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Nonideal gas of clusters at equilibrium
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Good agreement is obtained between the predictions stemming from a theoretical framework to derive the
cluster concentration and the pressure of a gas at low temperature with molecular-dynamic simulations of a
simple fluid system. The theory is based upon a rigorous study that considers the nonideal contributions. In
particular it is derived that the pressure is not simply the sum of partial pressures but it also includes a nonideal
term. The present scheme represents an improvement over the ideal gas mixture approximation used in the
homogeneous nucleation theof$1063-651X%97)09408-7

PACS numbsgs): 51.30:+i, 82.60.Nh, 05.20-y

I. INTRODUCTION a polemic regarding the possibility that some terms are being
counted twice. Blander and Kaf21] made a rigorous ther-
Molecules in a gas at equilibrium and not too far from themodynamic analysis of the expression for the free energy
liquid-gas transition line tend to form microscopic clusters.and concluded that the classical expression is not consistent
These clusters stem from local fluctuations of the thermodywith the definition. Later Dillmann and Meidd2,13 used
namic variables and can be thought of as microscopic doFisher’s drop model to include curvature effects on the sur-
mains of the liquid phase. A gas, far from the critical point,face tension of a cluster. In a review article Oxtofdy]
that cannot be described ignoring the presence of these cluelearly underlines that the process of nucleation is not well
ters will be called avapor in the sense that it is a nonideal understood yet. There are many works that try to improve the
gas, but the nonideal effects come from low-temperature efthermodynamic description of clustei$,15-19.
fects rather than from high density. In order to have a satis- In the present article we study the nonideal behavior of a
factory description of a vapor at equilibrium or of the dy- vapor, with particular attention to the pressure and the cluster
namics of condensation, it is necessary to understand treoncentrationdN,/N. With this aim we work with a formal
dynamics of clusters in the gaseous phase. virial expansion and find an expression for the pressure that
The theory that conceptually best describes the dynamicgiffers significantly from the usual sum of partial pressures.
of these clusters is the homogeneous nucleation theorfll the works mentioned above assume that a vapor can be
(HNT) [1—4]. This theory yields the evolution of the concen- considered as an ideal mixture lofcluster gases.
trations Ny (t)/N of clusters of sizek once some data are
externally provided. These data are the concentration at
(stable or metastablequilibrium, N, (e)/N, and the rate at
which a cluster absorbs a monomer to become larger, also In the following we study a gas of clusters at equilibrium
called the rate obuccessful reactionsThe rate at which a considering nonideal contributions up to first virial correc-
cluster evaporates a monomer can be obtained from the préens. Microscopically, a vapor will be considered as a non-
vious data using detailed balance arguments. HNT is then @eal gas mixture in which each species of clusters has a set
combination of kinetic considerations that determine the abef internal degrees of freedom. For the sake of simplicity we
sorption of monomers by a cluster and thermodynamic conare going to consider a system made up of point “mol-
siderations that allow the derivation of the concentrations aécules” that only have translational degrees of freedom.
equilibrium associated with each cluster size. Even though the HNT extensively uses the concept of
Classical HNT uses theapillary approximationto deter-  clusters, there is no unique definition for them. The only
mine the free energy of cluster formation, from which it is indication is that clusters are microscopic domains of the
possible to derive the concentratioNg/N. In this approxi- liquid phase20,4]. Usually a cluster is understood either as
mation it is assumed that the free energy is the sum of a set of molecules that are closer to each other than a speci-
volumetric and a surface term. In some cases the predictiorfied distancg21] or as a set of molecules inside a spherical
that emerge from this construction differ by several orders okhell [22], or a density fluctuation that exceeds a certain
magnitude from the experimental valugs-9]. These dis- threshold[23]. One can also require that, besides proximity,
crepancies have led to a variety of modifications. Lothe andhe particles satisfy some energy requirement associated with
Pound[10] suggested improving the evaluation of the freethe idea of forming a bound state.
energy involved in the cluster formation process by taking We shall define a cluster as a set of particles that in some
into consideration the conversion of the vibrational degreesense are bound together. For the moment, and without hav-
of freedom into rotational ones. They managed to signifi-ing to define every detail, it will suffice to use a function
cantly improve the theoretical predictions, but later there wa<(r,v) that depends on the relative position and relative ve-
locity of two particles such tha€ is either 1 or 0 with a
well-defined criterion. We assume th@&fr,v) is of short
*Electronic address: rsoto@cec.uchile.cl range in positions. To define clusters we introduce the con-

