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Abstract. The Boltzmann like equation for a dissipative 1D granular gas, can be
regarded, in the thermodynamic limit, as that of a simple particle inside a viscous
medium - viscosity produced by the dissipative collisions with the rest of the par-
ticles. Analytical perturbative solutions can be found for this equation. We find
that for low dissipative regimes, there is excellent agreement between our theoret-
ical predictions for the macroscopic fields, and the measurementes from molecular
dynamics simulations.

1 Introduction

Even if one dimensional granular systems are not totally realistic, they may repro-
duce several of the phenomena observed in higher dimensions [1-5]. They have also
the advantage that both theory and molecular dynamic simulations are considerably
easier to understand.

Our aim is to study within the frame of kinetic theory, a system of N inelastic
point particles of mass m = 1 restricted to move under the action of gravity g in
a 1D box of height L and bouncing on a base which we have chosen to behave as
a thermal wall. The interaction between these particles is modeled by the inelastic
collision rule ¢; = ge1 + (1 — g)e2 and ¢ = (1 — ) e1 + g2 where the constant
restitution coefficient is r = 1 — 2¢. To describe this quasielastic system we write
down a Boltzmann’s like kinetic equation . The low dissipation thermodynamic
limit (N — oo, ¢ — 0 with ¢/ finite) leads to a highly simplified equation. Further
assuming that ¢V is a small parameter, analytical perturbative solutions arround
the elastic case can be found for this equation, that is, the stationary state for
the quasielastic system is simply a distortion of the elastic stationary state. In
other words, we study the regime in which the trajectories of the particles are
only slightly modified by the dissipative collisions as shown in fig. 1. The elastic
case—our reference system—deserves some comments.

A 1D system of elastic point particles is tantamount to a non-interacting sys-
tem. In fact, relabeling the particles involved after each collision corresponds to a
system of particles passing through each other without ever interacting. This leads
to some important consequences. First, Liouville’s distribution function for the N
particle system is simply the product of the N one-particle distribution functions
F(N)(Z1 ceezZN) = F(l)(zl) e F(l)(zN) hence Liouville’s equation exactly reduces
to Boltzmann’s equation: there are no particle-particle correlations at all. Second,
due to the absence of any interaction between particles, the only way for the ve-
locity distribution to evolve from a given initial condition is by the effect of the
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Fig.1. Movement of one particle in the background of the rest of them for a
quasielastic open system on a hot wall.

boundaries. Stochastic boundary conditions are absolutely necessary to define a
stationary velocity distribution independent of the initial condition.

For this reason we will choose at the bottom a stochastic boundary defined in
the same way as a thermal wall: any particle hitting the bottom wall will forget its
velocity and will take a new one with a probability

— ¢ —c?/2Ty
Wi(c)=2 T € (1)
To being a temperature with dimensions of velocity squared. This boundary con-
dition does not create any correlation and it destroys any one that the inelastic
dynamics could create.

A conservative 1D system with such boundary condition will reach a Maxwellian
distribution function in the stationary state—the trajectories of the test particles
(relabeled after each collision) are just parabolas with different energies taken from
the base and they do not see each other. In our quasielastic case, these parabolas
are slightly modified as shown in Fig. 1, so that a perturbative expansion around
the Maxwellian distribution is justified.

2 Kinetic equation and boundary conditions

To describe the inelastic system we define the velocity vy = /27To/m and the
length Lt = Tz—ﬂg which corresponds to the length scale of significant variations of the

to

density in the elastic case. Besides we use the Froude number Fr = L/Ly = ngDL
describe the adimesional height of the system. If L is much larger than L7, namely
Fr — oo the system will resemble an open system. On the contrary, if Fr € 1
the system will behave almost as if there was no gravity and the density and other
fields will be nearly homogeneous. We will see both limits in Sec. 4.

We define a dimensionless distribution function for the stationary state F'(£, &) =
Lrvr f(z,c) normalized as

Fr o
/ d@/ de F(3,8) = 1 (2)

where the dimensionless position # and velocity ¢ are # = z/Ly é = ¢/vr. Using
these variables the collision term in Boltzmann’s equation can be written as an
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expansion in the small parameter ¢ [3] leading to

where

Mk(i,é):/_ le—é'| (=& F(a,¢)de’ (4)

Multiplying and dividing this right hand side by N*—so that there is a factor
(gN)*/(k! N*=')—and taking the limit N — oo keeping ¢N fixed, (this is what we
call the hydrodynamic limit), the kinetic equation becomes simply

) FG.o)=aN 9 1M (3,6) F(3,0)] 5)

(Aé‘ 1 0
aé

‘98~ 20C
where M(%,¢) = M1(#,¢). Equation (5) is the hydrodynamic limit of Boltzmann’s
equation for a granular system in 1D. In principle this equation is valid for any
finite value of the parameter ¢N provided N is large enough. The collision term for
a test particle in the original Boltzmann equation is replaced by an effective friction
produced by the collisions with the rest of the particles. In this sense equation
(5) represents a particle passing through a viscous fluid—viscosity produced by
dissipative collisions—and suffering the corresponding acceleration, as observed for
example in Fig. 1. Piasecki has already dealt with the idea of a particle moving
inside a viscous medium [7]. We claim that Eq.(5) is the one which represents
exactly the viscosity of this granular medium in the hydrodynamic limit.

