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This paper presents quite general bidimensional gas-dynamic equations—derived from kinetic theory-which
include thefourth cumulantx(f,t) as a dynamic field. The dynamics describes a low-density system of
inelastic hard spherdslisks with normal restitution coefficient Two illustrative examples are given and the
role of x in them is discussed. Our general gas-dynamic equations would deal with 9 hydrodynamic fields
(which corresponds to 14 in three-dimengiofhese fields are the standard hydrodynamic fields plus the
componentg;; of the traceless part of the pressure tensor, the energy flux V@aad the fourth cumulant.

The present formulation requires no constitutive equations. The two examples are: the well-known homoge-
neous cooling state and a system, with and without gravity, steadily heated by two parallel walls. In the first
case, the dynamics yield a description of the homogeneous cooling state consistent with known results adding
extra details mainly about the transient time behavior. The steadily heated system kept in a static state gives
rise to quite simple but nontrivial equations. In the case with gravity, it is shown that wieemcluded as a
dynamic field, the formalism leads to a non-Fourier law already to first order in dissipation. Setting gravity
g=0 a perturbative solution is shown and favorably compared with observations obtained from molecular
dynamics(MD). In both cases, with and without gravityis not homogeneous. An analytic extension suggests

a divergent situation for a small negative valuegpfwhich originates in the unavoidable extension of the
formalism to exothermic collisions associated with a restitution coefficient larger than one. This divergent
behavior is observed in MD.
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I. INTRODUCTION factor r~2 and the distribution functions appearing in the
gain term depend upon the precollision velocities, which are
For almost two decades, many authors have been submitinctions ofr.

ting ever-improving descriptions of granular gagds-7]. When the modified Boltzmann's equation is used, the
The presence of correlations is one of the sources of difficulstemming hydrodynamic equations become dependent on the
ties to deal—within statistical mechanics—with granularinelasticity coefficient g (1—-r)/2, (q=0 in the perfectly
systems. One specific reason is the inelastic character of tfdastic case and9q<1/2) except that the mass and mo-
grain-grain collision. In them, the incident collision angle is Mentum balance equations remain unchanged since mass and
statistically larger than the angle between the final velocitiesmomentum are still conserved in every collision.
making probable that the following collisions in the same !N the context of Boltzmann's equation, a dissipative gas
neighborhood are correlated. When the density is not lovpatisfies the ideal gas equation of statenT where the
enough, correlations will appe&8]. The study of rarefied granular temperature is defined in energy units as the av-

granular gases escapes these difficulties and Boltzmann age kinetic energy per part|cle. It we were to conS|de.:r.the
molecular chaos assumption can be taken as valid. oltzmann-Enskog equation, then the inelasticity coefficient

For granular gases, the velocity distribution function iquOUIOI enter through the Enskog collision factgrand the

ither flatter or mor ked than a simple Maxwellian ndequation:s of state of a normal gas and of a dissipative gas
either iatter or more peaked than a simple Maxwellian and, 14 gitfer (see in particulaf8]), but in the present context,
for large velocities, it decays more slowly than a Maxwell-(,[qu ideal gas equation of state holds

ian. It seems that the flatness of the distribution was notice Many authors have shown that the fourth cumulaig an
in the study of homogeneous coolifg] and it is presently  jynortant aspect of the description of a granular gas. The

described by a negative kurtosis or fourth cumulen&s in 55t economic way of incorporatingin the formalism con-
Refs.[g—lgl. Much theoretical work to characterize the long gjsts of defining a moment expansion formalism which goes
velocity tail has also been undertakgr0,13—13. up to the fourthscalar moment or, equivalently, incorporat-

In the case of the inelastic hard-sphere model for granulairng « as just one extra dynamic fiekl(,t) in Grad’s stan-
systems, the particle dynamics is defined by the collisiorys.q hydrodynamic§16]. Grad’s standard formalism using
rule, which introduces a constant restitution coefficieaS- 13 moments in dimension thre@® moments in dimension
sociated with the normal relative velocitggy Ai=—rCap  two) has been quite successful in describing conservative
-f, while the tangentiaJ component of the relative velocity sheared gasd47]. For granular gases we then, define a for-
remains unchanged,, t=C,, t. In Boltzmann's equation, malism with 9 moments in the bidimensional case. One of
only the gain term changes and it does so getting an overalhe important goals of the present paper is to show that such
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formalism, havingx as a dynamic field, recovers known re- 1 1 5 2
sults(e.g., k~ —2q for the homogeneous cooling statnd O=1+ E(Cicj —59;C ) Pij+ oT

