
An Object Oriented C++ Approach for Discrete Event Simulationof Complex and Large Systems of Many Moving ObjectsMauricio Mar��n Patricio CorderoDepartamento de Computaci�on Departamento de F��sicaUniversidad de Magallanes Universidad de ChilePunta Arenas, Casilla 113-D, Chile Santiago, Casilla 487-3, Chilemmarin@ona.�.umag.cl pcordero@uchcecvm.cec.uchile.clAbstractModelling and programming process requires a com-pletely di�erent approach in discrete event simulationof complex and large systems of many moving ob-jects. In this paper we describe the public interfaceof a C++ class library that addresses this problem.Our class library has the virtue of being a
exibleand application-independent object-oriented environ-ment which presents to the user a world view thatsimpli�es the simulation of these systems.1 IntroductionDiscrete event simulation can be a powerful ana-lytical tool in the study of complex systems based onmany moving objects. Its application ranges througha variety of systems, including airplane or vehiculartra�c, message passing on wide area networks or mi-croscopic
uids.The generic problem consists in simulating the be-havior of each moving object in a space populated bymany other objects. The main aspect of the simu-lation are the interactions between objects. For ex-ample, an airplane which enters a region covered bya radar [2] or elastic collisions between particles ina
uid [6]. Each interaction is an event that occursat discrete instant of time during the simulation. Inaddition, events generated by each object may exist,as is the case of an airplane that changes its routeaccording to a pre-established
ight plan. Betweenevents, nothing interesting happens, so the simulationadvances through variable intervals of time driven bythe chronological occurrence of the events.Even for simple simulation models, it is no obvi-ous how to reduce the high cost associated with themodelling and programming process using commer-cial simulation products such as SIMSCRIPT, GPSS

or SLAM. Many moving objects simulation requiresa completely di�erent approach and it is necessary todevelop new strategies to be able to reduce the e�ortinvolved in the analysis of complex and large systems.Steps in this direction have been given by [2].In this paper we propose a C++ class library thataddresses the modelling and programming process ofcomplex and large systems of many moving objects.Our interest is centered in systems consisting of manythousands of objects, with several object classes, andbinary interactions between them. Rather than imple-mentation details, we describe the conceptual modelor world view that our library provides to the userthrough its public interface. Furthermore, we presentan example showing that our world view has the virtueof increasing the user productivity providing an envi-ronment
exible and independent of the applicationswhich has a logic more descriptive than procedural.Thereof we show the ubicuity of an object-orientedlanguague as C++ in this kind of simulations.1.1 Library DesignThe class library is divided in two main compo-nents:� Simulation system or kernel; that contains thedata structures and algorithms used to make thee�cient simulation of general systems of manymoving objects. We have implemented the ker-nel using generalized versions [1] of our strate-gies originally deviced for microscopic
uids [5],although there are other strategies that may beused in this simulations [3, 4, 7, 8].� Modelling system or builder; that enables thecommunication between the speci�c features ofeach simulation model and the kernel. These fea-tures are mainly related with the classes to which

each object belongs and the functions that deter-mine the interactions between them. This mod-ule provides formalisms that de�ne: the objectclasses; the objects interactions; the grouping ofinteractions in parallel processes; and the strategyused to make the automatic allocation of objectsin the space of the model.The protagonists of our conceptual model are in-stances of the set of classes stored in the library {called descriptors, patterns, sheets, xlists and maps {which are used to build a valid model that can be sim-ulated by the kernel. The methodology used is a sortof client-server model where the user initializes an in-terface (the model) that is passed to the server (thekernel), which proceeds to make the simulation.For the sake of simplicity the class descriptions aregiven for two dimensional systems. Each class is sum-marily described and it is assumed there may existconstructors, destructors and other additional meth-ods that performs tasks such as, for example, thegraphic display of objects on the screen. The greaterpart of the public names used in the library are auto-explicatives, so we do not describe them in detail.1.2 Example (part 1)We show how to use our class library by developingan illustrative aplication example which describes themodelling and programming process of a two dimen-sional microscopic
uid. Each part of the example isdeveloped in turn in each section of the paper accord-ing to the new concepts there introduced.The
uid is modeled as a set of hard disks uniformlydistributed in a rectangular space, which has a circularobstacle in its center. The obstacle can have two states| denoted A and B. The simulation objects are thehard disks and the obstacle, and their interactions aretheir ellastic collisions.Some variables and functions in connection withthe physical aspects of the model, whose descriptionleaves the scope of this article, are the following:long Collisions=0;long MaxCollisions=1000000;void TestEndCondition();void Init();void End();// DD = Disk-Disk// DO = Disk-Obstaclevoid CollisionTimeDD();void CollisionTimeDO_A();void CollisionTimeDO_B();void ChangePositionsDD();