As we can see the adimensional problem in the hydrodynamic limit depends
solely on the Froude number, Fr, via the normalization condition and on ¢N via
the kinetic equation. The boundary conditions we are about to use do not depend
either on Fr nor on ¢N. If a boundary condition with two different temperatures
at the bottom and top walls is used, then a third dimensionless parameter would
come in. Since we are not going to deal with such case the only two dimensionless
parameters that determine the stationary state of the system are Fr and ¢V.

3 The quasielastic regime

Although the kinetic equation is valid for any finite value of ¢N the following for-
malism is valid only in the quasielastic regime characterized by ¢N < 1. In this
limit we look for solutions of the form

F(#,8) = FO>s,8) + N FO (&, 6) + (N2 FP(s,6) + ... (6)

where F(®) is the solution for the elastic case.
When F(#,¢) is replaced back in (5) we find a set of equations for each order
of the distribution function. Each F(S)(:E, ¢) follows an equation of the form

(c 9 1 ﬁ) FO)&,0) = Jogy [FU7(&,8), FC7)(,¢),..., F@,8)] (1)

where Ji.) [F(S_l)(fn, é),..., F(O)(f:, é)] is a function representing the collision term
at order s and it only contains lower order functions.
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We impose the normalization condition (2) so that at each order

&S] Fr
/ dé/ di FU9(&,8) = bos. (8)
—0o0 0

Each F(*) must also satisfy a boundary condition at the bottom |¢| F(S)(i =0,¢é>
0) = w(é) Rs, where w(é) =2 ¢e~% is the dimensionless version of W in (1), while
the condition at the elastic top wall is F(S)(i: = Fr,¢) = F(S)(i: = Fr,—¢).

With this scheme the set of equations (7) can be solved exactly starting from
F(®__this is the elastic solution —and following recursively up to the desired or-
der [5].

This perturbative solution is valid at any position near or far from the walls
since it is the kinetic equation with its corresponding microscopic boundary that is
being solved.

4 Results

The open system: The stationary state of the open system (Fr = oo) is de-
termined by ¢N alone. The function corresponding to the elastic case is just a
Maxwellian F(®) = %e_(i‘*é% and the first and second order corrections modify
this function as shown in Fig. 2 where the theoretical distribution functions up to
zeroth, first and second order evaluated at the bottom & = 0 with ¢V = 0.2 are
compared with the measured distribution function. Interpreting the system as one
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Fig.2. The distribution function normalized to 1 at & = 0 evaluated to zeroth
(dot-dashed line), first (dashed line) and second order (solid line) are seen in this
figure for ¢V = 0.2 and N = 200. Circles are the simulational results.

in which particles pass through each other loosing some energy in the process it
can be said that particles coming out from the base have a vanishing most probable
velocity, namely F(C > 0) is maximum at C = 0, just like a Boltzmann distri-
bution, while particles coming down are in principle accelerated, but the friction
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with the background (the rest of the particles) produces an effect similar to a “limit
velocity” and F(C < 0) has a maximum away from the origin. Moving away from
the base the history of all particles tends to be comparable regardless of the sign of
their velocity and the distribution function tends to be more and more symmetric.

The effects of dissipation over density: The zeroth order density no(#) decreases
exponentially, and since gN < 0.1 deviations from this behavior should be small.
Dissipation prevents particles from reaching the heights they would in the conser-
vative case implying that the system has a smaller effective height. Consequently
the density tends to be higher near the base although corrections due to dissipation
have not a maximum on the base but at some distance over the it. This suggests
that for higher values of ¢N (too high for our theoretical description to be valid) a
drop floating on a vapor would be formed in the system as, in fact, we have seen
in simulations.

Effects on the granular temperature and the heat fluz: In Fig. 3 the temperature
profile is shown for three values of gN. The zeroth order temperature profile is the
straight line 7' = 1/4 in all three cases. The effect of dissipation is to produce a
T(%) with negative gradient and this is already predicted by the negative first order
correction. Figure 3 also shows that the temperature reaches an asymptotic value
that our formalism predicts to be T(& ~ oo) & 1/4 — ¢N (1 — ¢N)/2 which coincides
with what we observe. At & = 0 there is a temperature gap: the temperature of the
system does not coincide with the imposed value To = 1/4.

