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Universidad de Chile - Casilla 487, Santiago 3, Chile

(3) Departamento de Fı́sica, Universidad Simón Boĺıvar
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Summary. — The linear-spectrum–generating algebra technique that has been used
for confluent Natanzon potentials is extended to deal with supersymmetric neutral spin-
(1/2) particles. The generators are exhibited.
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1. – Introduction

For some time the relation between the generators of the SO(2; 1) algebra and the
differential equation for the hypergeometric functions has been known [1]. Using a real-
ization in terms of a single variable, a linear combination of them leads to the confluent
hypergeometric equation. The general hypergeometric case is obtained when the Casimir
operator of the algebra is considered in a two-variable realization of SO(2; 1) algebra.
These results have been successfully applied to the study [2]—from the algebraic point of
view—of those potentials for which the Schrödinger equation reduces to a hypergeomet-
ric one, namely, the Natanzon potentials (NP) [3]. For these cases the SO(2; 1) algebra is
a Spectrum Generating Algebra (SGA).

In this paper we construct a family of Pauli-Schrödinger equations (PSEs) for which
the SO(2; 1) algebra is the SGA using a linear combination of the generators (LSGA). It

(�) The authors of this paper have agreed to not receive these proofs for correction.
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is found that the subset of this family for which the solution can be exhibited (at least
partially) includes a large number of neutral systems and the trivial case of a free charged
particle. As a result, this work describes, algebraically, neutral spin-(1/2) systems that
satisfy solvable PSEs .

In [4] it was shown that a class of neutral spin-(1/2) systems that satisfy a PSE can
be exactly solved if the solution of an associated pair of spin-0 Schrödinger equations
whose supersymmetric partners is known; this follows from the condition imposed for
solvability of the PSE. This class is extended in [5] to include quasi-solvable systems [6].
The family we are interested in is characterized by the superpotential W of the associated
spin-0 supersymmetric system in the sense that for each W the scalar potential Vs and
the magnetic field B that define a Pauli-Schrödinger Hamiltonian, H , are constructed.
This hints to the role played by supersymmetric quantum mechanics (SUSYQM) [7] in
the determination of the solvable neutral spin-(1/2) cases.

The LSGA technique puts into correspondence the operator H�E, where E is the en-
ergy, with a linear combination of the generators. For a specific choice of the parameters
the resulting second-order differential operator turns out—after a tilting, if necessary—
to be compact thus leading to a discrete spectrum which will, as the same time, be re-
quired to be bounded below. This is the most interesting case from the physical point of
view since it can be related to the discrete spectrum of H . Previous studies of the PSE
using SUSYQM have looked for a companion PSE which plays the role of a supersymmet-
ric partner [8]. In this paper a somehow different approach is adopted: the single PSE
considered must be supersymmetric by itself, no companion PSE appears [4, 5].

The organization of this paper is the following: sect. 2 is a summary of LSGA for spin-
0 systems and its relation to the confluent NP. Section 3 shows the construction of the
SO(2; 1) generators, Casimir operator and the study of the master equation, whereas in
sect. 4 the role of SUSYQM is discussed . In sect. 5 we exhibit a particular example and
finally sect. 6 contains some comments on the relation of this technique to other cases of
the PSE.

2. – Summary of LSGA and confluent NP

In this section we will review the algebraic method to treat the confluent Natanzon
potentials [2].

