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Dynamics of rarefied granular gases
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This paper presents quite general bidimensional gas-dynamic equations—derived from kinetic theory-which
include thefourth cumulantk(rW,t) as a dynamic field. The dynamics describes a low-density system of
inelastic hard spheres~disks! with normal restitution coefficientr. Two illustrative examples are given and the
role of k in them is discussed. Our general gas-dynamic equations would deal with 9 hydrodynamic fields
~which corresponds to 14 in three-dimension!. These fields are the standard hydrodynamic fields plus the

componentspi j of the traceless part of the pressure tensor, the energy flux vectorQW and the fourth cumulantk.
The present formulation requires no constitutive equations. The two examples are: the well-known homoge-
neous cooling state and a system, with and without gravity, steadily heated by two parallel walls. In the first
case, the dynamics yield a description of the homogeneous cooling state consistent with known results adding
extra details mainly about the transient time behavior. The steadily heated system kept in a static state gives
rise to quite simple but nontrivial equations. In the case with gravity, it is shown that whenk is included as a
dynamic field, the formalism leads to a non-Fourier law already to first order in dissipation. Setting gravity
g50 a perturbative solution is shown and favorably compared with observations obtained from molecular
dynamics~MD!. In both cases, with and without gravity,k is not homogeneous. An analytic extension suggests
a divergent situation for a small negative value ofq, which originates in the unavoidable extension of the
formalism to exothermic collisions associated with a restitution coefficient larger than one. This divergent
behavior is observed in MD.
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I. INTRODUCTION

For almost two decades, many authors have been sub
ting ever-improving descriptions of granular gases@1–7#.
The presence of correlations is one of the sources of diffi
ties to deal—within statistical mechanics—with granu
systems. One specific reason is the inelastic character o
grain-grain collision. In them, the incident collision angle
statistically larger than the angle between the final velocit
making probable that the following collisions in the sam
neighborhood are correlated. When the density is not
enough, correlations will appear@8#. The study of rarefied
granular gases escapes these difficulties and Boltzma
molecular chaos assumption can be taken as valid.

For granular gases, the velocity distribution function
either flatter or more peaked than a simple Maxwellian a
for large velocities, it decays more slowly than a Maxwe
ian. It seems that the flatness of the distribution was noti
in the study of homogeneous cooling@4# and it is presently
described by a negative kurtosis or fourth cumulantk, as in
Refs.@9–12#. Much theoretical work to characterize the lon
velocity tail has also been undertaken@10,13–15#.

In the case of the inelastic hard-sphere model for gran
systems, the particle dynamics is defined by the collis
rule, which introduces a constant restitution coefficientr as-
sociated with the normal relative velocity,cWab8 •n̂52rcWab

•n̂, while the tangential component of the relative veloc
remains unchanged,cWab8 • t̂5cWab• t̂ . In Boltzmann’s equation
only the gain term changes and it does so getting an ove
1063-651X/2002/65~2!/021304~9!/$20.00 65 0213
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factor r 22 and the distribution functions appearing in th
gain term depend upon the precollision velocities, which
functions ofr.

When the modified Boltzmann’s equation is used, t
stemming hydrodynamic equations become dependent on
inelasticity coefficient q[(12r )/2, ~q50 in the perfectly
elastic case and 0<q<1/2! except that the mass and mo
mentum balance equations remain unchanged since mas
momentum are still conserved in every collision.

In the context of Boltzmann’s equation, a dissipative g
satisfies the ideal gas equation of statep5nT where the
granular temperatureT is defined in energy units as the a
erage kinetic energy per particle. If we were to consider
Boltzmann-Enskog equation, then the inelasticity coeffici
q would enter through the Enskog collision factorx, and the
equations of state of a normal gas and of a dissipative
would differ ~see in particular@8#!, but in the present context
the ideal gas equation of state holds.

Many authors have shown that the fourth cumulantk is an
important aspect of the description of a granular gas. T
most economic way of incorporatingk in the formalism con-
sists of defining a moment expansion formalism which go
up to the fourthscalar moment or, equivalently, incorporat
ing k as just one extra dynamic fieldk(rW,t) in Grad’s stan-
dard hydrodynamics@16#. Grad’s standard formalism usin
13 moments in dimension three~8 moments in dimension
two! has been quite successful in describing conserva
sheared gases@17#. For granular gases we then, define a fo
malism with 9 moments in the bidimensional case. One
the important goals of the present paper is to show that s
©2002 The American Physical Society04-1



