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Abstract

Using Newtonian molecular dynamics we study a gas of inelastic hard disks subject to shear
between two planar parallel thermal walls. The system behaves like a Couette flow and it is
tuned to produce a steady state that ideally has uniform temperature, uniform density, no
energy flux and a linear velocity profile for restitution coefficient in the wide range: 0.3<r<1.
It is shown that Navier—Stokes-like hydrodynamics fails far from the quasielastic regime. The
system shows significant non-Newtonian behavior as non linear viscosity, shear thinning and
normal stress differences. Our theoretical description of this state, based on generalized
hydrodynamic equations derived from a moment expansion of Boltzmann’s equation, agrees
reasonably well with the simulational results, and captures the non-Newtonian features of the
system. We claim that our hydrodynamic equations constitute a general formalism appropriate
for describing different regimes of granular gases.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Of all possible states of granular systems, granular gases represent a simpler not
yet fully understood category [1-4]. If a granular gas is steadily “‘heated” by two
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parallel walls, the cooling effect of the inelastic collisions makes it reach a steady
state characterized by a temperature field (granular-temperature) with a minimum at
equal distance from these two walls [5,6]. On the other hand, a conservative gas
sheared by two parallel walls with a fixed temperature Ty, and moving in opposite
directions vy, undergoes viscous heating and it may reach a steady state
characterized by a temperature field which has a maximum equidistant from the
two walls [7].

Theoretical calculations based on hydrodynamic approximations show that these
two effects can cancel each other and the resulting state will have a homogeneous
density and temperature as in [3] and more recently in [4,8].

This article compares the Newtonian molecular dynamics results of a two-
dimensional (2D) system of inelastic hard spheres (IHS) with theoretical descriptions
of a bidimensional granular gas sheared by two planar parallel walls which impose a
fixed temperature 7 at these boundaries. On carefully tuning the sharing rate—
controlling vp—the system remains in a steady state where the two effects (inelastic
cooling and viscous heating) cancel each other as much as the simulation allows. We
look for the state, predicted in [3,4,8] that, at least in the bulk, has uniform
temperature. This is what we will be calling a quasi-homogeneous state (QHS).
Different authors describe the dynamics of granular gases with different
hydrodynamic-like models. The most common is an extension of Navier—Stokes
equations, including energy dissipation as in [2]. This is a simple procedure but, as we
show here, it is inappropriate in the case of highly inelastic systems. Generalized
hydrodynamics is a step forward, certainly more complex than the previous
description, but nevertheless much simpler than describing the system with kinetic
models. In this article we present the results obtained from our general-purpose
generalized hydrodynamic equations with no ad-hod hypothesis or adjustable
parameters. These equations are able to account for the non-Newtonian behavior of
the fluid observed in the simulations. A theoretical analysis of the non-Newtonian
rheology of the QHS state, based on kinetic theory and moment’s method, is
presented in [9]. In particular, it is shown that the effective viscosity is always
different from the Newtonian viscosity obtained using the Chapman—Enskog
method.

The hydrodynamic framework used in this article implies, as in previous studies,
that the inelastic cooling and viscous heating can exactly cancel each other in which
case all hydrodynamic fields are uniform except that the velocity profile is linear. The
theoretical framework that we use is obtained from the granular-gas dynamics
derived from Boltzmann’s equation using moment expansions [6] and it shows, as we
will see, a quite good agreement with our own MD simulations. Our generalized
hydrodynamics, described in detail in Ref. [6], is a set equations for an extended set
of hydrodynamic fields (moments). Besides the usual number particle density n,
velocity field 7, and temperature T, the components of the pressure tensor Pj; and the
local energy flux Q are considered as independent fields with their own dynamics. No
constitutive relations are needed and only in simple stationary regimes with small
inhomogeneities are the usual Newton and Fourier’s constitute relations obtained
[10]. In two (tree) dimensions there are eight (13) independent fields. Such dynamics
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was derived assuming that Knudsen’s number is small; otherwise, wall effects would
become dominant in the bulk of the system, spoiling the assumptions associated with
moment expansions.