The LSGA technique is based on the assumption that the Schrödinger equation can be
written in terms of the generators J� (� = 0; 1; 2) of the SO(2; 1) algebra: [J0; J1] = iJ2,
[J1; J2] = �iJ0, [J0; J2] = �iJ1,

[H �E] 	 = G(y) [2 (1 + �) J0 + 2 (1� �) J1 + 4�J2 � �] 	 = 0 ;(2.1)

where G(y) is a function fixed by consistency, �,� and � are constants; usually one takes
� = 0. Equation (2.1) is called the master equation. In the study of (2.1), the following
steps are: i) use a realization of the J� in terms of a pair of operators ba and bb that satisfy
[ba;bb] = 1 and ii) use a specific realization of ba and bb in terms of functions ofy and d

dy
. The

realization is well known [1] :

4J0 = �ba2 + (4Q+ 3=4)bb�2 +bb2 ;(2.2)
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4J1 = �a2 + (4Q+ 3=4)bb�2 �bb2 ;(2.3)

4iJ2 = 2bbba+ 1 ;(2.4)

where Q is the Casimir of SO(2; 1) algebra, Q = J20 � J21 � J22 . The condition[ba;bb] = 1
together with the requirement that ba2 does not have d

dy
leads to

ba = L(y)
d

dy
�

1

2

dL(y)

dy
;(2.5)

bb = Z
dy

L(y)
;(2.6)

where L(y) is an arbitrary function. It has been customary in the literature to set
L = 2

p
h(y)=h

0

(y) . Now the final step to obtain the confluent Natanzon potentials is
to replace (2:5)and (2:6)in (2:2)-(2:4) and the result in (2:1). This leads to two equations:
one involving the parameter E and the other independent of E. A formal derivation with
respect to E is performed assuming that only Q, � and � depend linearly on E; as a result,
h(y) satisfies

dh(y)

dy
=

2h(y)
p
R

;(2.7)

where R is given by

R = s2h
2 + s1h+ c0(2.8)

with s0, s1 and c0 constants. The resulting potential is the confluent Natanzon potential
given by

VC =
g2h

2 + g1h+ �

R
+
s1h� s2h

2

R2
�

5

4

�h2

R3
;(2.9)

where � = s21 � 4s2c0 and g2 , g1 and � are constants. We follow the notation in [9].
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3. – SO(2; 1) for spin-(1/2) systems

3.1. Generators. – The realization of the generators as in (2.2) through (2.4) is not ad-
equate to build up a PSE as in (2.5) and (2.6) because the Pauli matrices do not enter in a
natural way. For this reason the algorithm of sect. 2 will be repeated but using operatorsba and bb of the form (3.1) and (3.2), see below, which explicitly include the Pauli matrices.
We assume then

ba = A���
d

dy
+B���; � = 0; :::; 3 ;(3.1)

bb = C��� ;(3.2)

where �0 is the identity, �i the Pauli matrices and A�, B� and C� are twelve arbitrary
functions of y. The relation [ba;bb] = 1 leads to j���

d

dy
+K� = 1, where the functions j�

and K� are given by

K0 � A0C
0

0 +A � C
0

= 1; j0 = 0 ;(3.3)

K �iA�C
0

+A0C
0

+ C
0

0A+2iB� C = 0 ;(3.4)

j � 2iA�C = 0 :(3.5)

These equations imply

A = LC ;(3.6)

A0 =
C2C

0

0

D
;(3.7)

L = �
C �C

0

D
;(3.8)

B = MC+
1

2
LC

0

+
i

2

A0

C2
C�C

0

;(3.9)

where M is an arbitrary function and D is given by
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D = C
0
2
0 C

2 � (C �C
0

)2 :(3.10)

The above results leave six arbitrary functions, namely: C� , B0 and M . From (2.4) the
generator J2 is given by

J2 = F���
d

dy
+G��� ;(3.11)

where the coefficients F� and G� are

F0 = �
i

2
(C0A0 +C �A) ;(3.12)

F = �
i

2
(C0A+A0C) ;(3.13)

G0 = �
i

4
(2C0B0 + 2C �B+1) ;(3.14)

G = �
i

2
(C0B+B0C+iC�B) :(3.15)

The result for ba2, needed for the construction of J0 and J1, eqs. (2.2) and (2.3), is

ba2 = T���
d2

dy2
+ S���

d

dy
+ P��� ;(3.16)

where

T0 = A2
0 +A

2 ;(3.17)

