e, . If it is assumed that each term of ) has a density function with zero mean and s} variance,

and that the vector has a joint covariance matrix W, then the covariance matrix of the modd (S),
can be written as.

S=2z Axz +S, = Z Wxz +s’I ©)

It is clear that the matrix is podtive definite and thet its dimension is wel definec® and from this
generd expression it can be concluded that the modd is cagpable to mode corrdation and
heteroscedadticity between dternatives. In effect, if we obtain the covariance between two

?bisavector of parameters of dimension L (there are explanatory variables L in the deterministic component of
the utility function); x;, is a vector of attributes of dimension L; my is a random vector of dimension K which
components have zero mean and covariance matrix W, z,, is avector of attributes associated with alternative i and
individual n, and has dimension K; finaly, g, isarandom variable that represents the stochastic error.

® The covariance matrix is of dimension J ~ J . In effect, as W is of dimension K~ K (with K the number can

of random components), and Z, hasdimension K~ J , then z, >z, isamatrix of dimension J~ J ; Then

adding thislast to S, , whichisof dimension J* J , findly dm S = dim(z; ANz, +Se) =J"J.



dternatives, for i, jT C, withi? j:
& 2
oov(Ui,,Ujn) = a ZinZgS « (7)
k=L

which in generd will be different from zero if for a least onek, s/ >0 and z,,,z., 1 0. In that

kin
case, there will be presence of correlation between dternativesi and j.

For the variance,

K
varU,) = & Zs i+ 6)
k=1 ol

Thenif var(U, ) * var(U ) it will be heteroscededticity between those dternatives.

We can see tha this is a different form to judtify a particular model. The usud form is to make
assumptions directly over the covariance matrix of the error term g, , like for example in the case of

Probit. While in a Mixed Logit model an error structure is built adding terms that are source of
correlation and/or heteroscedadticity.

2.3 Propertiesof the Mixed L ogit

Probably the more interesting property of this mode is that under certain regularity conditions any

random utility model has choice probabilities that can be gpproximated as close as wished by a
Mixed Logit (McFadden and Train, 2001). As a matter of fact, a Mixed Logit modd with Normal

random distributed parameters can gpproximate a Probit modd.

Furthermore the Mixed Logit modd, dlowing the presence of correaion between dterndives, is
capable to release the assumption of independence of irrdlevant aternatives, characterigtic of the
Multinomia Logit model. In other words, the subgtitution patterns between dternatives are flexible,
In effect, given a Mixed Logit probability (9), it can be shown that the ratio between probabilities of
two dternatives depends on al the set of available dternatives.

ii

bix +mz.) |
exp( Xin n.hzln) )’/f(mn)xxf(m(n)dnlndm(n (9)

J 2
_¥-I- é @(p( btxln + ntzln)-;-:)

2.4 Esimation

The choice probability of a Mixed Logit modd, like the presented in equation (3), does not have a
mathematica closed expression as in the Multinomid or Nested Logit. Even more, the integrd can
not be solved andyticdly and smulation must be used. Neverthdless, the fact that the conditiona
probability (2) hasaMultinomia Logit form can be exploited.



Then, if Rvadues of h are obtaned from its dendty function f (h/qg*), then for each of this
repetitionsit is possble to cdculate

. glinhi
RaG/h")=L,()=———F—, (10)
e jn n
i

withr=1, ..., R Accordingly to this, it is possble to obtain an average probability

~ .. 1&

Pi)==a L.bh"), (11)

R r=1
and with it to build the smulated likelihood function
o 9 ~
SL=8 & vy InPG) (12)

g i=1l

Under regularity conditions, the smulated maximum likdihood edtimator is condstent and
asymptoticaly Normd. Even though (12) is an unbiased estimator of the probability, its naturd
logarithm results to be biased (Brownstone and Train, 1999); neverthdess, when the number of
repetitions increases fagter than the square root of the number of observations, the estimator is
asymptoticaly equivaent to the maximum likelihood estimator (Hgjivassilou and Ruud, 1994).

3. MIXED LOGIT COMPARED TO NESTED LOGIT

A subject that has been matter of confusion is tha a particular Mixed Logit specification could be
equivalent to a Nested Logit model. This last model was conceived to ded with correlation between
dterndives, grouping similar dternatives into nests within which the iid assumption does hold
(Williams, 1977). The aggregation into nests implies a particular ructure of the covariance matrix,
because if two or more dternatives are grouped in a nest, the corresponding off diagond eements
will be different from zero.

Brownstone and Train (1999) present a Mixed Logit modd that they cdl “andogue’ to a Nested
Logit. This particular moded is built grouping the dternatives into nests; then, in the utility function a
dummy varigble is added for each nest indicating if the dternative belongs or not to it. A common
random parameter is associated to each one of these variables. In this way the mode has a
correlation dructure such that in the dternatives belonging to the same nest an off diagond term
gopears. The authors conclude that in that way the pattern of correation is equd to that of the
Nested Logit. Nevertheess, the correct thing to do is to compare the covariance matrix in both
models.

For example, let us suppose a case where three dternatives are available for a particular individual.
These dternatives are car, bus and metro (underground). Let us also suppose that bus and metro are
corrdlated, because of being perceived as more smilar between them than car. This case, that
corresponds to a Nested Logit with a public trangport nest could be modelled as a Mixed Logit with



the following specification according to Brownstone and Train (1999):

= Vcar + ecar

(13)

bus bus

O=V

Ucar
Ups =V tM+e
U e +m+e

metro metro

where I is a random term with zero mean and variance s 2, and e, is an iid Gumbd term with
variance s . It is easy to see that the covariance matrix of thismodd is:

&2 0 0 u
S=g0 s2+s2 s2 (14)
- Sm Se Sm U
A 2 2 2(]
&0 S SmtscH

This matrix has off diagona terms indicating corrdation between bus and metro dternatives,
however, it is heteroscedastic. So this modd is not redly equivaent to the Nested Logit in terms of
error structure, because the latter is homaoscedastic by definition.

