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Hydrodynamic theory for granular gases
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A granular gas subjected to a permanent injection of energy is described by means of hydrodynamic
equations derived from a moment expansion method. The method uses as reference function not a Maxwellian
distribution f M but a distributionf 05F f M , such thatF adds a fourth cumulantk to the velocity distribution.
The formalism is applied to a stationary conductive case showing that the theory fits extraordinarily well the
results coming from our Newtonian molecular dynamic simulations once we determinek as a function of the
inelasticity of the particle–particle collisions. The shape ofk is independent of the sizeN of the system.
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I. INTRODUCTION

Granular systems subjected to a sufficiently strong e
tation may have a fluidlike behavior@1,2#. From the very
beginning several authors have attempted to derive hydro
namic equations for these systems@3,4#. If the excitation of
the granular system is through a permanent injection of
ergy, the fluid system may stabilize to a low density statio
ary gaseous state which necessarily is a nonequilibrium s
and it usually is inhomogeneous as well. To develop
basic features of the theory of gaseous granular system
restrict the analysis to the simplifying inelastic hard sph
model ~IHS! @3#.

Many authors studying granular gases have put partic
attention to studying the spontaneous homogeneous coo
of a granular system using periodic boundary conditio
@5,6#. This time dependent state is calledhomogeneous cool
ing state~HCS! and the understanding of its properties h
been improving through many papers@7–10#. A crucial
breakthrough was the realization by Goldshtein and Sha
@7# that the homogeneous cooling distribution function ha
scaling property with respect to the instantaneous temp
ture. Such distribution—which we will be callingf HCS—is
known in approximate forms@11,12#. It is known, among
other things, that its fourth cumulantk does not vanish and
that it has a long velocity tail.

A nonequilibrium inhomogeneous gaseous system, on
other hand, is described by a distorted distribution funct
typically obtained from Boltzmann’s equation expanding t
distribution either in gradients of the hydrodynamic fiel
~Chapman–Enskog method! @13# or making a moment ex
pansion~Grad method! @14#. For normal gases the expansio
is made about the equilibrium Maxwell distribution.

In this paper we will assume that a low density noneq
librium granular system has a local distribution functi
which can be obtained expanding about a distributionf 0 re-
semblingf HCS in the sense that it has a significantly nonv
nishing fourth cumulant. We introduce a reference funct
@see Eq.~5! below# which is a Maxwellian distorted by a
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factor which incorporates the next nontrivial cumulant,
fourth cumulant, to the distribution function and then w
undertake a perturbativemoment expansionà la Grad about
f 0 to solve Boltzmann’s equation. Some authors have d
some calculations in this direction but using the gradi
expansion~Chapman–Enskog! method @15#. The point is
that, without the notion of equilibrium, we expect that th
reference state,f 0 in our case, should resemble more t
homogeneous cooling state than the simple Maxwellian.

We study a two-dimensional system of hard disks, and
moment expansion—in dimension two—is an 8 moment
pansion: the number densityn(rW,t), the velocity fieldvW (rW,t),
the granular temperature fieldT(rW,t), the pressure tenso
Pi j (rW,t), and the heat flux vector fieldQW (rW,t). The dynamic
variables are not the components of the pressure tensP
itself but the components of the symmetric traceless partpi j
wherePi j 5pd i j 1pi j andp is the hydrostatic pressure.

As it can be seen in Grad’s paper@14# or in @16#, the
method yieldshydrodynamic equationsfor all the fields
mentioned above. In particular, the dynamic equations forpi j

andQW take the place of what would normally be the cons
tutive ~transport! equations of standard hydrodynamics. Th
last point means that we are not assuming any constitu
equations whatsoever, their present counterparts are dyn
equations.

It is well established that, in the case of the IHS model
granular systems, Boltzmann’s equation is modified in t
the restitution coefficientr enters solely in the gain term o
the collision integral and it does so in two forms. First t
gain term has an overall factorr 22 and second, the distribu
tion functions appearing in the gain term depend upon
precollision velocities, and these velocities depend onr @4#.

When the modified Boltzmann’s equation is used t
stemming hydrodynamic equations get factors that dep
on theinelasticity coefficient q,

q5
12r

2
~1!

(q50 in the perfectly elastic case! except that the mass con
2521 ©2000 The American Physical Society
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2522 PRE 62RAMÍREZ, RISSO, SOTO, AND CORDERO
tinuity equation and the momentum balance equation rem
unchanged since mass and momentum continue being m
scopically conserved.