T = 2A0A ;(3.18)

S0 = A0A
0

0 +A � A
0

+ 2A0B0 + 2A �B ;(3.19)

S = A0A
0

+ iA�A
0

+ 2A0B+2B0A+A
0

0A ;(3.20)
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P0 = A0B
0

0 +A �B
0

+B2
0 +B

2 ;(3.21)

P = A0B
0

+B
0

0A+2B0B+iA�B
0

:(3.22)

For bb2 and bb�2 we easily get

bb2 = C2
0 +C

2 + 2C0C � � ;(3.23)

bb�2 = C2
0 +C

2 � 2C0C � �
(C2

0 �C2)2
:(3.24)

3.2. The Casimir operator. – To complete the computation of J0 and J1 the explicit
form of the Casimir operator Q is needed; since Q = J20 � J21 � J22 is an identity, it will be
assumed that Qhas the following form:

Q = q��� ;(3.25)

where q0 and q are functions of y to be determined from [Q; J�] = 0; � = 0; 1; 2.
From[Q; J2] = 0 it is found

i

2
(C0A0 + LC2)q

0

0 +
i

2
(C0L+A0)C � q

0

+(C0L+A0)q�C � �
d

dy
=(3.26)

=

�
1

2
(C0L+A0)C� q

0

�
i

2
(C0A0 + LC2)q

0

�
i

2
q

0

0 (C0L+A0)C

�
� � �

� [q� (C0B+B0C+iC�B)] � � :

The vanishing of the coefficient of d

dy
implies

(C0L+A0)C� q = 0(3.27)

with the two alternatives

q = kC ;(3.28 a)

C0L+A0 = C2C
0

0 � C0C � C
0

= 0 :(3.28 b)

Alternative b) fixes C0 in terms of C and C
0

and leaves q arbitrary. The rest of this
paper uses a) for simplicity. Going back to (3.25) leads to the set of equations (R � C0A0+
A � C ; S � LC0 +A0)
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q
0

0R+ q
0

�CS = 0 ;(3.29 a)

q
0

R+ q
0

0SC+ iSC� q
0

+ 2iC0B� q+2q� (C �B) = 0 :(3.29 b)

Multiplying (3.29 b) scalarly by C, one gets

q
0

0R+ q
0

�CS = 0 ;(3.30 a)

q
0

�CR+ q
0

0SC
2 = 0(3.30 b)

The determinant of this system (in q
0

0 and q
0

�C) is � = (C2
0 �C2)(A2

0�A2) which will
be required to be non-zero so that the master equation is well defined, see next subsection,
eq. (3.33). As a result

q
0

0 = 0 ; q
0

�C =0 = k
0

C2 + kC �C
0

(3.31)

so that q0= constant and k = f=
p
C2 ; where f is a constant. After this result the vector

equation (3.29 b) is satisfied identically. To complete the calculation the commutators of the
Casimir operator with the two remaining generators have to be checked; they separate
into two terms:

[bb2; Q] and

�
�ba2 + (4Q+

3

4
)bb�2� ;

since bb2 , bb�2 and Q depend on C � �, we have [bb2; Q] = [bb�2; Q] = 0; therefore, the
only term to look at is

�ba2; Q� = (T0 +T � �)q
00

� � + (S0 + S � �)q
0

� � + 2iP� q � � +

+
n
2(T0q

0

� � + iT� q
0

� �) + 2iS� q � �
o d

dy
;

which is shown to vanish after a straightforward calculation.
Since there are no restrictions on the functions M ,B0 and C�, there are still six ar-

bitrary functions. For future reference it is worthwhile to point out that if a separation
parameter —in the next section the separation parameter is the energy eigenvalue— is
introduced, then the Casimir operator is written in the following form:

Q = (q0 +Eq1) + (f0 +Ef1)
C � �
p
C2

;(3.32)

where q0 , q1, f0 and f1 are constants. Notice that the spectrum of Q is (q0 + Eq1) �
(f0 +Ef1).
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3.3. The master equation. – This equation relates the second-order differential opera-
tor of the PSE to the generators of the SO(2; 1) algebra, the relation is

G(y)(�ba2 + (4Q+
3

4
)bb�2 + �bb2 + 4�J2 � �) = �

d2

dy2
+ V �E ;(3.33)

where G(y) is in this case a 2�2 operator matrix determined so that the coefficient of the
second derivative is the same in both sides of (3.33). Using the result given in eq. (3.16),
one concludes that G(y) is then given by

G(y) =
T0 �T � �
T 2
0 �T2

:(3.34)

Now it is assumed that the Casimir operator, �, � and � are linear functions of the
energy E: 8>>>>>>>>><>>>>>>>>>:

Q = (q0 +Eq1) + (f0 +Ef1)
C � �
p
C2

;

Q � Q0 +EQ1 ;

� = �0 + �1E ;

� = �0 + �1E ;

� = �0 + �1E :

(3.35)

It is convenient at this point to rewrite the expression of the Casimir operator in terms
of two vectors g1 and g2 defined as

g1 = f0
C

p
C2

; g2 = f1
C

p
C2

;(3.36)

therefore

Q0 = q0 + g1 � � ; Q1 = q1 + g2 � � :(3.37)

The energy E is considered as a separation parameter so that (3.33) splits into two
equations, each one the coefficient of E�, � = 0; 1, obtaining for � = 1

T0 +T � � = �1 � �1bb2 � 4Q1
bb�2 � 4�1(F���

d

dy
+G���) :(3.38)

Substitution of eqs. (3.16) through (3.23) into (3.38) leads to the following four equa-
tions:

T0 = �1 � �1(C
2
0 +C

2)�
4q1(C

2
0 +C

2)� 8C0g2 �C
(C2

0 �C2)2
� 4�1(F0

d

dy
+G0) ;(3.39)



AN ALGEBRAIC DESCRIPTION OF SUPERSYMMETRIC NEUTRAL SPIN-(1/2) SYSTEMS 1307

T = �2�1C0C+
8q1C0C�4(C2

0 +C
2)g2

(C2
0 �C2)2

� 4�1(F
d

dy
+G) :(3.40)

Since there are no terms proportional to d

dy
in T0 or T, see (3.17) and (3.18), �1 must

vanish. This implies that the vector equation reduces to only one since both sides are
proportional to C. The set of four equations amounts only to two conditions thus leaving
four arbitrary functions.

At this point we are in a position to write down the potential V that comes from the
energy independent part (� = 0) of eq. (3.33) and is given by

V = Vsc + � ��(3.41)

where the scalar and spin parts of V , Vsc and � are

Vsc =
T0�0 �T � �
T 2
0 �T2

;(3.42)

� = �
T0�T�0 + iT��

T 2
0 �T2

(3.43)

with �0 and � defined as follows:

�0 = (4�0F0 � S0)
d

dy
+ �0(C

2
0 +C

2)� P0 + 4�0G0 +(3.44)

+
(4q0 +

3

4
)(C2

0 +C
2)

(C2
0 �C2)2

�
8C0g1 �C
(C2

0 �C2)2
� �0 ;

� = (4�0F� S)
d

dy
+ 2�0C0C�P+ 4�0G�(3.45)

�
2C0(4q0 +

3

4
)

(C2
0 �C2)2

C+
4(C2

0 +C
2)g1

(C2
0 �C2)2

:

We remind the reader that in the formalism there are still four arbitrary functions. If
these functions are given as input, eqs. (3.42) and (3.43) define completely the potential
which may contain first derivatives. On the other hand, if Vsc and� are given as an input,
then the problem is much more complicated since one should invert (3.42) and (3.43) to
obtain the four arbitrary functions. However, the terms with first derivatives must be
equal on both sides and the same for those without first derivatives. This amount to eight
equations for the four unknown functions. Only those cases in which this overdetermined
system is satisfied correspond to the solution of the problem.
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4. – Supersymmetry enters the game

