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An algebraic method-based on a strategy that makes use of a realization of the 
algebra S0(2,1)-in terms of differential operators is used to solve the bound state 
problem for the most general Natanzon potentials for which the Schrijdinger equa- 
tion can be reduced to hypergeometric form (hence, hypergeometric potentials). 

I. INTRODUCTION 

The problem of finding the potentials for which the Schriidinger equation can be solved 
analytically using hypergeometric or confluent hypergeometric functions has been extensively 
studied. Natanzon’ found what seems to be the most general potentials for which the Schriidinger 
equation can be reduced to confluent or general hypergeometric differential equations. These 
potentials will be called Natanzon confluent potentials and Natanzon hypergeometric potentials, 
respectively. 

From the algebraic point of view, several potentials have been studied for quite some time. We 
first mention the spectrum generating algebras (SGA) using the SO(2,l) group. This technique 
has been quite successful in finding the bound state energy spectrum for the Natanzon confluent 
potentials such as the harmonic oscillator, the Coulomb potential, the Morse potential, and some 
relativistic cases as we11.2 Recently, it has been proven that the most general Natanzon confluent 
potential can be solved using the SGA technique by means of the SO(2,l) algebra.3 

Other techniques have been applied to study these cases, for example, the potential group 
approach to deal with the bound and scattering sectors as in Ref. 4 and references therein. The 
algebraic treatment of the hypergeometric case has also been analyzed in Ref. 5. Other authors 
have dealt with the SO(2,2) group to study the bound states and scattering problems (Ref. 6 and 
references therein). See also Ref. 7. 

On the other hand, supersymmetric quantum mechanics (SUSYQM) has been used as an 
algebraic method to find new solvable potentials as in Ref. 8. The SUSYQM techniques lead to 
purely algebraic solutions when the potentials are shape invariant.‘*” Results of this case are also 
found in Ref. 11. More recent developments on algebraic and analytic methods are founds in Refs. 
12-14. 

An ingenious and rather different approach to tackle the hypergeometric case that will interest 
us in the present article was developed more than two decades ago by Ghirardi in Ref. 15. The 
method was successfully used in Ref. 16 to solve the bound state problem for several cases. 

In the present work we prove that the Natazon hypergeometric potentials are completely 
solved using the techniques of Ref. 15 based on the SO(2,l) group. In this sense this article is a 
logical continuation of the SGA treatment of the confluent general case.3 In Sec. II we analyze the 
SO(2,l) realization used in Ref. 15, to study hypergeometric potentials. In Sec. III the algebraic 
solution of the general Natanzon hypergeometric potential is presented. The wave functions are 
discussed in Sec. IV. In Sec. V an illustrative example is given and finally in Sec. VI some final 
comments are made. 

It is worth mentioning that the parameters used in the present article can be directly related 
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with the parameters occuring in the potential group approach6” that makes use of the SO(2,2) 
algebra. 

II. REALIZATION OF SO(2,l) 

The way we are going to deal with the bound state problem associated to the Natazon 
hypergeometric potentials differs substantially from that of the confluent case. In the confluent 
case, the analysis is based on the fact that the Hamiltonian operator can be expressed as a linear 
combination of the generators of SO(2,1).3 

The strategy designed by Ghiraradi” for the hypergeometric potentials on the other hand 
consists of (i) considering a particular realization of SO(2,1), (“) 11 assuming that the Hamiltonian is 
related to the (quadratic) Casimir operator of the algebra 

where the Hamiltonian H (with fi= 1 and the particle’s mass m =i) is 

El=-$ +V(r)+ 
e<e+ 1) 

r2 ’ 

where q is the eigenvalue of the Casimir operator and F(r) is a function of r determined by 
self-consistency; and (iii) taking the eigenfunctions of the Casimir operator (or equivalently of the 
Hamiltonian) having the form 

*(r,@)=exp[im+]@(r). (3) 

The realization of the SO(2,l) algebra to be used’5317 is obtained as follows. The starting point is 

J?=exp[f-i4] tA(r) $--iB(r) $ +i (Cl(r)tC2(r)) 

but after requesting that these operators obey the SO(2,l) commutation relations [Jo, J,] = iJ2, 
[J2, Jo] = iJ, , [J1, J2] = - iJ, where Jt = J, + iJ2, it is seen that it is necessary to satisfy 

1 +B(r)Z 
A(r)= B,(r) , A(r)Ci(r)=B(r)Cltr), 

where the primes denote derivative with respect to r. 
It is straightforward to check that the above system is an identity if 

