An Object Oriented C++ Approach for Discrete Event Simulation
of Complex and Large Systems of Many Moving Objects

Mauricio Marin
Departamento de Computacion
Universidad de Magallanes
Punta Arenas, Casilla 113-D, Chile

mmarin@ona.fi.umag.cl

Abstract

Modelling and programming process requires a com-
pletely different approach in discrete event stmulation
of complex and large systems of many moving ob-
gects. In this paper we describe the public interface
of a C++ class library that addresses this problem.
Our class library has the wvirtue of being a flexible
and application-independent object-oriented environ-
ment which presents to the user a world view that
simplifies the simulation of these systems.

1 Introduction

Discrete event simulation can be a powerful ana-
lytical tool in the study of complex systems based on
many moving objects. Its application ranges through
a variety of systems, including airplane or vehicular
traffic, message passing on wide area networks or mi-
croscopic fluids.

The generic problem consists in simulating the be-
havior of each moving object in a space populated by
many other objects. The main aspect of the simu-
lation are the interactions between objects. For ex-
ample, an airplane which enters a region covered by
a radar [2] or elastic collisions between particles in
a fluid [6]. Each interaction is an event that occurs
at discrete instant of time during the simulation. In
addition, events generated by each object may exist,
as 1s the case of an airplane that changes its route
according to a pre-established flight plan. Between
events, nothing interesting happens, so the simulation
advances through variable intervals of time driven by
the chronological occurrence of the events.

Even for simple simulation models, it is no obvi-
ous how to reduce the high cost associated with the
modelling and programming process using cominer-
cial simulation products such as SIMSCRIPT, GPSS

Patricio Cordero
Departamento de Fisica
Universidad de Chile
Santiago, Casilla 487-3, Chile

pcordero@uchcecvm.cec.uchile.cl

or SLAM. Many moving objects simulation requires
a completely different approach and it is necessary to
develop new strategies to be able to reduce the effort
involved in the analysis of complex and large systems.
Steps in this direction have been given by [2].

In this paper we propose a C++ class library that
addresses the modelling and programming process of
complex and large systems of many moving objects.
Our interest is centered in systems consisting of many
thousands of objects, with several object classes, and
binary interactions between them. Rather than imple-
mentation details, we describe the conceptual model
or world view that our library provides to the user
through its public interface. Furthermore, we present
an example showing that our world view has the virtue
of increasing the user productivity providing an envi-
ronment flexible and independent of the applications
which has a logic more descriptive than procedural.
Thereof we show the ubicuity of an object-oriented
languague as C++ in this kind of simulations.

1.1 Library Design

The class library is divided in two main compo-
nents:

e Simulation system or kernel; that contains the
data structures and algorithms used to make the
efficient simulation of general systems of many
moving objects. We have implemented the ker-
nel using generalized versions [1] of our strate-
gies originally deviced for microscopic fluids [5],
although there are other strategies that may be
used in this simulations [3, 4, 7, 8].

e Modelling system or builder; that enables the
communication between the specific features of
each simulation model and the kernel. These fea-
tures are mainly related with the classes to which

each object belongs and the functions that deter-
mine the interactions between them. This mod-
ule provides formalisms that define: the object
classes; the objects interactions; the grouping of
interactions in parallel processes; and the strategy
used to make the automatic allocation of objects
in the space of the model.

The protagonists of our conceptual model are in-
stances of the set of classes stored in the library —
called descriptors, patterns, sheets, zlists and maps —
which are used to build a valid model that can be sim-
ulated by the kernel. The methodology used is a sort
of client-server model where the user initializes an in-
terface (the model) that is passed to the server (the
kernel), which proceeds to make the simulation.

For the sake of simplicity the class descriptions are
given for two dimensional systems. Each class 1s sum-
marily described and it is assumed there may exist
constructors, destructors and other additional meth-
ods that performs tasks such as, for example, the
graphic display of objects on the screen. The greater
part of the public names used in the library are auto-
explicatives, so we do not describe them in detail.

