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A granular gas subjected to a permanent injection of energy is described by means of hydrodynamic
equations derived from a moment expansion method. The method uses as reference function not a Maxwellian
distributionfy, but a distributionf,=®f,,, such thatd adds a fourth cumulant to the velocity distribution.

The formalism is applied to a stationary conductive case showing that the theory fits extraordinarily well the
results coming from our Newtonian molecular dynamic simulations once we detekr@se function of the
inelasticity of the particle—particle collisions. The shapecak independent of the sizd of the system.

PACS numbgs): 81.05.Rm, 05.20.Dd, 51.18y, 47.70.Nd

[. INTRODUCTION factor which incorporates the next nontrivial cumulant, a
fourth cumulant, to the distribution function and then we
Granular systems subjected to a sufficiently strong exciundertake a perturbativé@oment expansioa la Grad about
tation may have a fluidlike behaviqd,2]. From the very f, to solve Boltzmann’s equation. Some authors have done
beginning several authors have attempted to derive hydrodysome calculations in this direction but using the gradient
namic equations for these systef8s4]. If the excitation of ~ expansion(Chapman—Enskogmethod [15]. The point is
the granular system is through a permanent injection of enthat, without the notion of equilibrium, we expect that the
ergy, the fluid system may stabilize to a low density stationteference statef, in our case, should resemble more the
ary gaseous state which necessarily is a nonequilibrium statiomogeneous cooling state than the simple Maxwellian.
and it usually is inhomogeneous as well. To develop the We study a two-dimensional system of hard disks, and the
basic features of the theory of gaseous granular systems waoment expansion—in dimension two—is an 8 moment ex-
restrict the analysis to the simplifying inelastic hard sphereyansion: the number densilhjf,t), the velocity fie|dl;(|7't)'

model (IHS) [3]. the granular temperature field(r,t), the pressure tensor

Many authors studying granular gases have put particulerxf)__(ra ), and the heat flux vector fiel@(F ). The dynamic
|J H il il .

attention to studying the spontaneous homogeneous cooling!}
of a granular system using periodic boundary conditions\g‘a‘”élbles are not the components of the pressure teRsor

[5,6]. This time dependent state is calledmogeneous cool- ltself but the components Qf the symmetri(_: traceless part
ing state(HCS) and the understanding of its properties ha WherePii:p5ii+piJ an_dp Is the hydrostatic pressure.
ng ( ) " S Ing O 1S propert S As it can be seen in Grad's papEgt4] or in [16], the

been improving through many papefg—10. A crucial ; . ; '
breakthrough was the realization by Goldshtein and ShapirB1GthOd yieldshydrodynamic equationsor all the fields

[7] that the homogeneous cooling distribution function has dnentioned above. In particular, the dynamic equationgjor
scaling property with respect to the instantaneous temper@ndQ take the place of what would normally be the consti-
ture. Such distribution—which we will be callinfy,cs—is  tutive (transport equations of standard hydrodynamics. This
known in approximate form§11,12. It is known, among last point means that we are not assuming any constitutive
other things, that its fourth cumulart does not vanish and €quations whatsoever, their present counterparts are dynamic
that it has a long velocity tail. equations.

A nonequi”brium inhomogeneous gaseous system, on the It is well established that, in the case of the IHS model for
other hand, is described by a distorted distribution functiorgranular systems, Boltzmann’s equation is modified in that
typ|Ca||y obtained from Boltzmann’s equation expanding thethe restitution coefficient enters SO|EIy in the gain term of
distribution either in gradients of the hydrodynamic fieldsthe collision integral and it does so in two forms. First the
(Chapman—Enskog methpfiL3] or making a moment ex- gain term has an overall factor 2 and second, the distribu-
pansion(Grad metho[14]. For normal gases the expansion tion functions appearing in the gain term depend upon the
is made about the equilibrium Maxwell distribution. precollision velocities, and these velocities depend o4.

