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Cluster velocity distributions in a vapor at equilibrium
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We present the microscopic description of the vapor using the concept of cluster. Taking into
consideration nonideal contributions, the distribution functions of every cluster species are obtained.
From these distribution functions it is possible to derive kinetic “temperatures” associated with
each cluster species and it is shown that the internal kinetic temperature and the kinetic temperature
associated with the center of mass of the clusters are different from the thermodynamic temperature
of the system as a whole. Molecular dynamic simulations show that the internal temperatures are
smaller than the thermodynamic one, which is smaller than the kinetic temperatures for all cluster
sizes. For the case of monomers more precise predictions can be made and they are in excellent
agreement with our simulations. @398 American Institute of Physid&§0021-960608)50521-]

I. INTRODUCTION The latter is a measure of the fraction of collisions that are
successful, namely, the reactions in which the monomer is
In a vapor at equilibrium, and not too far from the liquid- actually absorbed by the cluster. Since this coefficient is
gas transition line, a large amount of clusters are presenguite difficult to estimate from a microscopic model, several
Clusters are ensembles of molecules that can be thought ghenomenological models have been put forwér§ Also,
as small domains of the liquid phase. At equilibrium, thesome models that incorporate the internal degrees of freedom
concentration of clusters witk molecules(clusters of size have been advancé@?®
k) decays rapidly with size. To be able to evaluate the collision rate between clusters
The properties of the vapor, both in and out of equilib-and monomers it is necessary to have the equilibrium veloc-
rium, depend strongly on the microscopic properties of thety distribution function for every specids. HNT assumes
clusters. In particular the process where the vapor condeRhat every speciek has a Maxwell distributiorf () with the
sates and transforms itself into a liquid is commonly de-same temperaturE as the system, and kinetic theory is used
scribed in terms of the concentration of clusters of differentsraightforwardly to derive the collision rates.
sizes. This model, the homogenous nucleation theory |n this paper we first define the clusters in a dynamical
(HNT),*~® has been successful in describing the process buyay such that they are appropriate for a kinetic study of
in some cases it fails by several orders of magnifiid@. them, like HNT does. With this definition we prove that the
HNT needs the equilibrium concentration of clusters andyistributionsf, associated with each cluster size are distorted
the rate ofsuccessful reactionglata that must come from \1avwellian distributionsf, = (1+ &) f(ko) and the “kinetic

microscopic mode_l; o_f the clusters. There are many art'defemperatures’(proportional to the mean quadratic velogity
predicting the equilibrium concentration of clusters, most of,ssqciated with these distributions dependkaand are dif-
them assuming that the cluster gas mixture can be modeled,ent than the temperature of the gas as a whole.

as an ideal gas mixture, in which case the equilibrium con- | the following sections we define thiynamical clus-
centration can be expressed in terms of the free energy s a5 a set of molecules that are energetically bound, as an
formation of a clustet.~*The free energy can be calculated improvement over the geometrical definition of clustesst

by means of thermodynamic models or directly from micro- ¢ qjecules that are close togethand study some of their
scopic models. There have also been some works where ex;qperties. Then we derive the equilibrium velocity distribu-
cluded volume effects are taken into accétift’ and de- tion functions associated with the center of mass of the dif-

tailed .calc_ula'iions were made in the Percus-Yevickigrent species of clusters and prove some general properties
apF’TPX'ma“O”Z- In a recent paper a new formalism based Ontor them In particular we show that the mean quadratic ve-
a virial expansion that predicts the nonideal effects in thggiy, (,,2), s different than the direct result derived from
concentration of cI_usters is us&dThis _form_ahsm _shows the temperature of the system. We are able to get an explicit
good agreement with molecular dynamics simulations. _expression fov2),_, (monomersand we compare it with

The other microscopic data necessary within the HNT ispe values that emerge from molecular dynaghid) simu-
the rate of successful reactions, that is the probability peftions of our own getting excellent agreement.
unit time that a cluster absorbs a monomer and increases its  p1ore specifica{lly in Sec. Il we present the microscopic

size, that can be expressed as the product of the collision raEFbscription of the vapor using the concept of cluster. In Sec.
between clusters and monomers and stieking coefficient | \ve review the formalism developed in Ref. 25 and we

display the velocity distribution function for clusters of any
3Electronic mail: rsoto@cec.uchile.cl size. From these distribution functioffig we derive in Sec.
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v expressions for a “translational temperatur@f(ransand a constraint-potentiakdefined later in this article. The defined

