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Abstract

Very dense bidimensional systems of inelastic hard disks excited from the base are
studied by means of Newtonian event driven molecular dynamics. A stationary
regime is reached where almost perfect crystallographic order is present in the sys-
tem. When the energy injection is varied in a wide range the center of mass of the
system varies smoothly except that at some points it suffers abrupt changes. There
are at least two different types of changes and both show hysteresis as if it were a
first order transition.
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Almost a decade ago it was argued that a granular system weakly excited by
a vertically vibrating base presents a Fermi-like density profile as a function
of height (Hayakawa Hong). For a bidimensional system of N hard inelastic
disks, of diameter σ in a box of width Lx = Nxσ, the proposed form of the
linear number density φ—normalized to

∫

∞

0
φ dz = N/Nx—is

φ(z) =
1

1 + exp [β(z − z0)]
, z0(β

−1) =
1

β
ln

(

eβN/Nx − 1
)

(1)

where z is the dimensionless vertical coordinate. The height z0(β
−1), playing

the role of a chemical potential, is the dimensionless position of the superficial
layer in the sense that d2φ/dz2 vanishes at z = z0. It tends to N/Nx as β → ∞.
The authors assume that β is connected with the product of the amplitude
and the frequency of the vibrating base, β−1 ∝ (Aω)2 but this is debatable.
Their T ∼ β−1 should be directly connected with the temperature of Edwards
thermodynamics of granular systems (Edwards et al.).
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Starting basically from the first article cited above the authors of (Fiscina Caceres)
have made an interesting theoretical and experimental study of the behaviour
of the upper layer of these systems.

It is easy to prove that from Eq. (1) the height h of the center of mass,
h = Nx

N

∫

∞

0
z φ dz, for large β (small excitation) is h = Nx/2N + dh where

dh =
π2σNx

6N
β−2 + O

(

β−4
)

(2)

This expresion says that dh ∝ T 2 but it is not clear what T is. We interprete
(Huntley) as implying that T ∝ (Aω)4/3 even though this is not stated in that
reference. In the following we make no attempt to define T but use as control
parameter the temperature Tb associated to the base and find that dh ∝ T b

with 0.2 ≤ b < 0.3.

* * *

The present article exhibits results obtained from molecular dynamics of bidi-
mensional systems of inelastic hard disks excited by a stochastic still base char-
acterized by a temperature Tb. Namely, a particle P hitting the base bounces
back as if P were replaced by an independent particle coming from a heat
bath (with T = Tb) on the other side of the wall. Similar results have also
been obtained using a tapping algorithm characterized by a base which in-
duces collisions as if it were moving at constant velocity v0.
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Fig. 1. The figure illustrates a molecular dynamics observation in which the density
profile does not show a Fermi-like shape. The reason is that the granular temperature
is highly inhomogeneous. The secondary curve, to which a straight line has been
adjusted, represents [log (d/dz(1/φ))] which, for a Fermi distribution, should be a
straight line.

The density profile: Since the system is inelastic the kinetic energy per
particle (granular temperature from now on) is a steep function T (z) which
initially decays exponentially. This is the reason for which we do not generally
observe a density φ(z) monotonically decreasing with z but rather a density
that at first grows with z, then flattens and finally falls to zero very much like
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the Fermi distribution described in Eq. (1). We check that
[

log
(

d
dz

1

φ

)]

is a
straight line in the upper layer where the density is dropping to zero, as shown
in Fig. 1. Such non-monotonic profiles can be produced introducing some
modifications into Fermi’s function φ(z): replace T ∼ β−1 by a steep function
of z and modifying the purely gravitational energy used in (Hayakawa Hong)
introducing a kinetic energy contribution as well. Such profiles will be derived
in a forthcoming article (Risso Cordero). If the degree of excitation of the
system is low enough the observed density profile does decrease monotonically
with height.