In this paper we will assume that a low density nonequi- When the modified Boltzmann's equation is used the
librium granular system has a local distribution function Stemming hydrodynamic equations get factors that depend
which can be obtained expanding about a distribufigne- ~ on theinelasticity coefficient g
semblingfcs in the sense that it has a significantly nonva-

nishing fourth cumulant. We introduce a reference function 1—r1
[see Eq.(5) below] which is a Maxwellian distorted by a g= — (1
*URL: http://www.cec.uchile.cl/cinetica (g=0 in the perfectly elastic casexcept that the mass con-
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tinuity equation and the momentum balance equation remaiyhere v (r,t) is the hydrodynamic velocity. Next a set of
unchanged since mass and momentum continue being MiCr@tihonormal polynomials ot H (é) are built in the
il a H

scopically conserved. _
In the context of Boltzmann's equation a dissipative gasSense thato=1 and
satisfies the ideal gas equation of state R ) o R
| HUOROIo7 C0dC= 50 (@)
p=nT, 2

where the granular temperatuFeis defined in energy units | N€ PolynomialsH, are obtained simply by building a base

as the average kinetic energy per particle. If we were tdf orthonormal polynomials starting from,=1 and from
consider the Boltzmann—Enskog equation, then the inelastidist degree Zupwards. We have built polynomials only®n
ity coefficient would enter through the Enskog collision fac- Ci Cj andC”C; as Grad did, namely, up to third order and

tor y, and the equation of state of a normal gas and a dissinot all of them. One could go on but so far this seems to be

pative gas would differ, but in the present context Eg.  €nough. Wherf, is a Maxwellian theH , are Hermite poly-
holds. nomials but in general they are not but they are still obtained

in a straightforward way.

Usual moment expansion metho@s Grad's i are ap- e )
Next a distribution function of the form

propriate to describe bulk properties. Wall effects are not
well described unless higher order moments are included in
the expansion, which are not trivial to handle/]. Already f(F ¢ t)= 1+2 H (C)R (; t) | f (F é t) (4)

in normal gases hydrodynamic fields may have discontinui- T z Al

ties at walls. In a previous paper we gave a kinetic descrip-

tion of a one-dimensional granular system with theoreticals gefined and first it is checked thif dc=n. The R, are
tools such that our description was correct and precise up t@etermined by systematically requiring that the averages
the walls[18] but we have not generalized yet that type ofaken with the above distribution in the fornA);
formalism to higher dimensions, hence, in the present paperé(l/n)fAde give the correct quantities, such as

we use moment expansions. n(tmnqci>f: Pij . The result of this exercise is that tiig,

In consequence the formalism we are going to' Presentre simple combinations of the hydrodynamic fielslsch as
suffers too of the weakness of moment expansions: it is un-

reliable precisely at the points where the boundary condi-P”)' . : o
. . ) The following step is to replace the above distribution in
tions should be imposed forcing us to trade the boundar)é X . R - "

- e . oltzmann’s equation to derive integrability conditions mul-
conditions for conditions imposed far from the walls based

on the actual behavior of the system according to our moElplylng the kinetic equation consecutively by tie, and

lecular dynamic simulations. integrating the equation ov&@. The idea is to do this up to
Our moment expansion method, explained in detail in? gi\{en order and d_rop all contributions coming from poly-
Sec. II, uses as reference distribution function a distributiofomials of degree higher than a chosen valyeto order 3
f, which differs from a Maxwellian distribution in that it has 1N Our casg. These integrability conditions turn out to be a
a nonvanishing fourth cumular, The method leads to hy- S€t of hydrodynamic equations for the different moments.
drodynamic equations for low density granular systems that A Key pointis the choice of the reference functign The
depend parametrically on the inelasticity coefficigrind«. ~ tWo-dimensional Maxwellian fy=n(m/27T) exp[—rr_]_CZ/_
We apply these hydrodynamic equations to a stationary antT)] is privileged as the _solut_lon describing the equmbm_}m
purely conductive case as [119]. The value of the fourth state of.a normal gas. Since in granular systems there is no
cumulantx, or better, the dependence of the fourth cumulanfUch thing as equilibrium a next best choice, seems a dis-
on q is determined directly from molecular dynamic simula- torted Maxwellian distributiorj11]
tions, and it turns out to be independent of the $izef the
system. The predictions that follow from our formalism
agree very well with all our simulation data.
In Sec. Il we briefly present the moment expansion
method, in Sec. Ill the hydrodynamic equations that followwhere the dimensionless peculiar velocity is
are given and specialized to a purely conductive case, and

4
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finally in Sec. IV theory and simulational results are com- - m.
pared. Final comments are in Sec. V. C=\+7¢€ (6)
Il. THE MOMENT EXPANSION METHOD and T is the granular temperature. The coefficianis the
FOR GRANULAR SYSTEMS fourth cumulant off, and it depends on the inelasticity co-

fficient g while the coefficients in front o€2 andC* are
erived from requiring thatfy is normalized and that
((m/2)C2)fO=T. The fourth cumulank in dimension two is