c? -
—— 1) C-Q
. . 4T
produces new one®.g., a steady state in which, to lowest

order, k~6q). Additionally, an example where the depen- 1 ¢ c*
dence on time ok is made explicit and another case, which 57 o7 T 162/ )

exemplifies an inhomogeneous are shown. The presence
of « in the formalism affects some of the dynamic fields at Replacing the distribution function defined in EG), in
second order im, but in the case of the energy flux, it does the inelastic hard-sphere version of Boltzmann's equation it
so at first order. is a standard procedure to derive hydrodynamic equations for
Writing the velocity distribution functionf(f,C,t), as an  all the hydrodynamic field&he moments of the distribution,
expansion in moments of the peculiar veloci§=¢ including ). In fact, projectjng the d'istributiom, given in
—5(F,t), [whereg(F,t) is the hydrodynamic velocifythe Eq._(3), to_ each one of th_e nine Hermite polynom_lals use_d to
fourth cumulantx is naturally incorporated. Instead of using definef, yields a set of nine granular-gas dynamic equations

directly the fourth momentC*) we use the fourth cumulant for the nine fieldgsee the Appendix for more detail§hese
K:<C4>/<C2>2—(d+2)/d (in the bidimensional casg= 2) fields are all in the same footing and no extra constitutive

as a dynamic field. equations need to be assumed. Since the general equations
In a previous article, we were able to describe granulapave a rather complex structure, we have written them in the

gases with global area densjiy=0.01 withgN up to about appendix while two of their s_implest applications are in the
40 (N is the number of particléswithout introducingx and ~ Main body of the present article.

up to aboutyN= 300 whenx was used12]. But in Ref.[12], A granular system behaves similar to a gas when

we introducedx as a static homogeneous quantity. In the N

present context, it is natural to deal with the fourth cumulant (= iz _ AN
as an extra hydrodynamic fiek(r,t) in the same footing as Kn a
the other moments. Therefore, in two-dimension, we deal

with nine moments and these are the number demsitpe remains rather sma{brder 1. This is the condition given in
hydrodynamic velocityi = (vy,v,), the granular tempera- Ref.[13] to characterize the gaseous phase of granular sys-

ture T, the independent components of the traceless part gems. The parametef plays a decisive rolén the study of

_ granular gases as explained in what follows.
tsfl?ig)égss;(ge ;enr:jsge.g;npé(yﬁ?;ﬁypzy), the energy flux de Taking first the general dynamic equations given in the
X y l A

Considering a two-dimension&2D) system withN par- Appendix for the case of a perfectly elastic system reduced

ticles ofunit massin a box of widthL, and lengthL,—with to the eight-moment formalisrtq=0 and «=0), and for-

L mally expanding each field in powers of Kn, it can be seen
overall number densitg,=N/(LL,) and reference granular _ 0 . X
i . : N thatn, v, andT are order zerdQ(Kn"), while the other fields
temperaturdl ,—dimensionless fields are defined in terms are O(Kn). If the 8 moment equationél3 in 30) are now

of the physical fields- as written keeping terms only up to first order, it is seen t?at the
_ _ — time derivative of some fields disappddiney areO(Kn<)]
A=non,  vi=\Tovi, T=ToT, and one gets the standard constitutive equations instead,

namely, Newton’s law of viscous flow and Fourier’s law of

K. @ heat transport. In the case of granular systems, Knudsen’s

: . . number cannot be taken to be small without simultaneously

The dimensionless pressure ten8gr can be written a®i;  aing q small because’ has to be finite. Namely, it is

=nTé;+pjj;. The coordinates, and timet are related to  jnconsistent to apply a hydrodynamic limit (Kn0) to ex-

the associated dimensionless quantitiesxpy L ,x, andt pressions stemming from Boltzmann's granular equation

=tLy/\/T—0. In these units, for example, the free flight time without simultaneously taking~ VKn—0. As we have al-

for the corresponding elastic gas at equilibrium at temperaready shown ir{12], Boltzmann’s equation is hardly appli-

4

Pi=ngToPj, Q=neTdQ;, «

ture Ty, is 1/4 Kn, where cable beyond ~ 3.
One feature of the general dynamic equations is that the
|« right-hand sides of them—coming from the collision term in
Kn= Np,’ @ Boltzmann's equation and calledl, in the Appendix—all

have a prefactor (2q). This factor is there because, even
pa being the fraction of voluméarea really occupied by the thoughq=1 is unphysical, it is seen to correspondrte
particles in the box and=L,/L, is the aspect ratio of the —1, a value which makes trivial the collision rule previously
box. The number Kn is of the same order as the standardefined: it corresponds to particles passing through each

