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Preface

So, ultimately, in order to understand nature it may be rezogdo have a deeper under-
standing of mathematical relationships. But the real neasahat the subject is enjoyable,
and although we humans cut nature up in different ways, antave different courses in
different departments, such compartmentalization idyreatificial, and we should take our
intellectual pleasures where we find theRichard Feynman, The Laws of Thermodynamics.

Why a preface you may ask? Isn't that just a mere expositianrafson d’etre of an author’s choice
of material, preferences, biases, teaching philosoph9 @twa large extent | can answer in the affirmative
to that. A preface ought to be personal. Indeed, what youss# in the various chapters of these notes
represents how | perceive computational physics shouldumgght.

This set of lecture notes serves the scope of presentingutaryetrain you in an algorithmic approach
to problems in the sciences, represented here by the unikyexd disciplines, physics, mathematics and
informatics. This trinity outlines the emerging field of cputational physics. Time is ripe for revising
the old tale that if mathematics is the queen of scieﬂ](ﬂaen physics is king. Informatics ought definitely
to belong among the princely.

Our insight in a physical system, combined with numericallmamatics gives us the rules for setting
up an algorithm, viz a set of rules for solving a particulankgem. Our understanding of the physical
system under study is obviously gauged by the natural laywkagt the initial conditions, boundary con-
ditions and other external constraints which influence itiergsystem. Having spelled out the physics,
for example in the form of a set of coupled partial differahgquations, we need efficient numerical
methods in order to set up the final algorithm. This algoriikrm turn coded into a computer program
and executed on available computing facilities. To devalagh an algorithmic approach, you will be
exposed to several physics cases, spanning from the @bpsitdulum to quantum mechanical systems.
We will also present some of the most popular algorithms frammerical mathematics used to solve a
plethora of problems in the sciences. Finally we will codifiese algorithms using some of the most
widely used programming languages, presently C, C++ angidfoand its most recent standard Fortran
200&1. However, a high-level and fully object-oriented langué¢ige Python is now emerging as a good
alternative. In this text we offer an approach where one catewall programs in Python, C/C++ or
Fortran. We will also show you how to develop large programByithon interfacing C++ and/or Fortran
functions for those parts of the program which CPU intensive

Computer simulations are nowadays an integral part of copdeary basic and applied research in
the sciences. Computation is becoming as important asytla@odrexperiment. In physics, computational
physics, theoretical physics and experimental physicalhegually important in our daily research and
studies of physical systems. Physics is the unity of theexperiment and computatiin Moreover,
the ability "to compute" forms part of the essential repeet@f research scientists. Several new fields

!According to the German mathematician Karl Friedrich Gamske nineteenth century.

2Throughout this text we refer to Fortran 2003 as Fortran/ying the latest standard. Fortran 2008 will only add minor
changes to Fortran 2003.

%We mentioned previously the trinity of physics, mathenstiad informatics. Viewing physics as the trinity of theory,
experiment and simulations is yet another example. It iSasly tempting to go beyond the sciences. History shows tha
triunes, trinities and for example triple deities permehtelndo-European cultures (and probably all human cudjufeom the
ancient Celts and Hindus to modern days. The ancient Cektsa@ many such trinues, their world was divided into eatia,
and air, nature was divided in animal, vegetable and mirardlthe cardinal colours were red, yellow and blue, just totioe
a few. As a curious digression, it was a Gaulish Celt, Hilphilosopher and bishop of Poitiers (AD 315-367) in his wDrk
Trinitate who formulated the Holy Trinity concept of Christianity,rpaps in order to accomodate millenia of human divination
practice.



within computational science have emerged and strengthtrer positions in the last years, such as
computational materials science, bioinformatics, comtiomal mathematics and mechanics, computa-
tional chemistry and physics and so forth, just to mentioeva fThese fields underscore the importance
of simulations as a means to gain novel insights into physicstems, especially for those cases where no
analytical solutions can be found or an experiment is toogimated or expensive to carry out. To be able
to simulate large quantal systems with many degrees ofdraesiich as strongly interacting electrons in
a quantum dot will be of great importance for future direcian novel fields like nano-techonology. This
ability often combines knowledge from many different sakge in our case essentially from the physi-
cal sciences, numerical mathematics, computing languém@ss from high-performace computing and
some knowledge of computers.

In 1999, when | started this course at the department of pbysiOslo, computational physics and
computational science in general were still perceived byntlajority of physicists and scientists as topics
dealing with just mere tools and number crunching, and nsuagects of their own. The computational
background of most students enlisting for the course on ctatipnal physics could span from dedicated
hackers and computer freaks to people who basically had need a PC. The majority of undergraduate
and graduate students had a very rudimentary knowledge ropatational techniques and methods.
Questions like 'do you know of better methods for numericggration than the trapezoidal rule’ were
not uncommon. | do happen to know of colleagues who appliedifoe at a supercomputing centre
because they needed to invert matrices of the size)bfx 10* since they were using the trapezoidal
rule to compute integrals. With Gaussian quadrature tmedsionality was easily reduced to matrix
problems of the size af0? x 102, with much better precision.

Less than ten years later most students have now been eximad®dirly uniform introduction to
computers, basic programming skills and use of numericatotses. Practically every undergraduate
student in physics has now made a Matlab or Maple simulatfdorcexample the pendulum, with or
without chaotic motion. Nowadays most of you are familiaroigh various undergraduate courses in
physics and mathematics, with interpreted languages ssidWiaple, Matlab and/or Mathematica. In
addition, the interest in scripting languages such as Pythd?erl has increased considerably in recent
years. The modern programmer would typically combine sguemls, computing environments and
programming languages. A typical example is the followiruppose you are working on a project
which demands extensive visualizations of the results. blaio these results, that is to solve a physics
problems like obtaining the density profile of Bose-Einstebndensate, you need however a program
which is fairly fast when computational speed matters. s tlase you would most likely write a high-
performance computing program using Monte Carlo methodarniguages which are taylored for that.
These are represented by programming languages like RanichC++. However, to visualize the results
you would find interpreted languages like Matlab or scrigtianguages like Python extremely suitable
for your tasks. You will therefore end up writing for examplacript in Matlab which calls a Fortran ot
C++ program where the number crunching is done and thenlidsuhe results of say a wave equation
solver via Matlab’s large library of visualization toolsltérnatively, you could organize everything into a
Python or Perl script which does everything for you, calisEortran and/or C++ programs and performs
the visualization in Matlab or Python. Used correctly, thésols, spanning from scripting languages to
high-performance computing languages and vizualizatimgnams, speed up your capability to solve
complicated problems. Being multilingual is thus an adagatwhich not only applies to our globalized
modern society but to computing environments as well. Téws$ $hows you how to use C++, Fortran
and Pyhton as programming languages.

There is however more to the picture than meets the eye. égthnterpreted languages like Matlab,
Mathematica and Maple allow you nowadays to solve very caatgdd problems, and high-level lan-
guages like Python can be used to solve computational prahleomputational speed and the capability
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to write an efficient code are topics which still do matter.tfiis end, the majority of scientists still use
languages like C++ and Fortran to solve scientific problesisen you embark on a master or PhD the-
sis, you will most likely meet these high-performance cotmgulanguages. This course emphasizes thus
the use of programming languages like Fortran, Python andi@stead of interpreted ones like Matlab
or Maple. You should however note that there are still larfier@nces in computer time between for
example numerical Python and a corresponding C++ prograrmémy numerical applications in the
physical sciences, with a code in C++ being the fastest. £@wp for example still slow in high-level
languages like Python.

Computational speed is not the only reason for this choicprofjramming languages. Another
important reason is that we feel that at a certain stage oessrte have some insights into the algorithm
used, its stability conditions, possible pitfalls like$asf precision, ranges of applicability, the possibility
to improve the algorithm and taylor it to special purposesett. One of our major aims here is to
present to you what we would dub 'the algorithmic approaehset of rules for doing mathematics or
a precise description of how to solve a problem. To devicelgorithm and thereafter write a code
for solving physics problems is a marvelous way of gainirgjght into complicated physical systems.
The algorithm you end up writing reflects in essentially albes your own understanding of the physics
and the mathematics (the way you express yourself) of tHelgmmn We do therefore devote quite some
space to the algorithms behind various functions presentia text. Especially, insight into how errors
propagate and how to avoid them is a topic we would like youap gpecial attention to. Only then
can you avoid problems like underflow, overflow and loss otjsien. Such a control is not always
achievable with interpreted languages and canned fursctidrere the underlying algorithm and/or code
is not easily accesible. Although we will at various stagesommend the use of library routines for
say linear algebﬂa our belief is that one should understand what the giventiomaoes, at least to
have a mere idea. With such a starting point, we stronghebelthat it can be easier to develope more
complicated programs on your own using Fortran, C++ or Rytho

We have several other aims as well, namely:

— We would like to give you an opportunity to gain a deeper usi@rding of the physics you have
learned in other courses. In most courses one is normallfrarmead with simple systems which
provide exact solutions and mimic to a certain extent thésteacases. Many are however the
comments like 'why can't we do something else than the gariica box potential?’. In several of
the projects we hope to present some more 'realistic’ casgslve by various numerical methods.
This also means that we wish to give examples of how physicdeaapplied in a much broader
context than it is discussed in the traditional physics ug@&uate curriculum.

— To encourage you to "discover” physics in a way similar to hesearchers learn in the context of
research.

— Hopefully also to introduce numerical methods and new apéaysics that can be studied with
the methods discussed.

— To teach structured programming in the context of doingrese

— The projects we propose are meant to mimic to a certain ettiersituation encountered during a
thesis or project work. You will tipically have at your disga 2-3 weeks to solve numerically a
given project. In so doing you may need to do a literatureysaglwell. Finally, we would like
you to write a report for every project.

4Such library functions are often taylored to a given mackimechitecture and should accordingly run faster than user
provided ones.



Our overall goal is to encourage you to learn about scienoaigh experience and by asking questions.
Our objective is always understanding and the purpose opating is further insight, not mere numbers!
Simulations can often be considered as experiments. Riegiansimulation need not be as costly as
rerunning an experiment.

Needless to say, these lecture notes are upgraded corgipufsam typos to new input. And we do
always benefit from your comments, suggestions and ideasdking these notes better. It's through the
scientific discourse and critics we advance. Moreover, ERaenefitted immensely from many discus-
sions with fellow colleagues and students. In particularustrmention Prof. Torgeir Engeland, whose
input through the last years has considerably improvecethesure notes.

Finally, I would like to add a petit note on referencing. Themtes have evolved over many years
and the idea is that they should end up in the format of a welkébkearning environment for doing com-
putational science. It will be fully free and hopefully repent a much more efficient way of conveying
teaching material than traditional textbooks. | have natsgtled on a specific format, so any input is
welcome. At present however, it is very easy for me to upgeadkimprove the material on say a yearly
basis, from simple typos to adding new material. When aaugghe web page of the course, you will
have noticed that you can obtain all source files for the pnogrdiscussed in the text. Many people have
thus written to me about how they should properly referehée rmaterial and whether they can freely
use it. My answer is rather simple. You are encouraged tohesetcodes, modify them, include them
in publications, thesis work, your lectures etc. As long asryuse is part of the dialectics of science
you can use this material freely. However, since many wegkéiave elapsed in writing several of these
programs, testing them, sweating over bugs, swearing imt tba f*@?%g code which didn’t compile
properly ten minutes before monday morning’s eight o’climkure etc etc, | would dearly appreciate in
case you find these codes of any use, to reference them propkdt can be done in a simple way, refer
to M. Hjorth-Jensenl_ecture Notes on Computational Physithiversity of Oslo, (2008). The weblink
to the course should also be included. Hope it is not too moietsk for. Enjoy!
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Chapter 1

Introduction

. Die Untersuchungsmethode, deren ich mich bedient habe endufl 6konomis-
che Probleme noch nicht angewandt wurde, macht die Lek&remten Kapitel ziemlich
schwierig, und es ist zu befiirchten,das franzdsische Publikum, stets ungeduldig nach
dem Ergebnis und begierig, den Zusammenhang zwischenldemalinen Grundsatzen und
den Fragen zu erkennen, die es unmittelbar bewegen, sichrabken I&t, weil es nicht
sofort weiter vordringen kann.

Das ist ein Nachteil, gegen den ich nichts weiter unternehikaan, als die nach Wahrheit
strebenden Leser von vornherein darauf hinzuweisen urabigefi machen. Es gibt keine
Landstragge fir die Wissenschaft, und nur diejenigen haben, Ausstute lichten Hohen zu
erreichen, die die Mihe nicht scheuen, ihre steilen Pfadaikdimmen.Karl Marx, preface
to the french edition of 'Das Kapital’, Vol. |

In the physical sciences we often encounter problems ofiatiah various properties of a given function
f(z). Typical operations are differentiation, integration dmaling the roots off(x). In most cases
we do not have an analytical expression for the functf¢m) and we cannot derive explicit formulae
for derivatives etc. Even if an analytical expression islate, the evaluation of certain operations on
f(z) are so difficult that we need to resort to a numerical evadnatMore frequentlyf(x) is the result

of complicated numerical operations and is thus known ohly set of discrete points and needs to be
approximated by some numerical methods in order to obtaimali@es, etc etc.

The aim of these lecture notes is to give you an introducticsetected numerical methods which are
encountered in the physical sciences. Several exampldsyarying degrees of complexity, will be used
in order to illustrate the application of these methods.

The text gives a survey over some of the most used methodsmpuwtational physics and each
chapter ends with one or more applications to realisticesgst from the structure of a neutron star to
the description of quantum mechanical systems through é4@airlo methods. Among the algorithms
we discuss, are some of the top algorithms in computatianahse. In recent surveys by Dongarra and
Sullivan [1] and Cipra [2], the list over the ten top algonith of the 20th century include

1. The Monte Carlo method or Metropolis algorithm, devisgddhn von Neumann, Stanislaw Ulam,
and Nicholas Metropolis, discussed in chapféfsi8-11.

2. The simplex method of linear programming, developed bgrGe Dantzig.

3. Krylov Subspace lIteration method for large eigenvalbi@ms in particular, developed by Mag-
nus Hestenes, Eduard Stiefel, and Cornelius Lanczos,ssiedun chaptér12.
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4. The Householder matrix decomposition, developed byoalstouseholder and discussed in chap-
ter[12.

The Fortran compiler, developed by a team lead by JohniBadodes used throughout this text.
The QR algorithm for eigenvalue calculation, developgdde Francis, discussed in chagpidr 12
The Quicksort algorithm, developed by Anthony Hoare.

