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Cluster velocity distributions in a vapor at equilibrium
Rodrigo Sotoa) and Patricio Cordero
Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile,
Santiago, Chile

~Received 10 December 1997; accepted 23 February 1998!

We present the microscopic description of the vapor using the concept of cluster. Taking into
consideration nonideal contributions, the distribution functions of every cluster species are obtained.
From these distribution functions it is possible to derive kinetic ‘‘temperatures’’ associated with
each cluster species and it is shown that the internal kinetic temperature and the kinetic temperature
associated with the center of mass of the clusters are different from the thermodynamic temperature
of the system as a whole. Molecular dynamic simulations show that the internal temperatures are
smaller than the thermodynamic one, which is smaller than the kinetic temperatures for all cluster
sizes. For the case of monomers more precise predictions can be made and they are in excellent
agreement with our simulations. ©1998 American Institute of Physics.@S0021-9606~98!50521-1#
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I. INTRODUCTION

In a vapor at equilibrium, and not too far from the liquid
gas transition line, a large amount of clusters are pres
Clusters are ensembles of molecules that can be thoug
as small domains of the liquid phase. At equilibrium, t
concentration of clusters withk molecules~clusters of size
k) decays rapidly with size.

The properties of the vapor, both in and out of equil
rium, depend strongly on the microscopic properties of
clusters. In particular the process where the vapor cond
sates and transforms itself into a liquid is commonly d
scribed in terms of the concentration of clusters of differ
sizes. This model, the homogenous nucleation the
~HNT!,1–5 has been successful in describing the process
in some cases it fails by several orders of magnitude.6–10

HNT needs the equilibrium concentration of clusters a
the rate ofsuccessful reactions, data that must come from
microscopic models of the clusters. There are many arti
predicting the equilibrium concentration of clusters, most
them assuming that the cluster gas mixture can be mod
as an ideal gas mixture, in which case the equilibrium c
centration can be expressed in terms of the free energ
formation of a cluster.11–20The free energy can be calculate
by means of thermodynamic models or directly from mic
scopic models. There have also been some works where
cluded volume effects are taken into account21–23 and de-
tailed calculations were made in the Percus-Yev
approximation.24 In a recent paper a new formalism based
a virial expansion that predicts the nonideal effects in
concentration of clusters is used.25 This formalism shows
good agreement with molecular dynamics simulations.

The other microscopic data necessary within the HNT
the rate of successful reactions, that is the probability
unit time that a cluster absorbs a monomer and increase
size, that can be expressed as the product of the collision
between clusters and monomers and thesticking coefficient.

a!Electronic mail: rsoto@cec.uchile.cl
8980021-9606/98/108(21)/8989/6/$15.00
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The latter is a measure of the fraction of collisions that
successful, namely, the reactions in which the monome
actually absorbed by the cluster. Since this coefficient
quite difficult to estimate from a microscopic model, seve
phenomenological models have been put forward.18,26 Also,
some models that incorporate the internal degrees of free
have been advanced.27,28

To be able to evaluate the collision rate between clus
and monomers it is necessary to have the equilibrium ve
ity distribution function for every speciesk. HNT assumes
that every speciesk has a Maxwell distributionf k

(0) with the
same temperatureT as the system, and kinetic theory is us
straightforwardly to derive the collision rates.

In this paper we first define the clusters in a dynami
way such that they are appropriate for a kinetic study
them, like HNT does. With this definition we prove that th
distributionsf k associated with each cluster size are distor
Maxwellian distributionsf k5(11fk) f k

(0) and the ‘‘kinetic
temperatures’’~proportional to the mean quadratic velocit!
associated with these distributions depend onk and are dif-
ferent than the temperature of the gas as a whole.

In the following sections we define thedynamical clus-
ters as a set of molecules that are energetically bound, a
improvement over the geometrical definition of clusters~set
of molecules that are close together! and study some of thei
properties. Then we derive the equilibrium velocity distrib
tion functions associated with the center of mass of the
ferent species of clusters and prove some general prope
for them. In particular we show that the mean quadratic
locity ^v2&k is different than the direct result derived from
the temperature of the system. We are able to get an exp
expression for̂ v2&k51 ~monomers! and we compare it with
the values that emerge from molecular dynamic~MD! simu-
lations of our own, getting excellent agreement.

