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Abstract

When the characteristic length associated to the gradient of at least one hydrodynamic field becomes comparable to the
mean free path, standard hydrodynamics does not apply. Situations like this are particularly evident in sheared gases. A
gas-dynamics valid for sheared gases derived from Boltzmann’s equation is presented in a compact form in two and three
dimensions. The equations are then reduced to the case of stationary planar flow where they are seen to imply highly nonlinear
transport equations. The gas-dynamic equations correctly describe, for example, the observed shear thinning and heat flux not
orthogonal to the isotherms. The shape of all the hydrodynamic fields can be obtained with extraordinary prediags.
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Keywords:

1. Introduction quantities of theoretical importance that may not be
readily measurable in the laboratory [5].

Classic fluids represent a special challenge because When a moleculgr dynamp 3|mulat|op mgkes a
there cannot be a fundamental theory describing them flUid evolve integrating Newtonian dynamics it is ac-
beyond Liouville's equation. Every effort to describe 1ally integrating the fundamental equation of ki-

them necessarily involves assumptions and approx- Netic theory, namely, Liouville’s equation. This equa-
imation schemes [1,2]. Since the times of the pio- 10N has precedence over hydrodynamics and certainly

neering articles by Alder and Wainwright (as in [3]) oyerthermodynamics,therefore the informatiop so ob-
we know that basic properties of classic fluids can t@ined may have great importance for theoretical de-
be well captured by microscopiolecular dynamic velopments. $|mllarly mglecular dypamlc simulation
computer simulations when simple Newtonian evolu- Programs using Newtonian dynamics normally have
tion equations are used [4]. Since in this type of mi- Précedence over those using thermostats.

croscopic simulations there is no uncertainty aboutthe ~ In this article we begin summarizing the basic the-
form of the interaction potential, theoretical results can Oretical analysis that leads to gas-dynamic equations
be tested unambiguously in a manner that is gener- which are well beyond Navier—Stokes fluid dynamics.
ally impossible with data obtained in experiments with Then we proceed to describe the peculiar behaviour

real fluids. It is also possible to obtain information on Which stems from such dynamics. Gases more easily
can show a behaviour not described by standard fluid

dynamics because the mean free path in them is sev-
L http:/iwww.cec.uchile.cl/cinetical. eral orders of magnitude larger than in liquids. In lig-
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uids the characteristic length associated to gradients offlow, a temperature profile for a Couette flow (given

any hydrodynamic field(, (¢x = X/|VX|) is incom- as a table) and a third order generalization of Fourier’s

parable larger than the mean free path while in gaseslaw in 3D.

they may be of the same order. The implications of

this is that in dense fluids local thermodynamic equi-

librium usually is a reliable hypothesis while in gases 2. The general equations

such assumption cannot be sustained in the presence of

large gradients. The difference then can be understood Starting from a classic system of many point par-

first at the level of kinetic theory: the one particle dis- ticles interacting via a pair-wise short range central

tribution functionsf (7, ¢, r) is significantly distorted ~ potential it is possible to derive quite generic hydro-

and one has to resort to Boltzmann’s equation to re- dynamic equations [2]. They are an incomplete set of

obtain the balance equations which yield fluid dynam- €equations for the number-density fieldthe velocity

ics. In our work we use the moment expansion method field v and the energy density field Such equations

developed by Grad [6]. involve two unknown fields: the pressure tenBand
The equations obtained in this way, presented be- the heat flux vectaj. Standard textbook hydrodynam-

low, are far more complex than those of standard hy- ics is obtained when the following extra ingredients

drodynamics and we have only scratched the surfaceare added: (a) two equations of state, one connecting

of their implications, studying some simple planar u with the temperature fiel@ and one connecting the

laminar flows. Still we have analytically derived, for hydrostatic pressure with and T'; (b) two constitu-

example, that heat does not flow exactly in the direc- tive equations, one linearly relating the pressure ten-

tion of the temperature gradient since there iaaom- sor with the gradients of the velocity field (thus vis-
alous heat flucomponent parallel to the isotherms [7,  cosity coefficients are introduced) and one linearly re-
8]. The direction of the heat flux depends wiT but lating the heat flux vector with the temperature gradi-
also on the gradient of the shear rate and on the direc-€nt. These are Newton’s law and Fourier’s law, respec-
tion of the external force (e.qg., gravity) [9]. tively.