void ChangeVelocitiesDD();void ChangePositionD();void ChangeVelocityDO_A();void ChangeVelocityDO_B();The rest of the paper is organized as follows. Theclasses used to de�ne the simulation objects are de-scribed in section 2. Section 3 gives the classes to cre-ate the objects and allocate its positions in the spaceof the model. Section 4 presents the classes that de-�ne the interface between the simulation model andthe kernel. Final comments, conclusions and futureinvestigations in this area are given in section 5.2 ObjectsLet us distinguish between active and passive ob-jects. Active objects perform some perceptible activ-ity during the system operation. Conversely, passiveobjects represent inert system entities. The kernelonly performs the simulation of active objects. Pas-sive objects are considered as partners in the activeobject interactions.2.1 DescriptorsA descriptor is a user de�ned class that containsthe data structures and functions associated with acollection of objects, namely it de�nes their computerimplementation. An object collection is created us-ing the same instance of a speci�c descriptor that hasbeen adequately initialized by the user. All descrip-tors must be de�ned as a derived class from one of thefollowing two library classes,class BDescriptor {public:BDescriptor(int Type, int States);void FirstState(int State);void ChangeState(int NewState);};class GDescriptor: public BDescriptor {public:void AddCircle(double X, double Y,double Radius);void AddLine(double Xa, double Ya,double Xb, double Yb);...//GC = Geometric Centervoid SetPositionGC(double X, double Y,double Angle);void GetPositionGC(double &X, double &Y,double &Angle);};

where Type de�nes whether the objects are actives orpassives, and States identi�es the maximal number ofdiscrete states that may attain each object. We inden-tify the behavior of each active object using a privateinteger discrete state variable, which is set with theFirstSate() method and subsequently modi�ed withthe ChangeState() method. The methods Add*() areused to build a list of geometric primitives which de-�ne the approximate shape of the objects. The coor-dinates (X;Y) of each primitive are given according toan origen (0; 0) that is considered the geometric centerof the object.2.2 Example (part 2)For the microscopic
uid used as an example, wede�ne the descriptors CDisk and CObstacle, and theinitialized instances of these descriptors Disk and Ob-stacle such as is shown in the following program frag-ment,class CDisk: public GDescriptor {private:double VelocityX, VelocityY;public:void SetVelocity(double Vx, double Vy){ VelocityX=Vx; VelocityY=Vy; }void GetVelocity(double &Vx, double &Vy){ Vx=VelocityX; Vy=VelocityY; }};class CObstacle: public GDescriptor {private:double temperature;public:void SetTemperature(double t){temperature=t;}double GetTemperature(){return temperature;}};CDisco Disk(ACTIVE,1);CObstaculo Obstacle(PASSIVE,2);// 2 statesvoid Descriptors(){//Initialize geometric formDisk.AddCircle(0.0,0.0,0.25);Obstacle.AddCircle(0.0,0.0,0.5);} The instances Disk and Obstacle will be used to cre-ate the simulation objects and to de�ne the interfacewith the kernel.In our approach, it is not necessary that each de-scriptor represents a physical or concrete system en-tity. They may also represent to abstract entities

such as weather and
ux measurer. Furthermore, itis not a requirement that all the objects have geo-metric shapes; consequently we have de�ned the classGDescriptor as a derived class of BDescriptor (theBase Descriptor). The user may de�ne other derivedclasses from BDescriptor as Queue Centers for exam-ple. Therefore, the term active object is not strictly asynonym of neither moving object nor concrete entitywith geometric shape.3 SpaceIn this section we present the methodology usedin the automatic allocation of objects with geometricshape into the space of the model. We de�ne space asthe rectangular area where the geometric objects areplaced. The origin (0; 0) for the spatial coordinates islocated in the lower left corner of the space. Basically,the objects come to the space from one or more sheetspreviously created. These sheets are created makingthe fusion of other sheets; duplicating patterns in theirspread; or inserting objects individually into them.3.1 PatternsA pattern is a small rectangle that contains one ormore geometric objects. All patterns de�ned for asimulationmodel are instances of the following libraryclass,class Pattern {public:Pattern(double X, double Y);void AddObject(GDescriptor &D, double Xgc,double Ygc, double Angle);};where X and Y set the rectangle size and the methodAddObject() is used to place objects into the pattern.The geometric center of each object is placed in theposition given by the parameters Xgc and Ygc withrotation angle given by Angle. In this case the origin(0; 0) is the lower left corner of the rectangle de�nedby X and Y.3.2 SheetsA sheet is a large rectangle that contains objectscreated duplicating a pattern in all its extent; addingobjects individually; or making the fusion of twosheets. Each sheet is an instance of the following classlibrary,