Moment expansion methods can summarily be describeg
as follows. Take a velocity distribution functiofb(F,E,t)
which is considered to be theference functiombout which
an expansion is going to be made. For normal gases the 4 ~
natural choice forf, is a local Maxwellian distributiorf . (€7 —2(C%) @

written in terms of the peculiar velocitC=c—u(r,t), (S
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In the case of the homogeneous cooling state, recent papes§ q and «, the moment method yields the following hydro-
have justified explicit form$11,12 for « in the context of dynamics equations for a granular gas.

distribution functions likef 5. Their results are well approxi- First the mass and momentum balance equations get no
mated by contribution from the collisional term:
b;1+boq Dn . .
= —+nV-v=0 11
with Dv . . .
mnﬁ—nF+V~P=0. (12
bi=-2, b,~13.619, b3~4.5969. 9

_ _ _ _ o But the balance associated to energyPfpand toQ, do get
The rational expression given {8) is valid within 2.9% for  contributions from the collisional term,

g=<0.08,r=1-2g=0.84. Notice thak(g=0)=0 allowing
to recover the elastic case. DT dQ, v, 13p

We describe quite satisfactorily nhonhomogeneous, non- nD_t+(9_x+ Ko — 2 ot (13
equilibrium stationary states with & as in (8), but with : :
numerical factors different from those in E@). The latter P P P 5 5P
values are valid only for the homogeneous cooling state ?Pij , 7 C.COP. v 4P iy p V0T
while our system is kept in a stationary inhomogeneous state dt  dx (Mr{CiC;Cy)Pijo)) +Py X P ax, ot
with appropriate boundary conditions. (14
For any « the distribution(4) with the explicit H, ob-
tained with the method summarized above is dQ 4 [mn c2e.c TaPkS Psk dPg)
Tt x| 2 (COCH U T T o
pXX pX
(k) = 2_ 2 B Jv dv 1)
f 1+ p(2+:<)(cX CV)+2p(2+K) Ly +mn(C|CSCk)—S+Q|—k :&, (15
X IX, ot
2 2
Qx (C _4_2K)CX+ Qy (€"—4-2x)Cy o where (A) refers to an average usinff®) while D/Dt
2Qo (2+45k—«?) 2Qo (2+5k—«3) | =glot+v-V and
10
(10 _ 1 mT 16
where we have used thay,= — py, and Qo= T/mp. The " 2sp V@ (16

distributionf (<) shares wittf, the first scalar moments: den-

sity, temperature and fourth cumulant, for any valueyjoff is a characteristic relaxation timer(is the diameter of the
k is chosen to be zero then, in EqL.0), f,—f, and f()  particles. The § terms(colisional contributionsare
becomes the usual Grad's distribution. Hence the whole

method would be the original method devised by Grad and, op 2Ap
if x is chosen to be Eq8) with coefficient values as in Eq. St 7 (17)
(9), thenf, would be what we are callin§ycs.

Given our ignorance regarding granular gases one could, 5P B B—2A
in principle, accepf,, or f,,cs as legitimate reference func- — - —Pjj+———péjj, (18
tions to make the moment expansion. In the following sec- ot T T
tions we compare the three formalisifisference functions
fm, fucs andfy, the latter with ax adjusted to the results Q¢ C
concluding that only the one based &g gives acceptable ot 2_TQ'<' (19
results for a sufficiently large range qfIn fact they are very
good. The(- - -) averages in Eqg12)—(15) and the coefficients

A, B, andC when the generic distributioh®) is used turn
lIl. THE HYDRODYNAMIC EQUATIONS out to be

As. alrgady me_ntio_ned, the_inelasticity coefficignénters mn{C;C;Cy)= L 81+ Siki + Sid;). (20)
the kinetic equation in two different forms. It appears as a
factor (1/r2)=[_1/(1—2q)2] in the gain term and it appears 243k 21 Bx— K2 T
in the expression for the precollision velocities which are mn<02cicj>= em P”_ZTP ”) =

part of the argument of the distribution functions appearing
in the gain term. When the solutidi®) is inserted in Bolt-
zmann’s equationg enters in a still third form, precisely
through thex coefficient given by Eq¥8) and(10). Expand-
ing the collisional term of Boltzmann’s equation in powers

(21)

A(g)=[q(1—q)+O( 5)](1+3K+ 9 Kz)
@=latt=q q 32772096 |’
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142 24 23, {143 : 0(g® +0(«®
+t50-3 q+—;< +t3 +4096+ (9°)+0O(k®)
B(q)= 1 , (22
(l+§K
1 B2 206+ 126 2415 0] O(x®
N S ¢ )~ 2096<"+ O(a%) +O(x?)
(Q)_ L 5 K2
+§K 2