Similarly we have derived the law that governs  Instead, following Grad, what we do is to assume
the viscous flow which in hydrodynamics is typically ~no constitutive equations whatsoever and derive higher
assumed to be Newton’s law. In gas-dynamics we have balance equations directly from Boltzmann'’s equation
shown that the effective shear viscosity coefficient (hence density is low enough that collisions are uncor-
derived for a planar Couette flow depends on the shearrelated) using Grad’s moment expansion method [6].
rate and therefore we have a nonlinear dependence ofThe method further requires to assume that the mean
the off diagonal term#;; of the pressure tensor onthe  free path is much smaller than any macroscopic length.
shear rate. The derived effective viscosity describes The last condition is necessary to have a system that
excellently well the shear thinning of gases observed is dominated by the bulk behaviour with negligible ef-
in simulations. The tensorial nature 8f; is not only fects coming from the walls. This is important because
determined by terms likév; /dx; but also by higher ~ Grad’'s method assumes that the distribution function
derivatives of the velocity field, by the external force is analytic in the velocities but it is known that a geo-
and even by derivatives of the temperature field [9].  metric wall, as the ones we use, implies a non analytic

We have studied the transport laws and have also distribution function [10].
derived the shape of every hydrodynamic field (den-  Using Grad’s moment expansion method [6] we
sity, velocity, temperature, pressure tensor and heathave derived the hydrodynamic equations for hard
flux vector) for simple planar and laminar flows and spheres in dimensiod = 2 and 3. In the last two
have found how well they compare with what we ob- dynamic equations (below) a quantityis present
serve in ourS|m.uIat|ons [7,8]. . . ovrd 1 \/ﬁ

In the following the gas-dynamic equations are 1=-—— —— _ [——

o . 2d+1 ,od—1\ g
presented and then they are specialized to stationary p
planar flows. From the latter some results are then which is a time scale of the same order as the free
obtained: a perturbative 2D solution for a Poiseuille flighttime of the particles and of the same order as the
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relaxation time associated to local fluctuations when
all gradients are negligible. The equations are
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where YDt = 3/9t + v - V is the convective deriva-
tive,d = 2 or 3 is the dimension of space, energy units
are such thakg = 1, the square brackets have been
used to indicatesymmetric traceless pamamely

2
[Al= Ay + Aji — =83 ZA

the first over-brace term indicates contraction of the
indices of v and g while the second one is to be
understood a0 P,s/9x;s) prr, P IS the symmetric
traceless part of the pressure tenBorSince we are
dealing with Boltzmann’s equation then= (d/2)T
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from these two equations all but the last two terms the
standard linear transport equations with the ideal gas
shear viscosity coefficient and the ideal gas thermal
conductivity coefficient would be recovered.

3. Planar stationary flows

The challenge is to obtain useful information from
this large set of hydrodynamic equations in their
complete form. So far we have studied stationary
cases with laminar planar flow. We have considered
a laminar flow in theX direction between two parallel
walls (parallel to theX Z plane in 3D and parallel to
the X axis in 2D) kept at equal temperatufg, see
figure. The external forcé is taken to point in th&X
direction: F = (g.0,0). Any gradient is in direction
Y, namely y is the only relevant coordinate. The
only non-vanishing component of the velocity field
is vy (y). Under such circumstances the convective
derivative is exactly zero and, enters only though
its derivative. Instead of dealing with, it is more
convenient to deal with the adimensional shear rate,
y = tduy/dy. What follows includes the cage=0
and the walls moving with velocitiesvg in the X
direction, namely a planar Couette flow.

Define the adimensional control parameters:

2 1
Kn’=—"__ Kn’=———_  and
ﬁO—Nx VZJTO'ZNXZ
mgLy, 1
F = —.

To Kn

Kn is defined in terms of the diameter of the
particles and the number of particles per unit length,

and the hydrostatic pressure obeys the ideal gasn, in 2D andN;, is the number of particles per unit

equation of statg =nT.

The first three equations essentially are the generic
balance equations coming directly from Liouville’s
equation for Hamiltonian systems of many particles
interacting pairwise via a short range central potential.
The only difference with the most general equation is
thatu has been replaced lgy/2) T, which is true only
if the collisional contribution ta can be neglected and
this is possible at low density.