The corrdation between bus and metro dternativesis given by:

s? 1
— - m —_
Corr(Ubus’Umetro) - rbusmetro -2 +q2 - 2 (15)
S2+s: s
1+ >
Sm
Then,
2 2
Ifs, <<s.,thenr . c:c® O
If S2 =52, then 1y mero = 0.5
2 2
Ifs, >>s; thenr ...®1

From the shown cases, it is clear that larger the deviation of n~ compared to that of the iid Gumbel
error, larger will be the correlation obtained. This is a reasonable result, because 1 is the common
term that imposes the presence of correlation between dternatives bus and metro.

The covariance matrix shows terms outside the diagond indicating correlaion between the dternative
bus and metro. However, it is heteroscedadtic. Therefore, this modd is not in fact equivaent to the
Nested Logit in terms of the error structure, since the latter is homoscedastic by definition. It is
necessary to notice that this Stuation can be overcome adding an additiona error component in the
not nested aternative, that isto say:

U car = VC&I’ + rril + ecar

U bus = Vbus + ng + eous ! (17)
U metro :Vmetro + n; t€

metro



where m, mareiid N(0,s?,).

Accordingly to this
G2+s? 0 0 ©
_¢ 2 2 2 U
S=¢ 0 S, tS; Sn
A 2 2 21
& O S SntscH

(18)

However, this additiond term is difficult to judtify and it doesnt have a direct theoretica
interpretation.  Also, the problem has not been overcome in fact. Indeed, let us suppose the
presence of a new dternative, for example car companion - and let us think, then that car refers to
car driver -. In practical terms one can argue car driver and car companion are considered as Smilar

dternatives for theindividua. This Stuation can be moddled by a Nested L ogit:

U car :Vcar + rr]! + ecar
U =V +m+e

car- comp ~ Y car- comp car- comp

U bus :Vbus + r@ + ebus
U metro :Vmetro + n? +€

metro

(19)

where Quoch Guoac a€ iid Gumbe (0l 1) — with variances s%q — and @us, G0 a€ iid
Gumbe (0, | ) —with variance s% — my m distributes according to the suppositions of Nested
Logit*, with equal variances as?.y Y S?w, respectively. Scale parameters| 1y | , must be chosen so
that s% + S% = S%e + S%e = PY6b, that is the joint variance associated to an error term X, iid

Gumbel (0,b). That yieds the following covariance structure:

s

&Gl+ssd sk 0 0 udé? s3 0 O0u
é a é a
s -é s2 si+s? 0 0 @:(:esrfl s 0 O@
N g 0 0 s +s2 s 2 Hgo 0 s? sﬁgﬂ
a o 0 s2, s§2+sezzg g0 o0 s? sfg
If we definef =bVl 1y f,=bll ,, then:
¢ s (1-fls? 0 0 U
é U
s _d1-fHs? s/} 0 0
N T A 2 2\~ 217
g 0 0 S, @-f,)s:u
1
g o0 0 (1-f)s? s{ g

(20)

(21)

It can be seen that the matrix is homoscedadtic, that is possible to identify two nests and that the

correlation within each nest does not have to be the same among different nests.

* A distribution so that rg, + max €, ~ Gumbe (0,b)



If we modd the same Situation with a Mixed Logit structure, then

U car :Vcar + rr]! + ecar
U =V +m+e

car- comp ¥ car- comp car- comp

U bus =Vbu's. + r@ + ebu:s
U metro =Vmetro + n? +€

metro

(22)

where m~ N(0,514%), ma~ N(0,S¢°) and &, is iid Gumbe (0l ) with variance s¢&. The covariance
meatrix associated to thismodd is:

& +s? sk 0 0

€ 2 2 2 u
s, =€ Sm  Sm*sc 0 0 23)
MLe o 0 s2 +s? s% U

é e m2 l:l

A 2 2 27

@ O O Sm2 Sm2+seg

This matrix would be of a heteroscedatic nature, unless we assume Sy® = Sm’ = Sil
Nonetheless, under this additional supposition, the correation within each nest must be the same.
That is, we will consder an equivdent matrix with the one of NL, only if f,=f,. Therefore, in the
described Mixed Logit structure there is a clear trade off between correlation and heteroscedadticity
that it is not observed in the Nested Logit. Again, it is possble to consder additiond independent
eror terms, seeking a homoscedastic matrix. However, the structure obtained is even more
complicated and less intuitive than the previous example. By the way, it can be demondrated that if
we consder the matrix presented in (), only one parameter can be estimated. If we differentiate the

model, the covariance matrix is o that only thesum s 2, +s 2, can be identified. This complicate the
andyss of aNested Mixed Logit with two nesis.

4. MIXED LOGIT COMPARED TO PROBIT

As mentioned before, the Mixed Logit modd is built assuming additiond error terms that may imply
a heteroscedastic and correlated covariance matrix. On the other side, in the case of Probit only one
eror term is assumed with a generd covariance matrix. In effect, a multinomia Probit modd is

derived assuming thet given a utlity fundion U, =V, +e,, the vector e =(e,.....e, )

in?

digributes multivariate Normal with general S covariance matrix.

The Probit model does not have a closed expression of the choice probability ether, so it becomes
necessary to use some kind of gpproximation or smulation. The more used estimation method is the
dmulated maximum likelihood with the Geweke-Hgivasslou-Keane (Borsch-Supan and
Haivasslou, 1993) smulator, which recursvely reduce the dimension of the integrd up to an
equivdent problem where repetitions of a truncated unidimensond norma are required. The
smulated probabilities of this form are unbiased, continuous and differentiable. The smulation for the



Probit and Mixed Logit models have different dimenson: J-1 for the case of Probit® and K for case
of Mixed Logit. Inthisway, if K<J-1 there is an advantage over Probit because the smulation has a
gmdler dimengon. This will hgppen when the number of random parameters incorporated to the
Mixed Logit mode is smaler than the number of dterndives.

5. SIMULATION ANALYSS
5.1 Experimental Design

Following the methodology of Williams and Ortlzar (1982), it was carried out a smulated
experiment with the purpose of checking the redl feasibility of application of the modd. We eaborate
different synthetic databases consdering means and deviations of the attributes from ared database
for Santiago de Chile. It was consdered a Situation of moda choice with four dternatives (car, bus,
metro and taxi) and four explanatory variables (travel cod, travel time, access time, income

dummy).