e-

st
n-
ch
e
a
s

g
t

la

he
an

e

-
rt

r

e
ra

a

d

n it
for

,

to
ns

ive
tions
the
he

sys-

he
ced

en

the

ead,
of
en’s
sly

ion

-

the
in

n

ly
ach
tz-
no
ous
ing

ate

DINO RISSO AND PATRICIO CORDERO PHYSICAL REVIEW E65 021304
formalism, havingk as a dynamic field, recovers known r
sults~e.g.,k'22q for the homogeneous cooling state! and
produces new ones~e.g., a steady state in which, to lowe
order, k'6q!. Additionally, an example where the depe
dence on time ofk is made explicit and another case, whi
exemplifies an inhomogeneousk, are shown. The presenc
of k in the formalism affects some of the dynamic fields
second order inq, but in the case of the energy flux, it doe
so at first order.

Writing the velocity distribution function,f (rW,CW ,t), as an
expansion in moments of the peculiar velocityCW 5cW
2vW (rW,t), @where vW (rW,t) is the hydrodynamic velocity# the
fourth cumulantk is naturally incorporated. Instead of usin
directly the fourth moment̂C4& we use the fourth cumulan
k5^C4&/^C2&22(d12)/d ~in the bidimensional cased52!
as a dynamic field.

In a previous article, we were able to describe granu
gases with global area densityrA50.01 withqN up to about
40 ~N is the number of particles! without introducingk and
up to aboutqN5300 whenk was used@12#. But in Ref.@12#,
we introducedk as a static homogeneous quantity. In t
present context, it is natural to deal with the fourth cumul
as an extra hydrodynamic fieldk(rW,t) in the same footing as
the other moments. Therefore, in two-dimension, we d
with nine moments and these are the number densityn, the
hydrodynamic velocityvW 5(vx ,vy), the granular tempera
ture T, the independent components of the traceless pa
the pressure tensor~e.g., pxy and pyy!, the energy flux de-
scribed byQx andQy , and finally,k.

Considering a two-dimensional~2D! system withN par-
ticles ofunit massin a box of widthLy and lengthLx—with
overall number densityn05N/(LxLy) and reference granula
temperatureT0—dimensionless fieldsF are defined in terms
of the physical fieldsF̄ as

n̄5n0n, v̄ i5AT0v i , T̄5T0T,

P̄i j 5n0T0Pi j , Q̄i5n0T0
3/2Qi , k̄5k. ~1!

The dimensionless pressure tensorPi j can be written asPi j

5nTd i j 1pi j . The coordinatesx̄k and time t̄ are related to
the associated dimensionless quantities byx̄k5Ly ,xk and t̄
5tLy /AT0. In these units, for example, the free flight tim
for the corresponding elastic gas at equilibrium at tempe
ture T0 , is 1/4 Kn, where

Kn5A a

NrA
, ~2!

rA being the fraction of volume~area really! occupied by the
particles in the box anda5Lx /Ly is the aspect ratio of the
box. The number Kn is of the same order as the stand
Knudsen number.

Using the dimensionless quantities defined above, the
tribution function in two dimension takes the form

f 5F f M , f M5
n

2pT
e2C2/2T,
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1

2pT S CiCj2
1

2
d i j C

2D pi j 1
2

pT S C2

4T
21DCW •QW

1S 1

2
2

C2

2T
1

C4

16T2Dk. ~3!

Replacing the distribution function defined in Eq.~3!, in
the inelastic hard-sphere version of Boltzmann’s equatio
is a standard procedure to derive hydrodynamic equations
all the hydrodynamic fields~the moments of the distribution
including k!. In fact, projecting the distributionf, given in
Eq. ~3!, to each one of the nine Hermite polynomials used
definef, yields a set of nine granular-gas dynamic equatio
for the nine fields~see the Appendix for more details!. These
fields are all in the same footing and no extra constitut
equations need to be assumed. Since the general equa
have a rather complex structure, we have written them in
appendix while two of their simplest applications are in t
main body of the present article.

A granular system behaves similar to a gas when

z5
q

Kn2 5
qNrA

a
~4!

remains rather small~order 1!. This is the condition given in
Ref. @13# to characterize the gaseous phase of granular
tems. The parameterz plays a decisive rolein the study of
granular gases as explained in what follows.

