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Nonideal gas of clusters at equilibrium

Rodrigo Soto* and Patricio Cordero
Departamento de Fı´sica, Facultad de Ciencias Fı´sicas y Matema´ticas, Universidad de Chile, Casilla 487-3, Santiago, Chile

~Received 24 January 1997!

Good agreement is obtained between the predictions stemming from a theoretical framework to derive the
cluster concentration and the pressure of a gas at low temperature with molecular-dynamic simulations of a
simple fluid system. The theory is based upon a rigorous study that considers the nonideal contributions. In
particular it is derived that the pressure is not simply the sum of partial pressures but it also includes a nonideal
term. The present scheme represents an improvement over the ideal gas mixture approximation used in the
homogeneous nucleation theory. @S1063-651X~97!09408-7#

PACS number~s!: 51.30.1i, 82.60.Nh, 05.20.2y
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I. INTRODUCTION

Molecules in a gas at equilibrium and not too far from t
liquid-gas transition line tend to form microscopic cluste
These clusters stem from local fluctuations of the thermo
namic variables and can be thought of as microscopic
mains of the liquid phase. A gas, far from the critical poi
that cannot be described ignoring the presence of these
ters will be called avapor in the sense that it is a nonide
gas, but the nonideal effects come from low-temperature
fects rather than from high density. In order to have a sa
factory description of a vapor at equilibrium or of the d
namics of condensation, it is necessary to understand
dynamics of clusters in the gaseous phase.

The theory that conceptually best describes the dynam
of these clusters is the homogeneous nucleation the
~HNT! @1–4#. This theory yields the evolution of the conce
trations Nk(t)/N of clusters of sizek once some data ar
externally provided. These data are the concentration
~stable or metastable! equilibrium,Nk(`)/N, and the rate at
which a cluster absorbs a monomer to become larger,
called the rate ofsuccessful reactions. The rate at which a
cluster evaporates a monomer can be obtained from the
vious data using detailed balance arguments. HNT is the
combination of kinetic considerations that determine the
sorption of monomers by a cluster and thermodynamic c
siderations that allow the derivation of the concentrations
equilibrium associated with each cluster size.

Classical HNT uses thecapillary approximationto deter-
mine the free energy of cluster formation, from which it
possible to derive the concentrationsNk /N. In this approxi-
mation it is assumed that the free energy is the sum o
volumetric and a surface term. In some cases the predict
that emerge from this construction differ by several orders
magnitude from the experimental values@5–9#. These dis-
crepancies have led to a variety of modifications. Lothe a
Pound@10# suggested improving the evaluation of the fr
energy involved in the cluster formation process by tak
into consideration the conversion of the vibrational degr
of freedom into rotational ones. They managed to sign
cantly improve the theoretical predictions, but later there w
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a polemic regarding the possibility that some terms are be
counted twice. Blander and Katz@11# made a rigorous ther
modynamic analysis of the expression for the free ene
and concluded that the classical expression is not consis
with the definition. Later Dillmann and Meier@12,13# used
Fisher’s drop model to include curvature effects on the s
face tension of a cluster. In a review article Oxtoby@14#
clearly underlines that the process of nucleation is not w
understood yet. There are many works that try to improve
thermodynamic description of clusters@5,15–19#.

In the present article we study the nonideal behavior o
vapor, with particular attention to the pressure and the clu
concentrationsNk /N. With this aim we work with a formal
virial expansion and find an expression for the pressure
differs significantly from the usual sum of partial pressur
All the works mentioned above assume that a vapor can
considered as an ideal mixture ofk cluster gases.

II. CLUSTER DEFINITION

In the following we study a gas of clusters at equilibriu
considering nonideal contributions up to first virial corre
tions. Microscopically, a vapor will be considered as a no
ideal gas mixture in which each species of clusters has a
of internal degrees of freedom. For the sake of simplicity
are going to consider a system made up of point ‘‘m
ecules’’ that only have translational degrees of freedom.