Knudsen number. other without interacting. One can check that, in fact, Boltz-
Using the dimensionless quantities defined above, the dignann’s collision term is identically zero in such case. It is no
tribution function in two dimension takes the form trivial statement that the formalism describes a continuous

family of systems ranging from elastic spheres, passing
through granular systems, to strange systems ritgative

f=dfy,, fy—s—e O
M>o M ' and ending with a free gas. Such formalism implies delicate

27T
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properties for the solutions describing the behavior of granuwhich, evaluated up to sixth order, in the linhit> o, gives
lar systems, solutions that remain valid even extended to 5 5 A
cases with > 1 (exothermic collisionsas we comment later K= —20Q+22.812%"—104.869°+ 460.276|
on. In brief, we could say that the common factor{(q) is —1692.06°+4138.785++ - . ®)
a healthy property of our dynamic equations. Beyond the
nine dynamic equations, the only extra relation is the equathe closed form for., becomes positive fog>0.146 447
tion of statep=nT. =1/2—v2/4. This threshold was given by van Noije and
In this paper, we illustrate the implications of our generalgrnst in Ref[10] and ourx corresponds to twice their quan-
dynamics solving two quite simple particular cases. The firstity a,(d=2), correcting one previously given in R¢1.3],
case, seen in Sec. lI, is the time-dependent case of homoggnd it coincides with the series expansiéisidimensional
neous coolingdue to dissipationthe second one, seen in version of the expression given ifL4]. The dependence of
Sec. ll, is the case of a granular system steadily heated by on time, Eq.(7) is implicit in Ref.[14], when they write
two infinite parallel walls. It is the Simplest Statior]diyho- down their Eq(23) and comment on it in a fo”owing para-
mogeneouscase. Section IV contains some final commentsgraph. The existence of a transient period is determined by
the initial condition that we have chosen Maxwellian,
Il. HOMOGENEOUS COOLING namely, x(0)=0. Closely related is the direct simulation
onte Carlo study of the transient evolution of the fourth
oment given in Ref[20]. Trying to find an analytic solu-
tion of Egs.(5)—(6) with an arbitrary initial value fork is
%uite difficult.
NS The functiong(t"), written up to third order is

If a granular gas is initialized in a homogeneous state Witr'm
a Maxwellian velocity distribution, it will start cooling ho-
mogeneously at least for some tim4,9,10,14,18-211 In
this homogeneous cooling regime, the set of nine equatio
reduce to only two, one for the temperatdrand one forx.

For reasons about to be explained, the temperafugere- 19" 3e-2' 3 4941
laced by a functior8, T=1/82, and the equations are ~ NI g2+ = —2
p y B B q B~1+4qt' + y 55/ 1024
d 1- ) / ,
”d_f:q&o—z?@"%“){ 5) L 2301 (1239 ot 37 . 15 |
256 | 256 ' 32 2 1024° /9
Kng d«  9q 1 1599 1502 e 9)
__=_K3 I T S _q) K2
1-q dt 256 32 1024 128 ) ) _
For small times, the behavior ¢ is
559
—(2+ ?—15q2(1—q)>:<—4q+32q2 B=1+4q(1-q)t’ — 3(1-50)%%t 2+ O(g?t’?),
(10
X(1=q). (6)

and, after the exponential terms have decayed, and up to

The right-hand side of Eq6) vanishes for three different Sixth order,s gives Haff's law in the precise form,
functions«;(q), i=1,2,3. For all of them, a close form can

be written. One diverges a&t=0, the second one takes the B=botbat’,
value —64 atg=0, and a third one, which we cal.., is b= 2 3 4 5
' oo . . ' . =1+0.379"—4.825°+ 28.6349" — 144.97
zero atq=0. The latter has a series expansion given below in 0 _ = 9 2
Eqg. (8). Thesek;(q) are the three solutions mentioned in +526.67@°, (17
Ref.[14]. Accepting this, it is seen that goes to a constant
exponentially fast with time. Setting equal tox.. in the b,=4q—4.75%+9.33984;°— 48.7178* + 220.992,°

equation forB shows thafT satisfies Haff's law of the form
T=1/(1+at)? [2] from t=0, suggesting that it is better to
eliminateT in favor of 8= 1/\/T. The natural time variable is
not our previous dimensionless variallebut t’=1/Knt,
which implies that the transient time associated v@tand «
(see belowis of the order of a few free flight times.