They depend om and «, but « depends org. At least for
small q the coefficientsA, B, and C are positive § varies
between 0 ang). The coefficientA in Eq. (13) determines

Q AADE [ T oBC /WmQ
= g ] = = ]
y P mT(y) 3A*4+2B* V T Y

the energy dissipation in the system and consequently it van- (24)
ishes in the elastic limit whil® and C tend to 1. )
It is our hope that the above hydrodynamics is valid in awith
wide variety of situations compatible with gaseous states and
no clustering’5,8] but in this paper we restrict our study to a 2+3k 2+«
d5.8| pap y A* = A B*= B, (25

hydrostatic case. 2+k 2
We are going to consider the purely conductive regime,

with no external forceF =0. The system oN disks is in a

rectangular box of dlmen5|dnx>< Ly, with thermal walls, at  that because there is inelasticity the pressure tensor is aniso-

y=—73Lyand aty=5L,, both at temperatur@o, and peri-  tropic in the sense tha,# Py, . In fact Py,—P,~A~q

odic boundary condltlons in thX direction. The case with and they do not depend on the coordmy.te

no external force is quite simple because the system is sym- Next we are going to compare the implications of these

metric with respect ty— —y and the pressure turns out to equations with our molecular dynamics results. To this end

be uniform. If the system were conservative, as a normal gasve should, in principle, solve these hydrodynamic equations

this would be a homogeneous system at thermal equilibriumysing the boundary conditions associated to the particular

but since the system is dissipative the temperature dependimulations that we have studied. This is not a straightfor-

on the coordinatg (T has a minimum at the symmetry akis ward task because, as we have mentioned at the end of the

and the problem is much less trivial. Since the system isntroduction, the moment expansion methibehind the pre-

purely conductive there is no velocity fiel@,,=0, Q=0  vious hydrodynamic equationgloes not give a good de-

and the other fields depend only on the coordinate scription near boundaries. For example, if we impose that a
More in detail, the mass continuity equation is an identity,wall behaves as a stochastic wall at temperalyethe ob-

the momentum balance equations imply that bBtly and  served fieldT is not expected to take that value near the wall.

P,y are uniform, the energy balance Ieadsctpz —2Ap/T  Later on it will be shown how we tackle this problem.

(the prime denotes derivative with respecyjo The balance From Eq.(24) it is direct to derive that the temperature

associated to theP; leads to P,,=0 and to Q= field satisfies the equation

—2Bpy, /7 which is a second expression 1’@(, . Combining

where the prime indicates derivative with respecy.tblotice

both it follows thatp,,=Ap/B hence bothp,, and p are TT'+3T'*=k*c?p?, (26)
uniform and
where
P
p=—yyA. (23
LA , 4mABC
B K= ome (27)
3A* +2B

The balance associated to tQg says that i i i .
Since the pressure is uniform, and because of (Bg.this

32+3K APyy
2+« A+B

&) --eaen

Combining all the previous results the set of equatidrig—
(15) becomes

B+A

equation can also be used as an equation for the inverse of
the density.

Before proceeding to solve the equations we adimension-
alize the problem defining a coordinage=y/L,, (—i<é¢
<1%) and we also define

n(y)=nn* (&),
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k [No _ To the value fornj; already derived from the theory and the
K= ﬁ(L_) Qy(y)=nTy \/%Q;’f(%), (28)  valueT}y imposed in the simulation. This would give a bad
X

fit however because, as we have been emphasizing, the for-
malism is not reliable near the boundaries. Therefore we

T(y)=ToT*(§), p=nTop™. choose forp* the valuep* =T%,.n%.,. We known?_, from
s
Once Eq.(26) is solved and converted to a solution for the Ed- (32), and we take the value foFy, directly from our
dimensionless number density (¢) the result is simulations. It may be said thaf,, is a parameter to adjust
our results.