In the context of Boltzmann’s equation a dissipative g
satisfies the ideal gas equation of state

p5nT, ~2!

where the granular temperatureT is defined in energy units
as the average kinetic energy per particle. If we were
consider the Boltzmann–Enskog equation, then the inela
ity coefficient would enter through the Enskog collision fa
tor x, and the equation of state of a normal gas and a di
pative gas would differ, but in the present context Eq.~2!
holds.

Usual moment expansion methods~as Grad’s is! are ap-
propriate to describe bulk properties. Wall effects are
well described unless higher order moments are include
the expansion, which are not trivial to handle@17#. Already
in normal gases hydrodynamic fields may have discontin
ties at walls. In a previous paper we gave a kinetic desc
tion of a one-dimensional granular system with theoreti
tools such that our description was correct and precise u
the walls@18# but we have not generalized yet that type
formalism to higher dimensions, hence, in the present pa
we use moment expansions.

In consequence the formalism we are going to pres
suffers too of the weakness of moment expansions: it is
reliable precisely at the points where the boundary con
tions should be imposed forcing us to trade the bound
conditions for conditions imposed far from the walls bas
on the actual behavior of the system according to our m
lecular dynamic simulations.

Our moment expansion method, explained in detail
Sec. II, uses as reference distribution function a distribut
f 0 which differs from a Maxwellian distribution in that it ha
a nonvanishing fourth cumulant,k. The method leads to hy
drodynamic equations for low density granular systems
depend parametrically on the inelasticity coefficientq andk.
We apply these hydrodynamic equations to a stationary
purely conductive case as in@19#. The value of the fourth
cumulantk, or better, the dependence of the fourth cumul
on q is determined directly from molecular dynamic simul
tions, and it turns out to be independent of the sizeN of the
system. The predictions that follow from our formalis
agree very well with all our simulation data.

In Sec. II we briefly present the moment expansi
method, in Sec. III the hydrodynamic equations that follo
are given and specialized to a purely conductive case,
finally in Sec. IV theory and simulational results are co
pared. Final comments are in Sec. V.

II. THE MOMENT EXPANSION METHOD
FOR GRANULAR SYSTEMS

Moment expansion methods can summarily be descri
as follows. Take a velocity distribution functionf 0(rW,cW ,t)
which is considered to be thereference functionabout which
an expansion is going to be made. For normal gases
natural choice forf 0 is a local Maxwellian distributionf M

written in terms of the peculiar velocityCW 5cW2vW (rW,t),
in
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where vW (rW,t) is the hydrodynamic velocity. Next a set o
orthonormal polynomials onCW , Ha(CW ), are built in the
sense thatH051 and

E Ha~CW !Hb~CW ! f 0~rW,CW ,t !dCW 5dab . ~3!

The polynomialsHa are obtained simply by building a bas
of orthonormal polynomials starting fromH051 and from
first degree upwards. We have built polynomials only onCi ,
Ci Cj andC2 Ci as Grad did, namely, up to third order an
not all of them. One could go on but so far this seems to
enough. Whenf 0 is a Maxwellian theHa are Hermite poly-
nomials but in general they are not but they are still obtain
in a straightforward way.

Next a distribution function of the form

f ~rW,CW ,t !5S 11(
a

Ha~CW !Ra~rW,t ! D f 0~rW,CW ,t ! ~4!

is defined and first it is checked that* f dcW5n. The Ra are
determined by systematically requiring that the avera
taken with the above distribution in the form̂A& f

[(1/n)*A f dcW give the correct quantities, such a
^mnCiCi& f5Pi j . The result of this exercise is that theRa
are simple combinations of the hydrodynamic fields~such as
Pi j ).

The following step is to replace the above distribution
Boltzmann’s equation to derive integrability conditions mu
tiplying the kinetic equation consecutively by theHa and
integrating the equation overCW . The idea is to do this up to
a given order and drop all contributions coming from po
nomials of degree higher than a chosen value~up to order 3
in our case!. These integrability conditions turn out to be
set of hydrodynamic equations for the different moments

A key point is the choice of the reference functionf 0. The
two-dimensional Maxwellian f M5n(m/2pT)exp@2mC2/
(2T)# is privileged as the solution describing the equilibriu
state of a normal gas. Since in granular systems there i
such thing as equilibrium a next best choice, seems a
torted Maxwellian distribution@11#

f 05F11
k

2 S 12C 21
C 4

8 D G f M ~5!

where the dimensionless peculiar velocity is

CW5Am

T
CW ~6!

and T is the granular temperature. The coefficientk is the
fourth cumulant off 0 and it depends on the inelasticity co
efficient q while the coefficients in front ofC 2 and C 4 are
derived from requiring thatf 0 is normalized and tha
^(m/2)C2& f 0

5T. The fourth cumulantk in dimension two is

k5
^C 4&22^C 2&2

^C 2&2
, ~7!
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In the case of the homogeneous cooling state, recent pa
have justified explicit forms@11,12# for k in the context of
distribution functions likef 0. Their results are well approxi
mated by

k5
b11b2q

11b3q
q, ~8!

with

b1522, b2'13.619, b3'4.5969. ~9!