Taking first the general dynamic equations given in t
Appendix for the case of a perfectly elastic system redu
to the eight-moment formalism~q50 and k50!, and for-
mally expanding each field in powers of Kn, it can be se
thatn, vW , andT are order zero,O~Kn0!, while the other fields
are O(Kn). If the 8 moment equations~13 in 3D! are now
written keeping terms only up to first order, it is seen that
time derivative of some fields disappear@they areO~Kn2!#
and one gets the standard constitutive equations inst
namely, Newton’s law of viscous flow and Fourier’s law
heat transport. In the case of granular systems, Knuds
number cannot be taken to be small without simultaneou
making q small becausez has to be finite. Namely, it is
inconsistent to apply a hydrodynamic limit (Kn→0) to ex-
pressions stemming from Boltzmann’s granular equat
without simultaneously takingq;AKn→0. As we have al-
ready shown in@12#, Boltzmann’s equation is hardly appli
cable beyondz;3.

One feature of the general dynamic equations is that
right-hand sides of them—coming from the collision term
Boltzmann’s equation and calledJX in the Appendix—all
have a prefactor (12q). This factor is there because, eve
thoughq51 is unphysical, it is seen to correspond tor 5
21, a value which makes trivial the collision rule previous
defined: it corresponds to particles passing through e
other without interacting. One can check that, in fact, Bol
mann’s collision term is identically zero in such case. It is
trivial statement that the formalism describes a continu
family of systems ranging from elastic spheres, pass
through granular systems, to strange systems withr negative
and ending with a free gas. Such formalism implies delic
4-2
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DYNAMICS OF RAREFIED GRANULAR GASES PHYSICAL REVIEW E65 021304
properties for the solutions describing the behavior of gra
lar systems, solutions that remain valid even extended
cases withr .1 ~exothermic collisions! as we comment late
on. In brief, we could say that the common factor (12q) is
a healthy property of our dynamic equations. Beyond
nine dynamic equations, the only extra relation is the eq
tion of statep5nT.

In this paper, we illustrate the implications of our gene
dynamics solving two quite simple particular cases. The fi
case, seen in Sec. II, is the time-dependent case of hom
neous cooling~due to dissipation! the second one, seen i
Sec. III, is the case of a granular system steadily heated
two infinite parallel walls. It is the simplest stationary~inho-
mogeneous! case. Section IV contains some final commen

II. HOMOGENEOUS COOLING

If a granular gas is initialized in a homogeneous state w
a Maxwellian velocity distribution, it will start cooling ho
mogeneously at least for some time@4,9,10,14,18–21#. In
this homogeneous cooling regime, the set of nine equat
reduce to only two, one for the temperatureT and one fork.
For reasons about to be explained, the temperatureT is re-
placed by a functionb, T51/b2, and the equations are

Kn
db

dt
5

q~12q!

1024
~3k164!2, ~5!

Knb

12q

dk

dt
5

9q

256
k31S 2

1

32
1

1599q

1024
2

15q2

128
~12q! Dk2

2S 21
55q

8
215q2~12q! Dk24q132q2

3~12q!. ~6!

The right-hand side of Eq.~6! vanishes for three differen
functionsk i(q), i 51,2,3. For all of them, a close form ca
be written. One diverges atq50, the second one takes th
value 264 at q50, and a third one, which we callk` , is
zero atq50. The latter has a series expansion given below
Eq. ~8!. Thesek i(q) are the three solutions mentioned
Ref. @14#. Accepting this, it is seen thatk goes to a constan
exponentially fast with time. Settingk equal tok` in the
equation forb shows thatT satisfies Haff’s law of the form
T51/(11at)2 @2# from t50, suggesting that it is better t
eliminateT in favor of b51/AT. The natural time variable is
not our previous dimensionless variablet, but t851/Knt,
which implies that the transient time associated withb andk
~see below! is of the order of a few free flight times.

Solving these equations perturbatively in powers
q—assuming thatk is initially zero—the solution fork up to
second order is,

k522~12e22t8!q1S 365

16
2

19e22t8t8

2
1

e24t8

16
18e22t8t82

2
183e22t8

8
D q2, ~7!
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which, evaluated up to sixth order, in the limitt→`, gives

k`522q122.8125q22104.869q31460.276q4

21692.06q514138.78q61¯ . ~8!

The closed form fork` becomes positive forq.0.146 447
51/22&/4. This threshold was given by van Noije an
Ernst in Ref.@10# and ourk corresponds to twice their quan
tity a2(d52), correcting one previously given in Ref.@13#,
and it coincides with the series expansion~bidimensional
version! of the expression given in@14#. The dependence o
k on time, Eq.~7! is implicit in Ref. @14#, when they write
down their Eq.~23! and comment on it in a following para
graph. The existence of a transient period is determined
the initial condition that we have chosen Maxwellia
namely, k(0)50. Closely related is the direct simulatio
Monte Carlo study of the transient evolution of the four
moment given in Ref.@20#. Trying to find an analytic solu-
tion of Eqs.~5!–~6! with an arbitrary initial value fork is
quite difficult.