II. CLUSTER DEFINITION
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cept oflinked particles as follows(i) If C(r,p,Vap) =1 then  center of mass, its total momentum, and its internal degrees
by definitiona andb arelinkedand(ii) if particlea is linked  of freedom: variableg. In d dimensions a cluster of side

with b andb is linked with ¢ thena andc are linked. Fi- of point molecules hask(-1)d internal degrees of freedom.
nally, two particles belong to the same cluster if and only if Specifically, the stat& can be written as

they are linked Using this generic definition, each micro- Kk ok

scopic state has a unique decomposition in clusters. One cri- \P:(Nk'{r Pué }M:1 ----- N )k:1’2 ----- @
terion used in the literature is equivalent to assuming that
two particles are linked if they are closer than a certain dis-
tancery, namely,C(r,v)=0(ry—r), where® is the Heavi-
side step function.

hereNk is the number of clusters of sdeandr p#, and

g are the coordinate and momentum of the center of mass
and the internal degrees of freedom variables for b
cluster of sizek. The lettersk,/ refer to cluster sizes, the
greek lettersu,v label particular clusters, and the letters
a,b,c label the molecules inside a cluster.

Since particles in two different clustegs and v, of sizes
We choose to describe each microscopic statasing the  k and/’, respectively, cannot biénked, there is a restriction
generic concept of cluster given above. Instead of describingelating the values of the variables of the particles in each of

the microscopic state by giving the position and velocity ofthe two clustergthe functionC(r,v) cannot be 1. Instead of
each molecule in the gas, we descriBegiving the number imposing this condition through the limits of integration in
of clusters of each size and the values of the degrees dhe partition function, we introduce eonstraint potential
freedom for each separate cluster, ordered by their lsize Ug2™*"that becomes infinite if such restrictions are violated
For ak cluster its degrees of freedom are the position of ltsand zero otherwise:

Ill. STATISTICAL FORMULATION FOR A GAS
OF CLUSTERS

» if there are particlea,b such that C(r,p,,Va,) =1

const const . —

wherea is a particle in clustew andb in cluster v, with -1

pE . E= > (1;[ Nk!(k!)Nk)

Hence the effective Hamiltonian of the system is

xf oxT T 2w L T ewur).  ©®
k w K,/ w,v

H=Ho+V, 3

k2 where the integral od X means integration over all coordi-

Z ( +UM(E )) nates, momenta, and internal degrees of freedom. The inter-

« \2km nal degrees of freedom of a cluster have a restricted domain,
otherwise the particles in it would not be linked. Singg™"

> HE(rK pk L ek) may depend on momenta thesually trivia) momenta inte-

© grals cannot be directly evaluated. Furthermore, the combi-
natorial factor[IT,N,!(k!)N«]~* takes into account the dif-

E E H('§(,u), 4) ferent but equivalent forms of assigning labels to the clusters

kKoow and particles inside them and

I
~M M

A=efr, 7
V= Vi (ke ok 5 00 L6 = Vi (),
K,/ w,v K./ w,v
(5 Z() = e~ ARG, (®)
whereH, includes the translational energy of the center of e (u,v)=e A mi=h (u v)+1, (9)

mass and the internal energy of each clugtiee kinetic en-
ergies of the patrticles relative to the center of mass of the
respective cluster plus the internal potential engemdV is
the sum of the effective potential energi¥g, (w,v) be-
tween all pairs of clusters. More specificall,, (u,v) is
the molecular potential energies between all possible pairs
particles in clustersu and v plus the constraint potential SIS

U™ between them. n=

W|th this Hamiltonian the grand partition function is fdr1,p1,€1)=2,(1) 5z,(1)" (10

where 8= 1/T since units of temperature are chosen so that
kg=1 throughout this article and is the chemical potential.