aK| ¢ = 1 \/m The dimensionless heat flux becomes
n*(¢) nX

max
3A* +2B* 1 p* p* dn*

+*iarctan w (29) % O="38c ap V n*(g)n*(§)? dé- (39
nmax nma)(

wheren? .. is the value taken bp* (&) in the middle of the
system,£=0. In what follows it is shown thahy_., is a
simple function of the paramet&rdefined above. The effect In this section we compare the simulational results with
of the boundaries is traded in favor of the observed values ahe values given by three formalisms which use as reference
Nhax- function: (i) fy, (i) fucs, and(iii) fo. We are callingf ycs
The integral condition'n dx dy=N can be cast as the function likef, but with « defined with the values given
in EQ. (9). The molecular dynamic simulations are true New-
Jmn*dgz 1 (30  fonian simulations in the sense that the history of each par-
0 2 ticle is integrated using standard collision rules. Our method
has been described elsewhgté€,20,21.
but sincedé=(dé/dn*)dn* the integral condition yields, Since the formalisms differ by terms of higher ordergjin
their predictions are quite similar unlegsl is large enough.
ng —1 K 31 Typically the Maxwellian theory and the one basedfggs
v —tanit K, (3D are valid until aboutgN=20 and are reasonable ungN
=40 while the theory based ofy, with an adjustedk, is
wheren} is the value thah* (¢) takes at the two boundaries, Valid for values ofgN up to 200, and reasonably good until
nE=n*(x1). aboutqN~300.
Equation(29) evaluated at=3 yields a different condi-
tion overn} and it follows that

IV. SIMULATION-THEORY COMPARISON

max

A. Simulational setup

., 1 sinh(2K) We have performed simulations of a two-dimensional

ma—5 T T2k (32 system ofN=2300, N=3600, N=10000, andN=19 600
inelastic hard disks inside laxX L box with lateral periodic

This is a strong result, it says that the dimensionless numbéjsoundary conditions while the upper and lower walls are

n

density at the centen ., is determined byK? alone, kept at granular temperatuiig,=1. The area fraction cov-
ered by the disks was chosen to fpe=0.01(in which case
, _, 2ABC the nonideal corrections to the equation of state are less than
K —aomv (33 2%) while the gN dissipation parameter ranges frogiN

=10 up togN=400. The observed hydrostatic pressure is in
whereaZ=Npp/a, a= L, /L, is the aspect ratio of the box, fact uniform within 1%, except very close to the walls, see
andpa=(m/4)(No?/(L,L,)) is the fraction of area occupied Fig. 1. In theN=2300 case, the smallest simulated system,
by the disks. Since\ vanishes in the elastic limit and for the ratio between the mean free path and the linear size of the
small inelasticity coefficient, A~q while B~1 andC~1  System(Knudsen numberis 0.065 and it is smaller in the
then other cases. This value guarantees that not too close to the
walls the fluid has a hydrodynamic behavior. The wall tem-
s 2 peratureT, is imposed sorting the velocity of the bouncing
K*~ag0~—qNpa. (349 particles as if they were coming from a heat batfT atT,.
In every simulation the system was relaxed from an initial
In the quasielastic limit then, the control parameter is basicondition for a sufficiently long time. After the relaxation we
cally qNp,. This result, for fixed area density, resemblesmeasure local time averages of the main moments of the
what we obtained in the one-dimensional cBE&, namely, distribution(i.e., n, v, T, Pij , (3) inside each one of a set of
that the relevant control parameter of the one-dimensionadquare cells. Taking advantage of the translation invariance
equations igN. in the X direction, it is natural to take horizontal averages
The temperature i$* (¢) =p*/n* (&) but since the pres- getting, in this way, smooth vertical profiles for the observed
sure is uniform one may be tempted to yse=n§ T} with hydrodynamic fields.
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FIG. 1. The pressure profile in our simulations witd FIG. 2. The fourth cumulant against for systems of different
=19600, particles, area densip=0.01, andgN=10 (closed  Size. The empirical values of are represented by triangles fiir
circles andqN= 275 (open circlek It can be appreciated thatis ~ =19600, empty circles folN=10000, empty squares foN
uniform except in a limited region near the walls where our formal- = 3600, and solid circles foN=2300. The solid line corresponds
ism is known to fail. to our empirical fit. See text.
B. Theory and simulation comparison fact, we have detected that the number of collisions per unit

In order to compare theory and simulation some analysifMm€ Increases dramatically shortly aftgk=300.

is needed because size effects are quite noticeable unless eA_S a second step we check the vaI|d|ty_ of E_3{2) (W.h'Ch

numberN of particles is above about 3600. We use expres!Of fixed geometry depends only am) with simulations.

sion(32) for n* as our point of contact between theory and 1 '€ top of Fig. 3 shows bothy,,, (growing curves witigN)

simulation and proceed to adjust the coefficidntin Eq.(8) ~ @ndn, (the decreasing curvest is seen how well the val-

so thatK takes the values that makes theory give the ob4€S Of Ny, (solid circleg come from thef, distribution

served values fon¥ .. (there should be no surprise as these are the fitted,data
With this aim we first writeK as a rational expression c_ompare_d with the prediction using the other two distribu-