Fast Fourier Transform, developed by James Cooley andTiakey, discussed in chapfed 19

© ® N o O

The Integer Relation Detection Algorithm, developed ldthan Ferguson and Rodney

10. The fast Multipole algorithm, developed by Leslie Gigaal and Vladimir Rokhlin; (to calculate
gravitational forces in an N-body problem normally reqsifé? calculations. The fast multipole
method uses order N calculations, by approximating thetsfief groups of distant particles using
multipole expansions)

The topics we cover start with an introduction to C++ and faorfprogramming combining it with
a discussion on numerical precision, a point we feel is ofteglected in computational science. This
chapter serves also as input to our discussion on numergcadation in chaptek]3. In that chapter we
introduce several programming concepts such as dynamealary allocation and call by reference and
value. Several program examples are presented in thisarh&jotr those who choose to program in C++
we give also an introduction to the auxiliary library Blitz;rwhich contains several useful classes for
numerical operations on vectors and matrices. The link tiz-Bt, matrices and selected algorithms for
linear algebra problems are dealt with in chapler 4. Cha@iemd® deal with the solution of non-linear
equations and the finding of roots of polynomials and nuraéiitterpolation, extrapolation and data
fitting.

Therafter we switch to numerical integration for integraith few dimensions, typically less than
three, in chaptdrl7. The numerical integration chapteresealso to justify the introduction of Monte-
Carlo methods discussed in chaptérs 8 [@nd 9. There, a vafietyplications are presented, from in-
tegration of multidimensional integrals to problems irtistacal physics such as random walks and the
derivation of the diffusion equation from Brownian motid@dhaptefZID continues this discussion by ex-
tending to studies of phase transitions in statistical jgisy<Chaptef 111 deals with Monte-Carlo studies of
quantal systems, with an emphasis on variational Monteo@aethods and diffusion Monte Carlo meth-
ods. In chaptdr12 we deal with eigensystems and applicatme.g., the Schrédinger equation rewritten
as a matrix diagonalization problem. Problems from sdatjetheory are also discussed, together with
the most used solution methods for systems of linear equatiéinally, we discuss various methods for
solving differential equations and partial differentigiuations in chaptefsI3315 with examples ranging
from harmonic oscillations, equations for heat conductiod the time dependent Schrodinger equation.
The emphasis is on various finite difference methods.

We assume that you have taken an introductory course ingmoging and have some familiarity
with high-level or low-level and modern languages such aa,JBython, C++, Fortran 77/90/95, etc.
Fortrarﬁ and C++ are examples of compiled low-level languages, inrrashto interpreted ones like
Maple or Matlab. In such compiled languages the computeskaes an entire subprogram into basic
machine instructions all at one time. In an interpreted legg the translation is done one statement at a
time. This clearly increases the computational time expered More detailed aspects of the above two
programming languages will be discussed in the lab clasmsarious chapters of this text.

lwith Fortran we will consistently mean Fortran 2003. Therer® programming examples in Fortran 77 in this text.



1.1 — Choice of programming language

There are several texts on computational physics on theahade for example Refs. [3—10], ranging
from introductory ones to more advanced ones. Most of thesss treat however in a rather cavalier
way the mathematics behind the various numerical methodsve/lso succumbed to this approach,
mainly due to the following reasons: several of the methadsudsed are rather involved, and would
thus require at least a two-semester course for an intrimsfucin so doing, little time would be left for
problems and computation. This course is a compromise leattieee disciplines, numerical methods,
problems from the physical sciences and computation. Tieglsuch a synthesis, we will have to relax
our presentation in order to avoid lengthy and gory mathmalagxpositions. You should also keep in
mind that computational physics and science in more getemrak consist of the combination of several
fields and crafts with the aim of finding solution strateg@sdomplicated problems. However, where we
do indulge in presenting more formalism, we have borroweaviyefrom several texts on mathematical
analysis.

1.1 Choice of programming language

As programming language we have ended up with preferring, Guttall examples discussed in the text
have their corresponding Fortran and Python programs owélxpage of this text.

Fortran (FORmula TRANSslation) was introduced in 1957 andaims in many scientific computing
environments the language of choice. The latest standarttaR [11-14], includes extensions that are
familiar to users of C++. Some of the most important featwfeSortran include recursive subroutines,
dynamic storage allocation and pointers, user defined tratetgres, modules, and the ability to manip-
ulate entire arrays. However, there are several good redepohoosing C++ as programming language
for scientific and engineering problems. Here are some:

— C++ is now the dominating language in Unix and Windows emuinents. It is widely available
and is the language of choice for system programmers. Itriswilespread for developments of
non-numerical software

— The C++ syntax has inspired lots of popular languages, ssi¢ted, Python and Java.
— Itis an extremely portable language, all Linux and Unix @ped machines have a C++ compiler.

— Inthe last years there has been an enormous effort towavetogeng numerical libraries for C++.
Numerous tools (numerical libraries such as MPI [15—-1&)\aritten in C++ and interfacing them
requires knowledge of C++. Most C++ and Fortran compileragare fairly well when it comes to
speed and numerical efficiency. Although Fortran 77 and Cegarded as slightly faster than C++
or Fortran, compiler improvements during the last few ydarge diminshed such differences. The
Java numerics project has lost some of its steam recentl]ara is therefore normally slower than
C++ or Fortran, see however the Java Numerics homepage fscasdion on numerical aspects
of Java [18].

— Complex variables, one of Fortran’s strongholds, can aésdddined in the new ANSI C++ stan-
dard.

— C++ is a language which catches most of the errors as earlgssspe, typically at compilation
time. Fortran has some of these features if one omits impliciable declarations.
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— C++ is also an object-oriented language, to be contrastdd @viand Fortran. This means that
it supports three fundamental ideas, namely objects, ¢l@sarchies and polymorphism. For-
tran has, through theMODULE declaration the capability of defining classes, but lackeiitance,
although polymorphism is possible. Fortran is then comsifl@s an object-based programming
language, to be contrasted with C++ which has the capabilitglating classes to each other in a
hierarchical way.

An important aspect of C++ is its richness with more than 8@nads allowing for a good balance
between object orientation and numerical efficiency. Farrtiore, careful programming can results in
an efficiency close to Fortran 77. The language is well-dufite large projects and has presently good
standard libraries suitable for computational sciencgepts, although many of these still lag behind
the large body of libraries for numerics available to Fartpmrogrammers. However, it is not difficult
to interface libraries written in Fortran with C++ codesgcére is exercised. Other weak sides are the
fact that it can be easy to write inefficient code and thatdlaee many ways of writing the same things,
adding to the confusion for beginners and professionalsedls Whe language is also under continuous
development, which often causes portability problems.

C++ is also a difficult language to learn. Grasping the basiagather straightforward, but takes
time to master. A specific problem which often causes unvdanteodd errors is dynamic memory
management.

The efficiency of C++ codes are close to those provided byr&wortThis means often that a code
written in Fortran 77 can be faster, however for large nuoa¢rmprojects C++ and Fortran are to be
preferred. If speed is an issue, one could port criticalspairthe code to Fortran 77.

Future plans

Since our undergraduate curriculum has changed conslgdraim the beginning of Fall-2007, with the
introduction of Python as programming language, the camtethis course will change accordingly from
the fall semester 2009. C++ and Fortran will then coexishwiython and students can choose between
these three programming languages. The emphasis in theitelse on C++ programming, but how to
interface C++ or Fortran programs with Python codes wilbdle discussed.

1.2 Designing programs

Before we proceed with a discussion of numerical methodsyetdd like to remind you of some aspects
of program writing.

In writing a program for a specific algorithm (a set of rules ftwing mathematics or a precise
description of how to solve a problem), it is obvious thafeté#nt programmers will apply different
styles, ranging from barely readaﬁeeven for the programmer) to well documented codes whictbean
used and extended upon by others in e.g., a project. The fagladability of a program leads in many
cases to credibility problems, difficulty in letting othexstend the codes or remembering oneself what a
certain statement means, problems in spotting errors,Iwaitya easy to implement on other machines,
and so forth. Although you should feel free to follow your owres, we would like to focus certain
suggestions which may improve a program. What follows hera list of our recommendations (or
biases/prejudices).

2As an example, a bad habit is to use variables with no specéaning, like x1, x2 etc, or names for subprograms which
go like routinel, routine2 etc.
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1.2 — Designing programs

First about designing a program.

— Before writing a single line, have the algorithm clarifiecdaimderstood. It is crucial to have a
logical structure of e.g., the flow and organization of dagfole one starts writing.

— Always try to choose the simplest algorithm. Computatispmded can be improved upon later.

— Try to write a as clear program as possible. Such programsasier to debug, and although it
may take more time, in the long run it may save you time. If yollaborate with other people, it
reduces spending time on debugging and trying to understéiatithe codes do. A clear program
will also allow you to remember better what the program yeddies!

— Implement a working code with emphasis on design for exterssimaintenance etc. Focus on the
design of your code in the beginning and don’t think too mugobua efficiency before you have a
thoroughly debugged and verified your program. A rule of thusthe so-calle@0 — 20 rule, 80
% of the CPU time is spent in 20 % of the code and you will expegethat typically onlya small
part of your code is responsible for most of the CPU expenrglittherefore, spend most of your
time in devising a good algorithm.

— The planning of the program should be from top down to bottoyimg to keep the flow as linear as
possible. Avoid jumping back and forth in the program. Ryt need to arrange the major tasks to
be achieved. Then try to break the major tasks into subtdsiese can be represented by functions
or subprograms. They should accomplish limited tasks arfdraas possible be independent of
each other. That will allow you to use them in other programwall.

— Try always to find some cases where an analytical solutiost®err where simple test cases can be
applied. If possible, devise different algorithms for sotythe same problem. If you get the same
answers, you may have coded things correctly or made the saprawice.

— When you have a working code, you should start thinking offieiency. Analyze the efficiency
with a tool (profiler) to predict the CPU-intensive partsia&k then the CPU-intensive parts after
the program reproduces benchmark results.

However, although we stress that you should post-pone astizm of the efficiency of your code to
the stage when you are sure that it runs correctly, thereaane simple guidelines to follow when you
design the algorithm.

— Avoid lists, sets etc., when arrays can be used without tochniaste of memory. Avoid also calls
to functions in the innermost loop since that produces anhaaal in the call.

— Heavy computation with small objects might be inefficieng. evector of class complex objects
— Avoid small virtual functions (unless they end up in morertlisay) 5 multiplications)

— Save object-oriented constructs for the top level of youeco

— Use taylored library functions for various operations,dgpible.

— Reduce pointer-to-pointer-to....-pointer links insideps.

— Avoid implicit type conversion, use rather the explicit keyd when declaring constructors in
C++.
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— Never return (copy) of an object from a function, since trosmally implies a hidden allocation.
Finally, here are some of our favoured approaches for wr#icode.

— Use always the standard ANSI version of the programminguagg. Avoid local dialects if you
wish to port your code to other machines.

— Add always comments to describe what a program or subprodoas. Comment lines help you
remember what you did e.g., one month ago.

— Declare all variables. Avoid totally theIMPLICIT statement in Fortran. The program will be more
readable and help you find errors when compiling.

— Do not use GOTO structures in Fortran. Although all varieties of spagheatti great culinaric temp-
tations, spaghetti-like Fortran with mang0T0 statements is to be avoided. Extensive amounts of
time may be wasted on decoding other authors’ programs.

— When you name variables, use easily understandable namesid A vi when you can use
speed_of_light . Associatives names make it easier to understand what disgebprogram
does.

— Use compiler options to test program details and if posslde different compilers. They make
errors too.

— Writing codes in C++ and Fortran may often lead to segmeamtdtiults. This means in most cases
that we are trying to access elements of an array which aravadable. When developing a code
it is then useful to compile with debugging options. The ukdebuggers likegdb is something
we highly recommend during the development of a program.



Chapter 2

Introduction to C++ and Fortran

Computers in the future may weigh no more than 1.5 t&agular Mechanics, 1949

There is a world market for maybe five computéfeomas Watson, IBM chairman, 1943

2.1 Introduction

This chapters aims at catching two birds with a stone; t@thice to you essential features of the pro-
gramming languages C++ and Fortran with a brief reminder yihd? specific topics, and to stress
problems like overflow, underflow, round off errors and euefly loss of precision due to the finite
amount of numbers a computer can represent. The programiseuessl are taylored to these aims.

2.2 Getting started

In programming Ianguadasve encounter data entities such as constants, variab$estsref evaluations
of functions etc. Common to these objects is that they carepeesented through the type concept.
There are intrinsic types and derived types. Intrinsic $ypee provided by the programming language
whereas derived types are provided by the programmer. Ifspeeifies the type to be for example
INTEGER (KIND=2) for Fortranfl or short int/int in C++, the programmer selects a particular
date type with 2 bytes (16 bits) for every item of the claS8TEGER (KIND=2) or int. Intrinsic types
come in two classes, numerical (like integer, real or comj@ad non-numeric (as logical and character).
The general form for declaring variables igata type name of variable and TabldZR lists the
standard variable declarations of C++ and Fortran (noté tivat there be may compiler and machine
differences from the table below). An important aspect wdtetlaring variables is their region of validity.

'For more detailed texts on C++ programming in engineerind science are the books by Flowers [19] and Bar-
ton and Nackman [20]. The classic text on C++ programminghés ook of Bjarne Stoustrup [21]. See also the lec-
ture notes on C++ éhittp://heim.ifi.uio.no/ hpl/INF-VERK4830. For Fortran we recommend the online lectures at
http://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive references to other @Fatran
resources. Both web pages contain enough material, lectites and exercises, in order to serve as material for ovaiestu
The Fortran 95 standard is well documented in Refs. [11-18lewhe new details of Fortran 2003 can be found in Ref. [14].
The reader should note that this is not a text on C++ or Fortréinis therefore important than one tries to find additional
literature on these programming languages. Good Pythds ¢exscientific computing are [22, 23].

20ur favoured display mode for Fortran statements will betahfetters for language statements and low key letters for
user-defined statements. Note that Fortran does not dissimgetween capital and low key letters while C++ does.
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Inside a function we define a a variable through the expresgi® var or INTEGER :: var . The
question is whether this variable is available in other fioms as well, moreover where var initialized
and finally, if we call the function where it is declared, is alue conserved from one call to the other?

type in C++ and Fortran  bits range
iN/INTEGER (2) 16 —32768to 32767

unsigned int 16 0to 65535

signed int 16 —32768 to 32767

short int 16 —32768 to 32767

unsigned short int 16 0to 65535

signed short int 16 —32768 to 32767

int/long int/INTEGER(4) 32 —2147483648 to 2147483647
signed long int 32 2147483648 to 2147483647
float/REAL(4) 32 107*to10138
double/REAL(8) 64 107322 to 10308

Table 2.1: Examples of variable declarations for C++ andr&or. We reserve capital letters for Fortran
declaration statements throughout this text, althouglr&ois not sensitive to upper or lowercase letters.
Note that there are machines which allow for more than 64fbitdoubles. The ranges listed here may
therefore vary.

Both C++ and Fortran operate with several types of variables the answers to these questions
depend on how we have defined for example an integer via ttenstatint var. Python on the other
hand does not use variable or function types (they are ndicégfy written), allowing thereby for a
better potential for reuse of the code.