More specifically, in Sec. II we present the microscop
description of the vapor using the concept of cluster. In S
III we review the formalism developed in Ref. 25 and w
display the velocity distribution function for clusters of an
size. From these distribution functionsf k we derive in Sec.
9 © 1998 American Institute of Physics
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IV expressions for a ‘‘translational temperature’’Tk
transand a

‘‘temperature’’ Tk
int associated with the internal degrees

freedom of every cluster species and prove that, in particu
T1

trans.T, whereT is the thermodynamic temperature of th
system. These inequalities are valid irrespective of the p
ticular molecular interaction potential. In Sec. V we descr
our molecular dynamic simulations and show how the
equalities are satisfied in practice in different simulatio
Also the simulations indicate that for all sizesTk

int,T
,Tk

trans. In Sec. VI there is a particularization to the case
monomers~clusters of size 1! and excellent agreement
shown between our simulations and our predictions. Sec
VII is dedicated to concluding remarks.

II. CLUSTER DEFINITION

In the following we study a gas of clusters at equilibriu
considering nonideal contributions up to the first virial co
rections. Microscopically, a vapor will be considered as
nonideal gas mixture where each species of clusters has
of internal degrees of freedom. For the sake of simplicity
are going to consider a system made up of point ‘‘m
ecules’’ that have only translational degrees of freedom.

Even though the HNT extensively uses the concept
clusters there is no unique definition for them. The only
dication is that clusters are microscopic domains of the liq
phase.4,29 Usually a cluster is understood either as a set
molecules that are nearer to each other than a minim
distance,23 as a set of molecules inside a spherical shell,30 or
a density fluctuation which exceeds a certain minimum31

These definitions have the advantage of simplifying the c
culations but overestimate the number of clusters. The o
estimation comes from accepting as cluster a set of parti
that are coincidentally close with no further dynamical re
tion between them. Hence, a large number of these ‘‘clus
by coincidence’’ have a short mean life~of the order of the
collision time!. For example, in a collision between two pa
ticles there will be a short time in which the pair would b
considered as a cluster~dimer! although the particles will no
evolve together. Furthermore, for a given cluster, its size w
fluctuate unphysically due to all the particles that just sca
with it.

Besides, HNT~based in the clusters dynamics! assumes
the sequence of absorption and evaporation processes is
kovian. However, for geometrical clusters there is a la
number of paired absorption-evaporation processes hi
correlated, that correspond to the scattering processes
scribed above. For example, if two monomers collide~ab-
sorption of one monomer by another! the instant when they
dissociate~evaporation! can be calculated analytically. Thi
implies that the two processes are highly correlated. The
relation reduces for larger clusters as the scattering time
creases and the dynamics is more chaotic, making impos
the prediction of the evaporation time. Therefore, the disti
tion between dynamical and geometric clusters is only
evant for smaller clusters, where also the kinetic con
quences to be studied are more important.

Hill 21,22 introduced the dynamical clusters in terms
‘‘bound’’ and ‘‘unbound’’ potentials, similar to the
Downloaded 18 Jan 2003 to 200.10.225.75. Redistribution subject to A
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constraint-potentialdefined later in this article. The define
dimers correspond to a pair of bound particles, but for lar
clusters the definition, although rigorous, does not give
clear dynamical interpretation.

We shall call cluster~dynamical cluster! a set of par-
ticles that in some sense are energetically bound. To de
unambiguously a cluster we define first a functionC(r ,v)
that depends on the relative position and relative velocity
two particles, such thatC is either 1 if the particles are en
ergetically bound or 0 otherwise. Two particles are energ
cally bound if the particles are inside the potential well a
with an energy lower than the maximum value of the effe
tive potentialweff(r ) ~that includes the centrifugal potential!,
then the precise expression forC(r ,v) is

C~r ,v!5QS weff~r M !2w~r !2
mv2

4 DQ~r M2r !, ~1!

where Q is the Heaviside step function,m is mass of the
particles, andr M is the point where the effective potentia
reaches its maximum value.