Even though the HNT extensively uses the concept
clusters, there is no unique definition for them. The on
indication is that clusters are microscopic domains of
liquid phase@20,4#. Usually a cluster is understood either
a set of molecules that are closer to each other than a sp
fied distance@21# or as a set of molecules inside a spheric
shell @22#, or a density fluctuation that exceeds a certa
threshold@23#. One can also require that, besides proximi
the particles satisfy some energy requirement associated
the idea of forming a bound state.

We shall define a cluster as a set of particles that in so
sense are bound together. For the moment, and without
ing to define every detail, it will suffice to use a functio
C(r ,v) that depends on the relative position and relative
locity of two particles such thatC is either 1 or 0 with a
well-defined criterion. We assume thatC(r ,v) is of short
range in positions. To define clusters we introduce the c
2851 © 1997 The American Physical Society
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2852 56RODRIGO SOTO AND PATRICIO CORDERO
cept of linked particles as follows:~i! If C(rab,vab)51 then
by definitiona andb arelinkedand~ii ! if particle a is linked
with b and b is linked with c then a and c are linked. Fi-
nally, two particles belong to the same cluster if and only
they are linked. Using this generic definition, each micro
scopic state has a unique decomposition in clusters. One
terion used in the literature is equivalent to assuming t
two particles are linked if they are closer than a certain d
tancer 0, namely,C(r ,v)5Q(r 02r ), whereQ is the Heavi-
side step function.

III. STATISTICAL FORMULATION FOR A GAS
OF CLUSTERS

We choose to describe each microscopic stateC using the
generic concept of cluster given above. Instead of describ
the microscopic state by giving the position and velocity
each molecule in the gas, we describeC giving the number
of clusters of each size and the values of the degree
freedom for each separate cluster, ordered by their sizk.
For ak cluster its degrees of freedom are the position of
o
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l

f

ri-
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center of mass, its total momentum, and its internal degr
of freedom: variablesj. In d dimensions a cluster of sizek
of point molecules has (k21)d internal degrees of freedom
Specifically, the stateC can be written as

C5„Nk ,$rm
k ,pm

k ,jm
k %m51, . . . ,Nk

…k51,2, . . . , ~1!

whereNk is the number of clusters of sizek andrm
k , pm

k , and
jm

k are the coordinate and momentum of the center of m
and the internal degrees of freedom variables for themth
cluster of sizek. The lettersk,l refer to cluster sizes, the
greek lettersm,n label particular clusters, and the lette
a,b,c label the molecules inside a cluster.

Since particles in two different clustersm andn, of sizes
k andl , respectively, cannot belinked, there is a restriction
relating the values of the variables of the particles in each
the two clusters@the functionC(r ,v) cannot be 1#. Instead of
imposing this condition through the limits of integration
the partition function, we introduce aconstraint potential
Ukl

constr that becomes infinite if such restrictions are violat
and zero otherwise:
Ukl
constr~m,n!5Ukl

constr~rm ,pm ,jm ;r n ,pn ,jn!5H ` if there are particlesa,b such that C~rab,vab!51

0 if C~rab,vab!50, for all a,b
~2!
i-
ter-
ain,

bi-
-
ters

hat
.
-

wherea is a particle in clusterm and b in clustern, with
mÞn.

Hence the effective Hamiltonian of the system is

H5H01V, ~3!

H05(
k

(
m

S pm
k2

2km
1Uk~jm

k ! D
5(

k
(
m

H0
k~rm

k ,pm
k ,jm

k !

5(
k

(
m

H0
k~m!, ~4!