The following list may help in clarifying the above points:

type of variable validity

local variables defined within a function, only availablethin the scope of
the function.

formal parameter If it is defined within a function it is onlyadlable within that
specific function.

global variables  Defined outside a given function, avadatdr all functions
from the point where it is defined.

In Table[Z:2 we show a list of some of the most used languagenséats in Fortran and C++.

In addition, both C++ and Fortran allow for complex variablén Fortran we would declare a com-
plex variable a€0MPLEX (KIND=16):: x, y which refers to a double with word length of 16 bytes.
In C++ we would need to include a complex library through ttaéesnents

#include <complex>
complex<double> x, vy;

We will discuss the above declarationmplex<double> x,y; in more detail in appendix]A.
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2.2 — Getting started

Fortran

C++

Program structure

PROGRAM something
FUNCTION something(input)
SUBROUTINE something(inout)

main ()
double (int) something(input)

Data type declarations

REAL (4) x,y

REAL(8) :: X,y

INTEGER :: x, ¥

CHARACTER :: name

REAL(8), DIMENSION(dim1,dim2) :: x
INTEGER, DIMENSION(dim1,dim2) :: x
LOGICAL :: X

float x, v;
double X, v;
int x,y;
char name;
double x[dim1][dim2];
int x[dim1][dim2];

TYPE name
declarations

struct name {
declarations;

END TYPE name }
POINTER :: a double (int) *a;
ALLOCATE new;
DEALLOCATE delete;

Logical statements and control structure
IF (a==Db) THEN if (a==b)
b=0 {b=0;
ENDIF }

DO WHILE (logical statement)
do something

while (logical statement)
{do something

ENDDO }

IF (a>=b) THEN if (a>=Dh)

b=0 { b=0;

ELSE else

a=0 a=0; }

ENDIF

SELECT CASE (variable) switch(variable)
CASE (variable=valuel) {

do something case 1.

CASE(..) variable=valuel;
do something;
break;
END SELECT case 2:
do something; break;. .
}
DO i=0, end, 1 for(i=0; &= end; i++)
do something { do something ;
ENDDO }

Table 2.2: Elements of programming syntax.
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2.2.1 Scientific hello world

Our first programming encounter is the ’classical’ one, fbim almost every textbook on computer
languages, the 'hello world’ code, here in a scientific disguWe present first the C version.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programl . cpp

[+ comments in C begin like this and end with/
#include <stdlib.h> /« atof function x/
#include <math.h> [/« sine function x/
#include <stdio.h> [/« printf function x/

int main (int argc, charx argv/(])
{
double r, s; /I« declare variables x/
r = atof(argv[l]); /x convert the text argv[l] to doublex/
s = sin(r);
printf("Hello, World! sin(%g)=kg\n", r, s);
return O; /x success execution of the program/

The compiler must see a declaration of a function before youaall it (the compiler checks the
argument and return types). The declaration of library fions appears in so-called header files that
must be included in the program, for exampleclude < stdlib .h>

We call three functionsatof, sin, printf and these are declared in three different header files. The
main program is a function called main with a return valuetgetn integer, returning O if success. The
operating system stores the return value, and other praguéifities can check whether the execution
was successful or not. The command-line arguments arefdrea$ to the main function through the
statementnt main (int argc, charx argv[]). The integerargc stands for the number of command-line
arguments, set to one in our case, whiegvis a vector of strings containing the command-line argu-
ments with argv[0] containing the name of the program aadv[1], argv[2], ... are the command-line
args, i.e., the number of lines of input to the program.

This means that we would run the programs as

mhjensen@compphys: ./myprogram.exe 0.3

argv[0] while the text strind).2 enters argv[1].

Here we define a floating point variable, see also below, titrabhe keywordsfloat for single pre-
cision real numbers angbuble for double precision. The functiomatof transforms a tex{argv[1]) to a
float. The sine function is declared in math.h, a library whiiknot automatically included and needs to
be linked when computing an executable file.

With the commandprintf we obtain a formatted printout. Therintf syntax is used for formatting
output in many C-inspired languages (Perl, Python, awk|yp&r-+).

In C++ this program can be written as

/I A comment line begins like this in C++ programs

using namespacestd;

#include <iostream >

int main (int argc, charx argv|[])

{

/I convert the text argv[l] to double using atof:
double r = atof(argv[1l]);

12
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2.2 — Getting started

double s = sin(r);

cout << "Hello, World! sin(" << r << ")=" << s << endl;
/!l success

return O0;

}

We have replaced the call torintf with the standard C++ functiorcout The header fildostreamis then
needed. In addition, we don't need to declare variablesriked s at the beginning of the program. |
personally prefer however to declare all variables at tlggnipeng of a function, as this gives me a feeling
of greater readability. Note that we have used the dectaratiing namespacetd; Namespace is a way
to collect all functions defined in C++ libraries. If we onilitis declaration on top of the program we
would have to add the declaratisid in front of coutor cin. Our program would then read

/I Hello world code without using namespace std
#include <iostream >
int main (int argc, charx argv|[])
{
I/l convert the text argv[l] to double using atof:

double r atof (argv[1l]);

double s sin(r);

std :: cout <<"Hello, World! sin(" << r << ")=" << s << endl;
/Il success

return O;
}

Another feature which is worth noting is that we have skipprdeption handlings here. In chapter
B we discuss examples that test our input from the commaed Bnt it is easy to add such a feature, as
shown in our modified hello world program

// Hello world code with exception handling

using namespacestd ;

#include <iostream >

int main (int argc, charx argv|[])

{

/l Read in output file , abort if there are too few commaithe arguments
if ( argc <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also a number on the same line, e.g., prog.exe 0.2" << endl;
exit(1); /I here the program stops.

}

/I convert the text argv[l] to double using atof:
double r = atof(argv[1l]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << endl;
/Il success
return O;
}

Here we test that we have more than one argument. If not, tgggn stops and writes to screen an error
message.

To run these programs, you need first to compile and link theorder to obtain an executable file
under operating systems like e.g., UNIX or Linux. Before wegeed we give therefore examples on
how to obtain an executable file under Linux/Unix.
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In order to obtain an executable file for a C++ program, thiefahg instructions under Linux/Unix
can be used

ct+ -c -Wall myprogram.c
ct++ -0 myprogram myprogram.o

where the compiler is called through the commamd. The compiler option -Wall means that a warning
is issued in case of non-standard language. The executigbieif this casenyprogram. The option-c
is for compilation only, where the program is translated imachine code, while theo option links the
produced object filayprogram.o and produces the executabigprogram .

The corresponding Fortran code is

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£f90/programl.f90

PROGRAM shw
IMPLICIT NONE
REAL (KIND =8) :: r I Input number
REAL (KIND =8) :: s I Result

I Get a number from user
WRITE (*,*) 'lnput a number: ’

READ (* ,%) r
I Calculate the sine of the number
s = SIN(r)
I Write result to screen
WRITE (x,*) 'Hello World! SINE of ', r, ' =", s

END PROGRAM shw

The first statement must be a program statement; the lashstat must have a corresponding end pro-
gram statement. Integer numerical variables and floatiingg pamerical variables are distinguished. The
names of all variables must be between 1 and 31 alphanunteiaaters of which the first must be a
letter and the last must not be an underscore. Comments Wéhim ! and can be included anywhere
in the program. Statements are written on lines which mayatomp to 132 characters. The asterisks
(*,*) following WRITE represent the default format for outf i.e., the output is e.g., written on the
screen. Similarly, the READ(*,*) statement means that ttegpam is expecting a line input. Note also
the IMPLICIT NONE statement which we strongly recommenduke of. In many Fortran 77 programs
one can find statements like IMPLICIT REAL*8(a-h,0-z), meanthat all variables beginning with any
of the above letters are by default floating numbers. Howeush a usage makes it hard to spot eventual
errors due to misspelling of variable names. With IMPLICIONE you have to declare all variables
and therefore detect possible errors already while compill recommend strongly that you declare all
variables when using Fortran.

We call the Fortran compiler (using free format) through

f90 -c -free myprogram.f90
£90 -o myprogram.x myprogram.o

Under Linux/Unix it is often convenient to create a so-aleakefile, which is a script which includes
possible compiling commands, in order to avoid retypingaheve lines every once and then we have
made modifcations to our program. A typical makefile for thexaecc compiling options is listed below

# General makefile for ¢ - choose PROG = name of given program
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# Here we define compiler option, libraries and the target
CC= c++ -Wall
PROG= myprogram

# Here we make the executable file
${PROG} : ${PROG}.0
${CC} ${PROG}.o -o ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.cpp
${CC} -c ${PROG}.cpp

If you name your file for ‘'makefile’, simply type the commantike and Linux/Unix executes all of the
statements in the above makefile. Note that C++ files havexteason .cpp

For Fortran, a similar makefile is

# General makefile for FO90 - choose PROG = name of given program
# Here we define compiler options, libraries and the target
F90= £90
PROG= myprogram
# Here we make the executable file
${PROG} : ${PROG}.o0
${F90} ${PROG}.o -o ${PROG}

# whereas here we create the object file

${PROG}.0 : ${PROG}.£90
${F90} -c ${PROG}.f

Finally, for the sake of completeness, we list the corredpanPython code

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/python/programl.py

#1/usr/bin/env python

import sys, math

# Read in a string a convert it to a float
r = float(sys.argv([1l])

s = math.sin(r)

print "Hello, World! sin(%g)=%12.6e" % (r,s)

where we have used a formatted printout with scientific inmtat
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2.3 Representation of integer numbers

In Fortran a keyword for declaration of an integedl$TEGER (KIND=n), n = 2 reserves 2 bytes (16 bits)
of memory to store the integer variable wheras n = 4 reserigtes (32 bits). In Fortran, although it may
be compiler dependent, just declaring a variabléNIREGER, reserves 4 bytes in memory as default.

In C++ keywords arehort int, int, long int, long long int The byte-length is compiler dependent
within some limits. The GNU C++-compilers (called by gcc et assign 4 bytes (32 bits) to variables
declared byint and long int. Typical byte-lengths are 2, 4, 4 and 8 bytes, for the typesirgabove. To
see how many bytes are reserved for a specific variable, Cs-a library function calledsizeof (type)
which returns the number of bytes foype .

An example of a program declaration is

Fortran: INTEGER (KIND=2) :: age_of participant
C++: short int age_of_participant;

Note that the(KIND=2) can be written as (2). Normally however, we will for Fortrammgrams just use
the 4 bytes default assignmenNTEGER.

In the above examples one bit is used to store the sign of tiebl@age_of participant and the other
15 bits are used to store the number, which then may rangeZesmto2'® — 1 = 32767. This should
definitely suffice for human lifespans. On the other hand,afwere to classify known fossiles by age
we may need

Fortran: INTEGER (4) :: age_of fossile
C++: int age_of fossile;

Again one bit is used to store the sign of the variable agdossile and the other 31 bits are used to
store the number which then may range from zer@*o— 1 = 2.147.483.647. In order to give you a
feeling how integer numbers are represented in the comphiek first of the decimal representation of
the number17

417 =4 x 10% + 1 x 10" + 7 x 10°,

which in binary representation becomes
417 =1 % ap2” + ap_12" "1+ ap_22"2 + -+ + ao2°,

where the coefficients, with £k = 0,...,n are zero or one. They can be calculated through successive
division by 2 and using the remainder in each division to metee the numbersg,, to ag. A given integer
in binary notation is then written as

an2™ + 412"t ay_02" 2 4 - 4 a2

In binary notation we have thus
(417)10 = (110100001)s,

since we have
(110100001)3 = 1x 28 +1x 27+ 0x 26 +1x 22 +0x 214+ 0x 252 +0x 224+ 0x 22 +0x 2 +1 x 20,
To see this, we have performed the following divisions by 2
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417/2=208 remainder 1 coefficient & is 1
208/2=104 remainder 0 coefficient 2f is O
104/2=52  remainder 0 coefficient 2t is O
52/2=26 remainder 0 coefficient 8¢ is O
26/2=13 remainder 0 coefficient 8t is O
13/2=6 remainder 1 coefficient af is 1

6/2=3 remainder 0 coefficient @f is 0
3/2=1 remainder 1 coefficient af is 1
1/2=0 remainder 1 coefficient af is 1

We see that nine bits are sufficient to represent 417. Noymadl end up using 32 bits as default for
integers, meaning that our number reads

(417)10 = (00000000000000000000000110100001 )2,

A simple program which performs these operations is listeldvie. Here we employ the modulus
operation (with division by 2), which in C++ is given by théo2operator. In Fortran we would call the
function MOD(a,2)in order to obtain the remainder of a division &y

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program?. cpp

using namespacestd ;
#include <iostream >

int main (int argc, charx argv|[])
{ . .
int i;
int terms[32]; // storage of a0, al, etc, up to 32 bits
int number = atoi(argv[1l]);
/l initialise the term a0, al etc
for (i=0; i <32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){
terms[i] = number%?2;
number /= 2;

}
Il write out results

cout << ‘* Number of bytes used=’ << sizeof(number) << endl;

for (i=0; i < 32 ; i++){
cout << ‘* Term nr: ‘' << i << ‘*Value= ‘' << terms]Ji];
cout << endl;

}

return O;

}

The C++ functionsizeof yields the number of bytes reserved for a specific variableteMlso thefor
construct. We have reserved a fixed array which containsghees ofa; being0 or 1, the remainder of
a division by two. We have enforced the integer to be reptesdny 32 bits, or four bytes, which is the

default integer representation.
Note that for417 we need 9 bits in order to represent it in a binary notatiorilexdnnumber like the

number 3 is given in an 32 bits word as

(3)10 = (00000000000000000000000000000011).
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For this number 2 significant bits would be enough.

With these prerequesites in mind, it is rather obvious thatgiven integer variable is beyond the
range assigned by the declaration statement we may encquotdems.

If we multiply two large integers; x no and the product is too large for the bit size allocated fot tha
specific integer assignement, we run into an overflow problEne most significant bits are lost and the
least significant kept. Using 4 bytes for integer variabtesresult becomes

220 5 920 —

However, there are compilers or compiler options that egss the program in such a way that an error
message like ’integer overflow’ is produced when runningptagram. Here is a small program which
may cause overflow problems when running (try to test your campiler in order to be sure how such
problems need to be handled).

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program3. cpp

[/l Program to calculate 2xn
using namespacestd;
#include <iostream >

int main()
{
int intl, int2, int3;
/I print to screen
cout << "Read in the exponential N for 2°N =\n";
I/l read from screen
cin >> int2;
intl = (int) pow(2., (double) int2);

cout << " 2°N % 2°N = " << intl*xintl << "\n";

int3 = intl — 1;

cout << " 2°N*x(2°N - 1) = " << intl % int3 << "\n";
cout << " 2°N- 1 = " << int3 << "\n";

return O;

}

/1 End: program main()

If we run this code with an expone = 32, we obtain the following output

2°N * 2°N = 0
2°N*(2°N - 1) = -2147483648
2°N- 1 = 2147483647

We notice thaR® exceeds the limit for integer numbers with 32 bits. The pragreturng). This can be
dangerous, since the results from the opera2ity2’V — 1) is obviously wrong. One possibility to avoid
such cases is to add compilation option which flag if an oweriounderflow is reached.