Solving these equations perturbatively in powers of
g—assuming thak is initially zero—the solution fok up to
second order is,

—873.622°.

One can check that the asymptotic behavioBgfist written
satisfies Eq(5) using k= «., . The behavior of3 was known

in the form of Haff's law[2] as in Eg.(11), without the
exponentially decaying terms that the general solution exhib-
its in Eq. (9). If we had used the eight-moment expansion
formalism, hence, nac present, Eq(5) would again give
Haff’'s law and its exact form would be withy=1 andb,
o =4q—4q9°. The inclusion of« yields O(g?) corrections and
365 1% U e : : :
oY 4o 4ge 22 a transient period before Haff’s law holds.

16 2 16 In summary, we have seen that battand T have a tran-
sient time characterized by exponential terms. It is only after
that transient thak becomes constant and Haff's law begins
to be satisfied.

k=—2(1-e ?)g+

183e—2") ,
— q s

. ™
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IIl. STEADILY HEATED SYSTEM —KnQ,/(T¥n?) which, according to Eq.(13), is 8q.

In this section, we describe the static solutions of a 2DN@mely, when there is no energy fluxrecovers, to lowest
granular gas between two parallel wallsarallel to theX order, the valu_e— 2q seen for_homqgeneous cooling in Eq.
axis) separated by a distands,, both at temperaturd,. (8). Note that if there is gravityas in the present caser
There are periodic boundary conditions in tKedirection. another external forcing that imposes a nontrivial zero-order
Using dimensionless quantities, the walls are at temperatuf@ensity profile, the contribution coming from the second
To,=1 and the transversal dimensionless coordigatehich termin Eq.(15) must be included in aoﬂrst—order. descr.|pyon.
is the only relevant coordinate, is in the rangel/2, 1/2. In fact, according to Eq12), at orderq” the density satl_sfles
First, we describe the equations in the case with a dimensiofl’ = —9n/T (atq=0, T=1), hence, the second term in Eq.
less acceleration of gravity, (whereg=gL,/To) and then (15 acquires a nontrivial first-order contribution coming
proceed to write down an approximate solution for the casdrom theq dependence of the heat flux. A consequence of the
g=0. In both cases, there is no hydrodynamic velocity andhis nontrivial contribution tac is given in what follows.
Pwy=0, hence, the pressure tensor has the fémdiadp The balance equation associated Wit yields
—Pyy.P+pyyl, andpy, is not zero, but, as shown below, it is

a0O(q) quantity. 24T32 an T32 5,

——K\/T&TK K 16
Qy=—Kn ay T ey r]2(9y'()

A. With gravity

Four of the nine balance equations given in the Appendixsome authors assume thatis uniform. Making such an
become identities: the mass continuity equation, the momenzssumption would eliminate the last term in Et6) and this
tum balance in the directioX, and thep,, andQ, balance  equation would take the form of the modified Fourier law of
equations. The five nontrivial equations are equations fogne formQy~—kVT— uVn used quite often in the literature
nT, Pyy=p+pyy, Qy, and«. The momentum balance in [1 7 11,20,22 Since presently we are dealing with a solution

the directionY reduces to up to O(q), we can check the relative size of the different
contributions. It can be seen that the last two terms are of
P orderO(ggKn) while the first term iO(gKn). Our conclu-
a—yy: —gn, (12 sion is that the inhomogeneity af cannot be neglected in
y front of « itself.

According to Eq(15), x can be expressed in terms@y .
We replace that expression ferback in Eq.(16) and finally
get a different distorted Fourier law,

showing that ifg=0 the fieldP,, would be homogeneous,
while the pressure is nofThe five equations can be solved
perturbatively using) as a small parameter. It is illustrative
to look at the first-order formalism.