We assume that the molecular potential is strictly of
nite range. In this case there is always a maximum in
effective potential, which we assume is unique to simpl
notation but in other cases the formalism is equally va
The case where the potential is not strictly of finite range
decays faster thanr 22 is studied in the Appendix.

To define clusters we introduce the concept oflinked
particles as follows:~i! if C(rab ,vab)51 then by definitiona
andb are linked, ~ii ! if particle a is linked with b andb is
linked with c thena andc are linked. Finally,~iii ! two par-
ticles belong to the same cluster if and only if they a
linked.

Using this generic definition each microscopic state h
a unique decomposition in clusters.

III. STATISTICAL FORMULATION FOR A GAS OF
CLUSTERS

In this article we use the formalism developed in R
25, which consistently considers the nonideal contributio
in a gas of clusters and predicts accurately the vapor pres
and cluster concentrations.

The system is described as a gas mixture of differ
cluster species~in the grand canonical ensemble!, where the
interactions between the different ‘‘particles’’ take into a
count the full interaction between all the molecules comp
ing each cluster. But, there is another interaction betw
clusters that comes from the definition of clusters. Sin
molecules in two different clusters, of sizesk and l , cannot
be energetically bound, there is a restriction relating the v
ues of the variables of the molecules in each one of the
clusters. This restriction is imposed with aconstraint-
potential Ukl

constr that becomes infinite if such restrictions a
violated and is zero otherwise, then the Boltzmann fac
suppresses all the configurations where particles in diffe
clusters are bound.

Hence, the effective Hamiltonian that describes the cl
ter gas mixture is the sum of the energy for each clusterH0

k

~translational and internal energy of the clusters! and the to-
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8991J. Chem. Phys., Vol. 108, No. 21, 1 June 1998 R. Soto and P. Cordero
tal effective interaction between clustersVkl ~the molecular
interaction between molecules composing the clusters
the constraint potential!.

The clusters are described giving their position, mom
tum and internal degrees of freedomj of each cluster. The
internal degrees of freedom take values such that the
ticles in the cluster are bound.

Then, the system is studied using the virial expans
based in a formal diagrammatic expansion for the case of
of clusters.32,33 The expansion, valid for low density vapor
is used to calculate up to first nonideal correction the vel
ity distribution functionf k(r ,v) for clusters of sizek.25

f k~r ,p!5
1

k!
lkF E e2bH0

k
~r ,p,j!dj1lE e2bH0

k
~r ,p,j!

3e2bp1
2/2m(e2bVk1~r ,p,j;r1 ,p1!21) dr1 dp1 dj G ,

~2!

where j represents the internal degrees of freedom of
cluster, andl5ebm is the small quantity used in the dia
grammatic method, withm the chemical potential. The idea
Hamiltonian of a cluster of sizek, H0

k includes the transla
tional kinetic energyp2/2km and the internal energyUk(j).

The correction to the zero order distribution comes fro
an average of the interaction between a cluster and the m
mers.

IV. KINETIC TEMPERATURES

Some interesting properties can be derived from the
neric expression~2!. The limit of zero density~zero order
approximation! of f k is directly a Maxwell-Boltzmann distri-
bution. But when the interaction with monomers is includ
it becomes distorted. Changing the integration variables
the monomer to those in the reference frame of the clus
the distribution function can be written as

f k~r ,v!5 f k
~0!~r ,v!F11mdlE F~r0 ,v0!

3e2m~v01v!2/2Tdr0 dv0G , ~3!

where

f k
~0!~r ,v!5~mk!dlkqke

2bmkv2/2, ~4!

F~r0 ,v0!5
*e2bUk~j!~e2bVk121!dj

*e2bUk~j!dj
U

r50,v50

, ~5!

qk5
1

k! E e2bUk~j!dj, ~6!

namely, the distribution function is the Maxwell-Boltzman
distribution f k

(0) corrected by the monomer-cluster intera
tion, integrated over all the possible configurations of
cluster and all the possible positions and velocities of
monomer~velocities measured in the reference frame of
cluster!. The functionF depends on velocities because t
Downloaded 18 Jan 2003 to 200.10.225.75. Redistribution subject to A
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constraint potential, which is part of the effective potent
Vk1, depends on the relative velocity between the monom
and the cluster.