K:ao\/a(lJralq)/(lJrazq) and find the values of the, f[|ons._Th|s graph shows thatf;,, with the other two formal-

so that Eq(32) reproduces the observed valuesndf,. We ~ 1SMS is good only up tgjN~40. _

have to adjusk, in spite of its definition, given under Eq.  AISO at top Fig. 3 shows the values predicted by &)

(33), because the effective values for the number of particlesad the observed values of, (see the caption and it is

the global density and the aspect ratio get distorted sincé®en that all theoretical schemes give values close to the

there is a layer near the thermalizing walls which does nofimulational results in the considered rangeqd{. This is

behave hydrodynamically. Once this expression Koris the only case where, for Iargq_aN, predictions coming from

fixed, we invert(33) to obtain values fok as a function of. ~ fm are better that those coming frofg, but we do not be-

The size effect is ira, alone andk(q) is approximately the Iu_ave there |s.anyth|ng. deep here since our moment expan-

same for systems witN larger than about 3600, as shown in Sion method is not reliable near walls.

Fig. 2. In this figure there is a solid line which is E§) with ~ Figure 3, bottom, compares theory and simulational den-
sity profiles forgN=30 andgqN=200. As it has already

b,=—-44.77, b,=-27.96, b;=1725. (36 been explained, the valug;, in Eq. (29) is fixed by Eq.
(32) and there are no extra parameters to adjust. It is seen

The discrepancies between this curve and the empirical vathat theory in all casesf(; , fycs, andf,) give good agree-
ues ofx are less than 2% for the whole rangetonsid- ment for low values ofgN. However predictions foigN
ered. More in detail, Fig. 2 shows the behaviorxgfy) for =200, when usindy or fycs fail. It is amazing how large
systems of different size. It is seen that in the caséNof JN can be wherf, is used. In the last case the paraméter
=2300 (solid circles «(q) is dependent on the system’s is adjusted only from the knowledge o} ,, and it accurately
size, while the predictions in the cadés-3600, 10000, and predicts the behavior in almost all the volume. From the
19600 differ among themselves by less than 2%. Only thdigure it can be appreciated that near the wafls (- 0.5), as
smallest simulated systenN& 2300) departs from this oth- mentioned in the introduction, the theory does not predict

erwise universal shape. well the behavior oh* (£). '
In the following we present the results corresponding to  (b) The temperaturelt has already been mentioned that
the N=10000 case. the temperature profiles exhibit a minimum at the center and

(a) The densityAs a first step and in order to check the there is a temperature jump at the boundaries. In Fig. 4 we
validity of the kinetic description(no clustering,[5]) we  show the simulational results foFy,,=T*(£=0) and tem-
have plotted the final configurational positions of the par-peratureT] =T*({==*1/2). It is seen that fogN=40 the
ticles (not shown hergfor different values ofgfN up togN  temperature of the fluid by the walls is about 40% lower than
=400, finding that clustering begins at abal{l=300. In  the imposed value. This effect is due to dissipation and in 1D
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*
max

n*yn

L L L | L 1 L | " N N | N 1 N | N | )
0 50 100 150 200 250 300 0 50 100 150 200 250 300
aN gN

FIG. 4. Temperaturdly,, at the center of the channépen
circles against dissipatiomN. The solid line corresponds to a fit

2.2

using Eq.(36). The solid circles are the observed values for the
sf temperaturél; near the boundaries.

1.8}

o T*' n*

o T (§) = i max (39)

#14 n*(§)
n L
1.2

Figure 5 shows the simulational and theoretical tempera-
ture profiles for some values gfN. The three upper curves
show the profiles for smaiN values ¢N=10,20,30) and it
is seen that the predictions usifig (solid line) give an ex-
cellent fit to the simulational data while for the results ob-
tained using y, or fics (dashed and light lines, respectively
the fit is only fair. The lowest curves showsprofiles for
larger values offN (gN=50,100,200). In this case only the

FIG. 3. At top the predicted and observed values for the densitformalism based ofi, give an acceptable description and the
Nk at the center of the boxéE0) andnf near the boundaries agreement is very good up tpN=200. In the case of|N
(é==0.5). The SOlid(Oper) circles correspond to the simulational =275, not shown, there is still a reasonable agreement when
values forny,.. (ny), the light-dashedheavy-dashedline corre- fo is used.

sponds to the theoretical prediction usifgs (fy). The solid line (c) The pressureNow that the values afi* . andT*. are
corresponds to our empirical adjustmésee text At bottom the e min

predicted and observed density profiles for two different values 0#<_nown .and since the pressure is unifof _th ,I(n tDeory and
gN. The oper(solid) circles correspond tqN=30(qN=200). The simulationally and thfory asserts that" =TrnMa, then
light-dashed heavy-dashedine corresponds to the theoretical pre- we have the value of*.

diction usingfcs (fy). The solid line corresponds to the predic-

tion stemming fromf .