2.3.1 Fortran codes
The corresponding Fortran code is

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program2.£90
PROGRAM binary_integer
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IMPLICIT NONE
INTEGER i, number, terms(0:31)! storage of a0, al, etc, up to 32 bits,
I note array length running from 0:31. Fortran allows negat indexes as
well .

WRITE (% ,*) 'Give a number to transform to binary notation’
READ (x ,*) number
I Initialise the terms a0, al etc

terms = 0
I Fortran takes only integer loop variables
DO i=0, 31
terms (i) = MOD(humber,2) ! Modulus function in Fortran
number = number/2
ENDDO

I write out results
WRITE (% ,%) 'Binary representation

3

DO i=0, 31
WRITE (% ,%)’ Term nr and value’, i, terms(i)
ENDDO

END PROGRAM binary_integer

and

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program3.£f90

PROGRAM integer_exp
IMPLICIT NONE
INTEGER :: intl, int2, int3
I This is the begin of a comment line in Fortran 90
I Now we read from screen the variable int2
WRITE (x,*) 'Read in the number to be exponentiated’
READ (% ,%) int2
intl=2«xxint2
WRITE (% ,%) '2°N%2~N’, intlsintl
int3=intl-1
WRITE (% ,%) '2”°N*(2”"N-1)’', intlxint3
WRITE (% ,%) '2°N—1", int3

END PROGRAM integer_exp

In Fortran the modulus division is performed by thentrinsic function \
Istinline {MOD(number,2)}

in case of a division by $2%. The exponentation of maumber is given by for
example \lIstinline {2xN}

instead of thecall to the $\lstinline{pow} function in C++.

2.3.2 Python codes

In preparation for fall 2009
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2.4 Real numbers and numerical precision

An important aspect of computational physics is the nunaégcecision involved. To design a good
algorithm, one needs to have a basic understanding of patipagof inaccuracies and errors involved
in calculations. There is ho magic recipe for dealing witlderlow, overflow, accumulation of errors
and loss of precision, and only a careful analysis of thetfans involved can save one from serious
problems.

Since we are interested in the precision of the numericaltad, we need to understand how com-
puters represent real and integer numbers. Most compugatsaith real numbers in the binary system,
or octal and hexadecimal, in contrast to the decimal systeinvwe humans prefer to use. The binary
system uses 2 as the base, in much the same way that the degstezh uses 10. Since the typical
computer communicates with us in the decimal system, buksviotternally in e.g., the binary system,
conversion procedures must be executed by the computethase conversions involve hopefully only
small roundoff errors

Computers are also not able to operate using real numbersssga with more than a fixed number
of digits, and the set of values possible is only a subseteofitithematical integers or real numbers. The
so-called word length we reserve for a given number placestaiction on the precision with which a
given number is represented. This means in turn, that fanpi@floating numbers are always rounded
to a machine dependent precision, typically with 6-15 legdliigits to the right of the decimal point.
Furthermore, each such set of values has a processor-agpesmdallest negative and a largest positive
value.

Why do we at all care about rounding and machine precision® bEist way is to consider a simple
example first. In the following example we assume that we egmesent a floating number with a
precision of 5 digits only to the right of the decimal pointig is nothing but a mere choice of ours, but
mimicks the way numbers are represented in the machine.

Suppose we wish to evaluate the function

1 —cos(x)

fz) =

sin(z)

for small values ofr. If we multiply the denominator and numerator with4- cos(z) we obtain the
equivalent expression

sin(x)

fl) = 1+ cos(x)’

If we now chooser = 0.007 (in radians) our choice of precision results in
5in(0.007) & 0.69999 x 1072,

and
c0s(0.007) =~ 0.99998.

The first expression fof (z) results in

1 — 0.99998 0.2 x 1074 9
_ _ — 0.28572 x 10~
(@) = 569999 x 102 — 0.69999 x 102 — 028572 x 1077,

while the second expression results in

Fa) = 69999 1072 0.69999 x 102
T 14099998 1.99998

= 0.35000 x 1072,
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which is also the exact result. In the first expression, dusutochoice of precision, we have only one
relevant digit in the numerator, after the subtraction.sTeads to a loss of precision and a wrong result
due to a cancellation of two nearly equal numbers. If we hazseh a precision of six leading digits,
both expressions yield the same answer. If we were to eeatuat 7, then the second expression for
f(z) can lead to potential losses of precision due to cancetisitid nearly equal numbers.

This simple example demonstrates the loss of numericalgiwacdue to roundoff errors, where the
number of leading digits is lost in a subtraction of two negua numbers. The lesson to be drawn is
that we cannot blindly compute a function. We will always chémcarefully analyze our algorithm in the
search for potential pitfalls. There is no magic recipe h@vgthe only guideline is an understanding of
the fact that a machine cannot represent corregdtlpumbers.

2.4.1 Representation of real numbers

Real numbers are stored with a decimal precision (or matesd the decimal exponent range. The
mantissa contains the significant figures of the number (heckby the precision of the number). A
number like(9.90625)1¢ in the decimal representation is given in a binary repredemt by

(1001.11101)g = 1x 22 +0x 22 +0x 2! +1x 20 +1x 27 +1x 272 4+ 1x 273 4 0x 274 +1x 277,

and it has an exact machine number representation sinceadearfanite number of bits to represent this
number. This representation is however not very practRather, we prefer to use a scientific notation.
In the decimal system we would write a number 1tk80625 in what is called the normalized scientific
notation. This means simply that the decimal point is stiitied appropriate powers of 10 are supplied.
Our number could then be written as

9.90625 = 0.990625 x 10",
and a real non-zero number could be generalized as
x = £r x 10",

with ar a number in the rangé/10 < r < 1. In a similar way we can represent a binary number in
scientific notation as
x = +q x 2™,

with ag a number in the range/2 < ¢ < 1. This means that the mantissa of a binary number would be
represented by the general formula

(0.a—1a_9...a_p)2 = a_1 X 27 b ox22 4. 4a_, x27"

In a typical computer, floating-point numbers are represgbirt the way described above, but with certain
restrictions oy andm imposed by the available word length. In the machine, ourlmenmis represented
as

r = (—1)® X mantissa x 2°xponent

)

wheres is the sign bit, and the exponent gives the available rangt &\&ingle-precision word, 32 bits,
8 bits would typically be reserved for the exponent, 1 bittfar sigh and 23 for the mantissa. This means
that if we define a variable as

Fortran: REAL (4) :: size_of fossile
C++: float size_of _fossile;
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we are reserving 4 bytes in memory, with 8 bits for the expankfor the sign and and 23 bits for the
mantissa, implying a numerical precision to the sixth oresg digit, since the least significant digit is
given by1/22 =~ 10~7. The range of the exponent goes fram'?® = 2.9 x 1073 t0 2'%7 = 3.4 x 1038,
where 128 stems from the fact that 8 bits are reserved forgbenent.

A modification of the scientific notation for binary numbesda require that the leading binary digit
1 appears to the left of the binary point. In this case theasgmtation of the mantisgavould be(1.f )
andl < ¢q < 2. This form is rather useful when storing binary numbers iomputer word, since we can
always assume that the leading bit 1 is there. One bit of spacehen be saved meaning that a 23 bits
mantissa has actually 24 bits. This means explicitely tHahary number with 23 bits for the mantissa
reads

(1.(1_1(1_2 . a_23)2 =1x20 +a_1 X 21 +a_9 X 272 + -+ a_p X 2723,

As an example, consider the 32 bits binary number
(10111110111101000000000000000000)2,

where the first bit is reserved for the sign, 1 in this casedyrigl a negative sign. The exponentis
given by the next 8 binary numbed$111101 resulting in 125 in the decimal system. However, since the
exponent has eight bits, this means it B&s 1 = 255 possible numbers in the intervall 28 < m < 127,

our final exponent i425 — 127 = —2 resulting in272. Inserting the sign and the mantissa yields the
final number in the decimal representation as

272 (1x 20+ 1x 27 41 x 27+ 1x 23+ 0x 27" +1x27°) = (—0.4765625) 0.

In this case we have an exact machine representation witits3gabtually, we need less than 23 bits for
the mantissa).

If our numberz can be exactly represented in the machine, weacallmachine number. Unfortu-
nately, most numbers cannot and are thereby only approadriatthe machine. When such a number
occurs as the result of reading some input data or of a cortiquitaan inevitable error will arise in
representing it as accurately as possible by a machine numbe

A floating number X, labelled(x) will therefore always be represented as

fl(x) =z(1 £ €), (2.1)

with x the exact number and the errer| < |exs|, wheree,, is the precision assigned. A number like
1/10 has no exact binary representation with single or doubleigicy. Since the mantissa

1. (a—1a-2...a_p),

is always truncated at some stagelue to its limited number of bits, there is only a limited nueniof
real binary numbers. The spacing between every real binamber is given by the chosen machine
precision. For a 32 bit words this number is approximatgly~ 10~ and for double precision (64 bits)
we haveey; ~ 10716, or in terms of a binary base &s?* and2~52 for single and double precision,
respectively.

2.4.2 Machine numbers

To understand that a given floating point number can be wrdtein Eq.[[(Z11), we assume for the sake
of simplicity that we work with real numbers with words of tgh 32 bits, or four bytes. Then a given
numberz in the binary representation can be represented as

n
T = (1.CL_1CL_2 .. _230_240_95 . .. )2 X 2 s
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or in a more compact form
x=rx2"

with1 < r < 2and—126 < n < 127 since our exponent is defined by eight bits.

In most cases there will not be an exact machine represemtatithe number. Our number will be
placed between two exact 32 bits machine numberandzx, . Following the discussion of Kincaid and
Cheney [24] these numbers are given by

r_ = (1.(1_1(1_2 e a_23)2 X 2”,

and
Ty = ((1.(1_1&_2 . a_gg))g + 2_23) x 2™,

If we assume that our numberis closer tox_ we have that the absolute error is constrained by the
relation
l % 2n—23 — 2n—24'
2
A similar expression can be obtainedrifs closer tar, . The absolute error conveys one type of informa-
tion. However, we may have cases where two equal absolueserise from rather different numbers.
Consider for example the decimal numbers: 2 anda = 2.001. The absolute error between these two
numbers i€).001. In a similar way, the two decimal numbers= 2000 andb = 2000.001 give exactly
the same absolute error. We note here that2000.001 has more leading digits than

If we compare the relative errors

1
=2 | < Sley —ao| =

la — @l |b—5|_

=1.0x 1073, o 1.0 x 1076,

lal

we see that the relative error bris much smaller than the relative errordn\We will see below that the
relative error is intimately connected with the number aidieg digits in the way we approximate a real
number. The relative error is therefore the quantity ofriegein scientific work. Information about the
absolute error is normally of little use in the absence ofntfagnitude of the quantity being measured.
We define then the relative error foras
o —x_| 27724 1
<

= 2 x 2 M <972
|z| T rx2r g -

Instead of using:_ andz as the machine numbers closest:tave introduce the relative error

|z — 7 < gn-24

|| ’

with T being the machine number closestitoDefining

T —x
€x = 5
X

we can write the previous inequality
fl(x) =2(1 4+ €)

wherele,| < ey = 2724 for variables of length 32 bits. The notatigit() stands for the machine ap-
proximation of the numbet. The numbet;, is given by the specified machine precision, approximately
10~ for single andl0~'6 for double precision, respectively.
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There are several mathematical operations where an eVérgsaf precision may appear. A subrac-
tion, especially important in the definition of numericatigatives discussed in chapfdr 3 is one important
operation. In the computation of derivatives we end up suafittg two nearly equal quantities. In case
of such a subtraction = b — ¢, we have

fl(a) = fU(b) = fl(c) = a(l + &),
or
fl(a) =b(1+4 &) — c(1 + €.),

meaning that
C

b

flla)/a=1+ €~ e
and if b =~ c we see that there is a potential for an increased error in thehime representation of
fl(a). This is because we are subtracting two nhumbers of equabsizevhat remains is only the least
significant part of these numbers. This part is prone to rofireirors and ifa is small we see that (with
b= c) )

€q = E(Eb - 6c)7

can become very large. The latter equation represents ldie/eeerror of this calculation. To see this,
we define first the absolute error as

’fl(a) - CL’,
whereas the relative error is
fia) —af _
— < €.
a

The above subraction is thus

|[fl{a) —a| _ [fU(b) = f(c) = (b—c)|

)
a a

yielding
|fl(a) —a|  |bey — cel
a N a ’
An interesting question is then how many significant binaty &ére lost in a subtractiom = b — ¢ when
we haveb = c¢. The loss of precision theorem for a subtractios: b — ¢ states that [24]if b and c are
positive normalized floating-point binary machine numbeits b > ¢ and

97T < 1— g <95 (2.2)

then at most and at leasts significant binary bits are lost in the subtractien— ¢. For a proof of this
statement, see for example Ref. [24].

But even additions can be troublesome, in particular if thlbers are very different in magnitude.
Consider for example the seemingly trivial additiba- 10~® with 32 bits used to represent the various
variables. In this case, the information containinglin® is simply lost in the addition. When we
perform the addition, the computer equates first the exgsrwthe two numbers to be added. Ror®
this has however catastrophic consequences since in ardbtain an exponent equal 16°, bits in the
mantissa are shifted to the right. At the end, all bits in trentissa are zeros.

This means in turn that for calculations involving real nargy(if we omit the discussion on overflow
and underflow) we need to carefully understand the behaviouroalgorithm, and test all possible cases
where round-off errors and loss of precision can arise. Gthses which may cause serious problems
are singularities of the typ&/0 which may arise from functions likein(x)/x asx — 0. Such problems
may also need the restructuring of the algorithm.
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2.5 Programming examples on loss of precision and round-effors

2.5.1 Algorithms foe=*

In order to illustrate the above problems, we discuss haregamous and perhaps less famous problems,
including a discussion on specific programming featureseds w
We start by considering three possible algorithms for campgee=*:

1. by simply coding

x
—Tr __ _ nw=-
€ —Z( 1) nl
n=0
2. or to employ a recursion relation for
[ee) (e e] [L‘n
—X n
e "= Sy = —-1)"—
> s=2 (F1"
n=0 n=0
using
X
Sn = —Sn—-1—,
n

3. or to first calculate
o0
—
n=0

and thereafter taking the inverse

o "L'n
—x __ § : 1\
€ - ( 1) ’I’L' )
n=0

for x-values ranging fronf) to 100 in steps of 10. When doing the summation, we can always define a
desired precision, given below by the fixed value for thealsdld TRUNCATION= 1.0F — 10, so that for

a certain value of > 0, there is always a value af = NN for which the loss of precision in terminating
the series abh = N is always smaller than the next term in the seﬁjﬁs The latter is implemented
through the while{. . } statement.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program4 . cpp

/1 Program to calculate function exp{x)

/1 using straightforward summation with differing preci®sn
using namespacestd ;

#include <iostream >

I/l type float: 32 bits precision

/!l type double: 64 bits precision

#define TYPE double

#define PHASE(a) (1- 2 % (abs(a) % 2))

#define  TRUNCATION 1.0E-10

// function declaration
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TYPE factorial (int);

int main()

{
int n;

TYPE x, term, sum;

for (x 0.0; x < 100.0; x += 10.0) {
sum 0.0; /l'initialization
n = 0;
term = 1;

while (fabs (term) > TRUNCATION) {
term = PHASE(n)* (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);
sum += term;

n++;

} // end of while() loop

cout << "' x =77 << x << 'Y exp = ' << exp(—x) << ‘' series = '' <<
sum;

cout << ‘‘ number of terms =" << n << endl;

} // end of for() loop
return 0;
} // End: function main()

// The function factorial()
// calculates and returns n!

