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Abstract. The Boltzmann like equation for a dissipative 1D granular gas, can be
regarded, in the thermodynamic limit, as that of a simple particle inside a viscous
medium - viscosity produced by the dissipative collisions with the rest of the par-
ticles. Analytical perturbative solutions can be found for this equation. We find
that for low dissipative regimes, there is excellent agreement between our theoret-
ical predictions for the macroscopic fields, and the measurementes from molecular
dynamics simulations.

1 Introduction

Even if one dimensional granular systems are not totally realistic, they may
reproduce several of the phenomena observed in higher dimensions [1–5].
They have also the advantage that both theory and molecular dynamic sim-
ulations are considerably easier to understand.

Our aim is to study within the frame of kinetic theory, a system of N
inelastic point particles of mass m = 1 restricted to move under the action
of gravity g in a 1D box of height L and bouncing on a base which we have
chosen to behave as a thermal wall. The interaction between these particles
is modeled by the inelastic collision rule c′

1 = q c1 + (1 − q) c2 and c′
2 =

(1 − q) c1 + q c2 where the constant restitution coefficient is r = 1 − 2q. To
describe this quasielastic system we write down a Boltzmann’s like kinetic
equation . The low dissipation thermodynamic limit (N → ∞, q → 0 with
qN finite) leads to a highly simplified equation. Further assuming that qN is
a small parameter, analytical perturbative solutions arround the elastic case
can be found for this equation, that is, the stationary state for the quasielastic
system is simply a distortion of the elastic stationary state. In other words,
we study the regime in which the trajectories of the particles are only slightly
modified by the dissipative collisions as shown in fig. 1. The elastic case—our
reference system—deserves some comments.

A 1D system of elastic point particles is tantamount to a non-interacting
system. In fact, relabeling the particles involved after each collision corre-
sponds to a system of particles passing through each other without ever
interacting. This leads to some important consequences. First, Liouville’s dis-
tribution function for the N particle system is simply the product of the N
one-particle distribution functions F (N)(z1 · · ·zN ) = F (1)(z1) · · ·F (1)(zN )
hence Liouville’s equation exactly reduces to Boltzmann’s equation: there are
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Fig. 1. Movement of one particle in the background of the rest of them for a 
quasielastic open system on a hot wall. 

no particle-particle correlations at all. Second, due to the absence of any inter- 
action between particles, the only way for the velocity distribution to evolve 
from a given initial condition is by the effect of the boundaries. Stochastic 
boundary conditions are absolutely necessary to define a stationary velocity 
distribution independent of the initial condition. 

For this reason we will choose at the bottom a stochastic boundary defined 
in the same way as a thermal wall: any particle hitting the bottom wall will 
forget its velocity and will take a new one with a probability 

To being a temperature with dimensions of velocity squared. This boundary 
condition does not create any correlation and it destroys any one that the 
inelastic dynamics could create. 

A conservative 1D system with such boundary condition will reach a 
Maxwellian distribution function in the stationary state-the trajectories of 
the test particles (relabeled after each collision) are just parabolas with dif- 
ferent energies taken from the base and they do not see each other. In our 
quasielastic case, these parabolas are slightly modified as shown in Fig. 1, so 
that a perturbative expansion around the Maxwellian distribution is justified. 

2 Kinetic Equation and Boundary Conditions 

To describe the inelastic system we define the velocity v~ = d m  and 
the length LT = a which corresponds to the length scale of significant 

m? 
variations of the density in the elastic case. Besides we use the Froude number 
Fr = LILT = %@ to describe the adimesional height of the system. If L 

T o  
is much larger than LT, namely Fr + oo the system will resemble an open 
system. On the contrary, if Fr << 1 the system will behave almost as if there 
was no gravity and the density and other fields will be nearly homogeneous. 
We will see both limits in Sec. 4. 
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We define a dimensionless distribution function for the stationary state
F (x̂, ĉ) = LT vT f(x, c) normalized as∫ Fr