C~tr)=pGSV, (6) 

where B(r) is an arbitrary function and p is an arbitrary integration constant. The fact that the 
algebra closure conditions leave free an arbitrary constant plays a central role in making this 
method powerful. This constant, plus the eigenvalue q of the Casimir operator Q, and m, the 
eigenvalue of the compact generator Jo, provides us precisely with the three parameters necessary 
to solve all the hypergeometric Natanzon potentials. 
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The rest is quite simple. The operator Q has in general both first and second derivatives with 
respect to r but from Eqs. (1) and (2) it is seen that we only need it to have second derivatives. 
This is achieved by requesting thatI 

1+B2 
Cz(r)=F B”-B. 

Finally, the change of function 

i 1+2(r) 
B(r)=, m 

(7) 

(8) 

makes the generators take the form 

J+=exp[ki+] [ 
Y- & k’r;‘(z-1) $ +z (Z+l) -& Ffg (Z-l)2+& ((z-2)2-l) 

.& * 
+(z-l)‘-& &(zfl) I 1 

(9) 

Jo=-i 5, 

where-since B(r) is an arbitrary function-z(r) is an arbitrary function as well. The Casimir 
operator Q = Ji - Jy - Ji that stems from the above realization is 

z(z- 1j2 a2 112 

Q= 
Z12 27 $4 

l i$$ +&(l-z2) -$ +$;(l-z)‘-;>z(z-l)2 

p2 (1 -z)2 --- 
4 z 

+; +-&;. 

In Sec. IV it will be seen that z(r) introduced in Eq. (8) is the function that appears as the 
argument of the hypergeometric functions 2F1 (a,b,c;z) of the carrier space of the representation. 

Of interest is the fact that in Ref. 15 there are a few misprints for the expressions of J, and 
Q. We use the representation D + which is bounded below, therefore the operator Jo has the 
eigenvalues m as can be seen from Eqs. (3) and (9). It is well known” that these eigenvalues are 
given by 

m=v+++ q+$, J (11) 

with v=O,1,2,... 
Spherically symmetric Hamiltonians (l)-( 10) imply 

E-V(r)- 
e(e+ 1) z”’ 3z’12 qz’2 z’2 

r2 
=-- 

22’ 
(m2+p2)z’2 +mpz’2( 1 +z) 

p-z(z-- 1)2- 4z2 2z2( 1 -z) +&T * (12) 

fir)= 
z(z- 1)2 

z12 . (13) 

In the following we take t’=O. 
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Ill. NATANZON HYPERGEOMETRIC POTENTIALS. ALGEBRAIC SOLUTION 

The Natanzon hypergeometric potentials’ depend on six parameter: f, ho, h I) u, co, c 1, and 
on the function z(r) 

v(r)=fzwo-h,+f )z+hI+l a+(~~--co)(2z-1) 5A z(l-z) 2 -- 
R z(z- 1) I[ 1 - 

4R R ’ (14) 

where r and A are constants while R is a quadratic polynomial on z 

R=uz2+rz+co, T=c~--c~-u, A=+4uco (15) 

(we are closely following the notation of Ref. 11). Furthermore z(r) satisfies 

dz 22(1-z) 
z=-JT* (16) 

The function z(r) is the same one used in Sec. II. 
To go on with the algebraic method it is convenient to rewrite the right hand side of Eq. (12) 

in the form of the Natanzon hypergeometric potential (14). Using Eqs. (15) and (16) and after 
some algebraic manipulations the right hand side of Eq. (12) can be written as 

rhs= -((m+p)2- 1)z2-2(m2+p2-2q- l)z+(m-p)2 
R 

5A 
- a+ 

1 

u+(cl-~o)(2~-l) z(l-z) 2 -- ~ 
z(z- 1) I[ 1 4R R . 

Equating this expression with the left hand side of Eq. (12) and using explicitly the potential (14) 
one obtains 

ER=z2(f+ 1 -(m+p)2)+z(2(m2+p2-2q- 1)-(ho-h,+f ))+h,+ 1 -(m-p)2. (17) 

Both sides of this equation are second degree polynomials in z. Equating the coefficients of the 
powers of z on both sides yields 

uE=f+ l-(rn+~)~, 

v-E=2(m2+p2-22q-l)-(ho-hl+f ), (18) 

coE=ho+ 1 -(m-p)2. 