1.2 Example (part 1)

We show how to use our class library by developing
an illustrative aplication example which describes the
modelling and programming process of a two dimen-
sional microscopic fluid. Each part of the example is
developed in turn in each section of the paper accord-
ing to the new concepts there introduced.

The fluid is modeled as a set of hard disks uniformly
distributed in a rectangular space, which has a circular
obstacle in its center. The obstacle can have two states
— denoted A and B. The simulation objects are the
hard disks and the obstacle, and their interactions are
their ellastic collisions.

Some variables and functions in connection with
the physical aspects of the model, whose description
leaves the scope of this article, are the following:

long Collisions=0;

long MaxCollisions=1000000;
void TestEndCondition();
void Init();

void End();

// DD = Disk-Disk

// DO = Disk-Obstacle
void CollisionTimeDD() ;
void CollisionTimeDO_AQ);
void CollisionTimeDO_B();
void ChangePositionsDD() ;

void ChangeVelocitiesDD();
void ChangePositionD();

void ChangeVelocityDO_A();
void ChangeVelocityDO_B();

The rest of the paper is organized as follows. The
classes used to define the simulation objects are de-
scribed in section 2. Section 3 gives the classes to cre-
ate the objects and allocate its positions in the space
of the model. Section 4 presents the classes that de-
fine the interface between the simulation model and
the kernel. Final comments, conclusions and future
investigations in this area are given in section 5.

2 Objects

Let us distinguish between active and passive ob-
jects. Active objects perform some perceptible activ-
ity during the system operation. Conversely, passive
objects represent inert system entities. The kernel
only performs the simulation of active objects. Pas-
sive objects are considered as partners in the active
object interactions.

2.1 Descriptors

A descriptor is a user defined class that contains
the data structures and functions associated with a
collection of objects, namely it defines their computer
implementation. An object collection is created us-
ing the same instance of a specific descriptor that has
been adequately initialized by the user. All descrip-
tors must be defined as a derived class from one of the
following two library classes,

class BDescriptor {

public:
BDescriptor (int Type, int States);
void FirstState(int State);
void ChangeState (int NewState);

};

class GDescriptor: public BDescriptor {
public:
void AddCircle(double X, double Y,
double Radius);
void AddLine(double Xa, double Ya,
double Xb, double Yb);

//GC = Geometric Center
void SetPositionGC(double X, double Y,
double Angle);
void GetPositionGC(double &X, double &Y,
double &Angle);
};

where Type defines whether the objects are actives or
passives, and States identifies the maximal number of
discrete states that may attain each object. We inden-
tify the behavior of each active object using a private
integer discrete state variable, which is set with the
FirstSate() method and subsequently modified with
the ChangeState() method. The methods Add*() are
used to build a list of geometric primitives which de-
fine the approximate shape of the objects. The coor-
dinates (X,Y) of each primitive are given according to
an origen (0, 0) that is considered the geometric center
of the object.

2.2 Example (part 2)

For the microscopic fluid used as an example, we
define the descriptors CDisk and C'Obstacle, and the
initialized instances of these descriptors Disk and Ob-
stacle such as is shown in the following program frag-
ment,

class CDisk: public GDescriptor {
private:
double VelocityX, VelocityY;
public:
void SetVelocity(double Vx, double Vy)
{ VelocityX=Vx; VelocityY=Vy; }
void GetVelocity(double &Vx, double &Vy)
{ Vx=VelocityX; Vy=VelocityY; }

};
class CObstacle: public GDescriptor {
private:
double temperature;
public:

void SetTemperature(double t){temperature=t;}
double GetTemperature(){return temperature;}

};

CDisco Disk (ACTIVE,1);
CObstaculo Obstacle(PASSIVE,2);// 2 states

void Descriptors()
{

//Initialize geometric form
Disk.AddCircle(0.0,0.0,0.25);
Obstacle.AddCircle(0.0,0.0,0.5);

}

The instances Disk and Obstacle will be used to cre-
ate the simulation objects and to define the interface
with the kernel.