Height of the center of mass and its discontinuities: In our simulations
we observe the behavior of h as a function of Tb. We do this for a system of
N = 512 inelastic hard disks of diameter σ = 1, mass m = 0.25 and under
gravity g = 1 (with these choices any other quantity is dimensionless). The
box has witdth Lx = 29; the disks have translational and rotational degrees of
freedom and the collision rule has been described in (Risso et al. ). The values
of the normal and tangential restitution coefficients are set to 0.9 and both
(static and dynamic) friction coefficients are set to 0.2. We start the simulation
with a temperature Tb that is kept fixed until the system is fully relaxed, then
Tb is slightly changed and, starting from the last state, the simulation proceeds
relaxing the system again. This is done both increasing and decreasing Tb and
covering a wide range of temperatures.
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Fig. 2. The system of very cold inelastic disks can show tiny discontinuities in the
height h of the center of mass, as the energy input Tb varies. The left graph is
dominated by two cicles of hysteresis: one which has its jumps at about Tb ≈ 0.1
and Tb ≈ 0.9 and the other one, so tiny that it is almost invisible at left, which
is enlarged in the graph at right. The figure at right really shows several transi-
tions from a higher (warmer) state to at least three different lower (cooler) states.
The warmer state has crystallographic order while the cooler states present zig-zag
rearrangement of the grains as shown in Fig. 3

The graph in Fig. 2 represents h(Tb) when the simulation goes down and up
twice over the whole range (namely each Tb is visited four times). In the first
downward path the height h has a discontinuity just below Tb = 0.1. Later,
when Tb starts going up, h takes the same values and goes on increasing con-
tinuously well beyond Tb = 0.1. Only near Tb = 0.9 it jumps up recovering the
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values it had coming down. The first hysteretic cycle has been closed. It has to
be strongly emphasized that the system recovers previous values after a dis-
continuous jump up. This means that the jump down is not a mere reordering
because in that case it would remain in that more compact configuration until
it changes to a more “disordered state”, when Tb is increased, it would end in
any disordered state. Recovering the same less compact order has a meaning
which one could perhaps relate, generalizing concepts of thermodynamics, to
minimal free energy and/or entropy. More comments on this later on.

The coolong branch in the graph at left in Fig. 2 can be adjusted, in the range
0.2 ≤ Tb ≤ 0.5, to h(Tb) ≈ 7.97 + 0.0535 Tb

1/4.

The next time Tb comes down it makes a smaller transition and again it
presents hysteresis. This is the tiny transition shown in the right graphs
in Fig. 2.

Fig. 3. There is a transition from the first to the second configuration when Tb gets
sufficiently small: a column slides down. When Tb starts increasing again this column
eventually recovers its original height, but at a higher value of Tb than before (hence
hysteresis). The transition from the third to the fourth configurations is more subtle,
because there is a defect from the start and nearby columns abandon their straight
configurations adopting a zig-zag one for lower temperatures. Crystallographic order
is abandoned because the system is too cold.

The discontinuities in the function h(Tb) are rearrangement (topological) tran-
sitions and they are described in the caption of Fig. 3. They are meaningful
only because the system is quite finite. In fact, one can argue that in a quasi-
elastic limit where N → ∞ and the energy loss per collision tends to zero in
such a way that, say, the granular temperature has roughly the same profile,
these transitions, measured as a discontinuity of h/σ would vanish. The topo-
logical transitions themselves would continue being there but one would have
to characterize them in a different way.

Transitions where a column simply suffers a translation imply a jump in h of
order O(Ny/N) where Ny is the number of particles in the falling column. This
type of transition is illustrated by the two states at left in Fig. 3. Transitions
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in which crystalline order changes to a local zig-zag configuration represent a
much smaller change in h. This last transition is peculiar and perhaps counter-
intuitive because the colder configuration has less symmetry than the warmer
one. This type of transition is illustrated by the two states at right in Fig. 3.
Both transitions are quite small and probably difficult to observe experimen-
tally.

Something like an entropy. In these systems the gravitational potential
energy is the dominant component of the energy. The particles keep on average
a small distance between them. The distance does not vanish because the
particles are vibrating as a product of the steady (vibrational) energy input
from the base. This rattling plays the role of a repulsive potential between the
particles and gives rise to a small area (volume in 3D) available to each particle.
An estimate of “the number of configurations” is the product of all these areas
(it cannot be a simple product because particles are highly correlated) and
therefore something like an entropy, in the spirit of Edwards (Edwards et al.)
could be defined through the logarithm of such product.

But there is a connection with ordinary statistical mechanics because simi-
lar rearrangement transitions can be observed in conservative systems with
homogeneous temperature. We have checked this performing a Monte Carlo
Metropolis canonical simulation of a system of hard disks with a weak repulsive
potential and compactified in a box due to their own weight. The result has
been that the almost perfectly compactified system kept slowly cooling down
does suffers a sudden change in the height of the center of mass and when the
system is warmed back it shows a hysteretic cycle just as the granular systems
have been shown to present.
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