Before modeling the form in which the monomer inte
acts with the cluster we will derive an interesting gene
property. Let us calculate the mean quadratic velocity o
cluster of sizek. Expanding the result to first order inl
yields

mk

2
^v2&k5

d

2
TF11l

md

k11E dr0 du

3FS r0 ,A2T~k11!

mk
uD S 2

d
u221De2u2G ,

~7!

where^¯&k means an average evaluated usingf k .
Since for energetically defined clusters, the functionF

depends nontrivially on velocities, the above integral is g
erally not zero. Hence,

mk

2
^v2&kÞ

d

2
T. ~8!

That is, the translational kinetic energy is not equal to
value obtained in simple statistical mechanics. The diff
ence comes from the existence of the constraint potential
depends on velocities.

We will define the kinetic ortranslational temperature
of a cluster as

Tk
trans5

mk

d
^v2&k ~9!

and theinternal temperature

Tk
int5

2Kk
int

~k21!d
, ~10!

where Kk
int is the internal kinetic energy divided by (k

21)d/2, becaused degrees of freedom must be subtracted
the center-of-mass reference frame.Tk

trans plays an important
role in the kinetic properties of the clusters.

The three ‘‘temperatures’’ that we are using are then
thermodynamic temperatureT of the system and the transla
tional and internal temperaturesTk

trans, Tk
int of the clustersk,

and they turn out to be different. OnlyT, of course, is a true
temperature.

It can be argued, and proved for the case of monom
that the three temperatures satisfy,

Tk
int,T,Tk

trans. ~11!

The restriction that the particles inside a cluster have to
energetically bound puts an upper limit on the relative v
locities of the particles, and therefore the total internal
netic energy per degree of freedom is less thanT/2, giving
Tk

int,T. From the equipartition theorem, the total kinetic e
ergy should be equal toT/2 for each degree of freedom, the
to compensate the energy deficit in the internal degree
freedom, the translational ones must have more thanT/2,
giving T,Tk

trans.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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To estimate the translational temperature for the cas
large clusters it is necessary to model how a cluster inter
with a monomer. We will work the case when the tempe
ture is low enough so that we can assume that the clust
spherical and compact in the sense that the energy of
monomer inside the cluster would be infinite. Therefore,

F~r0 ,v0!5H 21 r 0P Volume

G~r0 ,v0! r 0P Surface

0 r 0P External zone

. ~12!

Replacing this expression back in~3! implies that the
mean quadratic velocity of the cluster is

mk

2
^v2&k5

d

2
TF11l

md

k11
AclD

1

DED
dr0 du

3GS r 0r̂ ,A2T~k11!

mk
uD S 2

d
u221D e2u2G ,

~13!

whereAcl is the surface of the cluster,D the width of the
interface and the integration is only over the radial com
nent since the approximationD!R has been made.

From ~13! it is seen that only the surface term contri
utes since the volumetric term, which corresponds to
21 in F, vanishes when it is integrated. The contribution
of the order of the volume of the interface. For largek the
correction goes to zero as,

Tk
trans2T

T
5O S AclD

k D
5H O ~k21/4! d52

O ~k21/3Alog~k!! d53
, ~14!

where we have used thatAcl5O (k(d21)/d) and that the width
of the interface is given by

D5H O ~k1/4! if d52

O ~Alog~k!! if d53
, ~15!

as in Ref. 34. This result shows that in both two and th
dimensions the correction to the translational temperatur
more important for small clusters, where the distinction b
tween the geometric and energetic clusters is important to
dynamics. The size dependence of the nonideal correctio
the translational temperature should be compared to the
ideal correction to the cluster free energy,25 which increases
linearly with cluster size.