In our approach, it is not necessary that each de-
scriptor represents a physical or concrete system en-
tity. They may also represent to abstract entities

such as weather and flux measurer. Furthermore, it
is not a requirement that all the objects have geo-
metric shapes; consequently we have defined the class
GDescriptor as a derived class of BDescriptor (the
Base Descriptor). The user may define other derived
classes from BDescriptor as Queue Centers for exam-
ple. Therefore, the term active object is not strictly a
synonym of neither moving object nor concrete entity
with geometric shape.

3 Space

In this section we present the methodology used
in the automatic allocation of objects with geometric
shape into the space of the model. We define space as
the rectangular area where the geometric objects are
placed. The origin (0, 0) for the spatial coordinates is
located in the lower left corner of the space. Basically,
the objects come to the space from one or more sheets
previously created. These sheets are created making
the fusion of other sheets; duplicating patternsin their
spread; or inserting objects individually into them.

3.1 Patterns

A pattern is a small rectangle that contains one or
more geometric objects. All patterns defined for a
simulation model are instances of the following library
class,

class Pattern {
public:
Pattern(double X, double Y);
void AddObject (GDescriptor &D, double Xgc,
double Ygc, double Angle);
};

where X and Y set the rectangle size and the method
AddObject() is used to place objects into the pattern.
The geometric center of each object is placed in the
position given by the parameters Xgc and Ygec with
rotation angle given by Angle. In this case the origin
(0,0) is the lower left corner of the rectangle defined
by X and Y.

3.2 Sheets

A sheet 1s a large rectangle that contains objects
created duplicating a pattern in all its extent; adding
objects individually; or making the fusion of two
sheets. Each sheet is an instance of the following class
library,

class Sheet {
public:
Sheet (double X, double Y,
double Xo, double Yo);
void Duplicate (Pattern &P);
void AddObject (GDescriptor &D, double Xgc,
double Ygc, double Angle);
void Fusion(Sheet &S1, Sheet &S2,
boolean V, boolean W);

};

where X and Y set the rectangle size, and Xo, Yo spec-
ify the rectangle position (its lower left corner) within
the space. The parameter P identifies the pattern to
be duplicated — using the method Duplicate() — into
the area defined by X and Y.

The fusion of two sheets is performed by the method
Fusion() which makes the join of the sheets SI and
52 — where V and W may take the values TRUE
or FALSE. If Vis FALSE the objects in S1 are not
included in the final sheet. Inversely, when Vis TRUE
all the objects in S7 are included in the final sheet.
When W is TRUEFE are included in the final sheet all
the objects of S2 that do not intersect an object of 57
If Wis FALSE are included in the final sheet all the
objects of 52 that intersect at least one object of 57

3.3 Space

The space of the model is an instance of the follow-
ing library class,

class Space {
public:
Space(double X, double Y);
void Objects(int n, Sheet &S ...);
int InsertObject(GDescriptor &D, int V,
double Xgc, double Ygc,
double Angle);
void DeleteObject (int Identifier);
};

where X and Y specify the extent of the rectangular
space. The method Objects() has a variable argument
list and it 1s used to insert within the space the objects
stored in the sheets specified in the argument list. All
the objects stored in the n sheets S are inserted into
the space.

During simulation, it is possible to delete and cre-
ate objects dynamically. Each object is identified by
an integer number. The method InsertObject() cre-
ates a new object, inserts it into the space, and re-
turns the identifier assigned to the new object. When
Vis TRUEF all the objects that intersect the recently
created object are deleted. If Vis FALSE the new

object is created and inserted without considering the
intersections with other objects. When Vis CONDI-
TIONAL the object 1s created and inserted only if it
does not intersect other objects.