Table1l: Taste Parameters

Car Metro Taxi Travel Cost Travel Time Access Time e
Dummy
-0.40 0.20 -045 -0.005 -0.08 -0.16 12

It is sought to model the case where the dternative bus and metro are considered smilar. To build

the stochastic part of the utility function we worked with the Nested Mixed Logit described above

and outlined by Brownstone and Train (1999). It was considered an error term iid Gumbel (0,1) and,

additionally, an error term mp distributed Normal (0,S,,2) with the purpose of modeling corrdlation. In
the first place it was only consdered this last one in the dternative bus and metro, obtaining a
heteroscedastic covariance matrix. Also we considered iid Normd erors for the non nested

dternatives seeking to obtain a homoscedastic matrix corresponding to a structure theoreticaly

modelable with aNL. If we assumethat ma~ N(0,s,?), then it is possible to say that m = s,Sp,with
S, Sandard Normal distributed. As sy, is unknown, then we shdl edimate its vaue, with which its
digribution is completely described. Notice that as there is a Gumbel error term, the etimate
parameter will bescded othat S =1's .

For the estimation of the Multinomia and Nested Logit Models, as well as Probit, we used a sdf-
made code programmed in Gauss (Aptech Systems, 1994) based on the maximum likelihood
routine. For the estimation of Mixed Logit we used a flexible code programmed in Gauss by
Kenneth Train, available in his web page®.The Mixed Logit estimations where made with 200
repetitions using numbers based on Haton sequences (Train, 1999; Bhat, 2000). For the Probit
case, we consdered 10 repetitions of the GHK smulator. The reported vaues correspond to runsin
apersona computer with a450 MHz Pentium |1 processor and 64 MB RAM.

® Because it’'s based on the differences € - €, with i the chosen alternative and j each of the rest J-1

alternatives.
® http://el sa.berkel ey.edu/~train/software. html

10




In Table 2 the policy changes consdered for the response analysis of the models are reported
(Williams and Ortuzar, 1982); it may be seen that the defined policies correspond to strong changes
in the attribute vaues, increasing up to double or diminishing to a half some vaues on each case.

Table 2: Policy changes

Travel Cost Travel Time Access Time

Auto Bus | Metro | Taxi Auto Bus | Metro | Taxi Auto | Bus | Metro | Taxi
P1 20
P2 2.0 15
P3 2.0 05
P4 05 15 20 0.3
P5 15 20
P6 20 05 05 15 20

The Chi squared index (Gunn and Bates, 1982) is as a measure of error for each policy change; it

is calculated asc? = § (N.- N)* where N is the number of individuds that choose alterndive |
’ N

according to the prediction made by the model, and N, is the number of individuals choosng
dterndive i according to the Smulation modd.

5.2 Influence of the number of repetitions

As we described Mixed Logit and Probit both require smulation for their estimate. This motivates a
convergence analyss, in the sense of observing the behaviour of the estimates congdering varigble
the number of repetitions for the smulation. To make operative this comparison in a context of
correlated aternatives, it was consdered a database composed by 4,000 individuds and 4
dternatives, where two of those (specificaly the dternatives 2 and 3) present a correlation coefficient
equa to 0.5. The database was built assuming a Nested Mixed Logit, with a homoscedastic
covariance matrix. The number of repetitions considered for the smulation took the following vaues.
5, 10, 25, 50, 100, 200, 250, 500, 750, 1000.

Fundamenta aspects for the comparison are: time for convergence, loglikelihood, number of
iterations. It is aso interesting to observe what happens to the leve of reproduction of the
parameters with those the sample was created. Note that the dimension of integration of both Probit
and Mixed Logit are the same and equds three (The number of dternatives - 1 for Probit; 3
additional error components for Mixed Logit: one shared that induces corrdation and two
independent to achieve homoscedagticity with the other dternatives). To be able to compare the
predictive power of the modds, it is consdered a strong change in the vaue of certain attributes.
Then it is possble to calculate the predicted market shares by each one of the modds and to
compare them with the observed (modelled) shares. To define the attribute changes we considered
P4 from the policy plan defined. For the case of Mixed Logit we consdered both, estimation with
pseudorandom numbers (MLR) and based on Halton sequences (MLH).

11



The results for Probit are reported in Table 3, varying the number of repetitions for the GHK
smulator. In generd terms, the parameters stay stable even for alow number of repetitions.