A. Monomers

In the case of monomers, it can be shown that the c
rection is always positive. In fact, in this case the clus
~monomer! does not have internal degrees of freedom, th
the functionF is reduced to,

F~r0 ,v0!5e2bV11~r0 ,v0!21. ~16!

The integration over velocities of the second term inF
vanishes. Then the mean quadratic velocities for monom
is
Downloaded 18 Jan 2003 to 200.10.225.75. Redistribution subject to A
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2 E dr0 du

3e2bV11
constr

~r0 ,v0!e2bw~r0!S 2

d
u221De2u2G .

~17!

But the exponential of the constraint potential betwe
two monomers vanishes if the two monomers are bou
which happens when the relative velocityu is small. Then
this exponential acts as a lower limit in the integration inu
5uuu, where this lower limit depends on the positionr 0, the
relative orientation betweenr0 andu, and the molecular po-
tential. Moreover the integration inu,

E
a

`

du ud21S 2

d
u221De2u2

, ~18!

is always positive. Hence the correction in the mean q
dratic velocities of monomers is always positive.

The conclusion is thatfor any intermolecular interaction
potential the monomers move (on average) faster than
thermal velocity associated with the temperature T of
system.

V. MOLECULAR DYNAMIC SIMULATIONS

We have made molecular dynamic simulations of a tw
dimensional system of particles interacting with a pair pot
tial given by

w~r !5H ` r ,s

2« s,r ,a s

0 r .a s

, ~19!

where we have chosen units so thatm51, «51, s51 and
we have seta51.5.

Our system hasN5104 particles at temperatures an
number densitiesn corresponding to the pure, homogeneo
gas phase but with the presence of clusters. The boun
conditions are chosen to be periodic to avoid heterogene
condensation. Systems like this one are known to relax
state totally independent of the details of the initial con
tion. Given any microscopic state it is possible to identify t
clusters present in it and from here to determine the ins
taneous value of their properties.

For the case of the potential~19! the value ofr M in ~1! is
alwaysr M5as. Then the functionC(r ,v) is,

C~r ,v!5Q~as2r !QS «1
l 2

m~as!2
2

mv2

4 D , ~20!

wherel is the angular momentum.
In each simulation the system was relaxed until

reached equilibrium~at least constant temperature and co
stant number of clusters of each size!. After relaxation the
velocity distribution of the center of mass and the intern
kinetic energy for the different cluster sizesk were mea-
sured. These measurements were made taking periodic s
shots of the system. Each snapshot was taken at regula
tervals of about two collisions per particle. From the cent
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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8993J. Chem. Phys., Vol. 108, No. 21, 1 June 1998 R. Soto and P. Cordero
of-mass velocity distribution different moments of it we
calculated, thus allowing the determination of the trans
tional temperatures.

We have made simulations for different global con
tions ~density and temperature! which are shown in Table I

In Fig. 1 one can see the translational and internal te
peratures observed in the simulations described in Tab
For larger clusters the statistical error increases due to
creasing number of clusters as the size increases. All
simulations give results clearly satisfying our prediction
Also it seems that, within the error range, the translatio
temperature is always~not just for monomers! higher than
the thermodynamic temperature.

Also, the fourth cumulant of the distributions,k4, was
measured to see how close to a Maxwellian aboutTk

transwere
the observed velocity distributions. The fourth cumulant i
standard way to measure the departure from a Maxwel
distribution. For an isotropic two-dimensional distributio
the adimensional fourth cumulantk4̂ is defined by the fol-
lowing combination of the second and fourth moments:

TABLE I. Global densityn and temperatureT used in the molecular dy-
namics simulations.

n T

Simulation 1 0.02 0.602
Simulation 2 0.05 0.802
Simulation 3 0.05 0.987

FIG. 1. Cluster temperatures as a function of cluster size. The open ci
correspond to the translational temperature and the solid square to the
nal temperature for different cluster sizes. The dashed straight lines s
the values of the thermodynamic temperature. The simulations are tho
Table I.
Downloaded 18 Jan 2003 to 200.10.225.75. Redistribution subject to A
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k4

^v4&
5S 12

2^v2&2

^v4&
D . ~21!