3.4 Example (part 3)

For the microscopic fluid used as an example, the
objects and space are created as follows,

Space SimSpace(1000.0,1000.0);

void Objects()

{
Pattern PDisk(1.0,1.0);
PDisco.AddObject (Disk,0.5,0.5,0.0);

Sheet SD(1000,1000,0,0);
SD.Duplicate (PDisk);

Sheet S0(1000,1000,0,0);
50.Add0bject (Obstacle,500,500,0.0) ;

Sheet SD0(1000,1000,0,0);
SDO.Fusion(S0,SD, TRUE, TRUE) ;

SimSpace.0bjects(1,5D0) ;

4 Simulation

Let us define xlist as a list of pointers that is used by
the kernel to execute the functions or routines pointed
to by these pointers. Let us also define map as an
input-output structure which contains one xlist in each
output and has input parameters that allow the kernel
to find these xlists within the map. Class descriptors,
object states and interaction types are used as input
parameters.

In all simulation model there are two maps:

e Predictions map; which contains xlists that point
to prediction functions used to calculate the in-
teraction times between the simulation objects,
and

e Interactions map; which contains xlists that point
to interaction functions used to make the change
of states of the objects involved in an interaction.

The kernel performs the simulation of the system
making accesses to the predictions and interactions
maps in order to execute the functions pointed to by
the xlists. These model-dependent functions pointed

to by the members of the xlists have the responsability
of the correct evolution of the system being simulated.
The kernel only makes calls to these functions at the
precise instants.

Each xlist may contain other general purpose
model-dependent functions (called control functions)
which may be used in tasks such as, for example, sys-
tem evolution measuring.

Given two objects ¢ and j — with states e;, ¢; and
class descriptors d;, d; — the input parameters for the
predictions and interactions maps are {d;,d;, e, e;}.
In addition, if 1t has been defined the interactions a
and b between ¢ and j (interactions valid at the states
e; and e;) the input parameters for the interactions
map may also include either a or b according to the
interaction (a or b) that is being processed just in the
instant when the kernel accesses this map.

The simulation algorithm performed by the kernel
consists in: searching and executing one or more xlists
of the predictions map; getting the chronological next
event that must take place; processing this next event
searching and executing one xlist of the interactions
map; returning to the predictions map and so forth
until the end condition of the simulation is reached.

More in detail, when ocurrs an interaction a be-
tween the objects 7 and j, the kernel executes the xlist
assoclated with the input parameters {d;, e;,d;,e;,a}
in the interactions map. Then, the kernel make pre-
dictions — executing xlists stored in the predictions
map — between the object 7 and all the objects k for
which 1t has been defined a xlist associated with the
input parameters d;,e;, di, e, (the same is repeated
if j is an active object). Then, the kernel determines
the next event and again accesses the interactions map
and so on.

It is possible to form groups of xlists within the
predictions and interactions maps. These groups are
used to build parallel process — called activities —
associated with each object class. Several activities
can be defined for a given object class.

An activity may be seen as a set of predictions and
interactions which are simulated by the kernel indivi-
dually each other and for each object associated with.
The grouping among predictions and interactions is
set using an additional input parameter p.

When an interaction associated with an activity p
takes place, the predictions performed by the kernel
during the process of this event are only realized be-
tween the objects whose class descriptors are members
of p. In other words, if it has been defined that the
class descriptors d; and d; belong to the activity p,
then when an interaction in p for an object ¢ ocurrs

the kernel performs predictions between ¢ and all the
objects whose class descriptors are d; or d;.

The activities focuses the predictions to determined
object classes making possible the existence of several
independently simulated processes for the same ob-
ject.

Conditional events can be used to sincronizate the
activities since these events are executed when a given
condition 1s reached. For example, a condition may
test the end of one or more activities and the associ-
ated event (which is triggered when the condition is
true) may begin the execution of a new activity.