The rational expression given in~8! is valid within 2.9% for
q<0.08, r 5122q>0.84. Notice thatk(q50)50 allowing
to recover the elastic case.

We describe quite satisfactorily nonhomogeneous, n
equilibrium stationary states with ak as in ~8!, but with
numerical factors different from those in Eq.~9!. The latter
values are valid only for the homogeneous cooling st
while our system is kept in a stationary inhomogeneous s
with appropriate boundary conditions.

For any k the distribution~4! with the explicit Ha ob-
tained with the method summarized above is

f (k)5F11
pxx

p~21k!
~C x

22C y
2!12

pxy

p~21k!
CxCy

1
Qx

2Q0

~C 22422k!Cx

~215k2k2!
1

Qy

2Q0

~C 22422k!Cy

~215k2k2!
G f 0 ,

~10!

where we have used thatpyy52pxx andQ05AT/mp. The
distribution f (k) shares withf 0 the first scalar moments: den
sity, temperature and fourth cumulant, for any value ofq. If
k is chosen to be zero then, in Eq.~10!, f 0→ f M and f (k)

becomes the usual Grad’s distribution. Hence the wh
method would be the original method devised by Grad a
if k is chosen to be Eq.~8! with coefficient values as in Eq
~9!, then f 0 would be what we are callingf HCS.

Given our ignorance regarding granular gases one co
in principle, acceptf M or f HCS as legitimate reference func
tions to make the moment expansion. In the following s
tions we compare the three formalisms~reference functions
f M , f HCS, and f 0, the latter with ak adjusted to the results!
concluding that only the one based onf 0 gives acceptable
results for a sufficiently large range ofq. In fact they are very
good.

III. THE HYDRODYNAMIC EQUATIONS

As already mentioned, the inelasticity coefficientq enters
the kinetic equation in two different forms. It appears as
factor (1/r 2)5@1/(122q)2# in the gain term and it appear
in the expression for the precollision velocities which a
part of the argument of the distribution functions appear
in the gain term. When the solutionf (k) is inserted in Bolt-
zmann’s equation,q enters in a still third form, precisely
through thek coefficient given by Eqs.~8! and~10!. Expand-
ing the collisional term of Boltzmann’s equation in powe
ers
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of q andk, the moment method yields the following hydro
dynamics equations for a granular gas.

First the mass and momentum balance equations ge
contribution from the collisional term:

Dn

Dt
1n“W •vW 50 ~11!

m n
DvW

Dt
2nFW 1“

W
•P50W . ~12!

But the balance associated to energy, toPi j and toQk do get
contributions from the collisional term,

n
DT

Dt
1

]Qk

]xl
1Plk

]vk

]xl
5

1

2

dp

dt
, ~13!

]Pi j

]t
1

]

]xl
~mn̂ CiCjCl&Pi j v l !1Pl j

]v i

]xl
1Pli

]v j

]xl
5

dPi j

dt
,

~14!

]Qk

]t
1

]

]xl
S mn

2
^C2CkCl&1v lQkD2FT

]Pks

]xs
1

Psk

mn

]Psl

]xl

1mn̂ ClCsCk&
]vs

]xl
1Ql

]vk

]xl
G5

dQk

dt
, ~15!

where ^A& refers to an average usingf (k) while D/Dt

[]/]t1vW •“W and

t5
1

2sp
AmT

p
~16!

is a characteristic relaxation time (s is the diameter of the
particles!. Thed terms~colisional contributions! are

dp

dt
52

2Ap

t
, ~17!

dPi j

dt
52

B

t
Pi j 1

B22A

t
pd i j , ~18!

dQk

dt
52

C

2t
Qk . ~19!

The ^•••& averages in Eqs.~12!–~15! and the coefficients
A, B, andC when the generic distributionf (k) is used turn
out to be

mn̂ CiCjCk&5 1
2 ~d i j qk1d jkqi1d ikqj !, ~20!

mn̂ C2CiCj&5S 6
213k

21k
Pi j 22

215k2k2

21k
pd i j D T

m
,

~21!

A~q!5@q~12q!1O~q5!#S 11
3

32
k1

9

4096
k2D ,
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B~q!5

11
1

2
q2

3

2
q21

23

32
kS 11

q

2D1
k2

4096
1O~q3!1O~k3!

S 11
1

2
k D , ~22!