Table 3: Probit, 4000 Observations with correlated alter natives. r = 0.5

Target 5 10 25 50 100 200 250 500 750 | 1000
Car | 040 | -02148 | -0.2747 | -03017 | -03292 | -0.3179 | -0.3260 | -0.3287 | -0.3279 | 0.3273 | -0.3287
(-2.674) | (-3.298) | (-3823) | (-3.753) | (-3.597) | (-3.746) | (-3.720) | (-3.656) | (-3.886) | (-3.753)
Metro | 020 | 02370 | 02263 | 0.2533 | 0.2560 | 0.2542 | 0.2539 | 0.2541 | 0.2544 | 02530 | 0.2554
(3.965) | (3662) | (3.880) | (3.889) | (3.913) | (3.900) | (3878) | (3.874) | (3.885) | (3.894)
Taxi | 045 | 02292 | -0.2637 | -0.2943 | -0.3247 | -0.3097 | -0.3203 | -0.3229 | -0.3227 | -0.3204 | -0.3234
(-3.193) | (-3621) | (-4525) | (-4.250) | (-4.042) | (-4214) | (-4.242) | (-4.183) | (-4.358) | (-4.286)
TCOST | -0.005 | -0.0033 | -0.0033 | -0.0036 | -0.0037 | -0.0037 | -0.0037 | -0.0037 | -0.0038 | -0.0037 | -0.0038
(-5.006) | (-4.888) | (-4.955) | (-4.894) | (-4.946) | (-4912) | (-4.964) | (-4.991) | (-4.970) | (-4.989)
TTIME | -008 | -0.0584 | -0.0616 | -0.0638 | -0.0655 | -0.0647 | -0.0652 | -0.0656 | -0.0656 | -0.0654 | -0.0656
(-14.960) | (-15.487) | (-18.368) | (-16.022) | (-15.942) | (-16.312) | (-16.323) | (-16.122) | (-16.874) | (-16.582)
ATIME | -016 | -01230 | -0.1283 | -0.1357 | -0.1395 | -0.1376 | -0.1388 | -0.1394 | -0.1395 | -0.1301 | -0.1397
(-15.027) | (-15.848) | (-18.709) | (-16.927) | (-16.313) | (-16.748) | (-17.028) | (-16.796) | (-17.460) | (-17.334)
Income | 12 | 00480 | 10156 | L0721 | 11193 | 11000 | 11126 | 11165 | 11176 | 11140 | 11183
Dummy (10.063) | (10.422) | (11.662) | (10.671) | (10.469) | (10.472) | (10.704) | (10.578) | (10.964) | (10.839)
Sn | 09069 | 05263 | 0.6254 | 0.7382 | 08053 | 0.7746 | 07920 | 08024 | 08030 | 07947 | 0.8049
(3564) | (4.749) | (7.246) | (6.854) | (6.292) | (6.580) | (6.864) | (6.767) | (6.967) | (7.010)
N Tter. 10 7 6 6 6 6 6 6 6 6
Loglik. ~1.05450 | -1.04922 | -1.04560 | -L.04472 | -1.04586 | -104604 | -1.04533 | -1.04516 | -1.04525 | -L04519
Time for 2506983 | 15.48433 | 23.95383 | 4151167 | 72.73317 | 130.4957 | 136.2673 | 325.0023 | 438.8447 | 684.3543
convrg.

The model presents certain difficulty to reproduce the parameter associated to correlation; however,
it detects its presence for a consderably low number of repetitions, demongtrating the power of the
Probit modd.

The results for Mixed Logit are shown in Tables 4 and 5, considering smulation with Pseudo Monte
Carlo method (MLR) and Quas Monte Carlo (MLH), respectively.

With alow number of repetitions corrdation is practicaly not detected. As a matter of fact, for very
low vaues of the repetitions, the parameters cannot be compared directly with the target vaues that
appear in the respective tables. Thisis explained by the fact that we consdered atotal variance such
that if it is consdered only an error Gumbd iid to explain it, then the scade parameter equas one.
However, under the assumption of Mixed Logit, the error term has been divided into a Norma
distributed component plus the Gumbe error term. Thus, the Gumbe term for the Mixed Logit

explains asmaller portion of the total variance and, therefore, its scale parameter greater than one.
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Table4: MLR, 4000 Observations with correlated alternatives. r = 0.5