“temperature” TI" associated with the internal degrees of dimers correspond to a pair of bound particles, but for larger
freedom of every cluster species and prove that, in particula€lusters the definition, although rigorous, does not give a
TS T whereT is the thermodynamic temperature of the clear dynamical interpretation.

system. These inequalities are valid irrespective of the par- We shall call clusterdynamical clustera set of par-
ticular molecular interaction potential. In Sec. V we describeticles that in some sense are energetically bound. To define
our molecular dynamic simulations and show how the in-unambiguously a cluster we define first a functiofr,v)

equalities are satisfied in practice in different simulationsthat depends on the relative position and relative velocity of
Also the simulations indicate that for all sizel -m<T two particles, such that is either 1 if the pal’ticles are en-

<TUaS |n Sec. VI there is a particularization to the case ofergetically bound or O otherwise. Two particles are energeti-

monomers(clusters of size lland excellent agreement is cally bound if the particles are inside the potential well and
shown between our simulations and our predictions. SectioWith an energy lower than the maximum value of the effec-
VIl is dedicated to concluding remarks. tive potentialeen(r) (that includes the centrifugal potential
then the precise expression fo(r,v) is
mo?2
Il. CLUSTER DEFINITION C(r,V) =0/ @er(ry)—o(r)— 7 O(ry—r), (1)

In the following we study a gas of clusters at equilibrium ) o ) ]
considering nonideal contributions up to the first virial cor- Where ® is the Heaviside step functiom is mass of the
rections. Microscopically, a vapor will be considered as aParticles, andy is the point where the effective potential
nonideal gas mixture where each species of clusters has a $6ches its maximum value. o .
of internal degrees of freedom. For the sake of simplicity we  We assume that the molecular potential is strictly of fi-
are going to consider a system made up of point “mol-Nit¢ range. In thls case there is always a maximum in .the
ecules” that have only translational degrees of freedom. €ffective potential, which we assume is unique to simplify

Even though the HNT extensively uses the concept oflotation but in other cases the forma_lllsm |s_e_qually valid.
clusters there is no unique definition for them. The only in-The case where the p_otentla_l is not strictly of fl_mte range but
dication is that clusters are microscopic domains of the liquidlecays faster than 2 is studied in the Appendix.
phasé*?® Usually a cluster is understood either as a set of 10 define clusters we introduce the conceptlioked
molecules that are nearer to each other than a minimurRarticles as followsti) if C(rap,Vap) =1 then by definitiora
distanceé? as a set of molecules inside a spherical sHedk; andb arelinked (ii) if particle a is linked withb andb is
a density fluctuation which exceeds a certain minimitim. linked withc thena andc are linked. Finally(iii) two par-
These definitions have the advantage of simplifying the callicles belong to the same cluster if and only if they are
culations but overestimate the number of clusters. The ovefinked _ _ o _ _
estimation comes from accepting as cluster a set of particles USing this generic definition each microscopic state has
that are coincidentally close with no further dynamical rela-2 Unique decomposition in clusters.
tion between them. Hence, a large number of these “clusters
by coincidence” have a short mean lifef the order of the "1 sT|CAL FORMULATION FOR A GAS OF
collision time. For example, in a collision between two par- CLUSTERS
ticles there will be a short time in which the pair would be
considered as a clust&dimen although the particles will not In this article we use the formalism developed in Ref.
evolve together. Furthermore, for a given cluster, its size will25, which consistently considers the nonideal contributions
fluctuate unphysically due to all the particles that just scattem a gas of clusters and predicts accurately the vapor pressure
with it. and cluster concentrations.

Besides, HNT(based in the clusters dynamiassumes The system is described as a gas mixture of different
the sequence of absorption and evaporation processes is Matuster speciegin the grand canonical ensemplevhere the
kovian. However, for geometrical clusters there is a largdnteractions between the different “particles” take into ac-
number of paired absorption-evaporation processes highlgount the full interaction between all the molecules compos-
correlated, that correspond to the scattering processes digg each cluster. But, there is another interaction between
scribed above. For example, if two monomers collide-  clusters that comes from the definition of clusters. Since
sorption of one monomer by anothéhe instant when they molecules in two different clusters, of sizksand/’, cannot
dissociate(evaporatioh can be calculated analytically. This be energetically bound, there is a restriction relating the val-
implies that the two processes are highly correlated. The cones of the variables of the molecules in each one of the two
relation reduces for larger clusters as the scattering time inclusters. This restriction is imposed with eonstraint-
creases and the dynamics is more chaotic, making impossibfgotential 2" that becomes infinite if such restrictions are
the prediction of the evaporation time. Therefore, the distincviolated and is zero otherwise, then the Boltzmann factor
tion between dynamical and geometric clusters is only relsuppresses all the configurations where particles in different
evant for smaller clusters, where also the kinetic conseelusters are bound.
guences to be studied are more important. Hence, the effective Hamiltonian that describes the clus-