C~q!5

11
13

2
q2

15

2
q21

k

64
~20611267q!2

2415

4096
k21O~q3!1O~k3!

S 11
5

2
k2

k2
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They depend onq and k, but k depends onq. At least for
small q the coefficientsA, B, and C are positive (q varies
between 0 and12 ). The coefficientA in Eq. ~13! determines
the energy dissipation in the system and consequently it v
ishes in the elastic limit whileB andC tend to 1.

It is our hope that the above hydrodynamics is valid in
wide variety of situations compatible with gaseous states
no clustering@5,8# but in this paper we restrict our study to
hydrostatic case.

We are going to consider the purely conductive regim
with no external force,FW 50. The system ofN disks is in a
rectangular box of dimensionLx3Ly , with thermal walls, at
y52 1

2 Ly and aty5 1
2 Ly , both at temperatureT0, and peri-

odic boundary conditions in theX direction. The case with
no external force is quite simple because the system is s
metric with respect toy→2y and the pressure turns out
be uniform. If the system were conservative, as a normal
this would be a homogeneous system at thermal equilibri
but since the system is dissipative the temperature dep
on the coordinatey (T has a minimum at the symmetry axi!
and the problem is much less trivial. Since the system
purely conductive there is no velocity field,Pxy50, Qx50
and the other fields depend only on the coordinatey.

More in detail, the mass continuity equation is an ident
the momentum balance equations imply that bothPxy and
Pyy are uniform, the energy balance leads toQy8522Ap/t
~the prime denotes derivative with respect toy). The balance
associated to thePi j leads to Pxy50 and to Qy85

22Bpyy /t which is a second expression forQy8 . Combining
both it follows thatpyy5Ap/B hence bothpyy and p are
uniform and

p5
Pyy

11
A

B

. ~23!

The balance associated to theQk says that

F S 3
213k

21k

APyy

A1B
12~21k!pD S T

mD G852CQy /~2t!.

Combining all the previous results the set of equations~11!–
~15! becomes

Pxx5
B2A

B
p, Pyy5

B1A

B
p,
n-

d

,

-

s,
,

ds

is

,

Qy8524Ap2sA p

mT~y!
, T852

sBC

3A* 12B*
Apm

T
Qy ,

~24!

with

A* 5
213k

21k
A, B* 5

21k

2
B, ~25!

where the prime indicates derivative with respect toy. Notice
that because there is inelasticity the pressure tensor is a
tropic in the sense thatPxxÞPyy . In fact Pyy2Pxx;A;q
and they do not depend on the coordinatey.

Next we are going to compare the implications of the
equations with our molecular dynamics results. To this e
we should, in principle, solve these hydrodynamic equati
using the boundary conditions associated to the partic
simulations that we have studied. This is not a straightf
ward task because, as we have mentioned at the end o
introduction, the moment expansion method~behind the pre-
vious hydrodynamic equations! does not give a good de
scription near boundaries. For example, if we impose tha
wall behaves as a stochastic wall at temperatureT0, the ob-
served fieldT is not expected to take that value near the wa
Later on it will be shown how we tackle this problem.

From Eq.~24! it is direct to derive that the temperatur
field satisfies the equation

TT91 1
2 T825k2s2p2, ~26!

where

k2[
4pABC

3A* 12B*
. ~27!

Since the pressure is uniform, and because of Eq.~2!, this
equation can also be used as an equation for the invers
the density.

Before proceeding to solve the equations we adimens
alize the problem defining a coordinatej5y/Ly , (2 1

2 <j
< 1

2 ) and we also define

n̄5
N

LxLy
, n~y!5n̄n* ~j!,
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K5
k

2A2
S Ns

Lx
D , Qy~y!5n̄T0AT0

m
Qy* ~j!, ~28!

T~y!5T0T* ~j!, p5n̄T0p* .

Once Eq.~26! is solved and converted to a solution for th
dimensionless number densityn* (j) the result is

4Kuju5
1

n* ~j!
Anmax* 2n* ~j!

nmax*

1
1

nmax*
arctanhAnmax* 2n* ~j!

nmax*
, ~29!

wherenmax* is the value taken byn* (j) in the middle of the
system,j50. In what follows it is shown thatnmax* is a
simple function of the parameterK defined above. The effec
of the boundaries is traded in favor of the observed value
nmax* .

The integral condition*n dx dy5N can be cast as

E
0

1/2

n* dj5 1
2 , ~30!

but sincedj5(dj/dn* )dn* the integral condition yields,

nb*

nmax*
512tanh2 K, ~31!

wherenb* is the value thatn* (j) takes at the two boundaries
nb* 5n* (6 1

2 ).
Equation~29! evaluated atj5 1

2 yields a different condi-
tion overnb* and it follows that

nmax* 5
1

2
1

sinh~2K !