The functionb(t8), written up to third order is

b'114qt81S 2
19t8

4
2

3e22t8

8
1

3

8
D q21S 2

4941

1024

1
2391t8

256
1S 1239

256
1

9t8

32
2

3t82

2 De22t82
15

1024
e24t8Dq3

1¯ . ~9!

For small times, the behavior ofb is

b'114q~12q!t82 3
4 ~125q!2q2t821O~q2t83!,

~10!

and, after the exponential terms have decayed, and u
sixth order,b gives Haff’s law in the precise form,

b'b01b1t8,

b05110.375q224.825q3128.6349q42144.972q5

1526.670q6, ~11!

b154q24.75q219.33 984q3248.7178q41220.992q5

2873.622q6.

One can check that the asymptotic behavior ofb just written
satisfies Eq.~5! usingk5k` . The behavior ofb was known
in the form of Haff’s law @2# as in Eq.~11!, without the
exponentially decaying terms that the general solution exh
its in Eq. ~9!. If we had used the eight-moment expansi
formalism, hence, nok present, Eq.~5! would again give
Haff’s law and its exact form would be withb051 andb1
54q24q2. The inclusion ofk yieldsO(q2) corrections and
a transient period before Haff’s law holds.

In summary, we have seen that bothk andT have a tran-
sient time characterized by exponential terms. It is only a
that transient thatk becomes constant and Haff’s law begi
to be satisfied.
4-3
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III. STEADILY HEATED SYSTEM

In this section, we describe the static solutions of a
granular gas between two parallel walls~parallel to theX
axis! separated by a distanceLy , both at temperatureT0 .
There are periodic boundary conditions in theX direction.
Using dimensionless quantities, the walls are at tempera
T051 and the transversal dimensionless coordinatey, which
is the only relevant coordinate, is in the range~21/2, 1/2!.
First, we describe the equations in the case with a dimens
less acceleration of gravityg, ~whereg5ḡLy /T0! and then
proceed to write down an approximate solution for the c
g50. In both cases, there is no hydrodynamic velocity a
pxy50, hence, the pressure tensor has the formP5diag@p
2pyy,p1pyy#, andpyy is not zero, but, as shown below, it
a O(q) quantity.

A. With gravity

Four of the nine balance equations given in the Appen
become identities: the mass continuity equation, the mom
tum balance in the directionX, and thepxy andQx balance
equations. The five nontrivial equations are equations
n,T, Pyy5p1pyy , Qy , and k. The momentum balance i
the directionY reduces to

]Pyy

]y
52gn, ~12!

showing that ifg50 the fieldPyy would be homogeneous
while the pressure is not. The five equations can be solve
perturbatively usingq as a small parameter. It is illustrativ
to look at the first-order formalism.

Taking into consideration that under the present con
tions n,T,p, and Pyy are nontrivial when consideringq50,
while T8, pyy5Pyy2p, Qy andk areO(q) we write down
the five surviving equations keeping terms up to first orde
q.

From the energy balance equation up to first order inq, it
is direct to obtain that

]Qy

]y
5

28q

Kn
T3/2n2. ~13!

This first-order expression was anticipated in@6# in their Eq.
~1! and the explicit form for their sinkI. The balance equa
tion associated withpyy then yields

pyy5qnT5qp. ~14!

With these results, the balance associated withk implies that

k56q1Kn
n8

n3T3/2Qy . ~15!

The term 6q comes from two contributions, one is22q as
in the homogeneous cooling case, and the second on
02130
re

n-

e
d

x
n-

r

i-

n

is

2KnQy8/(T
3/2n2) which, according to Eq.~13!, is 8q.

Namely, when there is no energy flux,k recovers, to lowest
order, the value22q seen for homogeneous cooling in E
~8!. Note that if there is gravity~as in the present case! or
another external forcing that imposes a nontrivial zero-or
density profile, the contribution coming from the seco
term in Eq.~15! must be included in a first-order descriptio
In fact, according to Eq.~12!, at orderq0 the density satisfies
n852gn/T ~at q50, T51!, hence, the second term in Eq
~15! acquires a nontrivial first-order contribution comin
from theq dependence of the heat flux. A consequence of
this nontrivial contribution tok is given in what follows.

The balance equation associated withQy yields

Qy52KnAT
]T

]y
2Kn

2kT3/2

n

]n

]y
2Kn

T3/2

2

]k

]y
. ~16!