The object interactions are strictly binary although
the particular case of unary interactions can be imple-
mented using a predefined void class called VoidDe-
seriptor. This void class can be used to model activi-
ties that are uniquely associated with an specific class
without having relation with other object classes.

4.1 XLists

A xlist1s a list of function pointers and must be an
instance of the following library class,

class XList {

public:
void Insert(char *List ...);
void Delete(char *List ...);

void Execute();

};

where the methods Insert() and Delete() are used to
add and remove function pointers in a xlist. These
methods have variable argument lists. The parameter
List is a string that specifies — by mean of “f” letters
— the number of pointers placed in the argument list .
For example, three pointers are specified by the value
List= “fff”. Furthermore, it is possible to assign a
priority value to each function pointer by associating
an integer number to each ”f”. For example, the value
List= “f1f2f3” sets three pointers with priorities 1, 2
and 3. In this case, the kernel execute the functions
in priority order (1 has greater priority than 2 and
2 greater than 3). The function pointers are placed
after parameter List and it is assumed the type wvoud
(*function)() for these pointers.

4.2 Maps

A map sets relations among descriptors, states, in-
teractions and xlists. Each map is an instance of the
following library class,

class Map {

public:
Map (int Type);
void Connect(Descriptor &D1, Descriptor &D2,
int StateD1, int StateD2,
XList &XL, int Activity=0,
int Interaction=0);
void Connect(Descriptor &D1, Descriptor &D2,
int StateD1, int StateD2,
char *List ...);
void Disconnect(Descriptor &D1, Descriptor &D2,
int StateD1, int StateD2,
int Activity=0,
int Interaction=0);

};

where Type specifies if the instance is a predictions or
interactions map. The first method Connect(} is used
to associate one xlist XL with each combination of
descriptors (D1, D2) and states of objects (StateD1,
StateD2). The parameter Activityis used for grouping
combinations of descriptors and states into activities.

If the instance of the class map has been defined
as a predictions map, the parameter Interaction is ig-
nored. But, if this instance is an interactions map
the parameter Interaction can be used to define sev-
eral interactions between each pair of descriptors and
states.

In a similar way as the parameter List is used in the
class XList, the parameter List in the second method
Connect() can be used to specify directly the xlist, and
can be also used to define activities and interactions.
For interactions the parameter List include the letter
“1” followed by an integer, and for activities the letter
“a” sufixed by an integer.

The method Disconnect() can make the dynamic
disconnection of the relations established between de-
scriptors, states, activities, interactions and xlists by
the connect() methods.

The default activity (Activity=0) consists in mak-
ing predictions with all the objects of the system, as
these objects belong to classes that have been asso-
ciated with one xlist. Also, as parameters for the
connect and disconnect methods can be used the pre-
defined constants AllDescriptors and AllStates.

4.3 Example (part 4)

For our example of the microscopic fluid we have
defined the following maps and xlists,

// XLists y Mapas

XList XInit;//Initialize and
XEnd; //Finalize the simulation.
XPred;//calls TestEndCondition()

Map MP(PREDICTIONS); // predictions map
Map MI(INTERACTIONS); // Interactions map

void XListsMaps ()

{

XInit.Insert ("f",Init);

XEnd.Insert (""f",End);

XPred.Insert ("f",TestEndCondition) ;

MP.connect (Disk,Disk,0,0,"f1",
CollisionTimeDD);

MP.connect (Disk,0Obstacle,0,0,"f1",
CollisionTimeDO_A);

MP.connect (Disk,0Obstacle,0,1,"£f1",
CollisionTimeD0O_B);

MI.connect (Disk,Disk,0,0,"f1£2",
ChangePositionsDD,
ChangeVelocitiesDD) ;

MI.connect (Disk,0Obstacle,0,0,"f1£2",
ChangePositionD,
ChangeVelocityDO_A) ;

MI.connect (Disk,0Obstacle,0,1,"f1£2",
ChangePositionD,
ChangeVelocityDO_B) ;