4K
. ~32!

This is a strong result, it says that the dimensionless num
density at the center,nmax* , is determined byK2 alone,

K25a0
2 2ABC

3A* 12B*
, ~33!

wherea0
25NrA /a, a5Lx /Ly is the aspect ratio of the box

andrA5(p/4)(Ns2/(LxLy)) is the fraction of area occupie
by the disks. SinceA vanishes in the elastic limit and fo
small inelasticity coefficientq, A'q while B'1 andC'1
then

K2'a0
2q'

1

a
qNrA . ~34!

In the quasielastic limit then, the control parameter is ba
cally qNrA . This result, for fixed area density, resembl
what we obtained in the one-dimensional case@18#, namely,
that the relevant control parameter of the one-dimensio
equations isqN.

The temperature isT* (j)5p* /n* (j) but since the pres
sure is uniform one may be tempted to usep* 5nb* Tb* with
of

er

i-

al

the value fornb* already derived from the theory and th
valueTb* imposed in the simulation. This would give a ba
fit however because, as we have been emphasizing, the
malism is not reliable near the boundaries. Therefore
choose forp* the valuep* 5Tmin* nmax* . We knownmax* from
Eq. ~32!, and we take the value forTmin* directly from our
simulations. It may be said thatTmin* is a parameter to adjus
our results.

The dimensionless heat flux becomes

Qy* ~j!5
3A* 12B*

2BC

1

a0
A p*

n* ~j!

p*

n* ~j!2

dn*

dj
. ~35!

IV. SIMULATION-THEORY COMPARISON

In this section we compare the simulational results w
the values given by three formalisms which use as refere
function: ~i! f M , ~ii ! f HCS, and~iii ! f 0. We are callingf HCS
the function likef 0 but with k defined with the values given
in Eq. ~9!. The molecular dynamic simulations are true Ne
tonian simulations in the sense that the history of each p
ticle is integrated using standard collision rules. Our meth
has been described elsewhere@16,20,21#.

Since the formalisms differ by terms of higher order inq
their predictions are quite similar unlessqN is large enough.
Typically the Maxwellian theory and the one based onf HCS
are valid until aboutqN520 and are reasonable untilqN
540 while the theory based onf 0, with an adjustedk, is
valid for values ofqN up to 200, and reasonably good un
aboutqN'300.

A. Simulational setup

We have performed simulations of a two-dimension
system ofN52300, N53600, N510 000, andN519 600
inelastic hard disks inside aL3L box with lateral periodic
boundary conditions while the upper and lower walls a
kept at granular temperatureT051. The area fraction cov-
ered by the disks was chosen to berA50.01 ~in which case
the nonideal corrections to the equation of state are less
2%! while the qN dissipation parameter ranges fromqN
510 up toqN5400. The observed hydrostatic pressure is
fact uniform within 1%, except very close to the walls, s
Fig. 1. In theN52300 case, the smallest simulated syste
the ratio between the mean free path and the linear size o
system~Knudsen number! is 0.065 and it is smaller in the
other cases. This value guarantees that not too close to
walls the fluid has a hydrodynamic behavior. The wall te
peratureT0 is imposed sorting the velocity of the bouncin
particles as if they were coming from a heat bath atT5T0.

In every simulation the system was relaxed from an init
condition for a sufficiently long time. After the relaxation w
measure local time averages of the main moments of
distribution~i.e., n, vW , T, Pi j , QW ) inside each one of a set o
square cells. Taking advantage of the translation invaria
in the X direction, it is natural to take horizontal averag
getting, in this way, smooth vertical profiles for the observ
hydrodynamic fields.
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B. Theory and simulation comparison

In order to compare theory and simulation some analy
is needed because size effects are quite noticeable unles
numberN of particles is above about 3600. We use expr
sion ~32! for nmax* as our point of contact between theory a
simulation and proceed to adjust the coefficientsbk in Eq. ~8!
so thatK takes the values that makes theory give the
served values fornmax* .

With this aim we first writeK as a rational expressio
K5a0Aq(11a1q)/(11a2q) and find the values of theak

so that Eq.~32! reproduces the observed values ofnmax* . We
have to adjusta0 in spite of its definition, given under Eq
~33!, because the effective values for the number of partic
the global density and the aspect ratio get distorted s
there is a layer near the thermalizing walls which does
behave hydrodynamically. Once this expression forK is
fixed, we invert~33! to obtain values fork as a function ofq.
The size effect is ina0 alone andk(q) is approximately the
same for systems withN larger than about 3600, as shown
Fig. 2. In this figure there is a solid line which is Eq.~8! with

b15244.77, b25227.96, b35172.5. ~36!