From Eq.(6) it is possible to derive the distribution func-
(H!ons for each cluster siZe4]
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tw =0+ O—@+ 1 1
k(V) Ck) k ! fk(rvp)zﬁf z(r,p,£)dé+ k_'f Z(r,p,£€)24(r9,Po)

’l 1 1
@+ (@ O '. O b X hya(r,p,&;10,Pp)dro dpodé. (13
k 2 + k 1 + k 1 + k 1 + U

The usual procedure found in the literature is equivalent
to retaining only the lowest-order tertorder zerg, namely,
fn=0O+ O—@ an ideal gas of clusters, while we instead go one step further
‘ £ and consider the first-order contributions.
FIG. 1. Diagrams that represent the distribution function for
clusters of sizek. The upper figure represents the complete series

. . . L. IV. CLUSTER CONCENTRATIONS
and the lower one is the series truncated at the first virial order. See

the text for an explanation of the different symbols. The number of clusters of siZein the system is given by
Until now this description has been exact. Since we want Nk:f £ (r,v)dr dv, (14)
to study low-density vapors we make a virial expansiof,of

and the technique used is the diagrammatic expansion de-
fined in[24,25. Given the form of the partition functio(6), which can be expressed as
its logarithm has a simple diagrammatic expression

Nk:Zk)\k+Zk1)\k+l, (15)

I

InE=S, (11

whereS is the sum of all the simply connected diagrams withWhlle the partition functionZy andZ, are

black z, circles for all~ andh,, bonds between them.
We recall that a diagram is a compact notation to repre- Z=(27kmTVqy, (16)
sent integral terms. Each diagram is formed by circles and
bonds. Each circle represents a function that depends on the
coordinates of only one cluster, while a bond represents a Zy=[2m(k+1)MTV]dq, 17
function that depends on the coordinates of two clusters. If
the circle is black an integration over the variables associated
with it is understood. There are some symmetry factors mul- _i —BU(§)
tiplvi . 0= f dée ; (18)
iplying each expression. k!
Hence, from Eq(10) the distribution function for clusters
of sizek is obtained from the sum of all the diagrams dEln

that have at least ong, circle. From each one of these dia- :if —BU(&) a— BP21( a— BVi1 _

grams one builds new diagrams transforming one blgck G k! dédrdpe © (e b,

circle to a white circle in all possible forms. Therefore, 19
fo(ry,01,6)=D (12) whereV is the volume of the systemy=mk/(k+ 1) is the

reduced mass of the monomer-cluster systemramdre the
whereD is the sum of all the simply connected diagramspPhase-space coordinates of the monomer with respect to the
with one and only one white, circle plus any number of Ccluster.
blackz, circles(for all values of/) andh, bonds(see Fig. ~ The total number of particles of the system up to the first
1). Integrating this function over the internal degrees of free-virial correction is
dom one, gets the distribution of positions and momenta for
each species.

Each diagram in the expansion ©f is of the order of a
power of A corresponding to the number of particles in-
volved (the sum of the labels of each ngd8ince\ in a gas
is proportional to the density, at low densities only the dia-
grams with lower powers ok are kept. In this work we
consider only the first virial correction, namely, we keep the
first two powers o\ and therefore the only diagrams that are

N=N;+2N,=Z;\N+(Z11+2Z,)\% (20)

The previous relation can be inverted to exprassn
terms of the density=N/V. The sign ambiguity is solved
requiring that the ideal gas result is recovered in the low-
density limit

kept are of orden® and\***. Hence the distribution func- __n [1+2B(T)n] 21)
tion to first order is the sum of a diagram consisting of a 2mmT '

white z, circle plus a diagram that consists of a whig

circle, a blackz, circle, and arh,; bond(see Fig. 1 whereB(T)=—(q41+20,)/27T is, as we will see, the sec-

This approximation corresponds to considering the clusend virial coefficient.
ters interacting only with a monomer. The explicit form for  Replacing this expression and Eg$6)—(19) in Eq. (15),
the distribution function is it is possible to get the concentration of clusters in terms of
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FIG. 2. Cluster concentrations for different sizeas a function of the area density=N/V. The symbolo represents the disk diameter
introduced in Eq(31). The different curves correspond to three different temperatures. The symbols represent the results obtained directly
from simulations, while the curves are our predictions up to the first virial correction for the pot@iliala) Monomersk= 1, (b) dimers,
k=2; (c) trimers,k=3; and(d) tetramersk=4.

the density. In this expression only the first nonideal correcone due to the negligible presence of clusters. At higher den-
tion is kept, in order to be consistent with the order of thesities the exponential factor makig decrease, as expected.
expansion. This correction is now written in an exponentiallt is important to note that when nonideal contributions are
form, instead of as a linear term, to be able to interpret it asiot considered, the predicted relative concentrations of
a Boltzmann factor, as it will be explained later: monomers is always one, independent of density.
N After some algebr&,(T) can be written as
k