V5(
k,l

(
m,n

Vkl ~rm
k ,pm

k ,jm
k ;r n

l ,pn
l ,jn

l !5(
k,l

(
m,n

Vkl ~m,n!,

~5!

whereH0 includes the translational energy of the center
mass and the internal energy of each cluster~the kinetic en-
ergies of the particles relative to the center of mass of
respective cluster plus the internal potential energy! andV is
the sum of the effective potential energiesVkl (m,n) be-
tween all pairs of clusters. More specifically,Vkl (m,n) is
the molecular potential energies between all possible pair
particles in clustersm and n plus the constraint potentia
Ukl

constr between them.
With this Hamiltonian the grand partition function is
f

e

of

J5 (
N1 ,N2 , . . .

S)
k

Nk! ~k! !NkD 21

3E dX)
k

)
m

zk~m!)
k,l

)
m,n

ekl ~mn!, ~6!

where the integral ondX means integration over all coord
nates, momenta, and internal degrees of freedom. The in
nal degrees of freedom of a cluster have a restricted dom
otherwise the particles in it would not be linked. SinceVkl

constr

may depend on momenta the~usually trivial! momenta inte-
grals cannot be directly evaluated. Furthermore, the com
natorial factor@)kNk!(k!) Nk#21 takes into account the dif
ferent but equivalent forms of assigning labels to the clus
and particles inside them and

l5ebm, ~7!

zk~m!5le2bH0
k
~m!, ~8!

ekl ~m,n!5e2bVkl ~m,n!5hkl ~m,n!11, ~9!

whereb51/T since units of temperature are chosen so t
kB51 throughout this article andm is the chemical potential

From Eq.~6! it is possible to derive the distribution func
tions for each cluster size@24#

f k~r1 ,p1 ,j1!5zk~1!
d lnJ

dzk~1!
. ~10!
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56 2853NONIDEAL GAS OF CLUSTERS AT EQUILIBRIUM
Until now this description has been exact. Since we w
to study low-density vapors we make a virial expansion off k
and the technique used is the diagrammatic expansion
fined in @24,25#. Given the form of the partition function~6!,
its logarithm has a simple diagrammatic expression

lnJ5S, ~11!

whereS is the sum of all the simply connected diagrams w
black zl circles for all l andhkl bonds between them.

We recall that a diagram is a compact notation to rep
sent integral terms. Each diagram is formed by circles
bonds. Each circle represents a function that depends on
coordinates of only one cluster, while a bond represen
function that depends on the coordinates of two clusters
the circle is black an integration over the variables associa
with it is understood. There are some symmetry factors m
tiplying each expression.

Hence, from Eq.~10! the distribution function for clusters
of sizek is obtained from the sum of all the diagrams of lnJ
that have at least onezk circle. From each one of these dia
grams one builds new diagrams transforming one blackzk
circle to a white circle in all possible forms. Therefore,

f k~r 1 ,v1 ,j1!5D, ~12!

where D is the sum of all the simply connected diagram
with one and only one whitezk circle plus any number o
blackzl circles~for all values ofl ) andhkl bonds~see Fig.
1!. Integrating this function over the internal degrees of fre
dom one, gets the distribution of positions and momenta
each species.

Each diagram in the expansion off k is of the order of a
power of l corresponding to the number of particles i
volved ~the sum of the labels of each node!. Sincel in a gas
is proportional to the density, at low densities only the d
grams with lower powers ofl are kept. In this work we
consider only the first virial correction, namely, we keep t
first two powers ofl and therefore the only diagrams that a
kept are of orderlk andlk11. Hence the distribution func
tion to first order is the sum of a diagram consisting o
white zk circle plus a diagram that consists of a whitezk
circle, a blackz1 circle, and anhk1 bond ~see Fig. 1!.

This approximation corresponds to considering the cl
ters interacting only with a monomer. The explicit form f
the distribution function is

FIG. 1. Diagrams that represent the distribution function
clusters of sizek. The upper figure represents the complete se
and the lower one is the series truncated at the first virial order.
the text for an explanation of the different symbols.
t
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f k~r ,p!5
1

k! E zk~r ,p,j!dj1
1

k! E zk~r ,p,j!z1~r0 ,p0!