The discrepancies between this curve and the empirical
ues ofk are less than 2% for the whole range ofq consid-
ered. More in detail, Fig. 2 shows the behavior ofk(q) for
systems of different size. It is seen that in the case oN
52300 ~solid circles! k(q) is dependent on the system
size, while the predictions in the casesN53600, 10 000, and
19 600 differ among themselves by less than 2%. Only
smallest simulated system (N52300) departs from this oth
erwise universal shape.

In the following we present the results corresponding
the N510 000 case.

~a! The density: As a first step and in order to check th
validity of the kinetic description~no clustering,@5#! we
have plotted the final configurational positions of the p
ticles ~not shown here! for different values ofqN up to qN
5400, finding that clustering begins at aboutqN'300. In

FIG. 1. The pressure profile in our simulations withN
519 600, particles, area densityrA50.01, andqN510 ~closed
circles! andqN5275 ~open circles!. It can be appreciated thatp is
uniform except in a limited region near the walls where our form
ism is known to fail.
is
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fact, we have detected that the number of collisions per u
time increases dramatically shortly afterqN5300.

As a second step we check the validity of Eq.~32! ~which
for fixed geometry depends only onqN) with simulations.
The top of Fig. 3 shows bothnmax* ~growing curves withqN)
andnb* ~the decreasing curves!. It is seen how well the val-
ues of nmax* ~solid circles! come from thef 0 distribution
~there should be no surprise as these are the fitted d!,
compared with the prediction using the other two distrib
tions. This graph shows thatnmax* with the other two formal-
isms is good only up toqN'40.

Also at top Fig. 3 shows the values predicted by Eq.~31!
and the observed values ofnb* ~see the caption!, and it is
seen that all theoretical schemes give values close to
simulational results in the considered range ofqN. This is
the only case where, for largeqN, predictions coming from
f M are better that those coming fromf 0, but we do not be-
lieve there is anything deep here since our moment exp
sion method is not reliable near walls.

Figure 3, bottom, compares theory and simulational d
sity profiles for qN530 and qN5200. As it has already
been explained, the valuenmax* in Eq. ~29! is fixed by Eq.
~32! and there are no extra parameters to adjust. It is s
that theory in all cases (f M , f HCS, and f 0) give good agree-
ment for low values ofqN. However predictions forqN
5200, when usingf M or f HCS fail. It is amazing how large
qN can be whenf 0 is used. In the last case the parameteK
is adjusted only from the knowledge ofnmax* and it accurately
predicts the behavior in almost all the volume. From t
figure it can be appreciated that near the walls (j560.5), as
mentioned in the introduction, the theory does not pred
well the behavior ofn* (j).

~b! The temperature: It has already been mentioned th
the temperature profiles exhibit a minimum at the center
there is a temperature jump at the boundaries. In Fig. 4
show the simulational results forTmin* 5T* (j50) and tem-
peratureTb* 5T* (j561/2). It is seen that forqN540 the
temperature of the fluid by the walls is about 40% lower th
the imposed value. This effect is due to dissipation and in

-

FIG. 2. The fourth cumulantk againstq for systems of different
size. The empirical values ofk are represented by triangles forN
519 600, empty circles forN510 000, empty squares forN
53600, and solid circles forN52300. The solid line correspond
to our empirical fit. See text.



te
w

e
te
-

g

ca

ra-
s

b-

e
he

hen

si

al

o

e-
c-

t
he

ing
ula-

PRE 62 2527HYDRODYNAMIC THEORY FOR GRANULAR GASES
it has been shown to be aO(qN) effect @18#.
Because at present we have no theory to describe the

perature jump that takes place near the thermal walls, and
know that Grad’s method does not give good results n
boundaries, we have chosen the observed value of the
perature at mid height,Tmin* , as the value to use in the for
malism. The observed values decrease withqN and, in the
caseN510 000, we have adjusted them with the followin
expression:

ln~Tmin!520.016 3259qN15.276 5631025~qN!2

21.863 9631027~qN!314.241310210~qN!4

24.238 78310213~qN!5 ~37!

whose faithfulness is shown in Fig. 4.
Since the pressure is uniform the temperature profile

be written directly as

FIG. 3. At top the predicted and observed values for the den
nmax* at the center of the box (j50) andnb* near the boundaries
(j560.5). The solid~open! circles correspond to the simulation
values fornmax* (nb* ), the light-dashed~heavy-dashed! line corre-
sponds to the theoretical prediction usingf HCS ( f M). The solid line
corresponds to our empirical adjustment~see text!. At bottom the
predicted and observed density profiles for two different values
qN. The open~solid! circles correspond toqN530(qN5200). The
light-dashed~heavy-dashed! line corresponds to the theoretical pr
diction using f HCS ( f M). The solid line corresponds to the predi
tion stemming fromf 0.
m-
e

ar
m-

n

T* ~j!5
Tmin* nmax*

n* ~j!
. ~38!

