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Abstract

We present a study of a one-dimensional granular gas of point-like particles not subject to
gravity between two walls at granular-temperatures T− and T+, with T−¡T+ and submit a
physical picture of the mechanism that triggers or inhibits cluster formation. It is known that,
depending on the normalized temperature di5erence �=(T+−T−)=(T++T−), the system may be
completely 7uidized, or in a mixed state in which a cluster coexists with the 7uidized gas. We
devise and explain in detail a method for integrating the one-dimensional dissipative Boltzmann
equation in the test-particle limit for the stationary case. The behavior of the system in its 7uid
phase is dominated by characteristic lines which are trajectories of particles subjected to a force
which attracts them to a <xed point. If this point lies between the two walls a cluster forms, if
not then the system remains 7uidized.
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1. Introduction

Granular systems have been the focus of much attention due to both the theoretical
challenges they present [1] and to the applications of industrial importance that stem
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from the rich phenomena they exhibit (see Ref. [1] and references therein). These
systems are characterized by a loss of energy in collisions, and this loss is at the base
of many interesting phenomena. Among these, the clustering of particles has drawn
much attention [2–5].
In this paper, we present the detailed mechanism that allows us to understand the

dynamics—in the quasielastic limit—of a one-dimensional system not subject to gravity
between the two thermalizing walls. The paper gives a picture of the dynamics that
trigger/inhibit cluster formation. This physical picture is complementary to and clearer
than what we presented in Ref. [5]. From the mathematical point of view the system is
described using Boltzmann’s integro-di5erential equation and in this article we describe
a way to integrate it numerically. It is necessary to perform such integration from the
analysis by which the physical pictures emerge.
The system consists of point-like particles, con<ned in a box of unit length, that

interact via collisions that conserve momentum but dissipate kinetic energy. Any par-
ticle that reaches a wall is expelled from it with its velocity randomly chosen from
a Maxwellian distribution with the “temperature” of that wall. There are no external
forces. A cluster may or may not be formed. In our previous article we saw that
there are two relevant control parameters: the restitution coeMcient which character-
izes the collisions and the normalized temperature di5erence � between the walls,
� ≡ (T+ − T−)=(T+ + T−). In the plane of these two parameters there is a tran-
sition line, shown in Fig. 1: above it the system is a granular 7uid that reaches a
stationary state while on the other side a cluster forms and, apparently, no stationary
solution can be reached, at least in the limit of in<nitely many particles. In Ref. [5] we
described what happens, while in the present paper we disclose the underlying physical
mechanism.
In our previous article, we gave clear evidence that Boltzmann’s equation describes

faithfully the results of molecular dynamics in the case of the pure 7uid phase, even
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Fig. 1. Molecular dynamics simulations show that the (qN -�) plane has a threshold line, above which the
system reaches a stationary 7uid phase while below it a cluster coexists with a low density gas. See the text
for details. It is argued that the clustering phase, in the N → ∞ limit, never reaches a stationary state.
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quite close to the transition line. To integrate Boltzmann’s equation we used direct-
simulation Monte Carlo (DSMC). That method of integration did not help us fully
understand the mechanism that triggers/inhibits cluster formation. Here we provide
a more direct way of integration, which should stand by itself as a contribution to
integrate Boltzmann’s integro-di5erential equation, while yielding an intuitive picture
from the understanding of our integration method.
To <x notation, if c1 and c2 are the velocities of two particles that are about to

collide, their velocities after the collision are c′1=qc1+(1−q)c2 and c′2=(1−q)c1+qc2.
Here q = (1 − r)=2, where r is the usual restitution coeMcient. For the elastic case
(q = 0) the particles simply exchange velocities. Since the grains are point-like, the
elastic case is then indistinguishable from a system in which the particles do not
interact. More explicitly, the point-like character of the grains allow us to exchange
their identities after the collision, giving the collision rules c′2 = qc1 + (1 − q)c2 and
c′1 = (1 − q)c1 + qc2. Thus, when q = 0 the velocities are una5ected, and when q is
small the velocities barely change, yielding a system of weakly interacting particles,
whose relative velocities decrease at every interaction.
The one-dimensional granular system is being excited from the two walls, generally