Taking into consideration that under the present condi- 3/2 2
tions n,T,p and Py, are nontrivial when considering=0, Q,=—Kn \/?ﬂ + ( gT_ @_ £I d_T (@)
while T’, p,y=Py,—p, Q, andx areO(q) we write down dy n dy n®dyldy
the five surviving equations keeping terms up to first order in
q VT dTd?n)

From the energy balance equation up to first orde, iit ton dy dy? n-.
is direct to obtain that

17

This expression containsinstead ofg [see Eq.(4)] and it
has been expanded in powers of Kn. The three terms which
(13 appear multiplied by Khare of the same order when the
dissipation coefficient is sufficiently small. Equatidh?2)
was never used to get EqL7) yet it is the correct(first
ordep expression to be used when gravity is present. In Eq.
(17), all terms are ordey, either because of the factdil/dy
or because of. The derivatives oh areO(q°) asn depends
ong.
py,=anT=qp. (14) A_Ia\_/v of thg _foery~. —kVT—uVn has been used as a
heuristic modified Fourier law, but Eq17), on the other
With these results, the balance associated witmplies that ~ hand, is a direct(first-ordey implication of Boltzmann’s
equation with no adjustable parameters and therefore it
should be valid in the quasielastic case. Had we not intro-
duced k as a dynamic field, we would obtain an eight-
moment formalism which would lead to an expression like
Eq. (16) with only the standard Fourier term becausén
The term @ comes from two contributions, one is2q as  that expression appears in the other two terms. Hence, in the
in the homogeneous cooling case, and the second one [Besent context(dynamics derived from moment expan-

07_Qy _ 89 T32n2.
ay Kn

This first-order expression was anticipated 6 in their Eq.

(1) and the explicit form for their sink. The balance equa-
tion associated witlp,, then yields

!

K=6q+Kany. (15
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sions, the form ofQ, given in Eq.(17) is crucially depen-
dent on the fact thak is incorporated as a dynamic field.

PHYSICAL REVIEW B55 021304

characterize the gaseous regime and it seems that it is the
only regime that can possibly be described using Boltz-

If we go back to our basic dynamic equations of the Ap-mann’s equation.

pendix, we can check that the presence ¢ih the first-order
solution comes from the ternV(pTk) present in the bal-

ance for@, see Eq(A1). The contribution ofx to the colli-

sional termsly in the Appendix are of higher order.

The eight-moment formalisnino «) yields a solution
quite similar to that shown in Eq18). The difference be-
tween both solutions fom,T, Py, and p is of order
O[(a/Kn?)], while for Q, the difference is even smaller,

The second-order version of E(L7) contains hundreds 0(g?/Kn).
of terms with higher derivatives and products of them as itis In the present cas®,, is uniform anddp/dy is aO(q?)

already true in the prese®@(Kn®) term. Additionally, not

even the form of Eq(16) is valid to higher order.

B. Without gravity

quantity. There is energy flowing from the walls to the center
of the system where the temperature has a minimum, making
Qy(y<0)>0 andQ,(y>0)<0. The fieldx, also up to sec-
ond order, is not uniform and it has a minimum,{,>0) at

the center of the box, namely, the center of the box is the

The five balance equations—not to first order but inregion where the velocity distribution is less peaked.

general—can easily be solved perturbatively ugjrag small

In the following, we compare our results, the higher-order

parameter in the casg=0. Up to second order, the fields version of Eq(18), with molecular dynamicéMD) observa-

are,
4y? 1 64y*  4y?  67H?
Kn 3 Kn 3Kn* Kn 8 Kn
. 1 677 |
15K 96K

T_1+4y2—1 . 4y? . 2 . 673  16y*
T ke T T 3Kk T 3K 32K 3K
6737
AL
8Kn?/ "
_8qy [ 7y  1ey* 20y )| ,
X="%n (2Kn+3Kn3+3Kn3q’ (18)
795 1847\
K—6q+ _E-F—an )q,
o —14l1 2 2 21 213,
w= T T 3|9 Bkt 32 1k
2q 671+24y> 2 |
P=1" 3w " Tagk? +5Kn4)q'

We have obtained this solution up to eighth order.

tions for values of{ up to 1.6. Since our simulations are
strictly Newtonian, wall effects do appear. To keep them
small, we need Kn small, and to avoid correlations, we need
the density to be small. The only practical possibility is to
have a rather large value fot but thenq has to be quite
small. We uséN=19 600, a global area densjix=0.01 and

the aspect ratiar of the system is chosen to be 1.

The simulations use Newtonian dynamics and particles
hitting the walls totally forget their incoming velocity and
bounce back with a velocity chosen from a Maxwellian dis-
tribution with temperaturdy=1. This algorithmic strategy
implies that the simulated system has a velocity distribution
discontinuous in a region near the wallse Knudsen layer
This is an effect due to dissipation, in the sense fWat
#0 becauseg#0, and in 1D it has been shown to be a
O(gN) effect[23]. The discontinuity is quite in opposition to
the smoothness assumption made in E), and for this
reason, the present formalism is unable to faithfully describe
the behavior of the system near the walls.