The results are shown in Table II. It can be seen that
all our simulations and for all the observed cluster sizes
fourth cumulant is quite small. Therefore it is justified
approximate the distribution to a Maxwellian not atT but
ratherat the translational temperatureassociated with each
size.

VI. MONOMERS

Studying the case of monomers~free molecules! it is
possible to get quantitative comparisons between our pre
tions and our simulations since in this case the different
tegrals of the distribution function can be reduced consid
ably. In fact, if we consider the intermolecular potential~19!
in two dimensions we get from~3!,

n15n expF2n eb«S p~a221!

2
1

2E1

a2

dyE
0

2p

df e2RD G , ~22!

m

2
^v2&5TF11

n

4
eb«E

1

a2

dyE
0

2p

df Re2RG , ~23!

k45
3nT2

16
eb«E

1

a2

dyE
0

2p

df R~R22!e2R, ~24!

with

R5
b«

12y sin2f/a2
, ~25!

wheren1 is the density of monomers, andk4 is the fourth
cumulant of the distribution.

The density of monomers has been written in the form
an exponential to be able to compare it with the classic fo
given in the HNT where the exponent is basically the fr
energy associated with the formation of a cluster. When n
ideal contributions are considered, the free energy neces
to have a monomer is not zero because the particles in
neighborhood have to have an energy above a certain v
to avoid being bound with the monomer.

es
ter-
w
of

TABLE II. Mean value of the fourth cumulant of the velocity distribution
for different cluster sizes. The simulations are those of Table I.

Cluster size Sim 1 Sim 2 Sim 3

1 0.001 20.005 20.010
2 0.004 0.000 20.002
3 0.000 0.002 20.001
4 20.002 0.000 0.000
5 20.008 0.004 0.004
6 0.003 0.003 0.004
7 20.002 0.000 0.001
8 0.007 0.004 0.000
9 0.012 20.009 0.000
10 20.040 0.015 0.004
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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In the simulations cited above we have measured th
quantities getting excellent agreement with our predictio
In Table III there is a comparison between predictions a
the results of our simulations.

VII. CONCLUSION

We have made a definition of clusters that allows a
netic study of them. The clusters are defined using an e
getic criterion instead as the usual distance criterion. W
this definition we have studied a vapor at equilibrium, and
has been verified that when nonideal contributions are
cluded to describe the vapor as a gas of clusters, the tra
tional temperature of each cluster size is larger than the
bal temperature of the system. The extra energy comes f
the internal degrees of freedom of the clusters which
colder because the clusters are energetically bound.

The predicted inequalities between the different te
peratures have been corroborated qualitatively in sev
cases by means of MD simulations. For the predictions c
cerning different moments of the velocity distribution f
monomers, an agreement within 4% was obtained.
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APPENDIX: CLUSTER DEFINITION FOR
NONSTRICTLY FINITE RANGE POTENTIALS

If the interaction potential is not strictly of finite range
the definition~1! would count as clusters a pair of particle
that are far away but their relative velocity is, by coinc
dence, small. To avoid this problem we should take a crit
distancer c such that particles whose separation is grea
than r c will not be taken as linked. But since in an isolate
cluster energy is conserved, it is possible to have elong
orbits that cross this distance, making the size of the clu

TABLE III. Comparison of the predicted and simulational properties for
monomers for the simulations under different conditions. The simulati
are those of Table I.

Sim 1 Sim 2 Sim 3

Theo Sim Theo Sim Theo Sim

N1 6858 6918 5591 5826 6497 6642
T1

trans 0.625 0.623 0.868 0.867 1.06 1.06
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to fluctuate unphysically. Then, ifr M ~the point where the
effective potential is maximum! is larger thanr c , the effec-
tive potential atr c is evaluatedwc5w(r c), and two particles
will be taken as linked if in their center of momentum fram
their total energy is lower thanwc .

Then, the final expression for the functionC(r ,v) that
we use is,

C~r ,v!5QS weff~r 0!2w~r !2
mv2

4 DQ~r 02r !, ~A1!

where

r 05min$r M ,r c%. ~A2!

The function defined above is strictly short range.
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