TYPE factorial(int n)
{
int 1loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {
fac *= loop;
}
return fac;
} // End: function factorial()

There are several features to be nEteElirst, for low values ofr, the agreement is good, however for
largerz values, we see a significant loss of precision. Secondly; fer70 we have an overflow problem,
represented (from this specific compiler) by NaN (not a nubEhe latter is easy to understand, since
the calculation of a factorial of the siZ&'1! is beyond the limit set for the double precision variable
factorial. The message NaN appears since the computehsdesctorial ofl 71 equal to zero and we end
up having a division by zero in our expression ¢0r°.

The overflow problem can be dealt with via a recurrence fodthidr the terms in the sum, so that
we avoid calculating factorials. A simple recurrence folarfor our equation

o o0 T
e (0= 0= D1,
n=0 n=0

3Note that different compilers may give different messagebdeal with overflow problems in different ways.

“Recurrence formulae, in various disguises, either as waysgresent series or continued fractions, are among the mos
commonly used forms for function approximation. Examples Bessel functions, Hermite and Laguerre polynomials, dis
cussed for example in chapfér 7.
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x exp(—x) Series  Number of terms in series
0.0 0.100000E+01  0.100000E+01 1
10.0 0.453999E-04  0.453999E-04 44
20.0 0.206115E-08  0.487460E-08 72
30.0 0.935762E-13  -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171

70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171
100.0 0.372008E-43 NaN 171

Table 2.3: Result from the brute force algorithm éap (—x).

is to note that
xr
Sn = —Spn—1—")
n

so that instead of computing factorials, we need only to agmproducts. This is exemplified through
the next program.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programb.cpp

[/l program to compute exp{x) without factorials
using namespacestd ;
#include <iostream >

#define TRUNCATION 1.0E-10
int main()
{
int loop, n;
double X, term, sum,;
for (loop = 0; loop <= 100; loop += 10){
X = (double) loop; /1 initialization
sum = 1.0;
term = 1;
n = 1;

while (fabs (term) > TRUNCATION){
term x= —x/((double) n);
sum += term;

n++;
} /1 end while loop
cout << ‘'x = << x << ‘‘exp = ‘' << exp(—x) << ‘‘series = ‘' << sum;
cout << ‘‘number of terms =" << n << endl;
} // end of for loop
Yy // End: function main()

In this case, we do not get the overflow problem, as can be seanthe large number of terms. Our
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x exp(—z) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1
10.000000 0.45399900E-04  0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Table 2.4: Result from the improved algorithm fetp (—z).

results do however not make much sense for larger values Bfecreasing the truncation test will not
help! (try it). This is a much more serious problem.

In order better to understand this problem, let us conshiercase of: = 20, which already differs
largely from the exact result. Writing out each term in thensation, we obtain the largest term in the
sum appears at = 19, with a value that equals43099804. However, forn = 20 we have almost the
same value, but with an interchanged sign. It means that we & error relative to the largest term
in the summation of the order @f099804 x 10710 ~ 4 x 10~2. This is much larger than the exact
value of0.21 x 1078, The large contributions which may appear at a given ordénénsum, lead to
strong roundoff errors, which in turn is reflected in the loggrecision. We can rephrase the above in
the following way: Sincexxp (—20) is a very small number and each term in the series can be rather
large (of the order of02, it is clear that other terms as largeld$, but negative, must cancel the figures
in front of the decimal point and some behind as well. Sinceraputer can only hold a fixed number
of significant figures, all those in front of the decimal paémé not only useless, they are crowding out
needed figures at the right end of the number. Unless we ayecaezful we will find ourselves adding
up series that finally consists entirely of roundoff erroksl analysis of the contribution to the sum from
various terms shows that the relative error made can be hligis.results in an unstable computation,
since small errors made at one stage are magnified in subgesjages.

To this specific case there is a simple cure. Noting¢kat(z) is the reciprocal oéxp (—z), we may
use the series farxp (x) in dealing with the problem of alternating signs, and simglye the inverse.
One has however to beware of the fact it () may quickly exceed the range of a double variable.

2.5.2 Fortran codes

The Fortran programs are rather similar in structure to the Qrogram.

In Fortran Real numbers are written as 2.0 rather than 2 arldréel as REAL (KIND=8) or REAL
(KIND=4) for double or single precision, respectively. largeral we discorauge the use of single pre-
cision in scientific computing, the achieved precision ig@mneral not good enough. Fortran uses a do
construct to have the computer execute the same statemerggiman once. Note also that Fortran does
not allow floating numbers as loop variables. In the examplew we use both a do construct for the
loop overx and aDO WHILE construction for the truncation test, as in the C++ progr&me could
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altrenatively use theEXIT statement inside a do loop. Fortran has also if statements @s+. The
IF construct allows the execution of a sequence of statesr{artilock) to depend on a condition. The if
construct is a compound statement and begins with IF ... THiEdNends with ENDIF. Examples of more
general IF constructs using ELSE and ELSEIF statementsiae i other program examples. Another
feature to observe is the CYCLE command, which allows a |laoable to start at a new value.
Subprograms are called from the main program or other sgbgmts. In the C++ codes we declared
a functionTYPE factorial (int ) ;. Subprograms are always called functions in C++. If we dedkawith
void is has the same meaning as subroutines in Fortran,. Suteewtre used if we have more than one
return value. In the example below we compute the factousilsg the function factorial . This function
receives a dummy argument INTENT(IN) means that the dummy argument cannot be changidh
the subprogram. INTENT(OUT) means that the dummy argumamtet be used within the subprogram
until it is given a value with the intent of passing a value lb&x the calling program. The statement
INTENT(INOUT) means that the dummy argument has an initellg which is changed and passed
back to the calling program. We recommend that you use thgtgens when calling subprograms. This
allows better control when transfering variables from amecfion to another. In chaptEl 3 we discuss
call by value and by reference in C++. Call by value does noteh called function to change the value
of a given variable in the calling function. This is importam order to avoid unintentional changes of
variables when transfering data from one function to arrotfibe INTENT construct in Fortran allows
such a control. Furthermore, it increases the readabilitheoprogram.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program4 . {90

I In this module you can define for example global constants
MODULE constants
I definition of variables for double precisions and complexariables
INTEGER, PARAMETER :: dp = KIND (1.0D0)
INTEGER , PARAMETER :: dpc = KIND ((1.0D0,1.0D0))
I Global Truncation parameter
REAL (DP) , PARAMETER, PUBLIC :: truncation=1.0E10
END MODULE constants

I Here you can include specific functions which can be used by
I many subroutines or functions

MODULE functions

CONTAINS
REAL (DP) FUNCTION factorial (n)
USE CONSTANTS
INTEGER , INTENT (IN) :: n
INTEGER :: loop

factorial = 1.0 _dp
IF ( n > 1) THEN
DO loop = 2, n
factorial=factoriakloop
ENDDO
ENDIF
END FUNCTION factorial

END MODULE functions
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I Main program starts here
PROGRAM exp_prog
USE constants
USE functions
IMPLICIT NONE
REAL (DP) :: x, term, final_sum
INTEGER :: n, loop_over_x

I loop over xvalues
DO loop_over_x=0, 100, 10
x=loop_over_x
I initialize the EXP sum
final_sum= 0.0 _dp; term = 1.0 _dp; n =0
DO WHILE ( ABS(term) > truncation)
term = ((—1.0_dp)=«n)=«(x*xxn)/ factorial(n)
final _sum=final _sum+term
n=n+1
ENDDO
I write the argument x, the exact value, the computed valuea an
WRITE (% ,*) x ,EXP(=x), final_sum, n
ENDDO

END PROGRAM exp_prog

The MODULE declaration in Fortran allows one to place functions like tme which calculates the
factorials. Note also the usage of the moduastantswhere we define double and complex variables.
If one wishes to switch to another precision, one just needhange the declaration in one part of the
program only. This hinders possible errors which arise & bas to change variable declarations in every
function and subroutine. In addition we have defined a glebahbletruncation which is accessible

to all functions which have thgSE constantdeclaration. These declarations have to come before any

variable declarations antPLICIT NONE statement.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/programb. {90

I In this module you can define for example global constants
MODULE constants
I definition of variables for double precisions and complexariables
INTEGER, PARAMETER :: dp = KIND (1.0D0)
INTEGER , PARAMETER :: dpc = KIND ((1.0D0,1.0D0))
I Global Truncation parameter
REAL (DP) , PARAMETER, PUBLIC :: truncation=1.0E10
END MODULE constants

PROGRAM improved_exp
USE constants

IMPLICIT NONE
REAL (dp) :: x, term, final_sum
INTEGER :: n, loop_over_x

I loop over xvalues, no floats as loop variables
DO loop_over_x=0, 100, 10
x=loop_over_x
I' initialize the EXP sum
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final _sum=1.0 ; term=1.0 ; n =1
DO WHILE ( ABS(term) > truncation)
term = —termxx/FLOAT(n)
final _sum=final_sum+term
n=n+1
ENDDO
! write the argument x, the exact value, the computed valuea an
WRITE (% ,*) x ,EXP(-x), final_sum, n
ENDDO

END PROGRAM improved_exp

2.5.3 Further examples
Summing1/n

Let us look at another roundoff example which may surprisempore. Consider the series

which is finite whenV is finite. Then consider the alternative way of writing thisrs

L

82 = -
which when summed analytically should give = s;. Because of roundoff errors, numerically we will
getss # s1! Computing these sums with single precision fér= 1.000.000 results ins; = 14.35736
while so = 14.39265! Note that these numbers are machine and compiler dependétti double pre-
cision, the results agree exactly, however, for largerambf NV, differences may appear even for double
precision. If we chooséV = 10® and employ double precision, we ggt = 18.9978964829915355
while s, = 18.9978964794618506, and one notes a difference even with double precision.

This example demonstrates two important topics. First weadhat the chosen precision is im-
portant, and we will always recommend that you employ dogpipéeision in all calculations with real
numbers. Secondly, the choice of an appropriate algoritsrglso seen far—*, can be of paramount
importance for the outcome.

The standard algorithm for the standard deviation

Yet another example is the calculation of the standard tewia- when o is small compared to the
average valug. Below we illustrate how one of the most frequently used i@figons can go wrong when
single precision is employed.

However, before we proceed, let us definandz. Suppose we have a set &fdata points, repre-
sented by the one-dimensional arr&y), for i = 1, N. The average value is then

Tr = N 5

while
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Let us now assume that

x(i) =i+ 10°,
and thatNV = 127, just as a mere example which illustrates the kind of problarhich can arise when
the standard deviation is small compared with the mean value

The standard algorithm computes the two contributions separately, that is we supn, x(i)? and
subtract thereafter ) . (7). Since these two numbers can become nearly equal and laegaaw end
up in a situation with potential loss of precision as an onoteo

The second algorithm on the other hand computesfifigt— = and then squares it when summing
up. With this recipe we may avoid having nearly equal numigrieh cancel.

Using single precision results in a standard deviation ef 40.05720139 for the first and most used
algorithm, while the exact answer is = 36.80579758, a number which also results from the above
second algorithm. With double precision, the two algorishmasult in the same answer.

The reason for such a difference resides in the fact thatr$teafgorithm includes the subtraction of
two large numbers which are squared. Since the average faltids example i = 100063.00, it is
easy to see that computing, z(i)> — z >_, (i) can give rise to very large numbers with possible loss
of precision when we perform the subtraction. To see thissicier the case whefe= 64. Then we have

x2, — Taey = 100352,

while the exact answer is
x2, — Taey = 100064!

You can even check this by calculating it by hand.
The second algorithm computes first the difference betwgénand the average value. The differ-
ence gets thereafter squared. For the second algorithmweddra = 64

Tes —T =1,

and we have no potential for loss of precision.
The standard text book algorithm is expressed through tt@niog program, where we have also
added the second algorithm

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programb . cpp

/! program to calculate the mean and standard deviation of
/!l a user created data set stored in array Xx[]
using namespacestd ;
#include <iostream >
int main()
{ . .
int i
float sum, sumsq2, xbar, sigmal, sigmaZ2;
/I array declaration with fixed dimension
float x[127];
/I initialise the data set
for (i=0; i < 127 ; i++){
x[i] = i + 100000.;
}
/I The variable sum is just the sum over all elements
/I The variable sumsg2 is the sum over x"2
sum=0.;
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}// End: function main()

sumsq2=0.;
/I Now we use the text book algorithm
for ( i=0; i < 127; i++){
sum += x[i];
sumsqg2 += pow(fouble) x[i],2.);
}
/Il calculate the average and sigma
xbar=sum/127.;
sigmal=sqrt ((sumsgsum«xbar)/126.) ;
[ *
xx Here comes the second algorithm where we evaluate
xx separately first the average and thereafter the
xx sum which defines the standard deviation. The average
xx has already been evaluated through xbar
x/
sumsq2=0.;
for (i=0; i < 127; i++){
sumsq2 += pow( (@ouble) (x[i]—xbar) ,2.);

}
sigma2=sqrt(sumsg2/126.);
cout << "xbar = ‘¢ << xbar << ‘‘sigmal = ‘¢ << sigmal << ‘‘sigma2 = ‘¢

<< sigma2;
cout << endl;
return 0;

The corresponding Fortran program is given below.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/£90/program6.f90

PROGRAM standard_deviation

IMPLICIT NONE
REAL (KIND = 4) sum, sumsqg2, xbar
REAL (KIND = 4) :: sigmal, sigma?2
REAL (KIND = 4), DIMENSION (127) :: x
INTEGER i
x=0;
DO i=1, 127

x(i) =i + 100000.
ENDDO

sum=0.; sumsq2=0.
! standard deviation calculated with the first algorithm
DO i=1, 127

sum = sum +x(i)

sumsqg2 = sumsqg2+x (i®x2
ENDDO
! average
xbar=sum/127.
sigmal=SQRT ((sumsgadumxxbar)/126.)
! second algorithm to evaluate the standard deviation
sumsq2=0.
DO i=1, 127

33


http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/f90/program6.f90

Introduction to C++ and Fortran

arithmetic operators relation operators
operator  effect operator effect
— Subtraction > Greater than
+ Addition >= Greater or equa
* Multiplication < Less than
/ Division <= Less or equal
% or MOD  Modulus division| == Equal
—— Decrement = Not equal
++ Increment

Table 2.5: Relational and arithmetic operators. The m@atiperators act between two operands. Note
that the increment and decrement operate#sand—— are not available in Fortran .