0.8
0.6
0.4

it has been shown to be@(qN) effect[18].

Because at present we have no theory to describe the ten
perature jump that takes place near the thermal walls, and w:
know that Grad's method does not give good results neal 0.6
boundaries, we have chosen the observed value of the temp
perature at mid heighf >, , as the value to use in the for- g4
malism. The observed values decrease withand, in the
caseN=10000, we have adjusted them with the following
expression:

IN(T i) = —0.016 3258 N+ 5.276 56< 10 °(qN)? 0 Co
04 0.2 0 0.2 04
—1.86396<10 "(qN)3+4.241x 10 % gN)* 13
—4.23878<10 ¥(qN)® (37 FIG. 5. From top to bottom temperature profiles corresponding
to gN=5,10,30,50,100, and 200. The empty circles are the simula-
whose faithfulness is shown in Fig. 4. tional results, the dashed lingight-solid line) correspond to the

Since the pressure is uniform the temperature profile capredictions obtained witty, (fyco. The heavy-solid lines are the
be written directly as theoretical results whefy, is used.
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FIG. 6. Simulational and theoretical values for the components F1G- 7- Simulational and theoretical values for the heat flux
of the pressure tensor against dissipatipi. At top (bottom) the profiles. At top the three curves and set of simulational data corre-

P,x (Pyy) component. In light-solid linédashed lingthe theoreti- spond toqN=5 (circles, gN=20 (squares and qN=30 (rhom-
cal results when usind s distribution (fy, distribution. The busg. The dashed and light-solid lines correspond to the predictions

heavy-solid line is the theoretical result when using thelistribu- ~ USinNg fm andfics, respectively, the heavy-solid line corresponds
tion. to fo. At bottom are the observed values@j whengN=200 and,

the theoretical predictions when usirfg (heavy-solid ling, fy

From the value for the pressure and the set of E24). (dashed ling; andfycs (light-solid ling).

one gets the theoretical values g, andP,, as a function

of qN. These values are compared with our simulational datéeeping the area density fixed g, =0.01 the quantitygN

in Fig. 6. Again the comparison is good when the formalismhas been used as control parameter, wher¢1—r)/2, and

with f, is used and it is only fairly good with the other two simulations were made with different values Nfranging

formalisms. from N=2300 to 19 600. If the system were conservative it
As it has already been mentioned after E24), the two  would remain in a perfectly homogeneous state at tempera-

diagonal terms of the pressure tensor are not equal becaus&e To. Because there is dissipation the dimensionless num-

the system is anisotropic. ber densityn* has a maximum in the middley,.,, and the
(d) The heat currentEquation(35) gives the theoretical dimensionless temperatué has a minimumT%;,, also at

expression for the heat curre@f; . The top of Fig. 7 shows the center of the system. The pressure is uniform phd
simulational data and theoretical predictions for small values=n¥ T .
of gN. The three formalism predict well the observed values. We have derived hydrodynamic equations using a mo-
The bottom of Fig. 7 it is possible to see that f]pN=200  ment expansion method. This method has the fourth cumu-
only the formalism usind, fits the observed data, while the lant, «, of the velocity distribution as a parameter and three
other two fail badly. In the case ofN= 275 the agreementis possiblex’s were considered. These ate=0 which implies
still reasonable within about 5%. that the reference distribution function is a Maxwellian, and
two «’s of the form Eq.(8), one with parameteis, as in Eq.
(9) which corresponds to usinfg,cs as the reference function
and the other one using the valugs Eg. (36), numerically

In this paper we have studied a bi-dimensional granuladetermined to ensure that the values of the density at the
system ofN inelastic hard diskgnormal restitution coeffi- middle of the system come out correctly. The last case gives
cientr). The system is placed in a rectangular box and it isour reference functioriy. The empirical rational form ok
kept in a stationary regime with upper and lower walls at=«(q), Eq. (8), in the case of the successful distributifyn
granular temperaturd,. The lateral walls are periodic. turns out to be independent of the size of the system. The