Up to this point supersymmetry (SUSYQM) has not played any role. To bring
SUSYQM into play define the following operator:

� = i�2
d

dy
+W�1 ;(4.1)

where W is the superpotential. The Hamiltonian is constructed as

HSUSY = �2 = �
d2

dy2
+W 2 +W

0

�3 ;(4.2)

which is the well-known form of a SUSYQM problem for a pair of Schrödinger Hamilto-
nians H

�
which are supersymmetric partners

�
H
�
= � d

2

dy2
+W 2 �W

0

�
. It will be as-

sumed in the following that the solution to this problem is known (eigenvalues and eigen-
functions), at least partially .

Now introducing the Hamiltonian (k, d constants) [5]

HSUSY;PS = (� + k)
2
+ d�3(4.3)

and writing it explicitly a Pauli-Schrödinger equation is obtained. In fact

HSUSY;PS = �
d2

dy2
+ 2i�2k

d

dy
+ vs(y) +B(y) [sin(2�(y))�1 + cos(2�(y))�3] ;(4.4)

where the functions vs(y), B(y) and �(y) are determined by the superpotential W as

vs(y) = W 2 + k2 ;(4.5)

B(y) sin(2�(y)) = 2Wk ;(4.6)

B(y) cos(2�(y)) = W
0

+ d :(4.7)

The eigenfunctions of HSUSY;PS are

�n(y) =

�
�+
n�1(y) cos�
��
n
(y sin�

�
;(4.8)

where
�
�+
n�1

(y)
��n (y)

�
are eigenfunctions of �2, the constant � is given by
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tan�� =
2kEn

d� (d2 + 4k2En)1=2
(4.9)

and the spectrum is found to be

E�
n
= En + k2 � (d2 + 4k2En)

1=2 ;(4.10)

where fEng is the spectrum of �2 .
After a rotation in spin space [5] to define 	(y) = exp[2iky�2]�(y) the well-known

PSE for a neutral spin-(1/2) system is obtained:

�
�

d2

dy2
+ vs(y) +B(y) [cos(2�(y))�3 + sin(2�(y))�1]�E

�
�(y) = 0 ;(4.11)

where �(y) = 2(ky + �(y)) , see [4], which will be considered as the PSE in a fixed
reference frame while (4.4) is the same equation in a rotated frame. Equation (4.11) will
be called a supersymmetric spin-(1/2) system.

The next step consists in writing the Hamiltonian of (4.11) in terms of the SO(2; 1)
generators constructed in sect. 3. The situation in dealing with (4.11) is that Vsc and �
are given in (4.5) through (4.7). This information must be used as input in (3.42) and (3.43)
and from these equations the four arbitrary functions must be determined. Since we have
not been able to invert this system of equations we present in the next section an example
in order to show that the scheme is not empty.

5. – An example

Let us assumeC = (C1; 0; C3), where C1and C3 are arbitrary constants, for simplicity
we choose jCj = 1. This implies

A = 0 ; A0 =
1

C
0

0

; L = 0 :(5.1)

For F�,G� , S� , P� and T�, (� = 0; :::; 3) we obtain from (3.12)-(3.22)

F0 = �
1

2

iC0

C
0

0

; F = �
1

2

iC

C
0

0

;(5.2)

G0 = �
i

4
(2C0B0 + 2M + 1) ; G = �

i

2
(C0M +B0)C ;(5.3)

S0 = �
C

00

0

C
03
0

+ 2
B0

C
0

0

; S = 2
M

C
0

0

C ;(5.4)
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P0 =
B

0

0

C
0

0

+B2
0 � �20 ; P = �2i�0B0C ;(5.5)

T0 =
1

C
02
0

; T = 0 :(5.6)