Logical operators
C++  Effect Fortran
0 False value .FALSE
1 True value .TRUE.
IX Logical negation .NOT.x
x&&y Logical AND X.AND.y
X|ly Logical inclusive OR  x.OR.y

Table 2.6: List of logical operators in C++ and Fortran .

sumsqg2=sumsqg2 +(x( Hxbar)**2
ENDDO
sigma2=SQRT(sumsq2/126.)
WRITE (% ,*) xbar, sigmal, sigmaZ2

END PROGRAM standard_deviation

2.6 Additional features of C++ and Fortran

2.6.1 Operatorsin C++

In the previous program examples we have seen several typ@seoators. In the tables below we
summarize the most important ones. Note that the modulustin i€ represented by the operator %
whereas in Fortran we employ the intrinsic functid®D. Note also that the increment operato#+
and the decrement operator-— is not available in Fortran . In C++ these operators havedhafing
meaning

++X; Or x++; hasthe same meaning asx = x + 1;
——Xx; or x——; hasthe same meaning asx =x — 1;

Table[Z5 lists several relational and arithmetic opegatbogical operators in C++ and Fortran are listed
in[Z8. while Tabld—Zl7 shows bitwise operations.
C++ offers also interesting possibilities for combined mapers. These are collected in Tabl€el 2.8.
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Bitwise operations
C++ Effect Fortran
~i  Bitwise complement NOT(j)
i&  Bitwise and IAND(i,))
i"j  Bitwise exclusive or  IEOR(i,))
i]j Bitwise inclusive or IOR(i,))
i<<j Bitwise shift left ISHFT(,j)
i>>n  Bitwise shift right ISHFT(i,-))

Table 2.7: List of bitwise operations.

Expression meaning | expression meaning
a += b; a=a+ b; a -= b; a=a- b;
a *= b; a=axb;| a/=b; a=a/b;
ak=b; a=al%b;| a«=b; a=ac«b;
a »= b; a=a»>»b; a &= b; a=aé&b;
al=b; a=alb;| aAa=b; a=anb;

Table 2.8: C++ specific expressions.

Finally, we show some special operators pertinent to C+y. ofhe first one is the operator. Its
action can be described through the following example

A = expressionl ? expression2 : expression3;

Hereexpressionl is computed first. If this istrue” (# 0), thenexpression2 is computed and assigned
A. If expressionl is "false", thenexpression3 is computed and assigned A.

2.6.2 Pointers and arrays in C++.

In addition to constants and variables C++ contain imporgoes such as pointers and arrays (vectors
and matrices). These are widely used in most C++ program. &lews also for pointer algebra, a
feature not included in Fortran . Pointers and arrays areitapt elements in C++. To shed light on
these types, consider the following setup

int name defines an integer variable calledme. It is given an address in memory
where we can store an integer number.

&name is the address of a specific place in memory where the integes is
stored. Placing the operator & in front of a variable yielgsaddress in
memory.

int #*pointer defines and an integer pointer and reserves a location in nyeiorathis

specific variable The content of this location is viewed asaldress of
another place in memory where we have stored an integer.

Note that in C++ itis common to writet + pointer while in C one usually writent *pointer. Here are
some examples of legal C++ expressions.
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name = 0x56;

pointer = &name; /* pointer points to name.
printf ("Address of name = %p",pointer); /[*writes out the address of name.
printf ("Value of name= %d",*pointer); /* writes out the value of name.

Here’s a program which illustrates some of these topics.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/program? . cpp
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using namespacestd;
main ()
{ .
int var;
int xpointer;

pointer = &var;

var = 421,

printf("Address of the integer variable var : %p\n",&var);
printf("value of var : %d\an", var);

printf("value of the integer pointer variable: %p\n",pointer);

printf("Value which pointer is pointing at : %d\n",xpointer);
printf("Address of the pointer variable : J%p\n",&pointer);
}
Line Comments
4 ¢ Defines an integer variable var.
5 e Define an integer pointer — reserves space in memory.
7 e The content of the adddress of pointer is the address of var.
8 e The value of var is 421.
9 o Writes the address of var in hexadecimal notation for posfep.
10 o Writes the value of var in decimal notation%d.

The ouput of this program, compiled with g++, reads

Address of the integer variable var : Oxbfffeb74
Value of var: 421

Value of integer pointer variable : Oxbfffeb74
The value which pointer is pointing at : 421
Address of the pointer variable : Oxbfffeb70

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter02/cpp/programd. cpp

In the next example we consider the link between arrays amigs.

int matr[2] defines a matrix with two integer membersatr [0] ogmatr [1].
matr is a pointer tanatr [0].
(matr + 1) is a pointer tanatr[1].

1
2
3
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4 {

5 int matr[2];

6 int xpointer;

7 pointer = &matr[0];

8 matr[0] = 321;

9 matr[1] = 322;

10 printf("\nAddress of the matrix element matr[1]: %p",&matr[0]);
11 printf("\nValue of the matrix element matr[1]; %d",matr[0]);
12 printf("\nAddress of the matrix element matr[2]: %p",&matr[1]);
13 printf("\nValue of the matrix element matr([2]: %d\n", matr[1]);
14 printf("\nValue of the pointer : J%p",pointer);

15 printf("\nValue which pointer points at : %d",xpointer);

16 printf("\nValue which (pointer+1l) points at: %d\n",x(pointer+1));
17 printf("\nAddress of the pointer variable: %p\n",&pointer);

18 }

You should especially pay attention to the following

Line
5 e Declaration of an integer array matr with two elements
6 e Declaration of an integer pointer

7 e The pointer is initialized to point at the first element of #reay matr.
8-9 e Values are assigned to the array matr.

The ouput of this example, compiled again with g++, is

Address of the matrix element matr[1]: Oxbfffef70
Value of the matrix element matr[1]; 321
Address of the matrix element matr[2]: Oxbfffef74
Value of the matrix element matr[2]: 322

Value of the pointer: Oxbfffef70

The value pointer points at: 321

The value that (pointer+l) points at: 322
Address of the pointer variable : Oxbfffef6c

2.6.3 Macrosin C++

In C we can define macros, typically global constants or fonstthrough thedefine statements shown
in the simple C-example below for

printf("ONE=%d, TW0=%d, THREE=%d" ,ONE,TWO,THREE);

1. #define ONE 1

2. #define TWO ONE + ONE
3. #define THREE ONE + TWO
4,

5. main ()

6. {

7.

8.

}

In C++ the usage of macros is discouraged and you shouldrragieethe declaration for constant vari-
ables. You would then replace a statement#ikefine ONE 1with const int ONE = 1; There is typically
much less use of macros in C++ than in C. C++ allows also theitlefi of our own types based on other
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existing data types. We can do this using the keyword typededse format istypedef existing \_type
new\_type\_name,;where existing_type is a C++ fundamental or compound tyjkerew_type _name is
the name for the new type we are defining. For example:

typedef char new_name;
typedef unsigned int word
typedef char % test;
typedef char field [50];

In this case we have defined four data types: new_name, vestdand field as char, unsigned int, char*
and char[50] respectively, that we could perfectly use iclatations later as any other valid type

new_name mychar, anothercharxptcl;
word myword;

test ptc2;

field name;

The use of typedef does not create different types. It omgiters synonyms of existing types. That means
that the type of myword can be considered to be either worchsigued int, since both are in fact the
same type. Using typedef allows to define an alias for a tygeisifrequently used within a program. It
is also useful to define types when it is possible that we widldhto change the type in later versions of
our program, or if a type you want to use has a name that is tapdo confusing.

In C we could define macros for functions as well, as seen below

#define MIN(a,b) ( ((a) < (b)) 2 (a) : (b))
#define MAX(a,b) ( ((a) > (b)) ?2 (a) : (b))
#define ABS (a) ( ((a) < 0) ?—(a) : (a) )
( ( .0
( (

#define EVEN(a) a) w2 ==0 7 1
#define TOASCII(a) a) & Ox7f )

G wN P

In C++ we would replace such function definition by employstgcalledinline functions. Three of the
above functions could then read

inline double MIN(double a,double b) (return (((a)<(b)) ? (a):(b));)
inline double MAX( double a,double b)(return (((a)>(b)) ? (a):(b));)
inline double ABS(double a) (return (((a)<0) ? —(a):(a));)

where we have defined the transferred variables to be ofdypee. The functions also returndouble
type. These functions could easily be generalized throhgluse of classes and templates, see chapter
H, to return whather types of real, complex or integer vaeisb

Inline functions are very useful, especially if the overthdar calling a function implies a signifi-
cant fraction of the total function call cost. When such tiort call overhead is significant, a function
definition can be preceded by the keywadndne . When this function is called, we expect the compiler
to generate inline code without function call overhead. laesv, although inline functions eliminate
function call overhead, they can introduce other overhe&@ldsen a function is inlined, its code is du-
plicated for each call. Excessive useiofine may thus generate large programs. Large programs can
cause excessive paging in virtual memory systems. Too nming ifunctions can also lengthen compile
and link times, on the other hand not inlining small functidike the above that do small computations,
can make programs bigger and slower. However, most modenpitays know better than programmer
which functions to inline or not. When doing this, you shoaldo test various compiler options. With
the compiler option-0O3 inlining is done automatically by basically all modern calers.
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A good strategy, recommended in many C++ textbooks, is ttevericode without inline functions
first. As we also suggested in the introductory chapter, youbkl first write a as simple and clear
as possible program, without a strong emphasis on compuétspeed. Thereafter, when profiling
the program one can spot small functions which are calledyniames. These functions can then be
candidates for inlining. If the overall time comsumptiomeégluced due to inlining specific functions, we
can proceed to other sections of the program which could éedsal up.

Another problem with inlined functions is that on some sysedebugging an inline function is
difficult because the function does not exist at runtime.

2.6.4 Structures in C++ and TYPE in Fortran

A very important part of a program is the way we organize ota @ad the flow of data when running
the code. This is often a neglected aspect especially dtinmglevelopment of an algorithm. A clear
understanding of how data are represented makes the progoaereadable and easier to maintain and
extend upon by other users. Till now we have studied elemergaiable declarations through keywords
like int or INTEGER, double or REAL(KIND(8) andchar or its Fortran 90 equivale@HARACTER. These
declarations could also be extended to general multi-dénoeal arrays.

However, C++ and Fortran offer other ways as well by which @&e organize our data in a more
transparent and reusable way. One of these options is thridnggstruct declaration of C++, or the
correspondingly similafYPE in Fortran. The latter data type will also be discussed irptdr&d.

The following example illustrates how we could make a genesaable which can be reused in
defining other variables as well.

Suppose you would like to make a general program which topaiatum mechanical problems from
both atomic physics and nuclear physics. In atomic and auglRysics the single-particle degrees are
represented by quantum numbers such orbital angular mametttal angular momentum, spin and en-
ergy. An independent particle model is often assumed adaing point for building up more compli-
cated many-body correlations in systems with many interggarticles. In atomic physics the effective
degrees of freedom are often reduced to electrons integaatith each other, while in nuclear physics
the system is described by neutrons and protons. The steuctingle_particle_descriptcontains a list
over different quantum numbers through various pointerghvare initialized by a calling function.

struct single_particle_descript{
int total_orbits;
intx n;
int« lorb;
intx m_I;
intx jang;
intx spin;
doublex energy;
charx orbit_status

1

To describe an atom like Neon we would need three singleepandrbits to describe the ground state
wave function if we use a single-particle picture, i.e., #3e 2s and 2p single-particle orbits. These
orbits have a degeneray {2/ + 1), where the first number stems from the possible spin projesti
and the second from the possible projections of the orbimhentum. In total there are 10 possible
single-particle orbits when we account for spin and orliiiamentum projections. In this case we would
thus need to allocate memory for arrays containing 10 elé&nen

The above structure is written in a generic way and it can lee i3 define other variables as well.

39



Introduction to C++ and Fortran

For electrons we could writetruct  single_particle_descript electronand is a new variable with the
nameelectrons containing all the elements efingle_particle_descript.

The following program segment illustrates how we accessetledements To access these elements
we could e.g., read from a given device the various quantumbeus:

for (int i = 0; i < electrons.total_orbits; i++){
cout << ‘* Read in the quantum numbergor electron i: ‘' << i <<
endl;

cin >> electrons.nf[i];

cin > electrons.lorb[i];
cin >> electrons.m_I[i];
cin >> electrons .jang[i];
cin >> electrons.spin[i];

}

The structuresingle_particle_descript can also be used for defining quantum numbers of other
particles as well, such as neutrons and protons througlaivevariablesstruct  single_particle_descript
protonsandstruct single_particle_descript neutrons
The corresponding declaration in Fortran is given byRthee construct, seen in the following exam-

ple.

TYPE, PUBLIC :: single_particle_descript
INTEGER :: total_orbits
INTEGER , DIMENSION (:), POINTER :: n, lorb, jang, spin, m_l|
CHARACTER (LEN=10), DIMENSION (:), POINTER :: orbit_status
REAL (8) , DIMENSION (:), POINTER :: energy

END TYPE single_particle_descript

This structure can again be used to define variablesliketrons, protons andneutrons through the
statementTYPE ( single_particle_descript ) :: electrons, protons, neugr More detailed examples on
the use of these variable declarations, classes and tampldt be given in subsequent chapters and in
the appendikA.

2.7 Exercises and projects

Exercise 2.1: Converting from decimal to binary represénta

Set up an algorithm which converts a floating number giveméndecimal representation to the binary
representation. You may or may not use a scientific reprasent Write thereafter a program which
implements this algorithm.

Exercise 2.2: Summing series

a) Make a program which sums

N g

Sup = —
n
n=1

and
n=1 1
Sd. = —.
S
n=N
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The program should reall from screen and write the final output to screen.

b) Compares,;, 09 sqown for different NV using both single and double precision f§rup to N =
10'°. Which of the above formula is the most realiable one? Tryite gn explanation of possible
differences. One possibility for guiding the eye is for exderto make a log-log plot of the relative
difference as a function oV in steps ofl0™ with n = 1,2,...,10. This means you need to
computelogio(|(sup(IV) = Sdown(IV))/Sdown (I)]) @s function oflogio (V).

