
Hashing-Cells Combination forBoundless Space Event DrivenMolecular DynamicsMauricio Mar��n1;2 and Patricio Cordero31 Computing Department, University of Magallanes, Casilla 113-D, Punta Arenas, CHILE2 Present address: Computing Laboratory, University of Oxford,Wolson Building, Parks Road, Oxford OX1 3QD, ENGLAND3 Physics Department, University of Chile, Casilla 487-3, Santiago, CHILEE-mails: mmarin@ona.fi.umag.cl, pcordero@tamarugo.cec.uchile.clAbstractThis paper presents a cell method to perform event driven simulations of hard-particle systemson boundless space. An in�nite cell division of the space is supposed where only the cells thatcontain particles are maintained in the computer memory. In order to detect e�ciently thesenon-empty cells a standard hash method is used. This solution enables a more e�cient O(1)simulation of these N -particle systems since the alternative approach is use no cells at all, whichleads to O(N ) simulations per each processed event.1 IntroductionEvent-driven molecular dynamics is a well established tool for the study of hard-particle 
uids [1].Particles move free of interparticle forces during �nite intervals and at discrete instants (events)one or two particles su�er an impulsive force (the respective momenta change discontinuously).The evolution of the system during these intervals is trivial and the simulation proceeds jumpinganalytically from one event to the next. Applications of this type of simulations are illustrative andinspiring since the beginning of molecular dynamics till present days [1]-[13]. E�cient algorithmsto simulate large systems of hard-particles can be found in [14]-[17].A key feature in the e�ciency of these simulations is the strategy used to �nd out the particlesin the neighborhood of every particle under consideration. One �rst step is to divide the space incells and look for the particles present in the home cell c where the particle under considerationis and also for the particles inside the cells adjacent to c. However, no solution for the case ofboundless space has been proposed yet.This paper presents an algorithm and data structure that enables the implementation of the cellmethod in boundless space systems. Our strategy assumes an in�nite cell division of the space anduses a standard hashing method to maintain in the computer memory only the cells that contain



particles. Hashing enables the e�cient search for those cells during the process of determining theparticles located in the neighborhood of a given particle.In [16] it is commented that in boundless space simulations it is not possible to apply thestandard cell division method, and therefore it is necessary to study future collisions (events) forevery particle with all the other N � 1 particles of the system. This leads to a rather than largeevent-list if all the future events are allowed to reside in it. In such a case, however, it is moreconvenient to modify the standard cell method, by using hashing [19], in order to reduce the memoryconsumed by the event-list and the overall running time, since to calculate collisions with N � 1particles for each event that takes place is by far lesser e�cient than calculating collisions withO(1) neighboring particles (cell division enables us to calculate future collisions with only O(1)neighboring particles.) Note that the memory used by the combination hashing-cells is similar tothe standard cell method required in systems with hard or periodical boundaries.2 Cell Division on Boundless SpaceThe existence of an in�nite cell system is assumed when particles are free to move in boundlessspace. We describe the cell strategy for 2D systems while the extension to 3D should be directfrom the 2D presentation.The only cells kept in the computer memory are the non-empty ones regardless of the valuesof the cell coordinates (c; r). This is implemented by keeping lists of cells so that two cells (c1; r1)and (c2; r2) belong to the same list if and only if( jc1j; jr1j ) mod (p; p) = ( jc2j; jr2j ) mod (p; p) ;and using a p� p matrix H to reach these cell-lists.Each element H [a; b] of the matrix H is a pointer to the �rst member in the list of cells andeach member of these lists is the 4-tuple (c; r; next; first) where (c; r) are the coordinates of thecell, next is a pointer to the next member in the cell-list and �rst is the identi�er of the �rst particlein the list of particles inside (c; r).The lists of particles associated to the cells are kept in an array A of length N where eachelement A[i] is a structured variable A[i] = (next; c; r). The particles in every cell are ordered in anarbitrary way. The cell element equals (c; r; next; i) while A[i] is (j; c; r) if j is the label of the nextparticle in the cell (c; r). If k is the last particle in a cell (c; r) then A[k] = (0; c; r). Operationsof inserting (deleting) a particle label into (from) the data structure are necessary when a particleenters (leaves) a cell.The function h(i) = (jij mod p) + 1 is used to map from (c; r) to (a; b). So the search for a cellwith coordinates (c; r) can be performed in the cell-list pointed to by H [a = h(c); b = h(r)]. In thisway, the matrix H enables us to use direct chaining hashing [19] to reach any cell with coordinates(c; r) regardless of the values of c and r. There is no a priori condition over the value of p but forbetter performance it should usually be close to b pN c+ 1 to get shorter cell-lists.



To obtain the displacements of the neighboring cells in collision events and the displacementsof the new neighboring cells in cell crossing events the setsD+ = f (0; 0); (1; 0); (1;�1); (0;�1); (�1;�1); (�1; 0); (�1; 1); (0; 1); (1; 1) gand D#0 = f (�1;�1); (0;�1); (1;�1) gD#1 = f (�1; 1); (0; 1); (1; 1) gD#2 = f (1; 1); (1; 0); (1;�1) gD#3 = f (�1; 1); (�1; 0); (�1;�1) gare used. The set D+ contains the relative cell displacements for collision events and D#p therelative displacements for cell crossing events through a wall p = Up = 0; Down = 1; Right = 2and Left = 3 respectively.The list of neighboring particles for a particle i in the cell (c; r) after i has su�ered a collision,is obtained by:a) searching every cell (f; g) in the cell-lists pointed to by each H [h(f); h(g)], where(f; g) = (c+ d; r+ e) 8 (d; e) 2 D+ ;b) searching for all the particles in the particle-lists associated to each cell (f; g). The particlesare collected from the array A and each entry to A is identi�ed by the �eld \�rst" in each(f; g).Note that some cells (f; g) could be absent from the lists of cells pointed to by each H [h(f); h(g)]if they are empty cells. The list of new neighboring particles after a cell crossing event through awall p is obtained by the same procedure but using the set D#p .3 ConclusionsWe propose a hashing based implementation of the cell method for simulations on boundless space.This is a better alternative than using no division for these systems since both the memory requiredto maintain all the events and the total simulation running time are reduced. Using cell divisionimplies to maintain O(1) events per particle and O(1) calculations of new events every time thatan event takes place, which is better than O(N) for both cases when no division is used [16].AcknowledgementsWork partially funded by Chilean projects U.Mag. F1-O1IC-95 and Fondecyt 19311105.
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