The last two equations take the place of the consti-
tutive equations of standard hydrodynamics. They are
newdynamic equationfor the traceless pag of the
pressure tensor and for the heat flux vegtoErasing

Y
i . X
TO
/Z/% g
T

Fig. 1. The text describes a laminar stationary flow inXhdirection
between two walls orthogonal to theaxis. There is either gravity
or the walls are moving parallel to the axis in opposite directions.
Under such condition®y; = P,; =0 andg; =0.
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area in 3D.Kn is a Knudsen number and it serves d(d+2) Pyt T’ 6dt Ty Py

to characterize the finite nature of the system, it is 2d—1)m d+2)(d—1)m )
roughly proportional to the ratio between the mean dT Pyt P)éy 2dy qx

free path and the width of the channel. The quantity d—Dmp “ T dr2d -1 (8)

F serves as the parameter to derive a perturbative i )

solution and it also serves to characterize the intensity ES- (1), (2), (6), (7) and (8) are five coupled differen-

of the flow as we show below. Our formalism is valid = ial €quations fory, T', Pyy, g» andgy. The uniform

when Kn is small andF is at most of order 1. If  field Py, is determined requiring that the integral of

¢ = 0 theny is uniform and it serves as the expansion the density,/ p/T dy, givesNy in 2D andN. in 3D,

parameter. whereasp is evaluated using (3} and P;; are ob-
The system is defined in such a way that it is sym- t@ined from (4) and (5).

metric with respect to changing the signjafSinceg

(orif g =0, y) is the agent that takes the system out

of equilibrium then bothg andy can be taken to be

first order quantities. The symmetry implies that the

hydrodynamic fields have a well defined parify,. g,

and the diagonal componentsBf are even whiley,

P, andq, are odd. The equations then reduce consid-

erably. The mass continuity equation becomes an iden-

tity. The momentum balance imply th&g,, is uniform

4. Perturbative solution for a 2D Poiseuille flow

As a first illustration let us take the case of a
two-dimensional Poiseuille flow in th& direction
along a channel of widtlL,. Define the following
reduced fields7*(§) = T'(y)/To, P;;(§) = Fij (y)/po
andg; () = qx(y)/q0 where¢ = y/L, is the reduced
transversal coordinatepg = N, To/Ly, and g =

and that g :
me T p VTo/m po/2. To orderF? the equations yield,

cp =T8I0 @ .

d T P! =EKnF,
The energy balance equation is y=—6KnF,

l 2
Tqy ==Y ny. (2) P* =1 i _ Kn fz
Y + 60 4 ’

These are all the relations that come fromgtendard
hydrodynamicequations. The balance equations asso- p* — 1+ [i + <§ 2 _ %) an}}-z’

ciated to the pressure tensor yield 60 \2
x 1 & (3% 3 2| r2
P=Pyy_2+idypxyv 3) T(S)_le[EB_?jL(T_E)Kn}]:’
* 2
PxePyy_‘Z(zd_:—dél)V Xy (4) qx—s}"Kn ’
_ *=—g3F%Kn.
Pro=(d=2) Py~ %my, & "3
o4 d Already at this order there is an anomalous heat flux
Tq, =————(y Py + Pyy). (6) qx parallel to the isotherms, the pressure tensor is not
2 uniform but it is of orderkn? 2. Newton’s law of
Consistently, ford = 2 automaticallyP,, = 0. From viscous flow, which in the present notation 5, =
the balance equations associated tbfollows that —p*y is obeyed, but this is not true at higher orders.
The normal componeut, of the heat flux would obey
(d +4dt Py T’ Fourier'slawgy = —2 Kn dT*/d&, if we drop the term
2(d — m proportional tokn? in the temperature field. From the
+dTt[(2+d) Py +2((d + 4y — 6) Py, ] Py, second order solution written above it can be seen that
(d+ddyqy the reduced velocity field* = \/m/Tov, to this or-

9x — d+2)d+1) @) der is given byv* = 2F (1/4 — £2) showing that at



P. Cordero, D. Risso / Computer Physics Communications 121-122 (1999) 225-230 229

Table 1
Comparison of the predicted and observed temperature profile in a
2D Couette flow from the center of the channgl £, = 0) to one of

5. Temperature profile

the lateral wallsy/L,, = 0.5 (the observed profile is almost exactly The temperature profile is more dependent on the
symmetric). The simulation use¥ = 29583 hard particles in a number of particles than on other fields. Table 1
square box, area fraction occupied by the diglgs=0.01, Kn = has a comparison between theory and a simulation