To be able to compare our simulational results with our
formal predictions, we need to reassess the meaning of quan-
tities like ng, Ty, andL, used to define our dimensionless
fields in Eq.(1). This is necessary because wall effects are
quite different from the behavior of the bulk of the system
(to which the theory refejsOnce boundary layers are sepa-
rated, it is necessary to obtain, from the results of the simu-
lations, the extrapolated temperatufg at the walls, the
number of particles in the bulk, its width, etc. It is with these
quantities that the dimensionless fields of EL).have to be
really defined. In the case of, andL,, because we have
chosen a larg®, these effects are quite small and, for ex-
ample, Kn is directly taken from the crude values used in the
simulation.

The discontinuity of the distribution function at the walls

If we eliminateq in favor of £, defined in Eq.(4), the  implies important effects on the observed profiles: the distri-
expansions have only positive powers of bdttand Kn,  bution in the central axis has a precise nonvaniskiig fair
emphasizing that some sort of granular hydrodynamic reagreement with our solution but near the boundaries, the
gime corresponds to knr 0 with ¢ kept fixed. Although this  Maxwellian behavior, imposed on the re-entering particles,
is an unrealistic limit, in the sense that in the real world onetends to produce a vanishing cumulaat Hence, the ob-
cannot find restitution coefficients arbitrarily close to unity, it served« for the distribution near the walls goes almost to
is conceptually interesting. As already mentioned, the condizero while the predicted (which does not consider the dis-
tion <3 coincides with the criterion given in Rdfl3] to  continuity) goes on growing. Apparently, whem is larger
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FIG. 1. The dimensionless density granular temperaturg, energy flux from the wall®Q, , and fourth cumulank are shown for a
system withN =19 600 particles, area densjiy=0.01 and Kn=0.0714, for different values af. For both, the density and the temperature,
the three profiles correspond {6=0.2 (+), {=0.6 (X) and{=1.0 (*). The profileQ, corresponds t¢=1.0. In the case ok, the values
of £ are: 0.2+), 0.4(x), 0.6*), 0.8open square 1.0(solid squarg

than about 0.0044=0.8) these effects reach the central partand it badly fails away from the central part of the system.
of the system introducing an important difference with re- In Fig. 2, we compare the values Bf,, and those ok at
spect to the theoretical predictions. the central party{=0) for different values ofg from MD
To make theory-simulation comparisons we have not usedtersus the values predicted by the eighth-order solution.
directly the eighth-order expressions, but first we have transAgain, the Padegechnique was used. Its application is now
formed them using the Padechnique: for each field, we essential because of the weak convergencs. it is seen
define a function, ratio of two polynomials in(of degreew  that « does not fit well except for quite small valuesgpénd,
and v, respectively such that the series expansion of theas mentioned before, this seems to be due to wall effects
rational function coincides with the eighth-order solution. Inreaching the central part of the system.
each case, it is seen that there is a range of valuefvfor The same kind of effect is observed fpy,=1/2(P,,
ul—keepingr+ u<8—for which the different Padexpres- —P,,), an observable that measures the anisotropy between
sions are numerically almost identical but they differ fromthe diagonal components of the pressure tensor. The pre-
the values that takes the eighth-order solution itself, becausgicted profile forp,, is a smooth function decreasing from
of the poor convergence of the latter. We found out that itthe central part toward the walls. In contrast, the observed
was enough to useu(=2,v=2) for all fields, except for,  profile begins decreasing, as predicted, and then abruptly in-
in which case we had to consides€3,v=3). The use of creases reaching differences, with respect to the predicted
Padeapproximants gives a refined but not radically differentprofile, of about 20 to 40 % in the case of, for exampgle,
fit. =0.00816 ¢=1.6). These important differences take place
In Fig. 1, we compare the eighth-order solution for, at approximately the same region where the observptb-
Qy, and «x with MD results. It can be seen that there is anfile presents the maximum differences with respect to the
excellent agreement for the first three fieldsT, andQ,). In  theoretical value.
the case ok, as discussed before, the agreement is only fair = Studying theP,, series up tay® using the Padeechnique,
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FIG. 3. The dimensionless temperature at the center of a granu-