0
dx̂

∫ ∞

−∞
dĉ F (x̂, ĉ) = 1 (2)

where the dimensionless position x̂ and velocity ĉ are x̂ = x/LT ĉ = c/vT . Us-
ing these variables the collision term in Boltzmann’s equation can be written
as an expansion in the small parameter q [3] leading to

(
ĉ
∂

∂x̂
− 1
2

∂

∂ĉ

)
F (x̂, ĉ) = N

∞∑
k=1

qk

k!
∂k

∂ĉk
[Mk(x̂, ĉ, ht)F (x̂, ĉ)] (3)

where

Mk(x̂, ĉ) =
∫ ∞

−∞
|ĉ− ĉ′| (ĉ− ĉ′)k F (x̂, ĉ) dĉ′ (4)

Multiplying and dividing this right hand side by Nk—so that there is a factor
(qN)k/(k!Nk−1)—and taking the limit N → ∞ keeping qN fixed, (this is
what we call the hydrodynamic limit), the kinetic equation becomes simply(

ĉ
∂

∂x̂
− 1
2

∂

∂C

)
F (x̂, ĉ) = qN

∂

∂ĉ
[M(x̂, ĉ)F (x̂, ĉ)] (5)

where M(x̂, ĉ) ≡ M1(x̂, ĉ). Equation (5) is the hydrodynamic limit of Boltz-
mann’s equation for a granular system in 1D. In principle this equation is
valid for any finite value of the parameter qN provided N is large enough.
The collision term for a test particle in the original Boltzmann equation is
replaced by an effective friction produced by the collisions with the rest of the
particles. In this sense equation (5) represents a particle passing through a
viscous fluid—viscosity produced by dissipative collisions—and suffering the
corresponding acceleration, as observed for example in Fig. 1. Piasecki has
already dealt with the idea of a particle moving inside a viscous medium [7].
We claim that Eq.(5) is the one which represents exactly the viscosity of this
granular medium in the hydrodynamic limit.

As we can see the adimensional problem in the hydrodynamic limit de-
pends solely on the Froude number, Fr, via the normalization condition and
on qN via the kinetic equation. The boundary conditions we are about to
use do not depend either on Fr nor on qN . If a boundary condition with
two different temperatures at the bottom and top walls is used, then a third
dimensionless parameter would come in. Since we are not going to deal with
such case the only two dimensionless parameters that determine the station-
ary state of the system are Fr and qN .
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3 The Quasielastic Regime

Although the kinetic equation is valid for any finite value of qN the following
formalism is valid only in the quasielastic regime characterized by qN � 1.
In this limit we look for solutions of the form

F (x̂, ĉ) = F (0)(x̂, ĉ) + qN F (1)(x̂, ĉ) + (qN)2F (2)(x̂, ĉ) + . . . (6)

where F (0) is the solution for the elastic case.
When F (x̂, ĉ) is replaced back in (5) we find a set of equations for each

order of the distribution function. Each F (s)(x̂, ĉ) follows an equation of the
form(

c
∂

∂x
− 1
2

∂

∂c

)
F (s)(x̂, ĉ) = J(s)

[
F (s−1)(x̂, ĉ), F (s−2)(x̂, ĉ), . . . , F (0)(x̂, ĉ)

]
(7)

where J(s)
[
F (s−1)(x̂, ĉ), . . . , F (0)(x̂, ĉ)

]
is a function representing the collision

term at order s and it only contains lower order functions.
We impose the normalization condition (2) so that at each order∫ ∞

−∞
dĉ

∫ Fr

0
dx̂ F (s)(x̂, ĉ) = δ0s. (8)

Each F (s) must also satisfy a boundary condition at the bottom |ĉ|F (S)(x̂ =
0, ĉ > 0) = w(ĉ)Rs, where w(ĉ) = 2 ĉ e−ĉ2 is the dimensionless version of
W in (1), while the condition at the elastic top wall is F (s)(x̂ = Fr, ĉ) =
F (s)(x̂ = Fr,−ĉ).