class Sheet {public:Sheet(double X, double Y,double Xo, double Yo);void Duplicate(Pattern &P);void AddObject(GDescriptor &D, double Xgc,double Ygc, double Angle);void Fusion(Sheet &S1, Sheet &S2,boolean V, boolean W);};where X and Y set the rectangle size, and Xo, Yo spec-ify the rectangle position (its lower left corner) withinthe space. The parameter P identi�es the pattern tobe duplicated | using the method Duplicate() | intothe area de�ned by X and Y.The fusion of two sheets is performed by the methodFusion() which makes the join of the sheets S1 andS2 | where V and W may take the values TRUEor FALSE. If V is FALSE the objects in S1 are notincluded in the �nal sheet. Inversely, when V is TRUEall the objects in S1 are included in the �nal sheet.When W is TRUE are included in the �nal sheet allthe objects of S2 that do not intersect an object of S1.If W is FALSE are included in the �nal sheet all theobjects of S2 that intersect at least one object of S1.3.3 SpaceThe space of the model is an instance of the follow-ing library class,class Space {public:Space(double X, double Y);void Objects(int n, Sheet &S ...);int InsertObject(GDescriptor &D, int V,double Xgc, double Ygc,double Angle);void DeleteObject(int Identifier);};where X and Y specify the extent of the rectangularspace. The method Objects() has a variable argumentlist and it is used to insert within the space the objectsstored in the sheets speci�ed in the argument list. Allthe objects stored in the n sheets S are inserted intothe space.During simulation, it is possible to delete and cre-ate objects dynamically. Each object is identi�ed byan integer number. The method InsertObject() cre-ates a new object, inserts it into the space, and re-turns the identi�er assigned to the new object. WhenV is TRUE all the objects that intersect the recentlycreated object are deleted. If V is FALSE the new

object is created and inserted without considering theintersections with other objects. When V is CONDI-TIONAL the object is created and inserted only if itdoes not intersect other objects.3.4 Example (part 3)For the microscopic
uid used as an example, theobjects and space are created as follows,Space SimSpace(1000.0,1000.0);void Objects(){ Pattern PDisk(1.0,1.0);PDisco.AddObject(Disk,0.5,0.5,0.0);Sheet SD(1000,1000,0,0);SD.Duplicate(PDisk);Sheet SO(1000,1000,0,0);SO.AddObject(Obstacle,500,500,0.0);Sheet SDO(1000,1000,0,0);SDO.Fusion(SO,SD,TRUE,TRUE);SimSpace.Objects(1,SDO);}4 SimulationLet us de�ne xlist as a list of pointers that is used bythe kernel to execute the functions or routines pointedto by these pointers. Let us also de�ne map as aninput-output structure which contains one xlist in eachoutput and has input parameters that allow the kernelto �nd these xlists within the map. Class descriptors,object states and interaction types are used as inputparameters.In all simulation model there are two maps:� Predictions map; which contains xlists that pointto prediction functions used to calculate the in-teraction times between the simulation objects,and� Interactions map; which contains xlists that pointto interaction functions used to make the changeof states of the objects involved in an interaction.The kernel performs the simulation of the systemmaking accesses to the predictions and interactionsmaps in order to execute the functions pointed to bythe xlists. These model-dependent functions pointed