Target 5 10 25 50 100 200 250 500 750 1000
Car -0.5657 -0.2448 | -0.2456 | -0.2503 | -0.3769 | -0.4420 | -0.5063 | -0.5166 | -0.5235 | -0.5241 | -0.5231
(-2.668) | (-2.676) | (-2.685) | (-2.833) | (-3.571) | (-3.908) | (-3.952) | (-3.975) | (-3.971) | (-3.969)
Metro | 0.2828 | 0.3857 | 0.3856 | 0.3853 | 0.3769 | 0.3783 | 0.3808 | 0.3830 | 0.3843 | 0.3856 | 0.3845
(4574) | (4572) | (4556) | (4.261) | (4.011) | (3.885) | (3.888) | (3.882) | (3.885) | (3.874)
Taxi -0.6 -0.1777 | -0.1785 | -0.1826 | -0.2640 | -0.3904 | -0.4697 | -0.4823 | -0.4931 | -0.4978 | -0.4959
(-2510) | (-2520) | (-2528) | (-2.662) | (-3.696) | (-4.239) | (-4.297) | (-4.348) | (-4.370) | (-4.364)
TCOST | -0.0071 | -0.0041 | -0.0041 | -0.0041 | -0.0044 | -0.0050 | -0.0054 | -0.0054 | -0.0055 | -0.0056 | -0.0056
(-5.268) | (-5.262) | (-5.242) | (-4.918) | (-4.918) | (-4.936) | (-4.914) | (-4.936) | (-4.952) | (-4.954)
TTIME | -0.1131 -0.0820 | -0.0821 | -0.0824 | -0.0877 | -0.0955 | -0.1000 | -0.1005 | -0.1011 | -0.1014 | -0.1014
(-22.066) | (-22.046) | (-21.373) | (-15.310) | (-16.367) | (-16.739) | (-16.752) | (-16.738) | (-16.718) | (-16.704)
ATIME | -0.2263 | -0.1660 | -0.1661 | -0.1668 | -0.1787 | -0.1978 | -0.2094 | -0.2108 | -0.2123 | -0.2132 | -0.2131
(-31.079) | (-31.041) | (-29.073) | (-15.923) | (-17.160) | (-17.603) | (-17.574) | (-17.534) | (-17.502) | (-17.502)
Income 1.6971 1.2229 1.2229 1.2315 1.3408 1.5239 1.6381 1.6518 1.6672 1.6738 1.6746
Dummy (14.685) | (14.673) | (14.276) | (10.473) | (10.812) | (10.845) | (10.833) | (10.801) | (10.779) | (10.774)
S 12825 | 0.0185 | 0.0486 | 0.1379 | 05799 | 0.9624 | 1.1639 | 11889 | 12124 | 12251 | 1.2235
(0.361) | (0.610) | (0.770) | (0.2358) | (5.501) | (6.930) | (7.056) | (7.170) | (7.228) | (7.222)
NC Iter. 5 5 12 13 6 3 3 3 3 3
Loglik. -1.04785 | -1.04783 | -1.04780 | -1.04770 | -1.04650 | -1.04507 | -1.04492 | -1.04488 | -1.04483 | -1.04485
Time for 0.43567 0.769 8.919 24.68983 | 24.6615 | 32.0005 | 32.23033 | 55.1425 | 94.5285 | 113.0605
convrg.
Table5: MLH, 4000 Observations with correlated alternatives.r = 0.5
Target 5 10 25 50 100 200 250 500 750 1000
Car -0.5657 -0.2440 | -0.3010 | -0.4861 | -0.5220 | -0.5337 | -0.5321 | -0.5351 | -0.5375 | -0.5375 | -0.5375
(-2.660) | (-2.879) | (-3.855) | (-3.973) | (-4.017) | (-4.028) | (-4.033) | (-4.048) | (-4.047) | (-4.047)
Metro 0.2828 0.3868 0.3798 0.3788 0.3887 0.3882 0.3877 0.3880 0.3885 0.3884 0.3885
(4.587) | (4.362) | (3.903) | (3.926) | (3.883) | (3.884) | (3.878) | (3.880) | (3.877) | (3.879)
Taxi -0.6 -0.1777 | -0.2335 | -0.4516 | -0.4929 | -0.5122 | -0.5083 | -0.5130 | -0.5138 | -0.5154 | -0.5155
(-2510) | (-2.767) | (-4.231) | (-4.341) | (-4.455) | (-4.492) | (-4.495) | (-4.512) | (-4.519) | (-4.520)
TCOST | -0.0071 -0.0041 | -0.0043 | -0.0054 | -0.0055 | -0.0057 | -0.0056 | -0.0057 | -0.0057 | -0.0057 | -0.0057
(-5.277) | (-5.105) | (-5.047) | (-4.902) | (-4.948) | (-4.968) | (-4.966) | (-4.961) | (-4.962) | (-4.962)
TTIME | -0.1131 -0.0820 | -0.0858 | -0.0991 | -0.1009 | -0.1022 | -0.1021 | -0.1023 | -0.1023 | -0.1024 | -0.1024
(-22.055) | (-18.147) | (-17.130) | (-16.735) | (-16.786) | (-16.951) | (-16.895) | (-16.932) | (-16.921) | (-16.921)
ATIME | -0.2263 | -0.1661 | -0.1745 | -0.2067 | -0.2124 | -0.2154 | -0.2150 | -0.2156 | -0.2158 | -0.2160 | -0.2161
(-31.010) | (-20.783) | (-18.510) | (-17.389) | (-17.573) | (-17.881) | (-17.782) | (-17.820) | (-17.818) | (-17.818)
Income 1.6971 1.2226 1.2971 1.6039 1.6567 1.6975 1.6892 1.6964 1.6985 1.7003 1.7002
Dummy (14.678) | (12.409) | (11.310) | (10.772) | (10.792) | (10.905) | (10.866) | (10.877) | (10.876) | (10.877)
Sm 12825 | 0.0299 | 04666 | 1.1105 | 1.2121 | 12632 | 1.2514 | 12621 | 12651 | 1.2686 | 1.2683
(0.268) | (2.552) | (7.186) | (7.072) | (7.433) | (7.625) | (7.609) | (7.657) | (7.676) | (7.673)
N Iter. 6 14 3 3 3 3 3 3 3 3
Loglik. -1.04786 | -1.04735 | -1.04485 | -1.04495 | -1.04449 | -1.04437 | -1.04444 | -1.04434 | -1.04434 | -1.04434
Time for 0.5145 | 2.11733 | 1.04633 | 2.0185 | 14.45367 | 24.03817 | 28.67117 | 91.88383 | 141.4167 | 168.4447
convrg.
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The number of iterations stabilisesin 6 for Probit, Starting from 25 repetitions. The Mixed Logit that
consders Haton sequences (MLH) aso stabilises from 25 repetitions, but this time in a vaue equas
to 3. The same number of iterations is the one that we can observe for a Mixed Logit with random
numbers (MLR), but now it stabilises in this number starting from 200 repetitions.

Graph 1. Number of iterationsvsrepetitions
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Time for convergence is notorioudy bigger for Probit. In fact, only consdering 5 reptitions, this
takes gpproximately haf an hour, in comparison to the less than a minute that is observed for MLH
and MLR. Although times for Probit are high, they do not discard their use, except for a very high
number of repetitions, case for which the time for convergence overcomes ten hours.

Graph 2: Convergencetime vsrepetitions
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For a reduced number of repetitions, the lowest times of convergence are associated to the MLH.
However, as the number of repetitions increases the convergence of the MLH becomes dower in
comparison to the MLR. A tentative explanation is that the storage of the Halton sequences occupies
an important amount of the memory dedicated to carry out the calculations.
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For Probit a curious Stuation is observed. The highest value in the average log-likelihood is obtained
for 50 repetitions (-1.04472), lowering for further repetitions and being sabilised in a rdatively
smaller value to the reached maximum (-1.04519 for 1000 repetitions).

The MLH achieves loglikelihood vaues bigger than -1.045 for 25 repetitions, coming closer to -
1.044 as these increase. On the other hand, the MLR reaches vaues bigger than -1.045 dtarting
from 250 repetitions.

Graph 3: Averagelog-likelihood vsrepetitions
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In the response analys's, the Probit achieves values under 10 of the Chi squared index starting from 5
repetitions (see Table 6). A 10 vaue is consdered the threshold for acceptable predictions, given the
inherent randomness of the process. Even from 10 repetitions it achieves vaues under the critica
vaue of the index (C%sy3 = 7,815). Even more it is quickly stabilised in very low values, near 3.5.
On the other hand, the MLH achieves vaues under the criticad index starting from 25 repetitions,
while MLR do it from 200 repetitions. By the way, the MLH is stabilised in an index 54 (100
repetitions) and the MLR makes it in 5,8 (500 repetitions).

Table 6: ¢2 index 4000 Observations, correlated alternatives.r = 0.5

5 10 25 50 100 200 250 500 750 1000

Probit 8.20 5.39 4.02 3.49 3.70 3.57 3.26 3.46 3.57 3.73

MLR 17.60 13.96 6.16 5.81 5.43 5.40 5.44 5.40 544 5.44

MLH 17.67 17.52 17.16 12.49 8.12 6.12 5.96 5.83 5.82 5.76

This gtuation is graphicaly represented in Graph 4. Note how Probit responses quite well to the
conddered policy. ML has an adequate behaviour but it requires more repetitions than Probit.
Certainly both smulators are different but they are inspired in Monte Carlo methods. The GHK
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amulator reduces the dimengon of the integrd up to an equivaent problem and requires repetitions
of a truncated unidimensional norma deviate. The smulation required for ML is based on random
draws that permit to caculate awell behaved function (the Logit expression for the probability).