2. Dimensionless variables

In the following we take Knudsen’s number for a system of N particles in 2D in a
box L, x L, to be Kn= +/4/(pN), where p is the area density (fraction of area
occupied by the disks), and 2 = L,/L, is the aspect ratio. Kn is of the same order as
the standard Knudsen number. Considering a system of particles of unit mass and
unit diameter with overall number density no = N/(L.L,) and reference granular
temperature T, the dimensionless fields F that we use, defined in terms of the
physical ﬁelds F, are: n=non, vi=+Tov;, T=ToT, Pj=nyToP;, and
Q; = noT Ql The dimensionless pressure tensor P; can be written as
Pj=nTé;+ p;. The coordinates ¥, and time 7 are related to the associated
dimensionless quantities by % = L, x; and 7 =t L, //T.

3. The close 8-moment solution

We assume that a stationary solution of the equations in [6] exists with a
homogeneous temperature field and a disappearing y component of the velocity field.
With these assumptions the mass and momentum balance equations are identities.
The energy balance equation leads to

o= 00D, 1)
Kny/1 -4

where ¢ = (1 —r)/2 is the inelasticity coefficient, r being the normal restitution
coefficient in the IHS model. The balance associated with p,, yields

%<1+,/1—4p§y>, q<q"* ]_%\/_
P, = where p,, =-"———1/2¢q. (2)
%(1—,/1—4p§,y>, q9>q" 1+

Itis seen that p,, has a maximum at the ¢ = ¢* = 16/43 ~ 0.372093 point at which
Py = 2 At the plastic limit Py ™ 0.489. Hence P, takes the sign in front of the
square root according to the sign of dp,, /dg.

4. A 4-fields Navier—Stokes-like solution

A granular dynamics obtained from Chapman—Enskog’s method at Navier—
Stokes order is much simpler than what we have been describing. It deals with three
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independent fields: n, ¥ and T. Furthermore, the constitutive equations are Newton’s
law of viscous flow and Fourier’s law of energy transport. One can easily find a QHS
type of solution and the first important difference is that P,, = P), is independent of
q (i.e., it falsely states that microscopically the fluid is isotropic). In the present units
P, = P,, =1 this is in contrast with the clearly non-Newtonian behavior that the

simulations show (and our higher solutions describe). Besides Py, = 1 it gives

4/2q
P =2 —g) and o = -2 T

5. Molecular dynamics simulations

We have performed simulations of 10000 inelastic hard disks in a box with aspect
ratio 4 = 1 for different values of the inelasticity coefficient ¢ ranging from ¢ = 0.002
to ¢ = 0.350. There are periodic boundary conditions in the X direction while the
collisions with the horizontal boundaries correspond to a contact with a heat bath at
temperature Tp = 1 and velocity ®wvy. The area density is fixed to p = 0.01 (in which
case the nonideal corrections to the equation of state are less than 2%). In the
laminar (essentially one-dimensional) case under study, the interesting fields are the
number density n, the granular temperature 7, the longitudinal velocity v, two
components of the pressure tensor, p,, and Py,, and the energy flux 0, normal to the
walls while v, and Q, disappear.

6. Behavior for different values of ¢

Since the QHS is characterized by uniform fields (taking v/, instead of v,) we
have one value for each field for a given value of ¢ and in this section we compare
the results of the simulations with the predicted ones as a function of g. We do
this from ¢=0 to about ¢ =0.35 (restitution coefficient r=0.3). Fig. la
shows Kndv,/dy versus g. Our theoretical solution is below the observed values.
The 4-field solution fails badly for ¢>0.1. Fig. 1b gives the values p,(q).
Theoretically p,, should grow from zero until it takes the value % to start decreasing.
The values of p,, from our simulations never reach 1. In Newtonian fluids under a
Couette flow, the components P, and P,, of the pressure tensor are equal. In terms
of our dimensionless fields this implies that P,, = 1. From MD simulations P,,
differs from unity and strongly depends on ¢, corroborating the non-Newtonian
behavior of granular gases. In Fig. 1¢ it is possible to verify that there is an excellent
agreement between the 8-moment formalism with the simulational observation of
Py,. They significantly differ from unity. Finally from our data and from our
theoretical expressions we have extracted the values of n* = —4p,,/Knv| which
represent the dimensionless effective shear viscosity of the system. For ¢ = 0 this
gives n* = 1. Fig. 2 shows the predicted and observed values which are smaller than
those in the elastic case.
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Fig. 1. In the three figures above the solid circles correspond to MD results, the solid line to the 8-moment
solution and the heavy dotted line corresponds to the 4-field solution. The solution of Ref. [8] is shown by
a fine line and the solution of Ref. [3] is represented by dots. The graph on the left shows Kndov,/dy versus
g. The middle graph shows the values of p,,(g). On the right the values of Py, are shown.