¥

4.4 Event List

The Event Listis the data structure where the event
generated during the simulation are stored. The ker-
nel has the responsability of performing an efficient
administration of these events. The library provides
the following methods related with the Event List,

class Event {
public:
void SetEvent (double Time,
int Id0bj1, int IdObj2,
int Activity=0,
int Interaction=0);
void SetEvent (int (*F) (),
int Id0bj1, int IdObj2,
int Activity=0,
int Interaction=0);

};

class Kernel {
public:
void Schedule(Event &E);
void Cancel (Event &E);
void Cancel(int IdObj, int Activity=0);
void Cancel(int IdObj,
int n, Descriptor &D ...);
void Predictions (int OnOff, int Id0bj,
int Activity=0);

void Predictions (int OnOff, int Id0bj,
int n, Descriptor D ...);

};

where the SetFvent() methods are used to initialize
the user events that will be stored in the Event List.
Each user event is an instance of either the class Fvent
or any other derived class from Fvent. These meth-
ods allow defining either a user-event that will take
place at the instant given by the parameter Twme or
a conditional user-event that will take place when the
function pointed to by the parameter F' returns the
value 1. All the conditional user-events are tested to
ocurr before scanning a non-conditional next event in
the Event List.

The method Schedule() inserts an event E in the
Event List. The first Cancel() removes a specific event
from the Event List. The second Cancel() removes
all the events scheduled for the object IdObj and the
specified Activity. The third Cancel() removes from
the Event List all the events related with the object
IdObj and the objects partners that belong to the n
classes D.

The methods Predictions() control the access to the
predictions map during the process of an interaction.
The effect of these methods “vanishes” after process-
ing the interaction. The parameter OnOff enables or
not the predictions for the object IdObj. Furthermore,
these predictions can be restricted to either a specific
Activity or the set of classes especified by the n de-
scriptors D.

In each step of the simulation, the kernel initial-
izes a global object called CurrentEvent which con-
tains data associated with the event that is being pro-
cessed currently. CurrentEvent must be declared by
the user as an object of class Fvent or some other user
defined class derived from FEvent.

4.5 Kernel

The kernel contains the algorithms that perform the
model initialization and its efficient simulation. The
methods used for doing these tasks are given in the
following library class,

class Kernel { // continued
public:

void Space(Space &S);

void SetXLists(XList &B, XList &P,
XList &I, XList &E);

void Maps(Map &MP, Map &MI);

void Start () ;

void Stop();

void Continue();

void Finish();

int CreateObject(Descriptor &D1);

void DeleteObject(int Identifier);
};

where the parameter S indicates the space of the
model; B and F indentify the XLists that will be eje-
cuted during initialization and finalization of each sim-
ulation period respectively; P indicates a XList that
is ejecuted each time that is initiated a secuence of
predictions; and [is a XList that is ejecuted before
processing an interaction that takes place during sim-
ulation.

The parameters MP and MI specify the maps of
predictions and interactions respectively.

The method Start() is used to initiate a new simula-
tion period which is terminated by the methods Stop()
or Finish(). Stop() temporally terminates the simula-
tion period being possible to continue it by using the
method Continue(). Finish() terminates completely
the simulation.

The methods CreateObject() and DeleteObject() are
used to create and eliminate objects without geomet-
rical shape.

4.6 Example (final part)

Finally the initialization and simulation of the mi-
croscopic fluid 1s realized as follows,

// Initialization and simulation

Kernel Sim;
Event CurrentEvent;

void main()
{
Descriptors();
Objets ();
XListsMaps () ;
Sim.Space(SimSpace);
Sim.XLists (XInit,XPred,XVoid,XEnd) ;
Sim.Maps (MP,MI);
Sim.Start();
Sim.Finish();

5 Conclusions

The application independence is ensured because
the class library works with class descriptors and
system-dependent functions defined by the user.