Graph 4: c2 index vsrepetitions
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The Market Shares for P4 are shown in Table 7. All the models present only low differences
between different number of repetitions for the smulation. Note that the ¢ index reported above is
caculated from the Market Shares presented in thistable.

Table 7: Market Shares, 4000 Observations, correlated alternatives.r =0.5

Modelo | Modos 5 10 25 50 100 200 250 500 750 1000

Auto 1548 1548| 1548 1548 1548| 1548| 1548 1548 1548| 1548

= Bus 68 68 68 68 68 68 68 68 68 68
g Metro 1761 1761| 1761 1761 1761| 1761| 1761 1761 1761| 1761
Taxi 623 623 623 623 623 623 623 623 623 623

Auto 1571 1557| 1550 1540 1539| 1543| 1541 1538 1537| 1538

S Bus 90 86 84 83 84 83 83 83 83 84
QE_’ Metro 1720 1734| 1745 1750 1751 1750| 1751 1754 1755| 1755
Taxi 622 625 627 623 626 624 624 625 625 625

Auto 1527 1526| 1525 1525| 1526 1527| 1525 1525 1526| 1525

T Bus 102 98 87 87 86 86 86 86 86 86
S Metro 1755 1760| 1774 1773\ 1772 1772 1773 1773 1773|1773
Taxi 616 616 614 615 615 615 615 615 615 615

Auto 1526 1526| 1526 1524| 1523| 1525| 1526 1525 1524| 1525

& Bus 102 102 102 97 91 88 87 87 87 87
= Metro 1756 1756| 1756 1765 1772 1772 1772 1773 1774 1773
Taxi 616 615 615 615 614 616 615 615 615 615
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For the specific case of Probit skewed punctua parameters are obtained, in the sense that even
increasing the number of repetitions, the parameters are sabilised in a vaue different from the red
parameter. This is observed clearly in Graph 5, where the recovery of the parameter s, can be
appreciated.

Graph 5: Corréation parameter recovery. Probit Mode
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However, the confidence intervas gppear appropriate (the red parameter is contained in the interva)

garting from 50 repetitions. On the other hand, an excellent behaviour of the mode is observed for a
quite low number of repetitions (Sarting from 10 repetitions). It can be concluded for Probit that an
excessvely high number of repetitionsis not required.

Graph 6: Corréation parameter recovery. MLR
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When congdering a Mixed Logit with smulation based on pseudorandom numbers (MLR), the
edimation of s, is gppropriate starting from 100 repetitions (see Graph 6). By the way, it should be
noticed that dthough in generd the confidence intervd for this same parameter is adequate, it
presents a strange behaviour for 50 repetitions, motivated by an increase in the t-vaues. For the
response analysis, good results are obtained from 200 repetitions.

When using Haton sequences for the smulation of the Mixed Logit (MLH), it is observed that the
parameter that induces corrdation is unbiased, in the sense that when increasng the number of
repetitions, it is abilised in a quite near vaue to the red parameter (Graph 7). These results are
observed garting from an inferior number of repetitions in comparison with the MLH (25 repetitions
againg 100 of the MLH). Also, the mode responds agppropriately to policy changes sarting from 25

repetitions.

Graph 7: Correlation parameter recovery. MLH
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5.3 Detailed Analysisfor correlated alternatives

A case with 8000 observations is presented considering a correlation coefficient equals to 0.5
between dternatives bus and metro’, where s,=s. (Munizaga and Alvarez, 2000). First we
consder a heteroscedastic database, while the second database is homoscedastic. The total error
variance was chosen 0 that the scale parameter when considering only an iid Gumbe disturbance
equas 1, assuring an experiment not completely deterministic nor completely random.

The reaults for the estimation process of the Multinomia Logit (MNL), Nested Logit (NL), Probit
and Mixed Logit (ML) are shown in Table 8, where the reference values are aso reported. The

"We also considered higher correlation coefficients, but we prefer to report this particular experiment, because
practical correlation is not substantially high.
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table shows the estimations of the parameters for each modd, the t statistic of sgnificance and the t
test over the reference value of the parameter for the ML modd. For the NL, the reference value of
f iscaculated from the smulated correlation.

The ML modd dlows to recover properly al the vaues of the taste parameters with which the

database was generated, which is shown by the t gatidtic, that is less than 1.96 in dl cases (see
Table 8, () t-vaue againgt zero, [] t-vaue againgt target).