Exercise 2.3: Finding alternative expressions

Write a program which computes
f(z) =z —sinzx,

for a wide range of values of. Make a careful analysis of this function for valueszohear zero. For
x =~ 0 you may consider to write out the series expansionsrof
R
Slnm—x—y—i—y—?—k
Use the loss of precision theorem of Hg. 12.2) to show thatdse of bits can be limited to at most one
bit by restrictingz so that
sinz _ 1
> .
r = 2
One finds then that must at least be 1.9, implying that fat| < 1.9 we need to carefully consider the
series expansion. For| > 1.9 we can use directly the expression- sin z.
For|z| < 1.9 you should device a recurrence relation for the terms in¢hies expansion in order to
avoid having to compute very large factorials.

1—

Exercise 2.4: Computing *

Assume that you do not have access to the intrinsic funcboe. Write your own algorithm foe™*
for all possible values af, with special care on how to avoid the loss of precision potd discussed in
the text. Write thereafter a program which implements thgergthm.

Exercise 2.5: Computing the quadratic equation

The classical quadratic equatiam? + bx + ¢ = with solution
x = (—b + /b — 4&6) /2a,

needs particular attention whenc is small relative ta?. Find an algorithm which yields stable results
for all possible values af, b andc. Write thereafter a program and test the results of your caatipns.

Exercise 2.6: Fortran, C++ and Python functions for machmanding

Write a Fortran program which reads a real numbeand computes the precision in bits (using the
function DIGIT(x))for single and double precision, the smallest positive bem(usingTINY(x)), the
largets positive number (using the functiddGE(x)) and the number of leading digits (using the function
PRECISION(x)). Try thereafter to find similar functionalities in C++ angtRon.
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Exercise 2.7: Nearest machine number

Write an algorithm and program which reads in a real numband finds the two nearest machine
numberse_ andzx., the corresponding relative errors and absolute errors.

Exercise 2.8: Recurrence relations

Recurrence relations are extremely useful in represetitingtions, and form expedient ways of rep-

resenting important classes of functions used in the Segen®Ve will see two such examples in the

discussion below. One example of recurrence relationsaappe studies of Fourier series, which enter
studies of wave mechanics, be it either in classical systemsiantum mechanical ones. We may need
to calculate in an efficient way sums like

N
F(z) = Zancos(nw), (2.3)
n=0

where the coefficients,, are known numbers andis the argument of the functiof (). If we want to
solve this problem right on, we could write a simple repetitioop that multiplies each of the cosines
with its respective coefficient,, like

for ( n=0; n < N; n++){
f += anxcos(nkx)
}

Even though this seems rather straightforward, it may #ygtyield a waste of computer time iV is
large. The interesting point here is that through the theee-recurrence relation

cos(n — 1)x — 2cos(z)cos(nz) + cos(n + 1)z = 0, (2.4)

we can express the entire finite Fourier series in terms4fr) and two constants. The essential device
is to define a new sequence of coefficieltsecursively by

by, = (2cos(x))bp—1 — bpyo + an n=0,...N —1,N, (2.5)

definingby+1 = byya +..--- = 0for all n > N, the upper limit. We can then determine all the
coefficients froma,, and one evaluation dicos(x). If we replacea,, with b,, in the sum forF'(z) in
Eq. (Z3) we obtain

F(x) = by [cos(Nz) — 2cos((N — 1)x)cos(x) + cos((N — 2)z)] +
bn_1 [cos((N — 1)x) — 2cos((N — 2)x)cos(x) + cos((N — 3)z)] + ...
by [cos(2z) — 2cos?(x) + 1] + by [cos(z) — 2cos(z)] + bo. (2.6)

Using Eqg. [Z.#) we obtain the final result
F(x) = by — bicos(x), (2.7)

and by and b, are determined from Eq[{2.3). The latter relation is afttke@saw. This method of
evaluating finite series of orthogonal functions that anenexted by a linear recurrence is a technique
generally available for all standard special functions atmematical physics, like Legendre polynomials,
Bessel functions etc. They all involve two or three term$imrecurrence relations. The general relation
can then be written as

Fri1(z) = an(z) Fo(2) + Ba(z) Fre1 ().

42



2.7 — Exercises and projects

Evaluate the functior¥'(z) = Z,{LV:O ancos(nx) in two ways: first by computing the series of
Eq. (reffour-1) and then using the equation given in EQJ)(2Assume that,, = (n + 2)/(n + 1),
set e.g./N = 1000 and try with differentz-values as input.

In project 2.1 we will see another example of recurrencetiorla used to compute the associated
Legendre functions.

Exercise 2.9: Continued fractions

Often, especially when one encounters singular behaviors,may need to rewrite the function to be
evaluated in terms of a taylor expansion. Another possibiéi to used so-called continued fractions,
which may be viewed as generalizations of a Taylor expandidinen dealing with continued fractions,
one possible approach is that of successive substitutiaes.us illustrate this by a simple example,
namely the solution of a second order equation

22 —4x—1=0, (2.8)

which we rewrite as )
Xr = s
4+

which in turn could be represented through an iterativetitukien process

1
Tn+l1 = 4_1_1: )
n
with zg = 0. This means that we have
1
Tl = Zv
1
T = )
4+ %
1
€T3 = ———7 >
4+ 4il

4

and so forth. This is often rewritten in a compact way as

n al
ITn = X0
" fL'l + - a2a3 ’
1’2+W
r3tag 4
or as
al a2 a3
Tp=Tog+ ———— ...
T1+ xo+ x3+

Write a program which implements this continued fractiagoathm and solve iteratively Eq.(2.8).
The exact solution is = 0.23607 while already after three iterations you should obtain= 0.236111.
Project 2.1: Special functions, spherical harmonics ansiasated Legendre polynomials

Many physics problems have spherical harmonics as sofjtsuth as the angular part of the Schrédinger
equation for the hydrogen atom or the angular part of thestdimensional wave equation or Poisson’s
equation.
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The spherical harmonics for a given orbital momentamts projectionM for —L < M < L and
angles € [0, 7] and¢ € [0, 27| are given by

Y0, ) = \/ (”4:(};)%;)?4 ! 1 (cos(0)) exp (iM),

The functionsP (cos() are the so-called associated Legendre functions. Theyoaneatly determined
via the usage of recurrence relations. Recurrence refatioa unfortunately often unstable, but the
following relation is stable (with: = cos(6))

(L= M)P (x) = 2(2L — )PPy (2) — (L + M — 1) Py (x),
and with the analytic (on closed form) expressions
Pif (@) = (=)™ (2M — )11 - 2*)M/2,

and
P]\]/V[IH(JU) =xz(2M + 1)Pf%(x),

we have the starting values and the equations necessargreraing the associated Legendre functions
for a general value of.

a) Make first a function which computes the associated Lageiuhctions for different values df
andM. Compare with the closed-form results listed in chapkter 7.

b) Make thereafter a program which calculates the real gdneospherical harmonics

c) Make plots for varioud. = M as functions o (set¢ = 0) and study the behavior a5 is
increased. Try to explain why the functions become more antkmarrow ad. increases. In
order to make these plots you can use for example gnuplotsasssed in appendix4.5.

d) Study also the behavior of the spherical harmonics whienclose to 0 and when it approaches
180 degrees. Try to extract a simple explanation for whatsgmi
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Chapter 3

Numerical differentiation

3.1 Introduction

Numerical integration and differentiation are some of thestrfrequently needed methods in compu-
tational physics. Quite often we are confronted with thednekevaluating eitherf’ or an integral
| f(z)dz. The aim of this chapter is to introduce some of these methittisa critical eye on numerical
accuracy, following the discussion in the previous chapter

The next section deals essentially with topics from nunatdferentiation. There we present also
the most commonly used formulae for computing first and sgdemivatives, formulae which in turn find
their most important applications in the numerical soltid ordinary and partial differential equations.
This section serves also the scope of introducing some ndwanaed C++-programming concepts, such
as call by reference and value, reading and writing to a fitktha use of dynamic memory allocation.

3.2 Numerical differentiation

The mathematical definition of the derivative of a functif(x) is

A S - f@)

dx h—0 h

whereh is the step size. If we use a Taylor expansionfor) we can write

hzf//(l')

fx+h) = f(z) +hf'(2) + —

+ ...

We can then set the computed derivatfyér) as

flz+h) - f(z)
h

hf" (@)

~ fix) + =

fl(z) = ...

Assume now that we will employ two points to represent thefiom f by way of a straight line between
x andz + h. Fig.[31 illustrates this subdivision.
This means that we can represent the derivative with

i) = D ZIE o,

45



Numerical differentiation

where the suffiX refers to the fact that we are using two points to define theatere and the dominating
error goes likeO(h). This is the forward derivative formula. Alternatively, weuld use the backward
derivative formula

f(x) = f(z—h)

fala) = A +O(h).

If the second derivative is close to zero, this simple twap&rmula can be used to approximate the
derivative. If we however have a function likéx) = a + bz?, we see that the approximated derivative
becomes

fo(x) = 2bx + bh,

while the exact answer &x. Unlessh is made very small, anilis not too large, we could approach the
exact answer by choosing smaller and smaller and valuégs fidowever, in this case, the subtraction in
the numeratorf (z + h) — f(x) can give rise to roundoff errors and eventually a loss ofipieg.

A better approach in case of a quadratic expressioryfey is to use a 3-step formula where we
evaluate the derivative on both sides of a chosen pginsing the above forward and backward two-step
formulae and taking the average afterward. We perform agasylor expansion but now around+ A,
namely

A P
flx=z0xh)= f(xo) £ hf + 5 + 5 + O(h%), (3.1)
which we rewrite as p2pr g
fen = foxhf + —— 5 iT+0(h4).
Calculating bothf.;, and subtracting we obtain that
[ s S KO

and we see now that the dominating error goes likéf we truncate at the scond derivative. We call
the termh? f”” /6 the truncation error. It is the error that arises becauseraesstage in the derivation,
a Taylor series has been truncated. As we will see belowcation errors and roundoff errors play an
important role in the numerical determination of derivasiv

For our expression with a quadratic functigiz) = a + bxz? we see that the three-point formula
4 for the derivative gives the exact ansvr:. Thus, if our function has a quadratic behaviorziin
a certain region of space, the three-point formula will kesureliable first derivatives in the interval
[—h, h]. Using the relation

fn=2fo + fon = B2 f" + O(hY),

we can define the second derivative as

"n_ fh 2f0 + f—h
2
We could also define five-points formulae by expanding to tteps on each side afy. Using a
Taylor expansion aroung, in a region[—2h, 2h] we have

+ O(h?).

3 f///

faon = fox 2hf + 202 f" I + O(hY). (3.2)

Using Egs.[[(311) and(3.2), multiplying, andf_, by a factor o8 and subtracting8f, — for,) — (8 f_1 —
f—on) we arrive at a first derivative given by

_ foon—8f n+8fn— fon

4

f3e
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3.2 — Numerical differentiation

xo9 — 2h zog—h Zo xo+ h xo + 2h T

Figure 3.1: Demonstration of the subdivision of thaxis into small steps. Each point corresponds to
a set of values, f(z). The value ofr is incremented by the step length If we use the points, and
xo + h we can draw a straight line and use the slope at this pointtermée an approximation to the
first derivative. See text for further discussion.
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Numerical differentiation

with a dominating error of the order af* at the price of only two additional function evaluations.isTh
formula can be useful in case our function is representedfbyréh-order polynomial irx in the region
[—2h, 2h]. Note however that this function includes two additionaidtion evaluations, implying a more
time-consuming algorithm. Furthermore, the two additicnuétraction can lead to a larger risk of loss of
numerical precision wheh becomes small. Solving for example a differential equatitich involves
the first derivative, one needs always to strike a balancgd®st numerical accurary and the time needed
to achieve a given result.

It is possible to show that the widely used formulae for thet find second derivatives of a function
can be written as

fo— fon oo p(25+1) s
5 —fo+22+1) : (3.3)
and (2j+2)
o —=2fo+ fn — fy” 9
STk 5’+2thﬂ, (3.4)
j=1

and we note that in both cases the error goesdikg®/). These expressions will also be used when we
evaluate integrals.
To show this for the first and second derivatives startindnlie three pointsf_, = f(z¢ — h),
fo = f(xo) andf, = f(zo + h), we have that the Taylor expansion aroung- x, gives
.) f |
a_pf-n+aofo+anfn=a— hz +a0f0+ahz =0 (hy, (3.5)

JO' j=0

wherea_y, ag anda;, are unknown constants to be chosen so thatf_; + agfo + ayf1, is the best
possible approximation fof, and 1. Eq. [33) can be rewritten as

a—nf-n +aofo+ anfn = [a—p + ao + ax) fo
2 1 0o .(j)

+ lan — a—p] hf§ + [a—p + an) hTO + Z %(h)j (-1 a_p +ap] .
j=3 7

To determinef/, we require in the last equation that

a_p+apg+ap =0,

1
—Q_p tap = 7

and
a_p+ap =0.

These equations have the solution

1
a—p = —ap = N
and
ap = 07
yielding
Jn—=J-n X0 Ty
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3.2 — Numerical differentiation

To determinef/, we require in the last equation that
a_p+ag+ap =0,

—a_p +ap =0,

and
2
a_p +ap = jEx
These equations have the solution
a_p = —ap = _ﬁ7
and
2
ap = _ﬁa

yielding

fh - 2f0 + f—h _ gl + 2§: f(gzj+2) hzj

h2 0 e (25 4+2)!

3.2.1 The second derivative &f

As an example, let us calculate the second derivativesfz) for various values of.. Furthermore, we
will use this section to introduce three important C++-pemgming features, namely reading and writing
to a file, call by reference and call by value, and dynamic nrgratbocation. We are also going to split
the tasks performed by the program into subtasks. We defiméumation which reads in the input data,
one which calculates the second derivative and a final fonetihich writes the results to file.

Let us look at a simple case first, the useppihtf andscant If we wish to print a variable defined as
double speed_of_soundye could for example writeorintf (*“speed_of _sound = %If\n ", speed_of sound);

In this case we say that we transfer the value of this spedifiable to the functionprintf. The
function printf can however not change the value of this variaftiheere is no need to do so in this case).
Such a call of a specific function is calledll by value The crucial aspect to keep in mind is that the
value of this specific variable does not change in the calledtfon.

When do we use call by value? And why care at all? We do actaaly, because if a called function
has the possibility to change the value of a variable whemnishnot desired, calling another function with
this variable may lead to totally wrong results. In the waeses you may even not be able to spot where
the program goes wrong.

We do however use call by value when a called function simgrgives the value of the given variable
without changing it.

If we however wish to update the value of say an array in a ddllaction, we refer to this call as
call by reference What is transferred then is the address of the first elenfeéhearray, and the called
function has now access to where that specific variables’limad can thereafter change its value.