ELASTIC CASE
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Fig.3. Temperature profiles for ¢V = 0.01 (squares), gV = 0.05 (triangles) and
gN = 0.1 (circles). The solid (dot-dashed) line is the predicted dimensionless tem-
perature up to second (first) order.

In our case this temperature slip at the base is §T ~ ¢N(1 — gN/2)/4 which is
also the observed gap. This thermal slip at the wall is a well known effect when the
system has an externally imposed temperature gradient, but in granular systems
6T is due to the dissipative collisions, namely, it is an intrinsic property of the
system and it does not vanish with increasing density, but it rather increases.
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The heat flux @—the flux of energy entering through the base and being dissi-
pated in the bulk—has an analytic expression to first order in g,

Q(i):qN/ dC%F(i,C): \q/];]_we_%. (9)

An elastically closed system: The perturbative solution for our system with
an elastic wall at height L (dimensionless height & = Fr) has the form

F(i,2) =X (FO(&,2) + gNAFD(8,8) + (NN FP(a,8)+--)  (10)

where the prefactor A = 1/(1 — e~™) determines the system’s density scale. The
method to recursively construct the solution is the same one seen in Sec. 3 except
that in this case the two boundary conditions have to be imposed [6]. The quasielas-
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Fig.4. At left, density corrections due to dissipation for different Froude numbers.
At right, the temperature profile for two values of the Froude number with ¢N =
0.01 (dots) and ¢N = 0.03 (triangles). If Fr is small enough 7" shows a minimum
even though the only source of energy is at the bottom. In both cases lines are the
theoretical predictions while symbols are the measured data from MD simulations.

tic condition for the system is in this case gNA < 1, namely, not only ¢N but also
A will determine the behavior of the stationary state. We can see at left in Fig. 4
the corrections to the density profile for a fixed gN value and different values for
A (or Fr). The agreement with theory is quite good even though the shape of the
corrections vary widely for the different values of the Froude number conisdered.
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For small Fr the correction is almost symmetric about # = %Fr where it has a
maximum. As Fr gets larger the maximum of n,(£) moves down until it reaches
the base and disappears. The correction develops a minimum high up and it moves
down as Fr grows.

The temperature profile: When Fr > 1 few particles reach the top wall and
the behavior of the profile tends to that of the open system observed in Fig. 3.
Taking smaller values of Fr the temperature profile eventually develops a minimum
near the top. The position of this minimum approaches the mid height as Fr gets
smaller, being approximately in the middle of the box when Fr = 0.1 as shown in
Fig. 4.

In spite of this minimum, notice that the heat flux, which at first order reads,

o gN o258 _ 2P )
Q) = =i oy ( ) (11)

decreases monotonically with height, being zero at £ = Fr, as it should be due to
the elastic wall that closes the system.

Namely, the energy coming from the base heats the system near the top more
than it heats the region immediately underneath. This remarkable effect is a bound-
ary effect, in the sense that the upper wall is needed to observe such a quasi-elastic
regime. For an open system, in the quasi-elastic limit ¢/NV < 1 this kind of temper-
ature profile does not exist.

Conclusions

The problem of a 1D granular gas can be understood as the problem of one particle
passing through a viscous medium. In this work we analyzed the system in the
hydrodynamic limit in which the properties of the system are independent of the
number of particles. In this context we have pointed out the effective acceleration
this only particle suffers due to dissipative collisions.

Due to dissipative interactions, the granular gas needs an energy injection to
reach a stationary time independent state. This energy enters as a boundary con-
dition in the kinetic theory and, in the case of a 1D granular gas, determines
completely the quasi-elastic regime.

For an open system, the only parameter entering the problem is the factor ¢ NV.
In this case we predict, among other results, that there exists a temperature slip
at the hot wall which does not decrease with density and which is of the same
order as the gradients produced by dissipation. This implies that the standard
hydrodynamic boundary condition for the temperature (temperature of the system
at the wall equals the imposed temperature) is not suitable for these kind of systems
not only for the 1D system but also for higher dimension ones.

Any other boundary in the system plays a role as important as the energetic
boundary. We have predicted and observed an inverse heat flux (from colder to
hotter zones) just by including an elastic upper wall. Although there have been
observed inverse heat fluxes in very low density systems in higher dimensions [8]
which could be due to a dissipative bulk effect, our case corresponds mainly to a
boundary effect.
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Although some of properties of 1D systems are generalizable to two or three
dimensional systems, we have to point out that there exists a crucial fact which
makes the 1D case special: the velocity distribution function is completely deter-
mined by the boundary conditions. Then, some of the 1D results we present here
could qualitatively be extended to higher dimensions in the case of Knudsen gases,
or even standard gases but just near the boundaries.
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