to by the members of the xlists have the responsabilityof the correct evolution of the system being simulated.The kernel only makes calls to these functions at theprecise instants.Each xlist may contain other general purposemodel-dependent functions (called control functions)which may be used in tasks such as, for example, sys-tem evolution measuring.Given two objects i and j | with states ei, ej andclass descriptors di, dj | the input parameters for thepredictions and interactions maps are fdi; dj; ei; ejg.In addition, if it has been de�ned the interactions aand b between i and j (interactions valid at the statesei and ej) the input parameters for the interactionsmap may also include either a or b according to theinteraction (a or b) that is being processed just in theinstant when the kernel accesses this map.The simulation algorithm performed by the kernelconsists in: searching and executing one or more xlistsof the predictions map; getting the chronological nextevent that must take place; processing this next eventsearching and executing one xlist of the interactionsmap; returning to the predictions map and so forthuntil the end condition of the simulation is reached.More in detail, when ocurrs an interaction a be-tween the objects i and j, the kernel executes the xlistassociated with the input parameters fdi; ei; dj; ej; agin the interactions map. Then, the kernel make pre-dictions | executing xlists stored in the predictionsmap | between the object i and all the objects k forwhich it has been de�ned a xlist associated with theinput parameters di; ei; dk; ek (the same is repeatedif j is an active object). Then, the kernel determinesthe next event and again accesses the interactions mapand so on.It is possible to form groups of xlists within thepredictions and interactions maps. These groups areused to build parallel process | called activities |associated with each object class. Several activitiescan be de�ned for a given object class.An activity may be seen as a set of predictions andinteractions which are simulated by the kernel indivi-dually each other and for each object associated with.The grouping among predictions and interactions isset using an additional input parameter p.When an interaction associated with an activity ptakes place, the predictions performed by the kernelduring the process of this event are only realized be-tween the objects whose class descriptors are membersof p. In other words, if it has been de�ned that theclass descriptors di and dj belong to the activity p,then when an interaction in p for an object i ocurrs

the kernel performs predictions between i and all theobjects whose class descriptors are di or dj.The activities focuses the predictions to determinedobject classes making possible the existence of severalindependently simulated processes for the same ob-ject.Conditional events can be used to sincronizate theactivities since these events are executed when a givencondition is reached. For example, a condition maytest the end of one or more activities and the associ-ated event (which is triggered when the condition istrue) may begin the execution of a new activity.The object interactions are strictly binary althoughthe particular case of unary interactions can be imple-mented using a prede�ned void class called VoidDe-scriptor. This void class can be used to model activi-ties that are uniquely associated with an speci�c classwithout having relation with other object classes.4.1 XListsA xlist is a list of function pointers and must be aninstance of the following library class,class XList {public:void Insert(char *List ...);void Delete(char *List ...);void Execute();};where the methods Insert() and Delete() are used toadd and remove function pointers in a xlist. Thesemethods have variable argument lists. The parameterList is a string that speci�es | by mean of \f" letters| the number of pointers placed in the argument list .For example, three pointers are speci�ed by the valueList= \�f". Furthermore, it is possible to assign apriority value to each function pointer by associatingan integer number to each "f". For example, the valueList= \f1f2f3" sets three pointers with priorities 1, 2and 3. In this case, the kernel execute the functionsin priority order (1 has greater priority than 2 and2 greater than 3). The function pointers are placedafter parameter List and it is assumed the type void(*function)() for these pointers.4.2 MapsA map sets relations among descriptors, states, in-teractions and xlists. Each map is an instance of thefollowing library class,class Map {

public:Map(int Type);void Connect(Descriptor &D1, Descriptor &D2,int StateD1, int StateD2,XList &XL, int Activity=0,int Interaction=0);void Connect(Descriptor &D1, Descriptor &D2,int StateD1, int StateD2,char *List ...);void Disconnect(Descriptor &D1, Descriptor &D2,int StateD1, int StateD2,int Activity=0,int Interaction=0);};where Type speci�es if the instance is a predictions orinteractions map. The �rst method Connect() is usedto associate one xlist XL with each combination ofdescriptors (D1, D2) and states of objects (StateD1,StateD2). The parameter Activity is used for groupingcombinations of descriptors and states into activities.If the instance of the class map has been de�nedas a predictions map, the parameter Interaction is ig-nored. But, if this instance is an interactions mapthe parameter Interaction can be used to de�ne sev-eral interactions between each pair of descriptors andstates.In a similar way as the parameter List is used in theclass XList, the parameter List in the second methodConnect() can be used to specify directly the xlist, andcan be also used to de�ne activities and interactions.For interactions the parameter List include the letter\i" followed by an integer, and for activities the letter\a" su�xed by an integer.The method Disconnect() can make the dynamicdisconnection of the relations established between de-scriptors, states, activities, interactions and xlists bythe connect() methods.The default activity (Activity=0) consists in mak-ing predictions with all the objects of the system, asthese objects belong to classes that have been asso-ciated with one xlist. Also, as parameters for theconnect and disconnect methods can be used the pre-de�ned constants AllDescriptors and AllStates.4.3 Example (part 4)For our example of the microscopic
uid we havede�ned the following maps and xlists,// XLists y MapasXList XInit;//Initialize andXEnd; //Finalize the simulation.XPred;//calls TestEndCondition()