With this scheme the set of equations (7) can be solved exactly starting
from F (0)—this is the elastic solution –and following recursively up to the
desired order [5].

This perturbative solution is valid at any position near or far from the
walls since it is the kinetic equation with its corresponding microscopic bound-
ary that is being solved.

4 Results

The open system: The stationary state of the open system (Fr = ∞) is
determined by qN alone. The function corresponding to the elastic case is just
a Maxwellian F (0) = 1√

π
e−(x̂+ĉ2) and the first and second order corrections

modify this function as shown in Fig. 2 where the theoretical distribution
functions up to zeroth, first and second order evaluated at the bottom x̂ =
0 with qN = 0.2 are compared with the measured distribution function.
Interpreting the system as one in which particles pass through each other
loosing some energy in the process it can be said that particles coming out
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Fig. 2. The distribution function normalized to 1 at x̂ = 0 evaluated to zeroth
(dot-dashed line), first (dashed line) and second order (solid line) are seen in this
figure for qN = 0.2 and N = 200. Circles are the simulational results.

from the base have a vanishing most probable velocity, namely F (C > 0) is
maximum at C = 0, just like a Boltzmann distribution, while particles coming
down are in principle accelerated, but the friction with the background (the
rest of the particles) produces an effect similar to a “limit velocity” and
F (C < 0) has a maximum away from the origin. Moving away from the
base the history of all particles tends to be comparable regardless of the sign
of their velocity and the distribution function tends to be more and more
symmetric.

The effects of dissipation over density: The zeroth order density n0(x̂) de-
creases exponentially, and since qN ≤ 0.1 deviations from this behavior should
be small. Dissipation prevents particles from reaching the heights they would
in the conservative case implying that the system has a smaller effective
height. Consequently the density tends to be higher near the base although
corrections due to dissipation have not a maximum on the base but at some
distance over the it. This suggests that for higher values of qN (too high for
our theoretical description to be valid) a drop floating on a vapor would be
formed in the system as, in fact, we have seen in simulations.

Effects on the granular temperature and the heat flux: In Fig. 3 the tem-
perature profile is shown for three values of qN . The zeroth order temper-
ature profile is the straight line T = 1/4 in all three cases. The effect of
dissipation is to produce a T (x̂) with negative gradient and this is already
predicted by the negative first order correction. Figure 3 also shows that the
temperature reaches an asymptotic value that our formalism predicts to be
T (x̂ ∼ ∞) ≈ 1/4− qN(1− qN)/2 which coincides with what we observe. At
x̂ = 0 there is a temperature gap: the temperature of the system does not
coincide with the imposed value T0 = 1/4.
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Fig. 3. Temperature profiles for qN = 0.01 (squares), qN = 0.05 (triangles) and
qN = 0.1 (circles). The solid (dot-dashed) line is the predicted dimensionless tem-
perature up to second (first) order.

In our case this temperature slip at the base is δT ≈ qN(1 − qN/2)/4
which is also the observed gap. This thermal slip at the wall is a well known
effect when the system has an externally imposed temperature gradient, but
in granular systems δT is due to the dissipative collisions, namely, it is an
intrinsic property of the system and it does not vanish with increasing density,
but it rather increases.