viscosity

q

Fig. 2. The effective dimensionless shear viscosity n* predicted here (solid line). The values obtained from
MD show the same type of behavior with respect to the inelasticity coefficient ¢g. The continuous line
corresponds to the 8-moment solutions. The fine horizontal line represents the 4-field prediction.

7. Numerical comparison between solutions

In Fig. 1b we compare the values for p,, given in [3,8] and the 8-moment solution.
Numerically they are remarkably similar and for two of them p,,(¢) has a maximum
somewhere between ¢ = 0.3 and ¢ = 0.4. It is worth noting that the cited references
obtain their results from solutions of the Boltzmann equation with ad hoc methods
while we are using general-purpose extended hydrodynamic equations. The 4-field
solution gives a p, (g) which is similar to the previous solutions only for ¢<0.05
while for larger values of ¢ this crude approximation is much larger than the others;
it is not bounded by % and it has no maximum. Again the three solutions (8 moments,
Ref. [3], and Ref. [8]) for P, are quite similar, and they drastically differ from the
4-field solution. The fact that P, differs so clearly from unity implies that granular
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gases are non-Newtonian. This difference from the 4-fields solution, and the
agreement of the generalized hydrodynamics with the MD simulations, support the
idea that generalized hydrodynamics must be used to describe granular gas-
dynamics. Besides, we claim that our hydrodynamic equations, based on the moment
expansion method, constitute a general formalism appropriate for describing different
regimes of granular gases. No ad hoc hypothesis or adjustable parameters are needed.
Regarding the effective viscosity, while the 4-field formalism fails badly, the 8-
moment solution is in good agreement with MD; see Fig. 2. The viscosity decreases
as the inelasticity grows. We remark that this value of n* cannot be predicted using
the Chapman—Enskog method, which is valid only for small values of the shear
rate. In fact, the viscosity computed in [11] grows with ¢. See a discussion on this
point in [9].

8. Final comments and conclusions

We have studied a granular gas in a stationary laminar Couette state such that the
viscous heating produced by a fine-tuned shearing is able to compensate the energy
dissipation at collisions, giving rise to a flat temperature profile: the QHS. We were
able to produce such a regime by means of molecular dynamic simulations (MD) of
the THS model with horizontal hard and stochastic walls and without using the
Lees—Edwards or SLLOD methods, our method being closer to the experimental
conditions. The analysis of the components of the pressure tensor indicates that the
granular gas behaves like a non-Newtonian fluid: there is an effective non linear
viscosity and the normal and transversal components of the pressure tensor are
different. These properties of the fluid are expected because the shear rates are large
(quantified by the dimensionless off-diagonal component of the pressure tensor).

The MD results show that the stardard 4-field Navier—Stolkes-like framework fails
beyond the quasielastic limit and a generalized hydrodynamic theory is needed to
describe granular gases. We have shown that our granular gas-dynamic equations
(see Ref. [6]), once applied to the QHS, compare fairly well with the MD simulations
of the granular gas for a wide range of values of the inelasticity coefficient, ranging
from quasielastic states up to states not too far from the plastic limit. The agreement
tends to deteriorate as the inelasticity grows but the main hydrodynamic fields are
never too far from the predicted values.

The theoretical framework on which our predictions were built—and also used by
other cited authors—has at its basis in the assumption that the velocity distribution
function is smooth. It is known that near geometric walls this is not true. Therefore,
one should expect that our predictions fail near walls and this in fact occurs.
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