at di5erent temperatures T− and T+. Particles emerging from the walls act as a wind
pushing the particles away from them. One could picture the e5ect of this wind as
an e5ective repulsive force which pushes the particles away from the walls. If the
temperature di5erence between the walls is large enough, the repulsive force associated
to the hotter wall prevails over the force associated to the colder wall across the system.
Therefore in this case the overall e5ect is a net force everywhere pointing toward the
colder wall, much like how gravity acts in a gas, always pointing to the base. If, on the
contrary, the temperature di5erence is not large enough, there is a point in the system
where the two repulsive forces cancel each other, producing an equilibrium point—a
particle at rest in this point would tend to remain at rest—about which a cluster grows.
As the cluster absorbs particles the density of the surrounding gas decreases, and the
equilibrium point may shift in time.
In the limit N → ∞, but keeping qN <xed, the one-dimensional Boltzmann equation

transforms into the test-particle equation [3,4,6]

9tf + c9xf = qN9c(Mf); M (x; c) ≡
∫ ∞

−∞
f(x; c′)(c − c′)|c − c′| dc′ : (1)

Since the equation is nonlinear, we must de<ne explicitly the normalization
∫ 1

0

∫ ∞

−∞
f(x; c) dc dx = 1 : (2)

The system is con<ned in a box of unit length, and the particles may have any
velocity: (x; c)∈ [0; 1] × (−∞;∞). Particles reaching a wall immediately bounce back
so that the velocity distribution of expelled particles is a Gaussian distribution at the
temperature of that wall, which corresponds to choosing wall kernels without memory
and without a delay time (see Ref. [7])

f(0; c¿ 0)˙ e−c2=2T− ; f(1; c¡ 0)˙ e−c2=2T+ : (3)
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The temperatures at both walls are chosen so that the system temperature for the
perfectly elastic case is T0 =

√
T−T+ = 1. We will always take T+¿T−. The missing

constants in Eq. (3) are determined by Eq. (2) and by imposing that there is no 7ow
across the walls:∫ ∞

−∞
cf(xwall; c) dc = 0 : (4)

2. The �uidized stationary case

In a stationary situation, Eq. (1) may be rewritten as follows:

c9xf − qNM9cf = qNf9cM : (5)

The coeMcient −qNM multiplying 9cf plays the role of a force (per unit mass) and
it is what we have called wind. It is the e5ective acceleration of a particle at x with
velocity c. When we are reasonably close to the solution, M will not depend on the
detailed form of f. Thus, if we have a trial distribution fn, we may consider M and
9M=9c as given functions of x and c, and then we may solve Eq. (5) for the distribution
fn+1. Seen in this light, close to the solution, Eq. (5) is approximately a linear partial
di5erential equation that can be analyzed as a hyperbolic equation for fn+1 since M ,
de<ned in terms of fn, is known. Thus, we obtain an iterative method that converges
to the solution of Eq. (5), at every step integrating a hyperbolic equation.
Hyperbolic equations can be integrated using the notion of characteristic curves [8].

We dedicate a few words to the method, applied to our case, since some readers
may not be familiar with it. Hyperbolic equations can be reduced to integrating a set
of ordinary di5erential equations in an independent variable s. The family of curves
(x(s); c(s); f(s))P , for di5erent starting points P, forms the parameterized form of the
solution to the original equation. The ordinary di5erential equations have as right-hand
sides the coeMcients of the partial derivatives in the original equation. In the present
case, the characteristic curves satisfy

dx
ds

= c;
dc
ds

= −qNM (x; c);
df
ds

= qNf9cM (x; c) : (6)