Some authors assume thatk is uniform. Making such an
assumption would eliminate the last term in Eq.~16! and this
equation would take the form of the modified Fourier law
the formQy;2k¹T2m¹n used quite often in the literatur
@1,7,11,20,22#. Since presently we are dealing with a solutio
up to O(q), we can check the relative size of the differe
contributions. It can be seen that the last two terms are
orderO(gqKn) while the first term isO(qKn). Our conclu-
sion is that the inhomogeneity ofk cannot be neglected in
front of k itself.

According to Eq.~15!, k can be expressed in terms ofQy .
We replace that expression fork back in Eq.~16! and finally
get a different distorted Fourier law,

Qy52KnAT
dT

dy
1S z

T3/2

n

dn

dy
2

AT

n4

dT

dy S dn

dyD
2

1
AT

2n3

dT

dy

d2n

dy2DKn3. ~17!

This expression containsz instead ofq @see Eq.~4!# and it
has been expanded in powers of Kn. The three terms wh
appear multiplied by Kn3 are of the same order when th
dissipation coefficient is sufficiently small. Equation~12!
was never used to get Eq.~17! yet it is the correct~first
order! expression to be used when gravity is present. In
~17!, all terms are orderq, either because of the factordT/dy
or because ofz. The derivatives ofn areO(q0) asn depends
on g.

A law of the formQy;2k¹T2m¹n has been used as
heuristic modified Fourier law, but Eq.~17!, on the other
hand, is a direct~first-order! implication of Boltzmann’s
equation with no adjustable parameters and therefor
should be valid in the quasielastic case. Had we not in
duced k as a dynamic field, we would obtain an eigh
moment formalism which would lead to an expression li
Eq. ~16! with only the standard Fourier term becausek in
that expression appears in the other two terms. Hence, in
present context~dynamics derived from moment expan
4-4
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DYNAMICS OF RAREFIED GRANULAR GASES PHYSICAL REVIEW E65 021304
sions!, the form ofQy given in Eq.~17! is crucially depen-
dent on the fact thatk is incorporated as a dynamic field.

If we go back to our basic dynamic equations of the A
pendix, we can check that the presence ofk ~in the first-order
solution! comes from the term¹(pTk) present in the bal-
ance forQW , see Eq.~A1!. The contribution ofk to the colli-
sional termsJX in the Appendix are of higher order.

The second-order version of Eq.~17! contains hundreds
of terms with higher derivatives and products of them as i
already true in the presentO(Kn3) term. Additionally, not
even the form of Eq.~16! is valid to higher order.

B. Without gravity

The five balance equations—not to first order but
general—can easily be solved perturbatively usingq as small
parameter in the caseg50. Up to second order, the field
are,

n511S 2
4y2

Kn2 1
1

3 Kn2Dq1S 64y4

3 Kn42
4y2

Kn4 1
677y2

8 Kn2

1
1

15 Kn42
677

96 Kn2Dq2,

T511
4y221

Kn2 q1S 2
4y2

3 Kn4 1
2

3 Kn4 1
673

32 Kn22
16y4

3 Kn4

2
673y2

8 Kn2Dq2,

Qy52
8qy

Kn
1S 7y

2 Kn
1

16y2

3 Kn3 1
20y

3 Kn3Dq2, ~18!

k56q1S 2
795

16
1

184y2

Kn2 Dq2,

Pyy511S 12
2

3 Kn2Dq1S 2

5 Kn42
27

32
1

213

16 Kn2Dq2,

p512
2q

3 Kn2 1S 671124y2

48 Kn2 1
2

5 Kn4Dq2.

We have obtained this solution up to eighth order.
If we eliminate q in favor of z, defined in Eq.~4!, the

expansions have only positive powers of bothz and Kn,
emphasizing that some sort of granular hydrodynamic
gime corresponds to Kn→0 with z kept fixed. Although this
is an unrealistic limit, in the sense that in the real world o
cannot find restitution coefficients arbitrarily close to unity
is conceptually interesting. As already mentioned, the con
tion z<3 coincides with the criterion given in Ref.@13# to
02130
-

s

-

e

i-

characterize the gaseous regime and it seems that it is
only regime that can possibly be described using Bo
mann’s equation.

The eight-moment formalism~no k! yields a solution
quite similar to that shown in Eq.~18!. The difference be-
tween both solutions forn,T, Pyy , and p is of order
O@(q/Kn2)#, while for Qy the difference is even smalle
O(q2/Kn).