Now we turn to the master equation; with the above results it is found from (3.39)
and (3.40),

1

C
02
0

= �1 � �1(C
2
0 + 1)�

4q1(C
2
0 + 1)� 8C0f1
(C2

0 � 1)2
;(5.7)

0 = (�2�1C0 +
8q1C0�4(C2

0 + 1)f1
(C2

0 �C2)2
)C :(5.8)

A simple way to satisfy this last couple of equation is with the choice

�1 = q1 = f1 = 0 ;(5.9)

so that

C0 =
y
p
�1

:(5.10)

If no first-order derivatives should appear in the scalar and spin parts of the potential
V , eqs. (3.41) and (3.42), S� and F� must satisfy the following relations:

S0 = 4�0F0 ; S = 4�0F(5.11)

that fix B0 as a function of C0 and M in terms of �0, namely

B0 =
1

2

"
�2iC0
C

0

0

+
C

00

0

C
02
0

#
C

0

0 ; M = �i�0 :(5.12)

We can make further assumptions if we look at the expression for �0 and�, eqs. (3.43)
and (3.44), since both contain terms of the following form:

4q0 +
3

4�
y2

�1
� 1

�2 and
f0�

y2

�1
� 1

�2
which give rise to complicated potentials; we assume then, for simplicity
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q0 = �
3

16
; f0 = 0 ;(5.13)

with these choices one finds for Vsc , see (3.39),

Vsc =
(�0 � �20)

�21
y2 +

�0 � �20 � �0

�1
;(5.14)

and the spin part � , (3.40), is then

� = �2
(�0 + �20)

�
3=2

1

yC ;(5.15)

The superpotential W and k is obtained from (4.5) after identifying vs(y) with Vsc,
given in (5.14):

W =

p
(�0 � �20)

�1
y ;(5.16 a)

k2 =
�0 � �20 � �0

�1
:(5.16 b)

With these results the magnetic field B(y) and �(y) are easily evaluated from (4.6) and
(4.7). From (3.1) and (3.2) the operators ba and bb are found to be

ba =
p
�1

d

dy
� i�0bb ;(5.17 a)

bb = y
p
�1

+ C1�1 + C3�3 :(5.17 b)

Then from eqs. (2.2)-(2.4) the generators are easily obtained.
Consider now the following particular case: d = �W

0

and C3 = 0. The magnetic field
is in this case B = 2kWbi in the rotatory frame, see (4.4). In the fixed frame, eq. (4.11), the
magnetic field B�x = 2kW [sin(2(ky+ �))bi+ cos(2(ky + �)) bk ] rotates around the y-axis
with step 2�

k
. The scalar potential is harmonic, see example ii) of [4]. As a curiosity, the

Casimir operator for this example is the same as for the usual harmonic oscillator.
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6. – Final comments

In sect. 3 and 4 we have shown how the LSGA technique is used to algebraize a pre-
cisely defined family of neutral spin-(1/2) PSEs. In this way an explicit solution to all
cases included is exhibited in terms of the superpotential W of a pair of Schrödinger part-
ner Hamiltonians. With W as input also the generators of the SO(2; 1) algebra—which is
the SGA for the specific problem at hand—are also shown to be defined; the algebrization
of the case in point is taken in this sense.

As a final comment, if only the SO(2; 1) algebra is considered —namely, only the re-
sults of sect. 3— then the set of differential equations is much larger than the one we
have studied and the possibility is open to algebrize the PSE for a charged system under
the influence of both a scalar potential and a magnetic field. Thus the case included in
de Crombrugghe and Rittenberg (see [8]) with a unique supersymmetric charge

� = �+ (p� eZ) � �(6.1)

and the Hamiltonian given by 2H = �2 is seen to be a particular case of (3.41). For those
choices of the scalar � and vector potential Z which satisfy (3.42) and (3.43) the system
(6.1) is algebrized by our technique. Particular cases of (6.1) have been studied in the
literature [10].
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