q lar system ofN=5000 grains is predicted to diverge for inelasticity
g less than a critical value. The graph shows the observed tempera-
0.07 tures while the continuous line is a fif,,=exd —(1+31.0y
—0.38291%)/(1+42.019)91.981] which is singular at q=
0.06 - ° —0.0238.
0.05 For Kn=0.1, the predicted pole is at.~—0.012. Hence,
0.04 L o our expansions have a small radius of convergence. The
x presence of this pole suggests that at some small value,
0.03L ¢ <0, collisions produce so much extra energy that it cannot
be dissipated at the necessary rate to produce a stationary
0.02} P g state. Simulations wittN=5000 and area densijy,=0.01
L run for g=—0.006, q=—0.008,...,q=—0.022 produced,
0.01r L beyondg=—0.020 a system with ever increasing tempera-
- ture reaching, in our units, temperatures as high &8 dd

q

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.008

not yet stabilized. Results for the temperature at the center of
the system and a simple fit are shown in Fig. 3. The diver-
gent behavior does not take place at the predicted vgjue

FIG. 2. The values of the two dimensionless fieRlg, andx,  because the temperature profile in the simulation develops
evaluated at the center of the system, are shown varying accordingnmense gradients and a huge discontinuity at the walls
to the value of the inelasticity coefficient for a system withN  making the dissipation far more efficient than the formalism

=19600 ancp,=0.01. In the first case?,, measured in our simu-  can describe, but our dynamics correctly predicts that such
lations is in agreement with the values predicted by our formalisminstapility exists.

for g as large agj=0.008 164 ¢=1.6). This corresponds to the
largest inelasticity coefficient considered. In the case,dhe field
takes values larger and larger than what our theoretical framework
predicts, in agreement with similar observations for the anisotropy ] ) )
of the pressure tensor due to wall effe(gee text, which for values We have presented a general rarefied grain-gas dynamics.
of £=0.8 (4=0.004) seems to reach the central region of the sys-The formulation, based on moment expansion methods, in-
tem. corporates the fourth cumulartas an extra dynamic vari-
able making this a nine dynamic field formulation in two

it is possible to detect a systematic pole at a small negativéimensions(it would be a 14 fields formalism in 3DBolt-

valued,. P,, is reasonably well approximated by the Padezmann's inelastic equation and moment expansion tech-
[1,1] expression niques lead to the basic dynamic equations, one for each

field. We have discussed the effects of the inclusiok afi
the dynamics of granular gases by means of two simple ex-

IV. FINAL COMMENTS

1 3499 : . :
1— —(+——Kn?%¢ amples. The simplest one is the homogeneous cooling state,
p __ 157 160 which turns out to coincide with the solution already known,
44 3 3339 " except that extra detail in the transient time dependence is
1+ 5+ o KN now given. In this first example, it is seen that Haff's law is
valid after a transient period and when it hold$nfluences
. the cooling rate by roughly a factor (13/32«) with respect
which has a pole at of a moment expansion formalism which does not inclede
1667 Ki? The precise form of Haff’s law is affected at second order in

the inelasticity coefficientl. Our solution is in close agree-

9~ " 1434.78 K- ment with previous ones given by other authors.
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The second example is an inhomogeneous granular gds,(r,¢,t) is used as the reference function about which an
between two parallel walls kept at constant granular temperaexpansion is made. It is written in terms of the peculiar ve-

ture T with and without gravity. The system is not free of |ocity C=&—(F,t), wheres(f,t) is the hydrodynamic ve-

complexities even though it _is a time-independer!t steadilyfocity. A set of Hermite polynomials o6, H (&), are built
heated system. In the case with gravity, the theoretical results a

show that the cumulank couples with the low-order mo- n the sense thatfHa(C_)Hb(C_)fM(r,C,_t)_dCZ dap- The
ments implying a distorted Fourier law. The non-FourierPolynomialsH, are .obtalnedl simply deriving a base Pf or-
contribution to the heat flux is order as is the heat flux thonormal polynomials starting froi=1 and from first =~
itself. degree upwards, using the standard method. Then the distri-

In the case with no gravity, theory was compared with thebution  is  written in  the  form f(r,Ct)
results obtained with MD. The predicted field profiles tend to=3 ,H ,(C)Ry(F,t) fu(F,C,t). The coefficientsR, (mo-
coincide with the MD observations, except that the fourthments of the distributionare formally obtained requiring
cumulant k deviates more and more from its theoretical first thatf is normalized to the number densitfyyf dé=n and
value as the dissipation coefficieqgets larger. For smadi, then that the averagé#\)=1/nJA d¢ give the formally cor-
the theoretical predictions for are in good agreement with rect results, namely, it is required that the components of the
MD observations and the inclusion of the second term in Eghydrodynamic velocity are;=(c;), the temperature i§