The heat flux Q—the flux of energy entering through the base and being
dissipated in the bulk—has an analytic expression to first order in q,

Q(x̂) = qN

∫ ∞

−∞
dC

C3

2
F (x̂, C) =

qN√
2π

e−2x̂ . (9)

An elastically closed system: The perturbative solution for our system
with an elastic wall at height L (dimensionless height x̂ = Fr) has the form

F (x̂, ĉ) = λ
(
F (0)(x̂, ĉ) + qNλF (1)(x̂, ĉ) + (qNλ)2 F (2)(x̂, ĉ) + · · ·

)
(10)

where the prefactor λ = 1/(1− e−Fr) determines the system’s density scale.
The method to recursively construct the solution is the same one seen in Sec. 3
except that in this case the two boundary conditions have to be imposed [6].
The quasielastic condition for the system is in this case qNλ � 1, namely,
not only qN but also λ will determine the behavior of the stationary state.
We can see at left in Fig. 4 the corrections to the density profile for a fixed qN
value and different values for λ (or Fr). The agreement with theory is quite
good even though the shape of the corrections vary widely for the different
values of the Froude number conisdered. For small Fr the correction is almost
symmetric about x̂ = 1

2 Fr where it has a maximum. As Fr gets larger the
maximum of n1(x̂) moves down until it reaches the base and disappears. The
correction develops a minimum high up and it moves down as Fr grows.
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Fig. 4. At left, density corrections due to dissipation for different Froude numbers.
At right, the temperature profile for two values of the Froude number with qN =
0.01 (dots) and qN = 0.03 (triangles). If Fr is small enough T shows a minimum
even though the only source of energy is at the bottom. In both cases lines are the
theoretical predictions while symbols are the measured data from MD simulations.

The temperature profile: When Fr � 1 few particles reach the top wall
and the behavior of the profile tends to that of the open system observed in
Fig. 3. Taking smaller values of Fr the temperature profile eventually develops
a minimum near the top. The position of this minimum approaches the mid
height as Fr gets smaller, being approximately in the middle of the box when
Fr = 0.1 as shown in Fig. 4.

In spite of this minimum, notice that the heat flux, which at first order
reads,

Q(x̂) =
qN√

2π (1− e−Fr)2
(
e−2x̂ − e−2Fr) (11)

decreases monotonically with height, being zero at x̂ = Fr, as it should be
due to the elastic wall that closes the system.

Namely, the energy coming from the base heats the system near the top
more than it heats the region immediately underneath. This remarkable effect
is a boundary effect, in the sense that the upper wall is needed to observe
such a quasi-elastic regime. For an open system, in the quasi-elastic limit
qN � 1 this kind of temperature profile does not exist.
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Conclusions

The problem of a 1D granular gas can be understood as the problem of one
particle passing through a viscous medium. In this work we analyzed the
system in the hydrodynamic limit in which the properties of the system are
independent of the number of particles. In this context we have pointed out
the effective acceleration this only particle suffers due to dissipative collisions.

Due to dissipative interactions, the granular gas needs an energy injec-
tion to reach a stationary time independent state. This energy enters as a
boundary condition in the kinetic theory and, in the case of a 1D granular
gas, determines completely the quasi-elastic regime.

For an open system, the only parameter entering the problem is the factor
qN . In this case we predict, among other results, that there exists a temper-
ature slip at the hot wall which does not decrease with density and which is
of the same order as the gradients produced by dissipation. This implies that
the standard hydrodynamic boundary condition for the temperature (tem-
perature of the system at the wall equals the imposed temperature) is not
suitable for these kind of systems not only for the 1D system but also for
higher dimension ones.

Any other boundary in the system plays a role as important as the ener-
getic boundary. We have predicted and observed an inverse heat flux (from
colder to hotter zones) just by including an elastic upper wall. Although
there have been observed inverse heat fluxes in very low density systems in
higher dimensions [8] which could be due to a dissipative bulk effect, our case
corresponds mainly to a boundary effect.

Although some of properties of 1D systems are generalizable to two or
three dimensional systems, we have to point out that there exists a crucial
fact which makes the 1D case special: the velocity distribution function is
completely determined by the boundary conditions. Then, some of the 1D
results we present here could qualitatively be extended to higher dimensions
in the case of Knudsen gases, or even standard gases but just near the bound-
aries.
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