3hk1~r ,p,j;r0 ,p0!dr0 dp0 dj. ~13!

The usual procedure found in the literature is equival
to retaining only the lowest-order term~order zero!, namely,
an ideal gas of clusters, while we instead go one step fur
and consider the first-order contributions.

IV. CLUSTER CONCENTRATIONS

The number of clusters of sizek in the system is given by

Nk5E f k~r ,v!dr dv, ~14!

which can be expressed as

Nk5Zkl
k1Zk1lk11, ~15!

while the partition functionsZk andZk1 are

Zk5~2pkmTV!qk , ~16!

Zk15@2p~k11!mTV#qk1 , ~17!

qk5
1

k! E dj e2bU~j!, ~18!

qk15
1

k! E dj dr dp e2bU~j!e2bp2/2m~e2bVk121!,

~19!

whereV is the volume of the system,m5mk/(k11) is the
reduced mass of the monomer-cluster system, andr ,p are the
phase-space coordinates of the monomer with respect to
cluster.

The total number of particles of the system up to the fi
virial correction is

N5N112N25Z1l1~Z1112Z2!l2. ~20!

The previous relation can be inverted to expressl in
terms of the densityn5N/V. The sign ambiguity is solved
requiring that the ideal gas result is recovered in the lo
density limit

l5
n

2pmT
@112B~T!n#, ~21!

whereB(T)52(q1112q2)/2pT is, as we will see, the sec
ond virial coefficient.

Replacing this expression and Eqs.~16!–~19! in Eq. ~15!,
it is possible to get the concentration of clusters in terms

r
s
ee



r
directly

2854 56RODRIGO SOTO AND PATRICIO CORDERO
FIG. 2. Cluster concentrations for different sizesk as a function of the area densityn5N/V. The symbols represents the disk diamete
introduced in Eq.~31!. The different curves correspond to three different temperatures. The symbols represent the results obtained
from simulations, while the curves are our predictions up to the first virial correction for the potential~31!. ~a! Monomers,k51, ~b! dimers,
k52; ~c! trimers,k53; and~d! tetramers,k54.
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the density. In this expression only the first nonideal corr
tion is kept, in order to be consistent with the order of t
expansion. This correction is now written in an exponen
form, instead of as a linear term, to be able to interpret it
a Boltzmann factor, as it will be explained later:

Nk

N
5Ak~T!nk21e2Ck~T!n, ~22!

with

Ak~T!5
kqk

~2pmT!k21
,

Ck~T!522kB~T!2
~k11!qk1

2pkTqk
. ~23!

At low densities we recover the well knownlaw of mass
action @3#. The correction for finite densities corresponds
an excluded volume effect, which appears due to the n
ideal free-energy cost necessary to make room for the c
ter.

In the case of monomersA1(T)51 and therefore the rela
tive concentration of monomers at low densities is alm
-

l
s

n-
s-

t

one due to the negligible presence of clusters. At higher d
sities the exponential factor makesN1 decrease, as expecte
It is important to note that when nonideal contributions a
not considered, the predicted relative concentrations
monomers is always one, independent of density.

After some algebraCk(T) can be written as

Ck~T!522kB~T!2

E dr dv e2bp2/2m^e2bVk121&

E dv e2bp2/2m

,

~24!

where m, as before, is the reduced mass of the monom
cluster system and the canonical average^ & is over all the
allowed configurations of the cluster. From this express
we see that both terms are proportional to the numbe
particles in the cluster plus a surface term, that
Ck(T);Ak1Bk(d21)/d.

V. VAPOR PRESSURE

Expressions for the vapor pressure can be obtained
rectly from Eqs.~11! and ~19!,
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TABLE I. Comparison of the theoretical predictions for the concentrations of clusters (Nk /N) using the zeroth-order~ideal gas! and the
first-order approximations~the latter being the present work! with the concentrations obtained in the simulations. The temperature isT50.8
and the density goes fromn50.01 ton50.05. For other temperatures the results are similar. Numbers in square brackets denote po
10 by which the preceding term is to be multiplied.