V. FINAL COMMENTS
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fourth cumulant« of f; has been obtained to fit the results of uniform to within 1%. It must be kept in mind thai

a particular hydrodynamic regime and we expect that the=0.01 means that nonideal gas effects in the equation of
theory with the approximate expression E§) for « will state amount to about 2%. Another point of interesting com-
have different values for the coefficiertg when different  parison is the ratid®,, /Py, which, from Eq.(23), is readily
regimes are studied. In this sense it should not be surprisingeen in our case to bB,,/P,,=(B+A)/(B—A)~1+2q

that the coefficientd, associated ta successfully used to +0(g?). In [19] Py, is our P,y and vice versa. In their
describe the homogeneous cooling st€S) differ from  expressior(51) the same ratio corresponds approximately to
those used in the present paper. The HCS is an intrinsically+4q+ O(g?) while their data coming from their direct
time dependent state freely evolving while the system thasimulation Monte CarldDSMC) integration of Boltzmann's
we have described is time independent and it is continuouslgquation(see their Fig. Y suggests that the actual ratio is
being excited by an energy injection. Furthermore, from themuch nearer to the 4£2qg behavior obtained using Grad’s
moment expansion viewpoink is one additional moment method. The authors explain that this theory DSMC discrep-
and it should have been treated in the same footing as thency has its origin in that the viscosity and conductivity co-
other ones i, v;, T, P;j, and Qy), namely, it should be efficients cannot be adjusted simultaneously with the kinetic
treated as an extra hydrodynamic field. It is possible to do senodel and they chose to adjust the first.

but it is difficult and it does not give room fot to enter but In [15] the authors(Brey et al) present hydrodynamic
only linearly in the distribution function, and not in the way equations for the three-dimensional granular system derived
it appears in Eq(10). We hope to get deeper into this ques- using the Chapman—Enskog gradient expansion method
tion in the near future. When thi, is used, the comparison [their Egs.(56)—(58)]. One important difference is that the

between the predictions and simulation resultsnifyg,, p*, Chapman—-Enskog method up to the order used by the au-
P Py, against dissipation, and the density, temperaturethors leads to an isotropic pressure tensor while, as we have
and heat flux profiles are very good. stressed before, Grad’'s method cannot escape ha¥jng

The obvious conclusion is that the formalism basedgn # Pyy. These authors make use of an inteﬁresting generalized
gives an excellent description of the behavior of the systenfrourier’s law with a term proportional t¥ n besides the

for values ofgN up to 200 and it gives a reasonable descrip-standardV T term. On the other hand, as it is typical in
tion up togN nearly 300(slightly aboveqN~300 clustering  Grad’s method a dynamical equation @, Eq. (15), is
beging, while the other formalisms fail beyond aboglN  gptained. It depends on the gradients of several fields and, in
=40. We would like to add that clustering in our systemg generic stationary case, the implied transport law is highly
cannot be directly related to clustering in the homogeneouaonlinear with, among others, terms containﬁlg. It would
coolin.g statgHCS). For the HCS it has bgen established thaty . gitficult to ,attempt, in the’ length of a final comment, a
shearing breaks the homogeneous cooling state wiMm,  yho16,gh comparison between the two approaches. In the

2 - -
=7 /4, which, tra>nslated mechanically to our casea ( yrely conductive case studied by us in the present paper a
=0.01) impliesqN=247. The threshold for clustering, as far g rjier type of law is obtained with a conductivity which

as we know, is not known in the HCS caf]. In our  yanends om, «, andT and this is compatible with the pres-
system no shearing is observed and clustering occurs at a

higher value ofgN than the shearing threshold for the HCS ence of avn term, as in[15], since both, for thg Gra}d and
case. This is possibly so because our system is permanenH)q/e Chgpmah—Enskog method th? pressure 1S uniform and
being excited by the thermalizing walls delaying, with re-P=nT, implying thatVn is proportional toVT and then,
spect to the freely evolving homogeneous system, the agnce this term |s.a.bsorbed in thg trad_monal one, the effective
pearance of anyshearing or clusteringnstability. thermal conductivity gets modified without any further con-
It may be interesting to compare our results with those inS€quUences.
[19] where a kinetic model is presented and its consequences
in a Navier—Stokes approximation are analyzed.19] the
authors studied the system for a range of the control param-
eterqNp,, defined in Eq(34), similar to the range we have This work has been partly financed by Fondecyt research
used. Both formalisms, the present one and thail®j lead  Grant No. 296-0021R.R), Fondecyt research Grant No.
to a uniform pressure and our Newtonian simulation results1990148 (D.R.), Fondecyt research Grant No. 197-0786
as seen in our Fig. 1, show in fact that the observed pressuf®.C). One of us (R.S) acknowledges a grant from
for a system wittiN=19600,p,=0.01 and 16cqN<275is  MIDEPLAN and to FONDAP Grant No. 11980002.
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