Class descriptors are used to create the simula-
tion objects which represent the system entities and
system-dependent functions are used for modelling the
behavior of the entities and its interaction with each
other.

Xlists provide the flexibility needed in this simula-
tions because it 1s possible to insert and remove func-
tion pointers from the them during simulation. For
example, on a first stage of the simulation it is neces-
sary to hold in xlists to functions dedicated to validate
the model, and after on next stages others functions
are needed to study the system evolution. Xlists in-
crease the efficiency of the simulation because only the
strictly necessary pointers can be holded in each one.

Maps provide an intuitive mechanism for defining
the relations between class descriptors, object states,
interactions and xlists. These relations can be grouped
in activities for representing parallel processes associ-
ated with the simulation objects. This concept can
be used to define several independent processes asso-
ciated with determined object classes which are simu-
lated individually by the kernel for all the objects that
belongs to these classes. Conditional events enable the
activity sinchronization.

The kernel only realize predictions and interactions
for the objects whose classes have been related through
a xlist within the predictions and interactions map,
so it 1s possible to define objects of very distinct sig-
nificance in the same simulation model: some objects
might ”see” to objects that belongs only to determined
classes, while others ones might ”see” to all of the
simulation objects; moreover during simulation these
relations might change dinamically.

Finally, patterns, sheets and fusions provide to the
user a general formalism that simplify the process of
creating and allocating thousands of object with geo-
metrical shape in the space of the model.

Currently our research work is oriented toward the
problem of creating a graphical language that can be
used to define simulation models of many moving ob-
jects systems. In this case, the class library here de-
scribed can be used as a low-level language so that
the outcome of the specifications given in the high-
level graphical languague can be transformed to C++
declarations such as in the microscopic fluid used as
an example in this paper.

Another research activity focuses on how to use the
Rule-Based Expert System Technology for providing
to the user a more descriptive mechanism than the pre-
diction and interaction functions mechanism described
in this paper. In this case, the partial or global state
of the simulation can be considered as the fact data

base and the production rules can be used for guid-
ing the behavior of the active objects during simula-
tion. In this case, within the xlists must exist pointers
to functions that send messages to the inference ma-
chine of the expert system for obtaining some answer
represented in the form of events that are triggered
inmediatly or some steps ahead during simulation.

Acknowledgements

Partially supported by FONDECYT grant 1931105
and University of Magallanes grant F1-011C-94.
Thanks to Dr. Baeza-Yates for encouraging the pre-
sentation of this work.

References

[1] R.Baeza-Yates, M. Marin and P.Cordero, “The
Analysis of an Improved Priority Queue for
Discrete-Event Simulation of Many Moving Ob-
jects” | Proceedings of the XIV International Con-
ference of the Chilean Computer Science Society,
Concepcidén, Nov. 1994, Chile.

[2] P.D.Corey y J.R.Clymer, “Discrete Event Si-
mulation of Object Movement and Interactions”,
Simulation, 56 (1991) 167.

[3] G.Gonnet and R.Baeza-Yates, Handbook of Al-
gorithms and Data Structures, (Addison-Wesley,
NY, 1991).

[4] B.D.Lubachevsky, “How to simulate billiars

and similars systems”, Journal Computational

Physics, 94 (1991) 255.

[5] M.Marin, D.Risso and P.Cordero, “Efficient Al-
gorithms for Many-Body Hard Particle Molecular
Dynamics”, Journal of Computational Physics,

109 (1993) 306.

[6] D.C.Rapaport, “Time Dependent Patterns in
Atomistically Simulated Convection”, Phys. Rev.
Lett., 43 (1991) 7046.

[7] K.Shida and Y.Anzai, “Reduction of the Event-
List for Molecular Dynamic Simulation”, Com-
puter Physics Comunications, 69 (1992) 317.

[8] D.C.Rapaport, “The Event Scheduling Problem
in Molecular Dynamics Simulation”, Journal of
Computational Physics, 34 (1980) 184.