(15) is clearly necessary to account for the observed inhomo=m/d(C?) (the temperature is measured in energy units so
geneousc profile. For large values df, the wall effects onc  that Boltzmann’s constant isg=1), the pressure tensor is
reach the central part of the system introducing importanpij:<mnch>, the energy orheat flux vector is Q;
differences with respect to our theoretical predictions, but:mn/2<CZCi>, and the fourth cumulant ig:<C4>/<C2>2
still, it is evident thatx is quite inhomogeneous. This very —(d+2)/d. Such requirements totally define th,. In
simple solution serves to illustrate that only after eliminatingsuch formalism, the collisional contribution to transport is
g in favor of £, it is possible to take the hydrodynamic limit neglected altogether. These are 1/2@d-+d?) moments:
Kn—0 (keeping{ finite). 14 in 3D and 9 in 2D.

It is interesting to point out that to lowest orderis quite In the present context, the hydrostatic pressurepis
different for different physical regimes. For the homoge-=nT. The bidimensional distribution—expanded in nine
neous cooling casex..~ —2q, while for the steadily heated moments as explained above—is the one given in (Bj.
system seen in Sec. lll, we saw that 6q+0(qgKn?) and  This distribution is replaced in Boltzmannimelastio equa-
we corroborated it with simulations. tion. Projecting it to the first nine Hermite polynomials

Another interesting conclusion that came from the analyyie|ds a set of dynamic equations for the nine moments.
sis of the steadily heated system, is that the analytic behavior One remarkable feature of the resulting gas-dynamics is
of this solution is influenced by a nearby solution corre-that no transport laws are necessary. Their place is taken by
sponding to exothermic collisions with>1. Exothermic  dynamic equations fopij, Qi, and x. Namely, these last
collisions imply a singular behaviofo steady solution fields are independent variables in the same footing as the
when the ‘“inelasticity” ¢ becomes slightly negative. This density, the velocity and the temperature fields. Together
prediction is qualitatively confirmed by our simulations.  they satisfy nonlinear coupled differential equations. The

complete set of adimensional equations in the present con-

text are
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APPENDIX: MOMENT EXPANSIONS
AND DYNAMIC EQUATIONS

T -
HE‘FV-Q-FP.VU:JT,

Moment expansion methods can summarily be described

Dp 1 - R -
as follows. The local Maxwellian distribution function bt TPV-ut 3 lVQI+Ip- Vo]t plVo]=Jp,

DO 3 . . _ 1 _—= 1 —— -
E‘FE(QVU‘FQVU)+E(VU)Q+TVp+3pVT_;(VP)p+2pVT+V(pTK):JQ,
Dk 8. - 8T .
4pTE+8(1—K)TV-Q+8(1—K)Tp:V17—;QV:p+16Q-VT—7Q-Vn=JK, (A1)
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with
q(l-q)

T TR

n2T3/2 3p;p 3Q?
2, %
512 (3K+64) + 8 \/T'FW y

~(1-g)(2+30q)
B Kn

nVT(k—64) [661)

I 2 P T

K 1 N
(2+3q) a+(2+ 15@} + ﬁp'Q) ,

5 1-q T
Q=" kn | MVTQ
\]KZJc4_8(2+ K)JT,

2

_l-al o K 2 K 2
‘]04_W n<T —16q(9—8q(1—q))—5(16+207q—1201 (1_Q))’_ﬁ;(32+ 9g+120g°(1—q))
. 2
+| VT ?— 1? T) (16— 15q+ lZ(qZ(l—q))), (A2)

where D/Dt=d/dt+v-V is the convective derivative, the we are dealing with Boltzmann’s equation in 2D, therthe
square brackets have been used to indisgtemetric trace- internal energy, isi=T and the hydrostatic pressure obeys
less part namely, [A]=A;;+A;i—2/d5;3,A.,, the first the ideal gas equation of stape=nT.

over-brace term indicates contraction of the indiceg aind All collisional terms have a common factor {iq)/Kn

> . . because formally makingj=1 in Boltzmann's equation
Q while the second one is to be understood 3Smakes the collisional term identically vanish. This is so be-

(9Prs/9Xs) Py, P is the symmetric traceless part of the pres-cqse the collision rule fay=1 orr = — 1 is that of particles
sure tensoP andf is an external force per unit mass. Sincethat pass through each other without interacting.
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