Hill 2222 introduced the dynamical clusters in terms of ter gas mixture is the sum of the energy for each cluaﬂér
“pbound” and ‘“unbound” potentials, similar to the (translational and internal energy of the clustemd the to-
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tal effective interaction between clustevg, (the molecular constraint potential, which is part of the effective potential
interaction between molecules composing the clusters plug,;, depends on the relative velocity between the monomer
the constraint potential and the cluster.

The clusters are described giving their position, momen-  Before modeling the form in which the monomer inter-
tum and internal degrees of freedafrof each cluster. The acts with the cluster we will derive an interesting general
internal degrees of freedom take values such that the paproperty. Let us calculate the mean quadratic velocity of a
ticles in the cluster are bound. cluster of sizek. Expanding the result to first order ik

Then, the system is studied using the virial expansioryields
based in a formal diagrammatic expansion for the case of gas

d

of clusters’®>*The expansion, valid for low density vapors, m—k<v2)k=9T 14x M f dr du
is used to calculate up to first nonideal correction the veloc- 2 2 k+1
ity distribution functionf,(r,v) for clusters of sizek.?®
ity distribution functionf(r,v) u iz 2TRAD) | (2, .,

1 k K XF|rg, Tk u au —1|e ",
fk(r,p)zﬁ)\k f e_BHo(r«pvg)dé‘:_{_)\f e_BHo(rrpr)

(7)
><efﬁrﬁ/Zm(e*BVkl(r,p,f;rl,p1>_1) dr, dp, dg}, where(---), means an average evaluated usipg

Since for energetically defined clusters, the function
(2 depends nontrivially on velocities, the above integral is gen-

where ¢ represents the internal degrees of freedom of theerally not zero. Hence,

cluster, and\ =ef* is the small quantity used in the dia- mk d
grammatic method, with. the chemical potential. The ideal 7<vz>|ﬁt 5T (8)
Hamiltonian of a cluster of sizk, H§ includes the transla-
tional kinetic energyp?/2km and the internal energy((¢£).  That is, the translational kinetic energy is not equal to the

The correction to the zero order distribution comes fromvalue obtained in simple statistical mechanics. The differ-
an average of the interaction between a cluster and the monence comes from the existence of the constraint potential that
mers. depends on velocities.

We will define the kinetic ottranslational temperature
of a cluster as

IV. KINETIC TEMPERATURES mk

T (0 ©
Some interesting properties can be derived from the ge-
neric expressior(2). The limit of zero density(zero order  an(d theinternal temperature
approximation of f, is directly a Maxwell-Boltzmann distri- ,

bution. But when the interaction with monomers is included o 2K

it becomes distorted. Changing the integration variables of k :(k—l)d’

the monomer to those in the reference frame of the cluster, .
the distribution function can be written as where K is the internal kinetic energy divided byk (
—1)d/2, because degrees of freedom must be subtracted in
1+ md)\f F(f.Vo) the center-of-mass reference frarfig="°plays an important
role in the kinetic properties of the clusters.
The three “temperatures” that we are using are then the
, (3  thermodynamic temperatufieof the system and the transla-
tional and internal temperaturdg°"s, T\ of the clusters,
where and they turn out to be different. Only, of course, is a true
_ 2 temperature.
f(k°>(r,v):(mk)d)\que pmietE, (4) It can be argued, and proved for the case of monomers,
that the three temperatures satisfy,

(10

f(r,v)=f2(r,v)

X @~ MVo+ v)2/2Tdr0 dv,

fefﬁuk(g)(efﬁvkl— 1)d§
fe_ﬁuk(g)dg

: ©)

r=0v=0

F(ro,vo)=

TR<T<TE"™. (11)