N AT e, (22)
f dr dv e AP 2u(e=AVia— 1)
with Cu(T)=—2kB(T) - :
f dv e~ FP72u
k
AlT)= ﬁ (24
ar

where i, as before, is the reduced mass of the monomer-
(k+1)0ys cluster system and the canonical averégeis over all the
2wkTq 23 allowed configurations of the cluster. From this expression
we see that both terms are proportional to the number of
At low densities we recover the well knowaw of mass particles in the cluster plus a surface term, that is,
action[3]. The correction for finite densities corresponds toCy(T)~Ak+ Bk@-1/d,
an excluded volume effect, which appears due to the non-
itg(raal free-energy cost necessary to make room for the clus- V. VAPOR PRESSURE
In the case of monome#s;(T) =1 and therefore the rela- Expressions for the vapor pressure can be obtained di-
tive concentration of monomers at low densities is almostectly from Eqgs.(11) and(19),

Cy(T)=—2kB(T)—
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TABLE I. Comparison of the theoretical predictions for the concentrations of cluftgi8\) using the zeroth-orddideal gas and the
first-order approximationg&he latter being the present wonkith the concentrations obtained in the simulations. The temperatiire 68
and the density goes from=0.01 ton=0.05. For other temperatures the results are similar. Numbers in square brackets denote powers of
10 by which the preceding term is to be multiplied.

Monomers k=1 Dimers,k=2 Trimers,k=3 Tetramersk=4
n Order 0 Order 1 Simulation Order 0 Order 1 Simulation Order 0 Order 1 Simulation Order 0 Order 1 Simulation

0.01 1 0.90683 0.90629 0.0489 0.04036 0.04122 0.00421 0.00317 0.00329 [-#44B02.98006—4] 3.11-4]

0.02 1 0.82235 0.82828 0.0978 0.06661 0.06700 0.01682 0.00959 0.00965 0.00344  0.00165 0.00167
0.03 1 0.74573 0.75500 0.1467 0.08247 0.08459 0.03785 0.01629 0.01705 0.01162 0.00386 0.00412
0.04 1 0.67626 0.69406 0.1956 0.09075 0.09467 0.06729 0.02186 0.02330 0.02755  0.00633 0.00688
0.05 1 0.61325 0.63865 0.2445 0.09362 0.10024 0.10514 0.02578 0.02865 0.05380 0.00856 0.00982

VI. SIMULATIONS

=]

= =Ing o ai i
P \ We have made molecular-dynamic simulations of a two-
T dimensional system of hard disks interacting with a square
= v[le_(zllJr 2Z,)\%2] well pair potential given by
Qa1 “ r<o
_ _ 2
—T( ny+ny _27TTn1>’ (29 o(r)y=y —&, o<r<ao (31
0, r>ao,
which, once written in terms of the density, becomes
ot 2 where we have chosen units so that 1, e=1, ando=1
pzT( n— “—an)_ (26)  and we have set=1.5. We simulated systems &f=10*
27T particles at temperatures and number densitiesrrespond-

ing to the pure homogeneous gas phase with a non-negligible
presence of clusters. The boundary conditions used were pe-
riodic to avoid heterogeneous condensation. Systems like
(27)  this one are known to relax to a state totally independent of
the details of the initial condition.

To get the results that follow we have defined clusters as
sets of particles energetically bound, that is, we have chosen

From here it follows that the second virial coefficient is

dut20;
B=""0m

We can see from Ed25) thatp is not equal to the sum of
the partial pressures of monomers and dintassit is usually
assumed in the HNJTsince the nonideal contribution coming
from the monomer gas is as important as the dimers’ partial

pressurdthey are bottO(A?)]. _ . I
Since most articles on HNT work in the isobaric- This definition tends to guarantee a longer mean lifetime for

isothermal ensemble it is convenient to express the cluster§USters than the usual geometrical definition, where particles
density in this ensemble in order to be able to make com@n be close just by coincidence, with no dynamical relation
parisons between them. This gives clusters an identity that lasts

longer than the mere coincidence in space does because par-
Ny o 1 Psat ticles are in some sort of bound state. We must stress that
Vzexp{—ﬂ(AG(k )+ AG )?S”, (28)  such a choice of2(r,v) is one possibility of many others
equally valid and useful.