Figure 5 shows the simulational and theoretical tempe
ture profiles for some values ofqN. The three upper curve
show the profiles for smallqN values (qN510,20,30) and it
is seen that the predictions usingf 0 ~solid line! give an ex-
cellent fit to the simulational data while for the results o
tained usingf M or f HCS ~dashed and light lines, respectively!
the fit is only fair. The lowest curves showsT profiles for
larger values ofqN (qN550,100,200). In this case only th
formalism based onf 0 give an acceptable description and t
agreement is very good up toqN5200. In the case ofqN
5275, not shown, there is still a reasonable agreement w
f 0 is used.

~c! The pressure: Now that the values ofnmax* andTmin* are
known and since the pressure is uniform~both in theory and
simulationally! and theory asserts thatp* 5Tmin* nmax* , then
we have the value ofp* .

ty

f

FIG. 4. TemperatureTmin* at the center of the channel~open
circles! against dissipationqN. The solid line corresponds to a fi
using Eq.~36!. The solid circles are the observed values for t
temperatureTb* near the boundaries.

FIG. 5. From top to bottom temperature profiles correspond
to qN55,10,30,50,100, and 200. The empty circles are the sim
tional results, the dashed line~light-solid line! correspond to the
predictions obtained withf M ( f HCS). The heavy-solid lines are the
theoretical results whenf 0 is used.
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From the value for the pressure and the set of Eqs.~24!
one gets the theoretical values forPxx andPyy as a function
of qN. These values are compared with our simulational d
in Fig. 6. Again the comparison is good when the formali
with f 0 is used and it is only fairly good with the other tw
formalisms.

As it has already been mentioned after Eq.~24!, the two
diagonal terms of the pressure tensor are not equal bec
the system is anisotropic.

~d! The heat current: Equation~35! gives the theoretica
expression for the heat currentQy* . The top of Fig. 7 shows
simulational data and theoretical predictions for small val
of qN. The three formalism predict well the observed valu
The bottom of Fig. 7 it is possible to see that forqN5200
only the formalism usingf 0 fits the observed data, while th
other two fail badly. In the case ofqN5275 the agreement i
still reasonable within about 5%.

V. FINAL COMMENTS

In this paper we have studied a bi-dimensional granu
system ofN inelastic hard disks~normal restitution coeffi-
cient r ). The system is placed in a rectangular box and i
kept in a stationary regime with upper and lower walls
granular temperatureT0. The lateral walls are periodic

FIG. 6. Simulational and theoretical values for the compone
of the pressure tensor against dissipationqN. At top ~bottom! the
Pxx (Pyy) component. In light-solid line~dashed line! the theoreti-
cal results when usingf HCS distribution (f M distribution!. The
heavy-solid line is the theoretical result when using thef 0 distribu-
tion.
ta

use

s
.

r

s
t

Keeping the area density fixed torA50.01 the quantityqN
has been used as control parameter, whereq5(12r )/2, and
simulations were made with different values ofN ranging
from N52300 to 19 600. If the system were conservative
would remain in a perfectly homogeneous state at temp
tureT0. Because there is dissipation the dimensionless n
ber densityn* has a maximum in the middle,nmax* , and the
dimensionless temperatureT* has a minimum,Tmin* , also at
the center of the system. The pressure is uniform andp*
5nmax* Tmin* .

We have derived hydrodynamic equations using a m
ment expansion method. This method has the fourth cu
lant, k, of the velocity distribution as a parameter and thr
possiblek ’s were considered. These arek50 which implies
that the reference distribution function is a Maxwellian, a
two k ’s of the form Eq.~8!, one with parametersbk as in Eq.
~9! which corresponds to usingf HCS as the reference function
and the other one using the valuesbk , Eq. ~36!, numerically
determined to ensure that the values of the density at
middle of the system come out correctly. The last case gi
our reference functionf 0. The empirical rational form ofk
5k(q), Eq. ~8!, in the case of the successful distributionf 0
turns out to be independent of the size of the system.

ts FIG. 7. Simulational and theoretical values for the heat fl
profiles. At top the three curves and set of simulational data co
spond toqN55 ~circles!, qN520 ~squares!, and qN530 ~rhom-
bus!. The dashed and light-solid lines correspond to the predicti
using f M and f HCS, respectively, the heavy-solid line correspon
to f 0. At bottom are the observed values ofQy* whenqN5200 and,
the theoretical predictions when usingf 0 ~heavy-solid line!, f M