1 The restriction that the particles inside a cluster have to be

qkzgj' e AUddg, (6)  energetically bound puts an upper limit on the relative ve-

| locities of the particles, and therefore the total internal ki-

namely, the distribution function is the Maxwell-Boltzmann netic energy per degree of freedom is less tfid® giving
distribution f{>) corrected by the monomer-cluster interac- Ti"<T. From the equipartition theorem, the total kinetic en-
tion, integrated over all the possible configurations of theergy should be equal t6/2 for each degree of freedom, then
cluster and all the possible positions and velocities of théo compensate the energy deficit in the internal degrees of
monomer(velocities measured in the reference frame of thefreedom, the translational ones must have more théh
clustey. The functionF depends on velocities because thegiving T<T2",
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To estimate the translational temperature for the case of m )
large clusters it is necessary to model how a cluster interacts 5(0 >1=§T

md
1+)\7J dro du
with a monomer. We will work the case when the tempera-

ture is low enough so that we can assume that the cluster is VS Br0) 2 2 2
spherical and compact in the sense that the energy of the Xe "u Torhe au 1lle
monomer inside the cluster would be infinite. Therefore, 17
-1 foe Volume But the exponential of the constraint potential between
F(rg,vo)=1 G(ro,Vo) roe Surface (12  two monomers vanishes if the two monomers are bound,
0 roe External zone which happens when the relative velocityis small. Then
this exponential acts as a lower limit in the integratioruin
Replacing this expression back {8) implies that the  —|y|, where this lower limit depends on the positing) the
mean quadratic velocity of the cluster is relative orientation between, andu, and the molecular po-
mk< 2 d md 1 tential. Moreover the integration in,
— (v NW=5T 1+)\—AC,A—f drg du "
2 2 k1 Ala f du w1 guz—l e v, (18)
a

xXG , is always positive. Hence the correction in the mean qua-

. [2T(k+1) \/[2 2
7 2 -u
rof, e (du 1>e | 0 _ A
dratic velocities of monomers is always positive.
e conclusion is r any intermolecular interaction
(13 Th | thafo t lecular interact
whereA,, is the surface of the clustes, the width of the Potential the monomers move (on average) faster than the
interface and the integration is only over the radial compo{hermal velocity associated with the temperature T of the
nent since the approximatioh<R has been made. system
From (13) it is seen that only the surface term contrib-

utes since the volumetric term, which corresponds to th&/ MOLECULAR DYNAMIC SIMULATIONS
—1 in F, vanishes when it is integrated. The contribution is

of the order of the volume of the interface. For lalgehe We have made molecular dynamic simulations of a two-
correction goes to zero as, dimensional system of particles interacting with a pair poten-
rans tial given by
Tk —T_ﬂ(AdA) . (<
T =Y K (o
s e(r)y=4y —¢ o<r<a o, (19
_ k™) d_2, (14) 0 r>a o
ok~ Y\log(k)) d=3

where we have chosen units so that1, e=1, 0=1 and
where we have used thag,= (k4= 1% and that the width we have setv=1.5.
of the interface is given by Our system hasN=10" particles at temperatures and
(kY i d=2 number densitiea corresponding to the pure, homogeneous
_ , (15) gas phase but with the presence of clusters. The boundary
{ﬂ‘( Vlog(k)) ifd=3 conditions are chosen to be periodic to avoid heterogeneous
condensation. Systems like this one are known to relax to a

as in Ref. 34. This result shows that in both two and thre.estate totally independent of the details of the initial condi-

dimensions the correction to the translational temperature Bon. Given any microscopic state it is possible to identify the

more important for small clusters, where the distinction be- o . .

. i R clusters present in it and from here to determine the instan-

tween the geometric and energetic clusters is important to the . .
dynamics. The size dependence of the nonideal correction ttgneous value of their proper'qes. . .

y ' For the case of the potenti@l9) the value ofry, in (1) is

the translational temperature should be compared to the non; _ . .
. . N alwaysr,,= ao. Then the functiorC(r,v) is,
ideal correction to the cluster free enefgywhich increases
linearly with cluster size. |2 muo 2
et —————
m(ao) 4
In the case of monomers, it can be shown that the corwherel is the angular momentum.
rection is always positive. In fact, in this case the cluster In each simulation the system was relaxed until it
(monomey does not have internal degrees of freedom, themeached equilibriun{at least constant temperature and con-
the functionF is reduced to, stant number of clusters of each sizéfter relaxation the
F(rg.vg) =6 AV1iToYo) 1. (16) vgloglty distribution of the center of mass and the internal
kinetic energy for the different cluster siz&swere mea-
The integration over velocities of the second ternFin  sured. These measurements were made taking periodic snap-
vanishes. Then the mean quadratic velocities for monomershots of the system. Each snapshot was taken at regular in-
is tervals of about two collisions per particle. From the center-

C(r,v)=0(ac—r)0 : (20

A. Monomers
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TABLE |I. Global densityn and temperaturd used in the molecular dy- TABLE Il. Mean value of the fourth cumulant of the velocity distributions

namics simulations. for different cluster sizes. The simulations are those of Table I.
n T Cluster size Sim 1 Sim 2 Sim 3
Simulation 1 0.02 0.602 1 0.001 -0.005 —-0.010
Simulation 2 0.05 0.802 2 0.004 0.000 —0.002
Simulation 3 0.05 0.987 3 0.000 0.002 —0.001
4 —0.002 0.000 0.000
5 —0.008 0.004 0.004
6 0.003 0.003 0.004
of-mass velocity distribution different moments of it were g _8'883 g'ggg 8'88%)
calculated, thus allowing the determination of the transla- 9 0012 0.009 0.000
tional temperatures. 10 —0.040 0.015 0.004

We have made simulations for different global condi-
tions (density and temperaturevhich are shown in Table I.

