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Abstract

The kinetic properties of clusters are studied taking into account non-ideal contributions. The
velocity distribution functions are distorted Maxwellians. From these distributions it is possible
to derive kinetic “temperatures” associated with each cluster species which are di�erent from the
thermodynamic temperature T . Molecular dynamics simulations con�rm these predictions and
show that the kinetic temperatures are larger than T . c© 1998 Elsevier Science B.V. All rights
reserved.

Molecules in a gas at equilibrium, and not too far from the liquid–gas transition,
tend to form microscopic clusters. Clusters can be thought of as microscopic domains
of the liquid phase. The study of the cluster properties is essential for understanding
the condensation phenomena [1]. A lot of work has been done in predicting the clusters
free energy [2] and their kinetic properties [3]. The e�ect of excluded volume is treated
in [4]. In a recent paper, a new formalism based on a virial expansion that predicts
the non-ideal e�ects in the concentration of clusters is used [5]. This formalism shows
good agreement with molecular dynamics simulations.
In the following, we use the technique described in [5] to deduce new kinetic prop-

erties for the clusters, and compare the predictions to molecular dynamic simulations.
We simulate a two-dimensional system of hard disks interacting with a square well

pair potential given by ’(r)= [∞;−�; 0] depending on whether r¡�, �¡r¡��, or
r¿��, respectively. We have chosen units so that m=1, �=1, �=1, and we have
set �=1:5.
We simulate systems of N =104 hard disks at temperatures T and number densities

n corresponding to the pure homogeneous gas phase with a non-negligible presence of
clusters. The boundary conditions are periodic, to avoid heterogeneous condensation.
The system is described as a gas mixture of di�erent cluster sizes, where we

call cluster (dynamical cluster) a set of molecules that are energetically bound,
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making clusters to move as a whole allowing for an adequate kinetic study of them.
Using this generic de�nition each microscopic state has a unique decomposition in
clusters.
The gas of clusters is studied using the virial expansion based on a formal dia-

grammatic expansion for the case of gas mixtures [6,7]. The interactions between the
di�erent “particles” (clusters) take into account the full interaction between all the
molecules composing each cluster. But, there is another interaction between clusters
that come from the de�nition of clusters. Since molecules in two di�erent clusters, of
sizes k and ‘, cannot be energetically bound, there is a restriction relating the values
of the variables of the molecules in each one of the two clusters. This restriction is
imposed with a constraint-potential U constr

k‘ that becomes in�nite if such restrictions are
violated and is zero otherwise.
Hence, the e�ective Hamiltonian that describes the cluster gas mixture is the sum of

the energy for each cluster Hk0 (translational and internal energy of the clusters) and
the total e�ective interaction between clusters Vkl (the molecular interaction between
molecules composing the clusters plus the constraint potential).
With this Hamiltonian, the grand partition function for this non-ideal gas composed of

a mixture of di�erent cluster sizes can be written. If the density is low, the diagrammatic
method can be applied directly to this gas mixture. In this formalism it is possible to
derive the distribution functions fk(r; p) for clusters of size k [5]. Up to �rst virial
correction,

fk(r; p) =
1
k!
�k
[∫

e−�H
k
0 (r; p; �) d�

+ �
∫
e−�H

k
0 (r; p; �)e−�p

2
1=2m(e−�Vk1(r;p;�;r1 ;p1) − 1)dr1 dp1 d�

]
; (1)

where � represents the internal degrees of freedom of the cluster, and �= e�� is the
small quantity used in the diagrammatic method, with � the chemical potential.
The order zero fk is directly a Maxwell–Boltzmann distribution. But when the non-

ideal correction is included it becomes distorted.
We de�ne the kinetic or translational temperature T transk =(mk=d)

〈
v2
〉
k and the in-

ternal temperature T intk =2K intk =[(k − 1)d] where K intk is the internal kinetic energy.
In classical systems these temperatures are equal to the thermodynamic temperature
T , but for the energically de�ned clusters they turn out to be di�erent. Only T ,
of course, is a true temperature. From Eq. (1) T transk can be calculated. After some
algebra,