In the present case,Pyy is uniform anddp/dy is aO(q2)
quantity. There is energy flowing from the walls to the cen
of the system where the temperature has a minimum, ma
Qy(y,0).0 andQy(y.0),0. The fieldk, also up to sec-
ond order, is not uniform and it has a minimum (kmin.0) at
the center of the box, namely, the center of the box is
region where the velocity distribution is less peaked.

In the following, we compare our results, the higher-ord
version of Eq.~18!, with molecular dynamics~MD! observa-
tions for values ofz up to 1.6. Since our simulations ar
strictly Newtonian, wall effects do appear. To keep the
small, we need Kn small, and to avoid correlations, we ne
the density to be small. The only practical possibility is
have a rather large value forN but thenq has to be quite
small. We useN519 600, a global area densityrA50.01 and
the aspect ratioa of the system is chosen to be 1.

The simulations use Newtonian dynamics and partic
hitting the walls totally forget their incoming velocity an
bounce back with a velocity chosen from a Maxwellian d
tribution with temperatureT051. This algorithmic strategy
implies that the simulated system has a velocity distribut
discontinuous in a region near the walls~the Knudsen layer!.
This is an effect due to dissipation, in the sense that¹T
Þ0 becauseqÞ0, and in 1D it has been shown to be
O(qN) effect@23#. The discontinuity is quite in opposition to
the smoothness assumption made in Eq.~3!, and for this
reason, the present formalism is unable to faithfully descr
the behavior of the system near the walls.

To be able to compare our simulational results with o
formal predictions, we need to reassess the meaning of q
tities like n0 , T0 , andLy used to define our dimensionles
fields in Eq.~1!. This is necessary because wall effects a
quite different from the behavior of the bulk of the syste
~to which the theory refers!. Once boundary layers are sep
rated, it is necessary to obtain, from the results of the sim
lations, the extrapolated temperatureT0 at the walls, the
number of particles in the bulk, its width, etc. It is with the
quantities that the dimensionless fields of Eq.~1! have to be
really defined. In the case ofn0 and Ly , because we have
chosen a largeN, these effects are quite small and, for e
ample, Kn is directly taken from the crude values used in
simulation.

The discontinuity of the distribution function at the wal
implies important effects on the observed profiles: the dis
bution in the central axis has a precise nonvanishingk in fair
agreement with our solution but near the boundaries,
Maxwellian behavior, imposed on the re-entering particl
tends to produce a vanishing cumulantk. Hence, the ob-
servedk for the distribution near the walls goes almost
zero while the predictedk ~which does not consider the dis
continuity! goes on growing. Apparently, whenq is larger
4-5
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FIG. 1. The dimensionless densityn, granular temperatureT, energy flux from the wallsQy , and fourth cumulantk are shown for a
system withN519 600 particles, area densityrA50.01 and Kn50.0714, for different values ofz. For both, the density and the temperatu
the three profiles correspond toz50.2 ~1!, z50.6 ~3! andz51.0 ~* !. The profileQy corresponds toz51.0. In the case ofk, the values
of z are: 0.2~1!, 0.4(x), 0.6~* !, 0.8~open square!, 1.0~solid square!.
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than about 0.004 (z>0.8) these effects reach the central p
of the system introducing an important difference with
spect to the theoretical predictions.

To make theory-simulation comparisons we have not u
directly the eighth-order expressions, but first we have tra
formed them using the Pade´ technique: for each field, we
define a function, ratio of two polynomials inz ~of degreesm
and n, respectively! such that the series expansion of t
rational function coincides with the eighth-order solution.
each case, it is seen that there is a range of values fo@n,
m#—keepingn1m<8—for which the different Pade´ expres-
sions are numerically almost identical but they differ fro
the values that takes the eighth-order solution itself, beca
of the poor convergence of the latter. We found out tha
was enough to use (m52,n52) for all fields, except fork,
in which case we had to consider (m53,n53). The use of
Padéapproximants gives a refined but not radically differe
fit.

In Fig. 1, we compare the eighth-order solution forn,T,
Qy , andk with MD results. It can be seen that there is
excellent agreement for the first three fields~n,T, andQy!. In
the case ofk, as discussed before, the agreement is only
02130
t
-

d
s-

se
it

t

ir

and it badly fails away from the central part of the system
In Fig. 2, we compare the values ofPyy and those ofk at

the central part (y50) for different values ofq from MD
versus the values predicted by the eighth-order solut
Again, the Pade´ technique was used. Its application is no
essential because of the weak convergence inq. It is seen
thatk does not fit well except for quite small values ofq and,
as mentioned before, this seems to be due to wall effe
reaching the central part of the system.