~dashed line!, and f HCS ~light-solid line!.
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fourth cumulantk of f 0 has been obtained to fit the results
a particular hydrodynamic regime and we expect that
theory with the approximate expression Eq.~8! for k will
have different values for the coefficientsbk when different
regimes are studied. In this sense it should not be surpri
that the coefficientsbk associated tok successfully used to
describe the homogeneous cooling state~HCS! differ from
those used in the present paper. The HCS is an intrinsic
time dependent state freely evolving while the system t
we have described is time independent and it is continuo
being excited by an energy injection. Furthermore, from
moment expansion viewpoint,k is one additional momen
and it should have been treated in the same footing as
other ones (n, v i , T, Pi j , and Qk), namely, it should be
treated as an extra hydrodynamic field. It is possible to do
but it is difficult and it does not give room fork to enter but
only linearly in the distribution function, and not in the wa
it appears in Eq.~10!. We hope to get deeper into this que
tion in the near future. When thisf 0 is used, the compariso
between the predictions and simulation results fornmax* , p* ,
Pxx* , Pyy* against dissipation, and the density, temperatu
and heat flux profiles are very good.

The obvious conclusion is that the formalism based onf 0
gives an excellent description of the behavior of the sys
for values ofqN up to 200 and it gives a reasonable descr
tion up toqN nearly 300~slightly aboveqN;300 clustering
begins!, while the other formalisms fail beyond aboutqN
540. We would like to add that clustering in our syste
cannot be directly related to clustering in the homogene
cooling state~HCS!. For the HCS it has been established th
shearing breaks the homogeneous cooling state whenqNrA
>p2/4, which, translated mechanically to our case (rA
50.01) impliesqN>247. The threshold for clustering, as f
as we know, is not known in the HCS case@22#. In our
system no shearing is observed and clustering occurs
higher value ofqN than the shearing threshold for the HC
case. This is possibly so because our system is perman
being excited by the thermalizing walls delaying, with r
spect to the freely evolving homogeneous system, the
pearance of any~shearing or clustering! instability.

It may be interesting to compare our results with those
@19# where a kinetic model is presented and its conseque
in a Navier–Stokes approximation are analyzed. In@19# the
authors studied the system for a range of the control par
eterqNrA , defined in Eq.~34!, similar to the range we hav
used. Both formalisms, the present one and that in@19# lead
to a uniform pressure and our Newtonian simulation resu
as seen in our Fig. 1, show in fact that the observed pres
for a system withN519 600,rA50.01 and 10<qN<275 is
A
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uniform to within 1%. It must be kept in mind thatrA
50.01 means that nonideal gas effects in the equation
state amount to about 2%. Another point of interesting co
parison is the ratioPyy /Pxx which, from Eq.~23!, is readily
seen in our case to bePyy /Pxx5(B1A)/(B2A)'112q
1O(q2). In @19# Pxx is our Pyy and vice versa. In their
expression~51! the same ratio corresponds approximately
114q1O(q2) while their data coming from their direc
simulation Monte Carlo~DSMC! integration of Boltzmann’s
equation~see their Fig. 7! suggests that the actual ratio
much nearer to the 112q behavior obtained using Grad’
method. The authors explain that this theory DSMC discr
ancy has its origin in that the viscosity and conductivity c
efficients cannot be adjusted simultaneously with the kine
model and they chose to adjust the first.

In @15# the authors~Brey et al.! present hydrodynamic
equations for the three-dimensional granular system der
using the Chapman–Enskog gradient expansion met
@their Eqs.~56!–~58!#. One important difference is that th
Chapman–Enskog method up to the order used by the
thors leads to an isotropic pressure tensor while, as we h
stressed before, Grad’s method cannot escape havingPxx
ÞPyy . These authors make use of an interesting general
Fourier’s law with a term proportional to“W n besides the
standard“W T term. On the other hand, as it is typical
Grad’s method a dynamical equation forQk , Eq. ~15!, is
obtained. It depends on the gradients of several fields an
a generic stationary case, the implied transport law is hig
nonlinear with, among others, terms containing“

W n. It would
be difficult to attempt, in the length of a final comment,
thorough comparison between the two approaches. In
purely conductive case studied by us in the present pap
Fourier type of law is obtained with a conductivity whic
depends onq, k, andT and this is compatible with the pres
ence of a“W n term, as in@15#, since both, for the Grad an
the Chapman–Enskog method the pressure is uniform
p5nT, implying that“W n is proportional to“W T and then,
once this term is absorbed in the traditional one, the effec
thermal conductivity gets modified without any further co
sequences.
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