T transk = T
[
1 + �

md

k + 1

∫
dr0 du

〈
e−�Ṽ k1(r0 ;v0)

〉
�

(
2
d
u2 − 1

)
e−u

2
]
; (2)

where 〈· · ·〉� is an average over the internal degrees of freedom of the cluster; Ṽk1 is
the e�ective potential between the cluster and the monomer in the reference system of
the cluster, and v=

√
2T (k + 1)=(mk)u. For energetically de�ned clusters, the average
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Fig. 1. Cluster temperatures as a function of cluster size. The open circles correspond to the translational
temperature and the solid square to the internal temperature for di�erent clusters sizes. The dash straight
lines show the values of the thermodynamic temperature. The number densities and temperatures for the
three simulations are: (1) n=0:02, T =0:602, (2) n=0:05, T =0:802, and (3) n=0:05, T =0:987.

in � depends non-trivially on velocities, so the above integral is generally not zero.
Hence,

T transk 6= T: (3)

The di�erence comes from the existence of the Constraint Potential that depends on
velocities. Fig. 1 shows the translational and internal cluster temperatures obtained
in the simulations. They are di�erent from T and satisfy the following inequality
T intk ¡T¡T

trans
k . This property can be understood in terms of the cluster de�nition.

The restriction that the molecules inside a cluster have to be energetically bound puts
an upper limit on the relative velocities of the molecules, and therefore the total in-
ternal kinetic energy per degree of freedom is less than T=2, giving T intk ¡T . From
the equipartition theorem, the total kinetic energy should be equal to T=2 for each
degree of freedom, then to compensate the smaller energy in the internal degrees of
freedom, the translational ones must have more than T=2, giving T¡T transk . In the
case of monomers, it can be shown that T trans1 ¿T . In fact, in this case the cluster
(monomer) does not have internal degrees of freedom and Eq. (2) can be simpli�ed
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to

T1 =
m
d
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v2
〉
1

= T
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constr
11 (r0 ; v)e−�’(r0)
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)
e−u

2
]
: (4)

But the �rst exponential factor in the integral vanishes if the two monomers are bound,
which happens when the relative velocity u is small. Then this exponential acts as a
lower limit in the integration in u= |u|, where this lower limit depends on the po-
sition r0, the relative orientation between r0 and u, and the molecular potential. The
integral in u from a �nite value to in�nity is always positive; hence, the correction in
the mean quadratic velocities of monomers is always positive. The conclusion is that
for any intermolecular interaction potential and any cluster size, the monomers move
(on average) faster than the thermal velocity associated to the temperature T of the
system.
To estimate the correction in the translation temperature for the case of large clusters

it is necessary to model the e�ective potential between a cluster and a monomer.
The correction �Tk=T =(T transk − T )=T can be estimated for large clusters. When the

temperature is low enough, the cluster is spherical and compact in the sense that the
energy of the monomer inside the cluster would be in�nite. Therefore, the average〈
exp(−�Ṽk1(r0; v0))

〉
� is zero inside the cluster, one outside it, and some undetermined

value F(r0; v0) in the surface. Using this approximation in Eq. (2), we have

�Tk=T = �
md
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1
�

∫
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)(
2
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2
; (5)

where Acl is the surface of the cluster, � the width of the interface and the integration
is over the radial component only since the approximation �.R has been made. Then,
the correction to the translational temperature comes only from the surface of the clus-
ter. With the asymptotic values of Acl and � in [8] the correction for large clusters
is �Tk=T =O(k−1=4) in 2D and �Tk=T =O(k−1=3

√
log k) in 3D. This result shows that

both in two and three dimensions the correction to the tranlational temperature goes
slowly down. The size dependence of the non-ideal correction to the translational tem-
perature should be compared to the non-ideal correction to the cluster concentration
[5], which increases linearly with the cluster size.
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