C(rv)=0(aoc—r)0(s—mv?/4b). (32

In each simulation the system was relaxed until it reached

where S
equilibrium (at least constant temperature and constant num-
k ber of clusters of each sigerhen the number, of clusters
AG(kO):—TIn 27TT2qu( Psat ~TkinS (29 of size k were measured. These measurements were made
2wT? taking snapshots of the system at regular intervals of about

_ _ _ o two collisions per particle. Given the microscopic state, it is
is the exactwithout the capillary approximatigrideal-gas-  possible to identify the clusters present in it and from here to
mixture-approximation result for the free energy of a clusterdetermine the instantaneous value of their properties.

if the partition functiong is known. pe, is the saturation We made simulations for number densitigs units of
pressure,p is the total pressure given by E@6), and  5~2) n=0.01, 0.02, 0.03, 0.04, and 0.05 and temperatures
S=p/psatis the supersaturation. (in units ofe) T=0.6, 0.8, and 1.0. These conditions ensure

The nonideal contribution to the free energy of a cluster ishat the system is not in the coexistence zone. In each simu-
lation we measured the number of clusters of each size. In
AGY=—T| kB(T)+ K+l Qa _ (30) the gaseous phase the free enefg3\ O~ Ak if k is large
27Tk g enough andA is a positive constant. Hence the number of
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TABLE II. Different expressions for the pressure as a function  Table Il shows the pressure of the systenilat0.8 for
of the density forT=0.8: p1, exact pressur@p to the third virial  different densities using the usual prediction of HNT
correction; p2, sum of the partial pressures using the zeroth-ordef p=T(N; + N,+ N3+ - - - )/V] using the zeroth-order predic-
densities HNT); p3, sum of partial pressures and the nonideal con+jon for the cluster densities and compares them to expres-
tribution from the monomers using the cluster densities predictedjgn (25) that includes terms only up to the first virial cor-
up to first order(present work rection. It is seen that even though it could seem that the first
expression includes higher-order terms, the expression that

n Pt P2 p3 we have derived gives better results because it considers all
0.01 0.007739 0.00843 0.00768 contributions up to ordex? in a consistent way.
0.02 0.014980 0.01789 0.01456 Also, we have made simulations witd=10" particles
0.03 0.021755 0.02871 0.02050 using the geometrical definition of clustergC(r,v)
0.04 0.028094 0.04129 0.02546 =0 (ao—r)]. Although statistics are poor, the results again
0.05 0.034032 0.05614 0.02945 are in good agreement with the theoretical predictions for

this type of cluster.

clusters of siz&k decreases exponentially wikh It is under-
standable then that only the smallest size clusters could be
studied reliably. In this article there is a careful derivation of the relative
Using the potentia{31) and the cluster definition given in  number of clusters and the total pressure of a vapor with
Eq. (32), it is possible to study the functiorg andq,, for nonideal contributions coming from the presence of clusters.
different temperatures using Monte Carlo integratj@é]. The theoretical framework is based on well-established tools
These integrals are obtained by sorting coordinates and mérom statistical mechanics. The diagrammatic expansion
menta for the particles belonging to the cluster and to theechniques deserve particular mention. Special care was
monomer. From these phase-space variables we evaluate tfaken to take into consideration all the contributions up to
exponential of the internal energy #Y(¥) and the exponen- first order in the density. The resulting expressions for the
tial of the interaction potentia¢™#Vk1 and therefore the in- concentration of clusters were rewritten in exponential form
tegrand. to be able to identify the implied correction with the free-
Figure 2 presents a comparison of the simulational anénergy cost necessary to create a cluster.
theoretical result§22) and(23). It can be seen that the agree-  In HNT it is necessary to express the pressure in terms of
ment is quite good even at relatively high densities. It is seetthe concentration of clusters. It was found that to be able to
that our theory, which includes a nonideal correction, cordo so it is necessary to include both the clusters’ partial
rectly predicts the saturation of the concentration of clusterpressures and the nonideal contributions from the clusters. In
when the density increases. This saturation occurs becaugerticular, up to second-order corrections the dimers’ partial
the total number of particles is kept fixed and at higher denpressure is as important as the nonideal contribution coming
sities more particles are part of larger clusters. from the monomers. All our results were corroborated with
Table | gives a comparison foF=0.8 between simula- molecular-dynamic simulations of a simple system.
tions and theory using the zeroth-order approximatissual
in HNT application$ and the first-order approximation as ACKNOWLEDGMENTS
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