In Fig. 1 one can see the translational and internal tem-
peratures observed in the simulations described in Table I. __ K4 ( 2(vz>2)
For larger clusters the statistical error increases due to de- X4 N 1- N
creasin b f cl ize i (W) (W)

g number of clusters as the size increases. All the

simulations give results clearly satisfying our predictions.  The results are shown in Table II. It can be seen that for
Also it seems that, within the error range, the translationafll our simulations and for all the observed cluster sizes the
temperature is alwayénot just for monomepshigher than fourth cumulant is quite small. Therefore it is justified to
the thermodynamic temperature. approximate the distribution to a Maxwellian not Rtbut

Also, the fourth cumulant of the distributionk,, was ratherat the translational temperaturassociated with each
measured to see how close to a Maxwellian afigdt*were  size.
the observed velocity distributions. The fourth cumulant is a
standard way to measure the departure from a Maxwelliay; MONOMERS
distribution. For an isotropic two-dimensional distribution,
the adimensional fourth cumulaﬁﬁ is defined by the fol-
lowing combination of the second and fourth moments:

B 8
=3 (21

Studying the case of monome(Bee moleculesit is
possible to get quantitative comparisons between our predic-
tions and our simulations since in this case the different in-
tegrals of the distribution function can be reduced consider-

1,10 ——77 § . ably. In fact, if we consider the intermolecular potentib®)
100 i W g/ ] in two dimensions we get fronB),
0.90 | ] n;=n exp{—n eﬁ€< m(a?—1)
0,80
[ 1 (a2 2m
p» 070 _EJ dyJ d¢ e—R) : (22)
e} 1 0
5 0,60
§ m n a? 27
@ 0,80 E<u2>=T 1+Ze38f dyf d¢ Re R, (23
£ 1 0
[¢}]
5 L J“zd szd R(R-2)e R 24
[ = € —
2 o0 =15 ¢, dy| déRR-2)e", (24)
© 0,50 with
0,60 Re— P2 (25
I 1 1-y sirtgla®’
0,55 | — _ _ .
I ; wheren, is the density of monomers, and is the fourth
0,50 | e cumulant of the distribution.
(1)1 The density of monomers has been written in the form of
0’45 1 1 " 1 2 1 2 1 2

an exponential to be able to compare it with the classic form
given in the HNT where the exponent is basically the free
energy associated with the formation of a cluster. When non-
FIG. 1. Cluster temperatures as a function of cluster size. The open circleigleal contributions are considered, the free energy necessary

correspond to the translational temperature and the solid square to the inte[r(-) have a monomer is not zero because the particles in the
nal temperature for different cluster sizes. The dashed straight lines show

the values of the thermodynamic temperature. The simulations are those g}eighb_orho_od have to h_ave an energy above a certain value
Table I. to avoid being bound with the monomer.

0 2 4 6 8 10
Cluster size
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TABLE lIl. Comparison of the predicted and simulational properties for the to fluctuate unphysically. Then, ify, (the point where the
monomers for the simulations under different conditions. The simulationsaffactive potential is maximujris larger tharr ., the effec-
are those of Table I. . . . ¢ )
tive potential atr . is evaluatedp.= ¢(r ), and two particles
Sim 1 Sim 2 Sim 3 will be taken as linked if in their center of momentum frame,
their total energy is lower thaa, .

Th si Th Si Th si ; . ,
eo im eo m 0 m Then, the final expression for the functi@(r,v) that
N, 6858 6918 5501 5826 6497 6642 we USE is,
Tirans 0625 0623 0868 0867 106  1.06

mu?
C(rV)=0| ¢ei(ro) = ¢(r) = —=|O(ro—r), (A1)

In the simulations cited above we have measured these
. X . . “Where
guantities getting excellent agreement with our predictions.
In Table Ill there is a comparison between predictions and  ro=min{ry ,r¢}. (A2)

the results of our simulations. The function defined above is strictly short range.
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