0.0581. The temperature imposed on the channel’s wallg is 1. . .
The effective value of the shear rate turns out to/be 0.026381. with about 30 thousand partldes for the temperature

The rightmost column gives the percentage discrepancy between Profile of a 2D Couette flow for which we have
the theoretical and observed values of the temperature. Notice that, attained an excellent fit. In the Poiseuille flow of the
except for three values near the wall (which correspond to a region previous paragraph the temperature profile at second
of a size 006Ly) the differences are clearly less than 1% order is not parabolic and in the limkn — 0O it

y/Ly Ttheor Tsim, % behaves likeé*. The temperature at the center does
0023 1.1917 1.1916 001 not have a maximum, as expected, but a shallow
0.023 e e 0.00 minimum, with maxima af = +3 Kn/2\/§, namely,
in a small region at the center there is heat flux from
0.047 1.1909 1.1912 0.02 a cooler center towards the hotter maxima Tf
0.070 1.1897 1.1897 0.00 (1. This minimum has been observed in simulations
0.093 1.1879 1.1880 0.01 and an explanation has been presented using the
0.116 1.1856 1.1860 0.04 BGK approximation to Boltzmapn’s equation [11],
see also [8]. The temperature difference between the
0.140 1.1828 1.1832 0.03 maxima and the center is quite small-27Kn*/64.
0.163 1.1795 1.1799 0.04
0.186 1.1757 1.1764 0.06
0.209 1.1713 1.1726 0.10 6. Third order heat flux law
0.233 1.1665 1.1680 0.13
Besides the perturbative solution presented above it
0.256 1.1611 1.1629 0.16 is possible to derive from Egs. (1)—(8) quite general
0.279 1.1551 1.1573 0.19 transport equations. In what follows we show how a
0.302 1.1486 1.1511 0.21 heat flux law can be derived from our equations for a
0.326 11416 11436 017 planar stationary flow.
To zero order the only non-vanishing fields are the
0.349 1.1341 1.13%8 0.16 temperature, the pressure and the diagonal terms of
0.372 11259 1.1268 0.07 the pressure tensor. Since the temperature is even its
0.395 1.1172 1.1164 —0.07 next contribution is of second order. On the other hand
0.419 1.1080 1.1042 _034 ¢ is odd but its first order contribution is uniform, as
0.442 10981 10880 092 was seen above, thergfa[jta is of ordgr threfa. Hence,
from (6), the combinatiop Py, + Py, is of third order
0.465 1.0876 1.0617 —239 even though each one is first order. Following this type
0.488 1.0766 0.9872 -8.30 of reasoning and algebraically solving (7) and (8) in

favor ofg, andg, allows us to obtain up to third order
expressions for the heat flux components which, in the
three dimensional case, are

the center of the channet & 0) the hydrodynamic 15 157 3/2(. 3y
velocity is proportional toF. This perturbative de- qy = _1_6K”JTV = — %Kn T (r)

scription can be taken to much higher order. In [8], 175 372y
for example, expressions up to sixth order are given + @Kn v (T ) )
and they describe extremely well the simulation re- 25

21
sults. q; = ZKH (T*B/Z)’ _ ZKn 7+3/2 (yz)/_
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The first component is the anomalous heat flux (paral-
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Professor Joaquin Marro and the Organizing Commit-

lel to the isotherms) and the second one consists of two tee for their hospitality at the 1998 Conference on

terms, the first one is exactly Fourier’s term in the case

of an ideal gas, the last one comes from gas-dynamics.

We would like to mention that aempirical transport
law of this kind was proposed in [12] (see also [13,14])
to give account of his MD simulations results.

7. Final comment

We have presented a gas dynamics — derived from

Boltzmann’s equation using a moment expansion meth-

od — which is far more complex than the standard
Navier—Stokes dynamics. The dynamic fields are the
density, the hydrodynamic velocity, the temperature,
the pressure tensor and the heat flux vector. No con-

stitutive equations have to be assumed since there are

dynamic equations that replace them. The predictions
stemming from such framework, when applied to sta-
tionary laminar flow, describe extremely well the ob-
servations obtained from molecular dynamic simula-
tions. In the case of stationary planar laminar flows a
third order modification to Fourier’s law has been pre-
sented.
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