In simple words, our integro-di5erential equation is treated as if it were a quasi-linear
partial di5erential equation and, since real characteristics exist, it is possible to in-
tegrate along these lines dealing with a set of ordinary di5erential equations. More
speci<cally, given a distribution fn (which implies that we know Mn and 9cMn), we
calculate fn+1 by solving c9xfn+1 − qNMn9cfn+1 = qNfn+19cMn through numerical
integration of Eqs. (6) along the characteristics. After the integration we normalize
fn+1 to one, and then use fn+1 to calculate fn+2. In this way we eventually reach a
<xed point.
If in the <rst two of Eqs. (6) the parameter s is seen as time, these are the equations

of motion of a particle with position x, velocity c subject to a force F ≡ −qNM (x; c).
This force is very much like a simple viscous force: for large velocities F ˙ −|c|c and
when M is small, F ˙ −(c − Vw(x)), vanishing when c takes a value Vw(x) that we
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Fig. 2. Top: the distribution function f(x; c) for the case qN = 0:35 and �= 0:6. Bottom: the projection of
the characteristic curves into (x–c) space for the same case.

comment on later. The three equations (6) together determine the characteristic curves
(x; c; f), as already pointed out in Refs. [3,4]. The projection of any characteristic line
on the (x; c) plane corresponds to the phase–space trajectory of a test particle crossing
the system.
There are two types of characteristics in Fig. 2: those that begin a x = 0 associated

to the boundary condition T = T− and those that begin at x = 1 associated to the
boundary condition T = T+. The solution is in general discontinuous along the sep-
aratrix of these two types of curves. Since our numerical algorithm integrates along
these characteristics, it never crosses the discontinuity; every step deals with a smooth
function.

3. The wind velocity function and the clustering regime

As mentioned before, the line M = 0 de<nes a velocity Vw as a function of x that
can be regarded as the local velocity of the wind, since, as seen in Eq. (6b), dc=ds=0
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on this line. In Fig. 2 this line lies in the region c¡ 0, that is Vw(x)¡ 0 for all x,
meaning that in that case the wind is blowing to the left throughout the system.
Comparing the wind velocity function Vw(x) for di5erent 7uidized solutions, it is

observed that they are all negative, but they approach c = 0 as we near the transition
line in Fig. 1. Our integration algorithm does not converge when the transition line is
reached. In Fig. 1 the plus signs show the lowest values of � for each value of qN
before our algorithm becomes unstable. The circles show the lowest values of � for
each qN before a cluster is detected in a molecular dynamics simulation of N = 1000
particles. The plus signs are joined by a line to guide the eye.
Our molecular dynamics simulations show that below the transition line particles,

on the average, move in trajectories like those shown in Fig. 3. The wind velocity
function crosses the c-axis at some point x0 and the phase–space trajectories spiral
around this point. In fact, the transition line is de<ned by the condition that the M =0
line touches for the <rst time the c axis, and this takes place when x= x0 = 0, that is,
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Fig. 3. Top: the trajectories of particles in (x–c) space when there is a wind whose velocity (function of x,
represented by an almost straight diagonal line in the <gure) vanishes at some point. Bottom: one trajectory
in (x–c–f) space spiraling around the point where the wind vanishes.
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M (x = 0; c = 0) = 0, namely Vw(0) = 0. Varying �, this equation has one solution for
each value for qN . The set of such solutions is the transition line.
Fig. 3 is a sketch of what would happen to the characteristics around the intersection

point: they would spiral around it. Meanwhile, since 9cM ¿ 0 in that vicinity, we have
that f is increasing along the curve. In other words, in (x; c; f)-space the characteristic
curve becomes increasingly vertical, with f increasing sharply along it. If in the 7uid
case the function Vw(x) is prolonged beyond the physical box, it vanishes at some
point x0 and the extension of the (x; c) trajectories would be seen to spiral about such
unphysical point. Hence, that <xed point x0 always exists, and the transition occurs
when x0 enters the box.

4. Conclusions

We have integrated the dissipative Boltzmann equation in the quasielastic limit
integrating ordinary di5erential equations at every step. Part of them are equations
of motion of a particle subjected to a wind with velocity Vw(x), function of the net
dissipation qN and the normalized temperature di5erence �. For the system to be com-
pletely 7uidized the wind must not vanish at any point. As � decreases, Vw decreases in
magnitude, <rst vanishing at the colder wall, where the cluster <rst forms. For smaller
� the cluster detaches from the wall, with the characteristic curves winding around it
and the surrounding areas becoming more rare<ed, yielding a non-steady state.
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