Monomers,k51 Dimers,k52 Trimers,k53 Tetramers,k54
n Order 0 Order 1 Simulation Order 0 Order 1 Simulation Order 0 Order 1 Simulation Order 0 Order 1 Simu

0.01 1 0.90683 0.90629 0.0489 0.04036 0.04122 0.00421 0.00317 0.00329 4.304@24# 2.98006@24# 3.11@24#

0.02 1 0.82235 0.82828 0.0978 0.06661 0.06700 0.01682 0.00959 0.00965 0.00344 0.00165 0.0
0.03 1 0.74573 0.75500 0.1467 0.08247 0.08459 0.03785 0.01629 0.01705 0.01162 0.00386 0.0
0.04 1 0.67626 0.69406 0.1956 0.09075 0.09467 0.06729 0.02186 0.02330 0.02755 0.00633 0.0
0.05 1 0.61325 0.63865 0.2445 0.09362 0.10024 0.10514 0.02578 0.02865 0.05380 0.00856 0.0
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T

V
lnJ

5
T

V
@Z1l1~Z1112Z2!l2/2#

5TS n11n22
q11

2pT
n1

2D , ~25!

which, once written in terms of the density, becomes

p5TS n2
q1112q2

2pT
n2D . ~26!

From here it follows that the second virial coefficient is

B~T!52
q1112q2

2pT
. ~27!

We can see from Eq.~25! thatp is not equal to the sum o
the partial pressures of monomers and dimers~as it is usually
assumed in the HNT! since the nonideal contribution comin
from the monomer gas is as important as the dimers’ pa
pressure@they are bothO(l2)#.

Since most articles on HNT work in the isobari
isothermal ensemble it is convenient to express the clus
density in this ensemble in order to be able to make co
parisons,

Nk

V
5expF2bS DGk

~0!1DGk
~1!

psat

T
SD G , ~28!

where

DGk
~0!52TlnF2pT2kqkS psat

2pT2D kG2TklnS ~29!

is the exact~without the capillary approximation! ideal-gas-
mixture-approximation result for the free energy of a clus
if the partition functionqk is known. psat is the saturation
pressure,p is the total pressure given by Eq.~26!, and
S5p/psat is the supersaturation.

The nonideal contribution to the free energy of a cluste

DGk
~1!52TS kB~T!1

k11

2pTk

qk1

qk
D . ~30!
al

r’s
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r
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VI. SIMULATIONS

We have made molecular-dynamic simulations of a tw
dimensional system of hard disks interacting with a squ
well pair potential given by

w~r !5H `, r ,s

2«, s,r ,as

0, r .as,

~31!

where we have chosen units so thatm51, «51, ands51
and we have seta51.5. We simulated systems ofN5104

particles at temperatures and number densitiesn correspond-
ing to the pure homogeneous gas phase with a non-neglig
presence of clusters. The boundary conditions used were
riodic to avoid heterogeneous condensation. Systems
this one are known to relax to a state totally independen
the details of the initial condition.

To get the results that follow we have defined clusters
sets of particles energetically bound, that is, we have cho

C~r ,v!5Q~as2r !Q~«2mv2/4!. ~32!

This definition tends to guarantee a longer mean lifetime
clusters than the usual geometrical definition, where partic
can be close just by coincidence, with no dynamical relat
between them. This gives clusters an identity that la
longer than the mere coincidence in space does because
ticles are in some sort of bound state. We must stress
such a choice ofC(r ,v) is one possibility of many others
equally valid and useful.

In each simulation the system was relaxed until it reach
equilibrium ~at least constant temperature and constant n
ber of clusters of each size!. Then the numbersNk of clusters
of size k were measured. These measurements were m
taking snapshots of the system at regular intervals of ab
two collisions per particle. Given the microscopic state, it
possible to identify the clusters present in it and from here
determine the instantaneous value of their properties.