Table 8: Simulation Results

Heteroscedastic Database Homoscedastic Database
Target MNL NL Probit ML Target MNL NL Probit ML
10Rep | 200 Rep 10Rep | 200 Rep
Car -0.40 -0.3402 | -0.3872 | -0.2434 | -0.2946 -0.40 -0.1489 | -0.2843 | -0.1921 | -0.4619
(-4.791) (-5.469) (-4.743) (-5.168) (-2.143) (-4.269) (-3.2748) | (-7.982)
[1.848] [-1.070]
Metro 0.20 0.3636 0.3171 0.2267 0.2512 0.20 0.4884 0.3605 0.2982 0.1731
(5.848) (5.194) (5.322) (5.263) (7.982) (6.530) (6.768) (3.666)
[1.072] [-0.569]
Taxi -0.45 -0.7007 | -0.7698 | -0.4831 -0.5218 -0.45 -0.1166 | -0.3101 | -0.2043 -0.4610
(-12557) | (-13.065) | (-12.957) | (-12.116) (-2.274) (-5.905) (-4.159) (-10.967)
[1.815] [-0.261]
TCOST -0.005 -0.0070 | -0.0070 | -0.0049 | -0.0055 -0.005 -0.0053 | -0.0052 | -0.0041 | -0.0049
(11.359) | (11.279) | (-10912) | (-11.012) (-8.901) (-8.453) (-8.067) (9.721)
[-0.995] [0.232]
TTIME -0.08 -0.1044 | -0.1005 | -0.0702 | -0.0804 -0.08 -0.0835 | -0.0760 | -0.0614 | -0.0791
(-36560) | (-32.035) | (-30.768) | (-31.172) (-31464) | (-27.932) | (-21.918) | (-30.845)
[-0.148] [0.344]
ATIME -0.16 -0.2012 | -0.1954 | -0.1379 | -0.1563 -0.16 -0.1765 | -0.1643 | -0.1323 | -0.1596
(-47.029) | (-41.264) | (-35499) | (-36.078) (-44.919) | (-38757) | (-23.712) | (-36.698)
[0.860] [0.103]
Income 1.2 1.4928 1.4755 1.0686 1.1776 1.2 1.2454 1.2174 0.9998 1.1866
Dummy (24.094) | (23.953) (21.306) (21.464) (21.117) | (20.828) (15.243) (21.842)
[-0.409] [-0.247]
f 0.7071 0.8945 0.7071 0.7458
(23.953) (22.558)
Sm 0.9069 0.5100 0.7601 0.9069 0.5441 0.8472
(4597) (8.352) (5.880) (9.350)
[-1.613] [-0.658]
Iter. 5 5 6 3 5 5 7 2
I(q) -0.93469 | -0.93426 | -0.93688 | -0.93291 -1.03180 | -1.02919 | -1.03138 | -1.02867
CPU 0.6 0.8 355 425 0.7 0.8 35.2 152.5
Time
[min]

It isworth noting thet there is a relation between the parameters estimated with NL model and those
of the ML. The ratio between both parameters in each database, is relatively congtant, and is larger
in the case of more correlation. This can be explained because the presence of heteroscedagticity
affects the scale factor that multiplies the parameters. In the case of the ML model the common error
component () is fixed to a certain vaue on each repetition of the smulation, so, the scale factor of
the Gumbe didtribution is corresponding to the e random term only | =p/ J6s o While, in the case of
the NL mode, even dismissing the heteroscedadticity, it is the sum of both error components thet is
supposed to be Gumbe didtributed, and in that case the scale is smdler; if dl the dternatives had the
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same variance of the error term, then the scale factor of the NL would be | =p/ [6(sZ+s?)
(Munizagaand Alvarez, 2000).

Table9: Market Shares

Heteroscedastic Database

Homoscedastic Database

>

Base| PL [ P2 [ PR [ P4 [ P [ P6

Base| PL | P2 | P3 |

P4 | 5 | P6

3225
1056
2625
1094

BASE

2482
1146
3017
1355

2556
1190
2862
1392

2754
2262
2103

881

2061

157
3858
1024

2837
1341
3327

495

3818

157
2897
1128

3244

918
2498
1340

2542
1090
2843
1525

2596
1113
2729
1562

2837
2050
1975
1138

2973

162
3626
1239

2919
1290
3171

620

3227
1055
2624
1094

MNL

2445
1232
3034
1289

2495
1266
2008
1331

2675
2281
2166

878

2941
193

2713
1393
3398

49%6

3806
162
2865
1166

3244
918
2498
1340

2512
1065
2867
1556

2548 2820

1093
2758
1601

1869
2165
1145

3014
193
3557
1236

2836
1239
3289

636

3217
1058
2628
1096

2500
1269
2001
1329

2681
2317
2116

887

2717
1391
3301

3743
157
2031
1169

3242
919
2499
1340

2510
1066
2869
1556

2577 2847

1097
2735
1591

1929
2066
1159

3005
168
3594

1232

2859
1228
3262

650

1425

3238
1067
2610
1090

PROBIT

1318

2513
1275
2859
1361

2725
2305
2103

875

3752

2028
1170

3263

932
2478
1332

2545
1082
2826
1553

2589
1115
2709
1594

2860
1938
2080
1129

3068

165
3528
1240

2895
1270
3227

614

139
2784
1435

3224
1057
2625
1094

ML NL
DONRMONMRRMNONRMONMRRON R

2439

1332

2401
1257
2877
1375

2715

3746
158

1148

3245

920
2498
1338

2504
1065
2864
1568

2579
1095
2724
1602

2861
1927
2059
1153

3013
167
35901

2884
1227
3255

633

3570

145
2854
1431

The biggest differences between the predictions of the modds and the smulated ones (virtud redlity)
are obtained especidly for the MNL in the heteroscedastic database. The predictions of the NL and
ML are quite Smilar and practicdly indistinguishable, for the homoscedagtic case, being both very
amilar to the virtud redity. However, if the database is heteroscedagtic we observed some small
differences among the predictions of both models.

Table10: ¢? Index

Heteroscedastic Database Homoscedastic Database
MNL NL Probit ML MNL NL Probit ML
Base 0.00 0.03 040( 0.0 0.00 0.00 0.53 0.01
P1 1021 10.62 9.00| 6.01 178 179 0.67 252
P2 9.65 9.1 7.50| 5.65 2.52 0.91 0.81 142
P3 432 341 116| 141 3434 11.79| 11.88| 1137
P4 10.35 6.64 341| 803 11.63 544| 1346 541
P5 8.99 8.24 396 5.16 9.23 8.25 154 6.01
P6 187 340 333| 264 4.15 501 491 6.64
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6. REAL DATA

Asaway to vdidate the smulation andyss, an empirica study of areal database for the Las Condes
- CBD corridor was carried out (Ortlizar and Donoso. 1983). Theis database was chosen for its
qudity as well as for the fact that it has been broadly studied. The sample congsts in 697
observations and 9 dternatives. We worked with the following level of service variables: TT (travel
time). WALKT (waking time). WAITT (waiting time). C/w (cost divided by sdary rate). The
correlation structures supposed are presented in Figure 1 and 2. We estimate MNL,  Independent
Probit, NL, homoscedastic Probit and two Nested Mixed Logit specifications. The first one
(HENML), a heteroscedastic Nested Mixed Logit that congders only one additiond term inside the
nest; while the second one (HONML) is a homoscedastic model that considers also independent
error terms in the non nested dternatives. The correlation coefficient within each nest can be obtain
for the NL through the structural parameter f, while for the Probit it corresponds to a parameter to
be estimated. In the case of ML, it can be demondtrated that:

6S?
r =___m 24
ML 6A§]+p2 ( )

The results are reported in Tables 11 and 12. It is possible to verify that the parameters do not
possess remarkable variations among models. However, it is possible to observe important
differences in the corrdation estimated by the different models.