The same kind of effect is observed forpyy51/2(Pyy
2Pxx), an observable that measures the anisotropy betw
the diagonal components of the pressure tensor. The
dicted profile forpyy is a smooth function decreasing from
the central part toward the walls. In contrast, the obser
profile begins decreasing, as predicted, and then abruptly
creases reaching differences, with respect to the predi
profile, of about 20 to 40 % in the case of, for example,q
50.008 16 (z51.6). These important differences take pla
at approximately the same region where the observedk pro-
file presents the maximum differences with respect to
theoretical value.

Studying thePyy series up toq8 using the Pade´ technique,
4-6
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it is possible to detect a systematic pole at a small nega
valueqc . Pyy is reasonably well approximated by the Pa´
@1,1# expression

Pyy5

12
1

15
z1

3499

160
Kn2z

11
3

5
z1

3339

160
Kn2z

,

which has a pole at

qc'2
1.667 Kn2

1134.78 Kn2
.

FIG. 2. The values of the two dimensionless fieldsPyy and k,
evaluated at the center of the system, are shown varying acco
to the value of the inelasticity coefficientq for a system withN
519 600 andrA50.01. In the first case,Pyy measured in our simu
lations is in agreement with the values predicted by our formal
for q as large asq50.008 164 (z51.6). This corresponds to th
largest inelasticity coefficient considered. In the case ofk, the field
takes values larger and larger than what our theoretical framew
predicts, in agreement with similar observations for the anisotr
of the pressure tensor due to wall effects~see text!, which for values
of z>0.8 (q>0.004) seems to reach the central region of the s
tem.
02130
e

For Kn50.1, the predicted pole is atqc'20.012. Hence,
our expansions have a small radius of convergence.
presence of this pole suggests that at some small va
q,0, collisions produce so much extra energy that it can
be dissipated at the necessary rate to produce a statio
state. Simulations withN55000 and area densityrA50.01
run for q520.006, q520.008,..., q520.022 produced,
beyondq520.020 a system with ever increasing tempe
ture reaching, in our units, temperatures as high as 1012 and
not yet stabilized. Results for the temperature at the cente
the system and a simple fit are shown in Fig. 3. The div
gent behavior does not take place at the predicted valueqc
because the temperature profile in the simulation deve
immense gradients and a huge discontinuity at the w
making the dissipation far more efficient than the formalis
can describe, but our dynamics correctly predicts that s
instability exists.

IV. FINAL COMMENTS

We have presented a general rarefied grain-gas dynam
The formulation, based on moment expansion methods,
corporates the fourth cumulantk as an extra dynamic vari
able making this a nine dynamic field formulation in tw
dimensions~it would be a 14 fields formalism in 3D!. Bolt-
zmann’s inelastic equation and moment expansion te
niques lead to the basic dynamic equations, one for e
field. We have discussed the effects of the inclusion ofk in
the dynamics of granular gases by means of two simple
amples. The simplest one is the homogeneous cooling s
which turns out to coincide with the solution already know
except that extra detail in the transient time dependenc
now given. In this first example, it is seen that Haff’s law
valid after a transient period and when it holdsk influences
the cooling rate by roughly a factor (113/32k) with respect
of a moment expansion formalism which does not includek.
The precise form of Haff’s law is affected at second order
the inelasticity coefficientq. Our solution is in close agree
ment with previous ones given by other authors.

ng

rk
y

-

FIG. 3. The dimensionless temperature at the center of a gr
lar system ofN55000 grains is predicted to diverge for inelastici
q less than a critical value. The graph shows the observed temp
tures while the continuous line is a fit:Tmax5exp@2(1131.02q
20.3829q2)/(1142.01q)91.98q# which is singular at q5
20.0238.
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The second example is an inhomogeneous granular
between two parallel walls kept at constant granular temp
ture T0 with and without gravity. The system is not free
complexities even though it is a time-independent stea
heated system. In the case with gravity, the theoretical res
show that the cumulantk couples with the low-order mo
ments implying a distorted Fourier law. The non-Four
contribution to the heat flux is orderq as is the heat flux
itself.

In the case with no gravity, theory was compared with
results obtained with MD. The predicted field profiles tend
coincide with the MD observations, except that the fou
cumulant k deviates more and more from its theoretic
value as the dissipation coefficientq gets larger. For smallq,
the theoretical predictions fork are in good agreement wit
MD observations and the inclusion of the second term in
~15! is clearly necessary to account for the observed inho
geneousk profile. For large values ofq, the wall effects onk
reach the central part of the system introducing import
differences with respect to our theoretical predictions,
still, it is evident thatk is quite inhomogeneous. This ver
simple solution serves to illustrate that only after eliminati
q in favor of z, it is possible to take the hydrodynamic lim
Kn→0 ~keepingz finite!.