Map MP(PREDICTIONS); // predictions mapMap MI(INTERACTIONS); // Interactions mapvoid XListsMaps(){ XInit.Insert("f",Init);XEnd.Insert("f",End);XPred.Insert("f",TestEndCondition);MP.connect(Disk,Disk,0,0,"f1",CollisionTimeDD);MP.connect(Disk,Obstacle,0,0,"f1",CollisionTimeDO_A);MP.connect(Disk,Obstacle,0,1,"f1",CollisionTimeDO_B);MI.connect(Disk,Disk,0,0,"f1f2",ChangePositionsDD,ChangeVelocitiesDD);MI.connect(Disk,Obstacle,0,0,"f1f2",ChangePositionD,ChangeVelocityDO_A);MI.connect(Disk,Obstacle,0,1,"f1f2",ChangePositionD,ChangeVelocityDO_B);}4.4 Event ListThe Event List is the data structure where the eventgenerated during the simulation are stored. The ker-nel has the responsability of performing an e�cientadministration of these events. The library providesthe following methods related with the Event List,class Event {public:void SetEvent(double Time,int IdObj1, int IdObj2,int Activity=0,int Interaction=0);void SetEvent(int (*F)(),int IdObj1, int IdObj2,int Activity=0,int Interaction=0);};class Kernel {public:void Schedule(Event &E);void Cancel(Event &E);void Cancel(int IdObj, int Activity=0);void Cancel(int IdObj,int n, Descriptor &D ...);void Predictions(int OnOff, int IdObj,int Activity=0);

void Predictions(int OnOff, int IdObj,int n, Descriptor D ...);...};where the SetEvent() methods are used to initializethe user events that will be stored in the Event List.Each user event is an instance of either the class Eventor any other derived class from Event. These meth-ods allow de�ning either a user-event that will takeplace at the instant given by the parameter Time ora conditional user-event that will take place when thefunction pointed to by the parameter F returns thevalue 1. All the conditional user-events are tested toocurr before scanning a non-conditional next event inthe Event List.The method Schedule() inserts an event E in theEvent List. The �rst Cancel() removes a speci�c eventfrom the Event List. The second Cancel() removesall the events scheduled for the object IdObj and thespeci�ed Activity. The third Cancel() removes fromthe Event List all the events related with the objectIdObj and the objects partners that belong to the nclasses D.The methods Predictions() control the access to thepredictions map during the process of an interaction.The e�ect of these methods \vanishes" after process-ing the interaction. The parameter OnO� enables ornot the predictions for the object IdObj. Furthermore,these predictions can be restricted to either a speci�cActivity or the set of classes especi�ed by the n de-scriptors D.In each step of the simulation, the kernel initial-izes a global object called CurrentEvent which con-tains data associated with the event that is being pro-cessed currently. CurrentEvent must be declared bythe user as an object of class Event or some other userde�ned class derived from Event.4.5 KernelThe kernel contains the algorithms that perform themodel initialization and its e�cient simulation. Themethods used for doing these tasks are given in thefollowing library class,class Kernel { // continuedpublic:...void Space(Space &S);void SetXLists(XList &B, XList &P,XList &I, XList &E);void Maps(Map &MP, Map &MI);void Start();

void Stop();void Continue();void Finish();int CreateObject(Descriptor &D1);void DeleteObject(int Identifier);};where the parameter S indicates the space of themodel; B and E indentify the XLists that will be eje-cuted during initialization and �nalization of each sim-ulation period respectively; P indicates a XList thatis ejecuted each time that is initiated a secuence ofpredictions; and I is a XList that is ejecuted beforeprocessing an interaction that takes place during sim-ulation.The parameters MP and MI specify the maps ofpredictions and interactions respectively.The method Start() is used to initiate a new simula-tion period which is terminated by the methods Stop()or Finish(). Stop() temporally terminates the simula-tion period being possible to continue it by using themethod Continue(). Finish() terminates completelythe simulation.The methodsCreateObject() andDeleteObject() areused to create and eliminate objects without geomet-rical shape.4.6 Example (�nal part)Finally the initialization and simulation of the mi-croscopic
uid is realized as follows,// Initialization and simulationKernel Sim;Event CurrentEvent;void main(){ Descriptors();Objets();XListsMaps();Sim.Space(SimSpace);Sim.XLists(XInit,XPred,XVoid,XEnd);Sim.Maps(MP,MI);Sim.Start();Sim.Finish();}5 ConclusionsThe application independence is ensured becausethe class library works with class descriptors andsystem-dependent functions de�ned by the user.