Table 11; Nested estructure 1

MNL Ind Probit NL Probit HeNML HoNML
TT -0.0823 -0.0554 -0.0907 -0.0550 -0.0951 -0.0909
(-4.743) (-4.031) (-4.002) (-1.774) (-4.936) (-4.783)
WALKT -0.1610 -0.1077 -0.1531 -0.1067 -0.1904 -0.1807
(-8.625) (-8.662) (-7.019) (-7.702) (-7.488) (-7.007)
WAITT -0.2359 -0.1475 -0.2170 -0.1484 -0.2741 -0.2641
(-2.238) (-2.028) (-1.966) (-0.800) (-2.498) (-2.426)
C/w -0.0244 -0.0143 -0.0228 -0.0142 -0.0253 -0.0267
(-3.647) (-2.028) (-2.854) (-1.979) (-3.318) (-3.424)
SEX -0.2951 -0.1531 -0.2627 -0.1479 -0.2830 -0.2923
(-1.361) (-1.169) (-1.269) (-1.049) (-1.273) (-1.305)
LICENCE 2.3606 1.4889 2.2018 1.4736 2.5321 2.5308
(5.786) (5.902) (4.842) (1.730) (5.690) (5.496)
f 0.9181
(6.575)
Sm 1.6061 0.8974
(3.026) (2.191)
r 0.1571 0.0730 0.6106 0.3287
(0.299)
Iterations 6 9 5 27 6 8
Log -1.36456 -1.37835 -1.36439 -1.37828 -1.35857 -1.35989
likelihood
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While with the NL and Probit very low correlation is obtained, the HeNML obtains a congderably
high value. This vaue practicaly reduces to a hdf when a homoscedadtic structure is imposed. Two
possible explanations can be enunciated for this strange result. On one hand it can be postulated that
the database is in fact heteroscedagtic and corrdated. So when imposing homoscedadticity the
correlation is underestimated. On the other hand it can be that the number of observations of the
sampleis not sufficiently high asto be able to recover in a correct way the covariance structure.

Table 12: Nested estructure 2

NL Probit HoNML HeNML
TT -0.0886 -0.0581 -0.0955 -0.0962
(-4.562) (-4.533) (-4.990) (-5.010)
WALKT -0.1292 -0.0978 -0.1809 -0.1813
(-6.486) (-7.240) (-8.081) (-8.082)
WAITT -0.1981 -0.1464 -0.3142 -0.3149
(-2.308) (-2.378) (-2.730) (-2.731)
C/w -0.0228 -0.0141 -0.0224 -0.0226
(-2.801) (-2.786) (-3.143) (-1.167)
SEX -0.2356 -0.1366 -0.2667 -0.2660
(-1.378) (-1.164) (-1.173) (-1.167)
LICENCE 2.2306 1.5845 2.7949 2.7959
(5.292) (5.468) (5.497) (5.476)
fq 0.9369
(6.888)
fo 0.6309
(6.012)
Sm 1.0358 1.4847
(3.805) (3.781)
Sm 0.0219
(0.006)
r 0.1222 0.0333 0.3948 0.5727
(0.132)
ro 0.6020 0.4840 0.3948 0.0003
(2.688)
Iterations 6 32 8 9
Log -1.35909 -1.37494 -1.35698 -1.35671
likelihood

The results presented in Table 12 are quite strange, specidly the one obtained for HENML.
Nonetheless, this structure has related identification issues, as discussed above.
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7. CONCLUSIONS

From our point of view the ML modd is an interesting, very flexible and ussful moddling dternative,
permitting to model and estimate correlation and heteroscedagticity with a persona computer in a
moderate time. In this context it can become a read compstitor to Probit, usualy consdered as the
only or principal way to make more flexible the modelling of discrete choices. Neverthdess it is quite
important to know its properties and limitations and to justify properly any specific sructure over the
basis of theoretical congderations prior to the estimation of the parameters.

The covariance matrix associated to ML depends on the specification given to the additiona error
terms that and it can be as generd as desired subject to identification restrictions. In this sense, it
offers a more flexible structure that other modes, in particular it has the capacity of recognisng
correlated dternatives and taste variations expressed through random parameters.

In this work two numeric gpplications are presented, one based on smulation experiments (including
a convergence anayss) and another one with red data, both in a context of amilar aternatives,
implying anesting error structure.

It is shown both empiricaly and theoreticaly that the Nested Mixed Logit is not equivaent to
Nested Logit at least considering its covariance structure. However, for the reported correlation
leve, if the ML is not adjusted to obtain a homaoscedastic covariance matrix, then the predicted
market shares for both do not present severe differences. So we understand that these models could
approximate a Stuation like the one presented here. We concluded that the nested structure for the
Mixed Logit in theoreticd terms dways commits homoscedadticity when defining corrdation. This
could be seen as a problem if you want to compare it with Nested Logit, or as an advantage for the
ganin flexibility.
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APPENDI X

Let i be an dterndive beonging to nest k. Let us congder the utility of this dternative, usng a
Nested ML structure: Ui, = Vi + gy + &, Where €, ~ Gumbe (0, 1 ) and ng, ~ f(0, s,,9). It is easy
to see that Var(Uin) = Si2 + S¢& and that Cov(Uin,Ujn) = S iif j T k. This kind of covariance
gructure implies the following corrdation level:

r=—"o (A.1)

If gy~ N(O, 5,2, then g, = S:SmWith S, a standard Normal deviate and the estimated parameter
shdl besothat S =1's . Let us condder (A.1) and the relaion between the scale parameter and

the variance of the Gumbe digtribution, then it is direct to demondrate (24).
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s 02=P q m = m (A.2)

FIGURES
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Figure1: Nested structure 1
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Figure 2: Nested structure 2
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