We made simulations for number densities~in units of
s22) n50.01, 0.02, 0.03, 0.04, and 0.05 and temperatu
~in units of«) T50.6, 0.8, and 1.0. These conditions ensu
that the system is not in the coexistence zone. In each si
lation we measured the number of clusters of each size
the gaseous phase the free energyDGk

(0);Ak if k is large
enough andA is a positive constant. Hence the number
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2856 56RODRIGO SOTO AND PATRICIO CORDERO
clusters of sizek decreases exponentially withk. It is under-
standable then that only the smallest size clusters could
studied reliably.

Using the potential~31! and the cluster definition given in
Eq. ~32!, it is possible to study the functionsqk andqk1 for
different temperatures using Monte Carlo integration@26#.
These integrals are obtained by sorting coordinates and
menta for the particles belonging to the cluster and to
monomer. From these phase-space variables we evaluat
exponential of the internal energye2bU(j) and the exponen
tial of the interaction potentiale2bVk1 and therefore the in-
tegrand.

Figure 2 presents a comparison of the simulational
theoretical results~22! and~23!. It can be seen that the agre
ment is quite good even at relatively high densities. It is s
that our theory, which includes a nonideal correction, c
rectly predicts the saturation of the concentration of clus
when the density increases. This saturation occurs bec
the total number of particles is kept fixed and at higher d
sities more particles are part of larger clusters.

Table I gives a comparison forT50.8 between simula-
tions and theory using the zeroth-order approximation~usual
in HNT applications! and the first-order approximation a
presented in this work. It is seen that the zeroth-order
proximation fails badly at higher densities even though
system is still a gas. The first-order approximation give
notorious improvement with errors under 10%. The cor
sponding tables for the other temperatures considered in
study give equally good results.

TABLE II. Different expressions for the pressure as a functi
of the density forT50.8: p1, exact pressure~up to the third virial
correction!; p2, sum of the partial pressures using the zeroth-or
densities~HNT!; p3, sum of partial pressures and the nonideal c
tribution from the monomers using the cluster densities predic
up to first order~present work!.

n p1 p2 p3

0.01 0.007739 0.00843 0.00768
0.02 0.014980 0.01789 0.01456
0.03 0.021755 0.02871 0.02050
0.04 0.028094 0.04129 0.02546
0.05 0.034032 0.05614 0.02945
.
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be
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ur

Table II shows the pressure of the system atT50.8 for
different densities using the usual prediction of HN
@p5T(N11N21N31•••)/V# using the zeroth-order predic
tion for the cluster densities and compares them to exp
sion ~25! that includes terms only up to the first virial co
rection. It is seen that even though it could seem that the
expression includes higher-order terms, the expression
we have derived gives better results because it consider
contributions up to orderl2 in a consistent way.

Also, we have made simulations withN5103 particles
using the geometrical definition of clusters@C(r ,v)
5Q(as2r )#. Although statistics are poor, the results aga
are in good agreement with the theoretical predictions
this type of cluster.

VII. CONCLUSION

In this article there is a careful derivation of the relati
number of clusters and the total pressure of a vapor w
nonideal contributions coming from the presence of cluste
The theoretical framework is based on well-established to
from statistical mechanics. The diagrammatic expans
techniques deserve particular mention. Special care
taken to take into consideration all the contributions up
first order in the density. The resulting expressions for
concentration of clusters were rewritten in exponential fo
to be able to identify the implied correction with the fre
energy cost necessary to create a cluster.

In HNT it is necessary to express the pressure in term
the concentration of clusters. It was found that to be able
do so it is necessary to include both the clusters’ par
pressures and the nonideal contributions from the clusters
particular, up to second-order corrections the dimers’ par
pressure is as important as the nonideal contribution com
from the monomers. All our results were corroborated w
molecular-dynamic simulations of a simple system.
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