Class descriptors are used to create the simula-tion objects which represent the system entities andsystem-dependent functions are used for modelling thebehavior of the entities and its interaction with eachother.Xlists provide the
exibility needed in this simula-tions because it is possible to insert and remove func-tion pointers from the them during simulation. Forexample, on a �rst stage of the simulation it is neces-sary to hold in xlists to functions dedicated to validatethe model, and after on next stages others functionsare needed to study the system evolution. Xlists in-crease the e�ciency of the simulation because only thestrictly necessary pointers can be holded in each one.Maps provide an intuitive mechanism for de�ningthe relations between class descriptors, object states,interactions and xlists. These relations can be groupedin activities for representing parallel processes associ-ated with the simulation objects. This concept canbe used to de�ne several independent processes asso-ciated with determined object classes which are simu-lated individually by the kernel for all the objects thatbelongs to these classes. Conditional events enable theactivity sinchronization.The kernel only realize predictions and interactionsfor the objects whose classes have been related througha xlist within the predictions and interactions map,so it is possible to de�ne objects of very distinct sig-ni�cance in the same simulation model: some objectsmight "see" to objects that belongs only to determinedclasses, while others ones might "see" to all of thesimulation objects; moreover during simulation theserelations might change dinamically.Finally, patterns, sheets and fusions provide to theuser a general formalism that simplify the process ofcreating and allocating thousands of object with geo-metrical shape in the space of the model.Currently our research work is oriented toward theproblem of creating a graphical language that can beused to de�ne simulation models of many moving ob-jects systems. In this case, the class library here de-scribed can be used as a low-level language so thatthe outcome of the speci�cations given in the high-level graphical languague can be transformed to C++declarations such as in the microscopic
uid used asan example in this paper.Another research activity focuses on how to use theRule-Based Expert System Technology for providingto the user a more descriptive mechanism than the pre-diction and interaction functions mechanismdescribedin this paper. In this case, the partial or global stateof the simulation can be considered as the fact data

base and the production rules can be used for guid-ing the behavior of the active objects during simula-tion. In this case, within the xlists must exist pointersto functions that send messages to the inference ma-chine of the expert system for obtaining some answerrepresented in the form of events that are triggeredinmediatly or some steps ahead during simulation.AcknowledgementsPartially supported by FONDECYT grant 1931105and University of Magallanes grant F1-01IC-94.Thanks to Dr. Baeza-Yates for encouraging the pre-sentation of this work.References[1] R.Baeza-Yates, M. Mar��n and P.Cordero, \TheAnalysis of an Improved Priority Queue forDiscrete-Event Simulation of Many Moving Ob-jects", Proceedings of the XIV International Con-ference of the Chilean Computer Science Society,Concepci�on, Nov. 1994, Chile.[2] P.D.Corey y J.R.Clymer, \Discrete Event Si-mulation of Object Movement and Interactions",Simulation, 56 (1991) 167.[3] G.Gonnet and R.Baeza-Yates, Handbook of Al-gorithms and Data Structures, (Addison-Wesley,NY, 1991).[4] B.D.Lubachevsky, \How to simulate billiarsand similars systems", Journal ComputationalPhysics, 94 (1991) 255.[5] M.Mar��n, D.Risso and P.Cordero, \E�cient Al-gorithms for Many-Body Hard Particle MolecularDynamics", Journal of Computational Physics,109 (1993) 306.[6] D.C.Rapaport, \Time Dependent Patterns inAtomistically Simulated Convection", Phys. Rev.Lett., 43 (1991) 7046.[7] K.Shida and Y.Anzai, \Reduction of the Event-List for Molecular Dynamic Simulation", Com-puter Physics Comunications, 69 (1992) 317.[8] D.C.Rapaport, \The Event Scheduling Problemin Molecular Dynamics Simulation", Journal ofComputational Physics, 34 (1980) 184.