It is interesting to point out that to lowest order,k is quite
different for different physical regimes. For the homog
neous cooling case,k`'22q, while for the steadily heated
system seen in Sec. III, we saw thatk'6q1O(qg Kn2) and
we corroborated it with simulations.

Another interesting conclusion that came from the ana
sis of the steadily heated system, is that the analytic beha
of this solution is influenced by a nearby solution cor
sponding to exothermic collisions withr .1. Exothermic
collisions imply a singular behavior~no steady solution!
when the ‘‘inelasticity’’ q becomes slightly negative. Thi
prediction is qualitatively confirmed by our simulations.
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APPENDIX: MOMENT EXPANSIONS
AND DYNAMIC EQUATIONS

Moment expansion methods can summarily be descri
as follows. The local Maxwellian distribution functio
02130
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f M(rW,cW ,t) is used as the reference function about which
expansion is made. It is written in terms of the peculiar v
locity CW 5cW2vW (rW,t), wherevW (rW,t) is the hydrodynamic ve-
locity. A set of Hermite polynomials onCW , Ha(CW ), are built
in the sense that*Ha(CW )Hb(CW ) f M(rW,CW ,t)dCW 5dab. The
polynomialsHa are obtained simply deriving a base of o
thonormal polynomials starting fromH051 and from first
degree upwards, using the standard method. Then the d
bution is written in the form f (rW,CW ,t)
5SaHa(CW )Ra(rW,t) f M(rW,CW ,t). The coefficients Ra ~mo-
ments of the distribution! are formally obtained requiring
first thatf is normalized to the number density:* f dcW5n and
then that the averages^A&[1/n̄*A dcW give the formally cor-
rect results, namely, it is required that the components of
hydrodynamic velocity arev i5^ci&, the temperature isT
5m/d^C2& ~the temperature is measured in energy units
that Boltzmann’s constant iskB51!, the pressure tensor i
Pi j 5^mnCiCj&, the energy orheat flux vector is Qi
5mn/2^C2Ci&, and the fourth cumulant isk5^C4&/^C2&2

2(d12)/d. Such requirements totally define theRa . In
such formalism, the collisional contribution to transport
neglected altogether. These are 1/2(415d1d2) moments:
14 in 3D and 9 in 2D.

In the present context, the hydrostatic pressure isp
5nT. The bidimensional distribution—expanded in nin
moments as explained above—is the one given in Eq.~3!.
This distribution is replaced in Boltzmann’s~inelastic! equa-
tion. Projecting it to the first nine Hermite polynomia
yields a set of dynamic equations for the nine moments.

One remarkable feature of the resulting gas-dynamic
that no transport laws are necessary. Their place is take
dynamic equations forpi j , Qi , and k. Namely, these las
fields are independent variables in the same footing as
density, the velocity and the temperature fields. Toget
they satisfy nonlinear coupled differential equations. T
complete set of adimensional equations in the present c
text are

Dn

Dt
1n“•vW 50,

n
DvW
Dt

2n fW1“•P50,

n
DT

Dt
1“•QW 1P:“vW 5JT ,

Dp

Dt
1p“•vW 1

1

2
@“QW #1@p•“vW #1p@“vW #5Jp ,
~A1!
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with

JT52
q~12q!

Kn S n2T3/2

512
~3k164!21

3

8

p:p

AT
1

3Q2

32T3/2D ,

Jp5
~12q!~213q!

Kn
S nAT~k264!

32
p2

@QW QW #

64T3/2D ,

JWQ52
12q

Kn S nATQW H ~213q!
k

64
1~2115q!J 1

1

2AT
p•QW D ,

Jk5JC428~21k!JT,

JC45
12q

Kn S n2T5/2H 216q„928q~12q!…2
k

2
„161207q2120q2~12q!…,2

k2

256
„3219q1120q2~12q!…J

1S AT
p:p

4
2

Q2

16AT
D „16215q1120q2~12q!…D , ~A2!
e

a
s

ce

ys

e-

n.
,

od
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. E

. E

. E

. E
where D/Dt[]/]t1vW •“ is the convective derivative, th
square brackets have been used to indicatesymmetric trace-
less part, namely, @A#5Ai j 1Aji 22/dd i j SaAaa , the first
over-brace term indicates contraction of the indices ofvW and

QW while the second one is to be understood
(]Prs /]xs)pkr , p is the symmetric traceless part of the pre

sure tensorP and fW is an external force per unit mass. Sin
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