This is a linear system for (rn+~)~, (rn-~)~, and 4 giving 

(p+m)2=-uE+f+l, (p-m)2=-coE+ho+1, 44+1=-clE+hl+l. (19) 

Subtracting the square root of the second equation from the first one yields an expression for m 
which we equate with Eq. (11) to obtain the energy spectrum equation 

2v+1=aV-P,-s,, (20) 

where 
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,&,= \I-coE+ho+ 1 ‘p-m, 

S,= +clE+hl+ 1= \14q+l. 

(21) 

Equation (20) gives the energy spectrum for the most general Natanzon hypergeometric potential. 
It coincides with the result given in Ref. 11. It is important to realize that a, and /3, are square 
roots and the specific sign they take varies in different examples. In Sec. V these signs are 
determined in one particular case. 

IV. THE WAVE FUNCTION 

Our next task is to relate the group parameters m, p, and 4 with the parameters that appear in 
the hypergeometric differential equation related to the Natanzon potential given in Eq. (14). The 
carrier space of the representation of the algebra defined in Eq. (9) isI 

Q(r)= 
Zc/2(~-z~(n+b+l-c)12 

Z' 
aF*(d,c;z), (22) 

where Z=Z(T) is the same function used in Sec. II. The parameters a, b, and c are those that 
appear in 2Fl(u,b,c;z) and a should not be confused with the parameter that appears in the 
potential (14). Making a detailed comparison of Eq. (12) with the hypergeometric differential 
equation for 2F’l(u,b,c,z(r)) (as in Appendix A of Ref. 15) it follows that the parameters a, b, and 
c are constrained to satisfy 

(m+p)2=(b-u)2, (p-m)2=(c- 1)2, 4q+ 1 =(u+b-c)2. (23) 

One possible solution for this set of equations is 

b-u=p+m=uv, c-l=p-m=j?y, u+b-c=dw=S,,. (24) 

With all the previous results, the wave function is 

Qqmp(r)~zPJ2( 1 -z)‘J’R~‘~~F~( - ~,a~-- v,l +fly,z), (25) 

which coincides with the expression given in Ref. 11. 
Instead of labeling the states with a, b, and c we would rather use 4, m, and p which are the 

natural parameters which occur in the algebraic realization (9) and (10). 

V. EXAMPLE 

A simple case comes about by choosing the potential (14) with f=4A(A+ D)/D2, 
/z,=(B-A~+DA)(B-A~-DA)I(DA)~, Iz,=(B+A~+DA)(B+A~-DA)I(DA)~, co=1/D2, 
C] =co, a=0 and R(z)=c, and z(r)=i< 1 + tanh(Dx)). The potential simplifies to the Rosen- 
Morse potential 

B2 
V(r)=A2+p +2B tanh(Dx)-A(A+D)sech2(Dx). (26) 

The possible ambiguities related to Eq. (21) disappear when it is required that the energy E(v) 
grows with v, the ground state is larger than the minimum value of the potential, and the maxi- 
mum eigenvalue is less than the asymptotic value of the potential. From this it is seen that 
&(A - fi)/D and the values of the parameters to solve this problem are seen from Eq. (21) 
to be 

J. Math. Phys., Vol. 35, No. 7, July 1994 
Downloaded 27 Jan 2009 to 200.9.100.136. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



3306 P. Corder0 and S. Salam6: Algebraic solution for the Natanzon potentials 

2A+D 
a=pSm=D, 

/3,=p-m=& J(A2-~)2-A2E,, (27) 

s,= &FI=~ J(A2+ B)~-A~E,. 

Since a as defined in ISq. (21) in the present example does not depend on v, we have omitted that 
subindex. The energy spectrum then is 

B2 
E,=A2+B21A2-(A-vD)2-~A-vD)~. (28) 

From this example it is seen that the states of the system-labeled {q,m,p}-are in a different 
representation of the SO(2,l) algebra. This should be clear because the Casimir operator Q is 
directly connected to the Hamiltonian H [eqs. (l), (2)]. 

VI. FINAL COMMENTS 

In this article we have shown that a particular realization of the SO(2,l) algebra completely 
solves all the class of hypergeometric Natanzon potentials. It is also shown that an integration 
constant-that we call p-together with the eigenvalue 4 of the Casimir operator Q and the 
eigenvalue m of the compact generator Jo, provide us with the three necessary parameters to solve 
the above potentials. The solution gives the bound state energy spectra and the corresponding 
wave functions. 

As a conclusion, we can say that a complete algebraic description of the Natanzon confluent 
and hypergeometric potentials can be achieved using SO(2,l) algebras. 
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