The functionscanfis then an example of a function which receives the addressvafiable and is
allowed to modify it. Afterall, when callingcanfwe are expecting a new value for a variable. A typical

call could bescanf(“%lf\n”, &speed_of sound);
Consider now the following program

//

// This program module
// demonstrates memory allocation and data transfer in
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Numerical differentiation

// between functions in C++

//

#include <stdio.h> // Standard ANSI-C++ include files
#include <stdlib.h>

int main(nt argc,char sxargvl[])

{

int a: // line 1
int xb; // line 2
a=10; // line 3
b =new int[10]; // line 4
for(i=0;i < 10; i++) {

bli]=1i; // line 5
}
func(a,b); // line 6
return O;

} // End: function main()

void func(int x, int xy) // line 7
{
X+=7; // line 8
xy += 10; // line 9
y[6] += 10; // line 10
return; // line 11

} // End: function func()

There are several features to be noted.

— Lines 1,2: Declaration of two variables a and b. The comp#serves two locations in memory.
The size of the location depends on the type of variable. Twepegrties are important for these
locations — the address in memory and the content in the

— Line 3: The value of ais now 10.

— Line 4: Memory to store 10 integers is reserved. The addeetbeetfirst location is stored in b. The
address of element number 6 is given by the expression (b + 6).

— Line 5: All 10 elements of b are given values: b[0] =0, b[1] =.1,, b[9] = 9;

— Line 6: The main() function calls the function func() and gregram counter transfers to the first
statement in func(). With respect to data the following leaypp The content of a (= 10) and the
content of b (a memory address) are copied to a stack (new ngdotation) associated with the
function func()

— Line 7: The variable x and y are local variables in func(). ¥ihave the values — x = 10, y =
address of the first element in b in the main() program.

— Line 8: The local variable x stored in the stack memory is geaihto 17. Nothing happens with
the value a in main().
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3.2 — Numerical differentiation

— Line 9: The value of y is an address and the symbol *y standthioposition in memory which
has this address. The value in this location is now increagetD. This means that the value of
b[0] in the main program is equal to 10. Thus func() has madlifiezalue in main().

— Line 10: This statement has the same effect as line 9 excaft thodifies element b[6] in main()
by adding a value of 10 to what was there originally, namely 6.

— Line 11: The program counter returns to main(), the nextesgion afterfunc(a,b); All data on
the stack associated with func() are destroyed.

— The value of a is transferred to func() and stored in a new nnghogation called x. Any modi-
fication of x in func() does not affect in any way the value ofamain(). This is calledransfer
of data by value On the other hand the next argument in func() is an addreghvstransferred
to func(). This address can be used to modify the correspgndilue in main(). In the program-
ming language C it is expressed as a modification of the vahiehay points to, namely the first
element of b. This is callettansfer of data by referenceand is a method to transfer data back to
the calling function, in this case main().

C++ allows however the programmer to use solely call by ezfee (note that call by reference is
implemented as pointers). To see the difference betweendCCa+, consider the following simple
examples. In C we would write

int n; n =8;
func(&n); /*x & is a pointer to n x/
void func(int xi)
{
x1 = 10; /« n is changed to 10x/

}

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
void func(int& i)
{
i = 10; // n is changed to 10

}

Note well that the way wex have defined the input to the fumctimc(int & i) or func(int i) decides
how we transfer variables to a specific function. The reasby wie emphasize the difference between
call by value and call by reference is that it allows the pangmer to avoid pitfalls like unwanted changes
of variables. However, many people feel that this reducesdhdability of the code. It is more or less
common in C++ to use call by reference, since it gives a muehngr code. Recall also that behind the
curtain references are usually implemented as pointereene transfer large objects such a matrices
and vectors one should always use call by reference. Cosying objects to a called function slows
down considerably the execution. If you need to keep theevafia call by reference object, you should
use theconstdeclaration.

51



Numerical differentiation

In programming languages like Fortran one uses only calldbgrence, but you can flag whether
a called function or subroutine is allowed or not to changewhlue by declaring for example an in-
teger value atNTEGER, INTENT(IN):: i. The local function cannot change the valuei.oDeclaring a
transferred values dNTEGER, INTENT(OUT):: i allows the local function to change the variahle

Initialisations and main program

In every program we have to define the functions employed. style chosen here is to declare these
functions at the beginning, followed thereafter by the maimgram and the detailed task performed by
each function. Another possibility is to include these timits and their statements before the main
program, meaning that the main program appears at the vdry &nd this programming style less read-
able however since | prefer to read a code from top to bottorfurther option, specially in connection
with larger projects, is to include these function defimiidn a user defined header file. The following
program shows also (although it is rather unnecessary sncése due to few tasks) how one can split
different tasks into specialized functions. Such a divig®very useful for larger projects and programs.
In the first version of this program we use a more C-like stglewriting and reading to file. At the

end of this section we include also the corresponding C++-amtfan files.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/programl . cpp

[ *

* % Program to compute the second derivative of exp(x).

* % Three calling functions are included

* % in this version. In one function we read in the data from scmee
* % the next function computes the second derivative

* % while the last function prints out data to screen.

*/

using namespacestd ;
# include <iostream>

void initialise (double x, double *, int x);
void second_derivative (int , double, double, double %, double x);
void output( double %, double %, double, int);

int main()
{
I/l declarations of variables
int number_of_steps;
double x, initial_step;
double xh_step, xcomputed_derivative;
/I read in input data from screen
initialise (&initial_step , &, &number_of_steps);
I/l allocate space in memory for the ondimensional arrays
/I h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative =mmew double[number_of steps];
/' compute the second derivative of exp(x)
second_derivative ( number_of_steps, x, initial_step ,step,
computed_derivative);
/I Then we print the results to file
output(h_step, computed_derivative, x, number_of_stéeps
/I free memory
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3.2 — Numerical differentiation

delete [] h_step;
delete [] computed_derivative;
return O;

} /!l end main program

We have defined three additional functions, one which reaffein screen the value af, the initial step

lengthh and the number of divisions by 2 af This function is calledinitialise . To calculate the second

derivatives we define the functiosecond_derivativeFinally, we have a function which writes our results

together with a comparison with the exact value to a given Tilee results are stored in two arrays, one

which contains the given step lengitand another one which contains the computed derivative.
These arrays are defined as pointers through the statement

double xh_step, xcomputed _derivative;

A call in the main function to the functiosecond_derivativdooks then like this

second_derivative ( number_of_steps, x, intial_step , teps,
computed_derivative);

while the called function is declared in the following way

void second_derivativeint number_of_steps ,double x, double xh_step double
xcomputed_derivative);

indicating thatdouble xh_step, double xcomputed_derivativeare pointers and that we transfer the address
of the first elements. The other variables number_of_stepsjouble x; are transferred by value and are
not changed in the called function.

Another aspect to observe is the possibility of dynamickdcakion of memory through theew
function. In the included program we reserve space in mefionthese three arrays in the following way
h_step =new doubldnumber_of stepshndcomputed_derivative smew doubldnumber_of stepsiVhen we
no longer need the space occupied by these arrays, we freemnémough the declarationgelete []
h_step;anddelete [] computed_derivative;

The function initialise

/1 Read in from screen the initial step, the number of steps
/11 and the value of x

void initialise (double xinitial_step , double xx, int xnumber_of_steps)

{
printf ("Read in from screen initial step, x and number of steps\n");
scanf("%1f %1f %d",initial_step , x, number_of_steps);
return ;

} // end of function initialise

This function receives the addresses of the three varialleisie « initial_step , double xx, int x
number_of_stepgind returns updated values by reading from screen.

The function second_derivative
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[/l This function computes the second derivative

void second_derivative (int number_of_steps ,double x,
double initial_step , double xh_step,
double xcomputed_derivative)

{
int counter;
double h;
/1l calculate the step size
/1l initialise the derivative, y and x (in minutes)
/1 and iteration counter
h = initial_step;

/I start computing for different step sizes
for (counter=0; counter < number_of_steps; counter++ )

{
/I setup arrays with derivatives and step sizes
h_step[counter] = h;
computed_derivative[counter] =

(exp(xth)—2.xexp (x)+exp (¥xh))/(hxh);

h = hx0.5;

} // end of do loop

return ;

} /l end of function second derivative

The loop over the number of steps serves to compute the setmivétive for different values of.

In this function the step is halved for every iteration (yoaulkl obviously change this to larger or
smaller step variations). The step values and the derastive stored in the arrays stepanddouble
computed_derivative

The output function

This function computes the relative error and writes to asehdile the results.

The last function here illustrates how to open a file, writd a@ad possible data and then close it.
In this case we have fixed the name of file. Another possitiitybviously to read the name of this file
together with other input parameters. The way the progrgeneisented here is slightly unpractical since
we need to recompile the program if we wish to change the ndrihe @utput file.

An alternative is represented by the following program Cgpam. This program reads from screen
the names of the input and output files.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program?.cpp

1 #include <stdio.h>
2 #include <stdlib.h>
3 int col:

int main(int argc, char xargv/[])
{
FILE xin, xout;
int c;
if ( argc < 3) {
printf("You have to read in :\n");
printf("in_file and out_file \n");

PR O00~NO UM
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12 exit(1);

13 in = fopen( argv[1l],"r");} /l returns pointer to the in_file

14 if ( inn == NULL ) { /I can’t find in_file

15 printf("Can’t find the input file %s\n", argv[1l]);

16 exit(1);

17 }

18 out = fopen( argv[2],"w"); /l returns a pointer to the out_file
19 if ( ut == NULL ) { /Il can’t find out_file

20 printf("Can’t find the output file %s\n", argv[2]);

21 exit(1);

22 }

program statements

23 fclose (in);

24 fclose (out);
25 return O;
}
This program has several interesting features.
Line Program comments
5 e main () takes three arguments, given by argc. argv points to theviail:

the name of the program, the first and second arguments sircdisie file
names to be read from screen.

7 e C++ has alata type calledFILE. The pointersan andout point to spe-
cific files. They must be of the ty[®ILE.

10 e The command line has to contain 2 filenames as parameters.
13-17 e The input file has to exit, else the pointer returns NULL. I¢ lomly read
permission.

18-22 e Same for the output file, but now with write permission only.
23-24 e Both files are closed before the main program ends.

The above represents a standard procedure in C for readingafihes. C++ has its own class for
such operations.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/cpp/program3. cpp

[

* % Program to compute the second derivative of exp(x).

* % In this version we use C++ options for reading and

* % writing files and data. The rest of the code is as in

*ok programs/chapter3/programl.cpp

* % Three calling functions are included

* in this version. In one function we read in the data from scmee
*% the next function computes the second derivative

*% while the last function prints out data to screen.

x/

using namespacestd;

# include <iostream>

# include <fstream>

# include <iomanip>

# include <cmath>

void initialise (double x, double *, int x);
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void second_derivative (int , double, double, double %, double x);
void output( double x, double %, double, int);

ofstream ofile;

int main(int argc, charx argv([])
{
/Il declarations of variables
char xoutfilename;
int number_of_steps;
double x, initial_step;
double xh_step, xcomputed_derivative;
/I Read in output file, abort if there are too few commatihe
arguments
if ( argc <=1 ){
Ccout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{

outfilename=argv[1];

ofile .open(outfilename);
/I read in input data from screen
initialise (&initial_step , &, &number_of_steps);
/I allocate space in memory for the ondimensional arrays
/I h_step and computed_derivative
h_step = new double[number_of_steps];
computed_derivative =mew double[number_of steps];
/I compute the second derivative of exp(x)
second_derivative ( number_of_steps, x, initial_step ,step,
computed_derivative);
/I Then we print the results to file
output(h_step, computed_derivative, x, number_of_steps
/I free memory
delete [] h_step;
delete [] computed_derivative;
/I close output file
ofile .close ();
return O;
} /!l end main program

The main part of the code includes now an object declaratistream ofilewhich is included in C++ and
allows the programmer to open and declare files. This is danthe statemenbfile . open(outfilename);
We close the file at the end of the main program by writiofge . close (); There is a corresponding
object for reading inputfiles. In this case we declare pathe main function, or in an evantual header
file, ifstream ifile and use the corresponding statemeiiite .open(infilename)and ifile . close () ;for
opening and closing an input file. Note that we have declasmedcharacter variableshars outfilename
; andcharx infilename ; In order to use these options we need to include a corregmptiirary of
functions usingt include <fstream=

One of the problems with C++ is that formatted output is not@sy to use as the printf and scanf
functions in C. The output function using the C++ style iduiled below.
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3.2 — Numerical differentiation

/1 function to write out the final results
void output(double xh_step, double xcomputed_derivative ,double x,
int number_of_steps )

{ . .
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
for( i=0; i < number_of_steps; i++)
{

ofile << setw(15) << setprecision(8) << logl0(h_step][i]);
ofile << setw(15) << setprecision(8) <<
loglO(fabs(computed_derivative [+lexp(x))/exp(x))) << endl;
}

} // end of function output

The functionsetw(15)reserves an output of 15 spaces for a given variable wiglrecision (8yields
eight leading digits. To use these options you have to usddblaration# include <iomanip>

Before we discuss the results of our calculations we list liee corresponding Fortran program. The
corresponding Fortran example is

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/£90/programl .f90

! Program to compute the second derivative of exp(x).

! Only one calling function is included.

! It computes the second derivative and is included in the
! MODULE functions as a separate method
I

I

I

The variable h is the step size. We also fix the total number
of divisions by 2 of h. The total number of steps is read from
screen
MODULE constants
I definition of variables for double precisions and complexariables
INTEGER, PARAMETER :: dp = KIND (1.0DO)
INTEGER , PARAMETER :: dpc = KIND ((1.0D0,1.0D0))
END MODULE constants

I Here you can include specific functions which can be used by
I many subroutines or functions

MODULE functions
USE constants
IMPLICIT NONE
CONTAINS
SUBROUTINE derivative (number_of_steps, x, initial_step , h_step, &
computed_derivative)
USE constants
INTEGER , INTENT (IN) :: number_of_steps
INTEGER :: loop
REAL (DP) , DIMENSION (number_of_steps) INTENT (INOUT) :: &
computed_derivative, h_step
REAL (DP) , INTENT (IN) :: initial_step , X
REAL (DP) :: h
! calculate the step size
! initialise the derivative, y and x (in minutes)

57


http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter03/f90/program1.f90

Numerical differentiation

! and iteration counter

h = initial_step

I start computing for different step sizes

DO loop=1, number_of_steps
I setup arrays with derivatives and step sizes
h_step(loop) = h
computed_derivative (loop) = (EXP(x+m)2.«EXP(x)+EXP(x-h))/(hxh)
h = hx0.5

ENDDO

END SUBROUTINE derivative

END MODULE functions
PROGRAM second_derivative

USE constants
USE functions

IMPLICIT NONE

I declarations of variables

INTEGER :: number_of_ steps, loop

REAL (DP) :: x, initial_step

REAL (DP) , ALLOCATABLE , DIMENSION (:) :: h_step, computed_derivative

I read in input data from screen

WRITE (% ,*) 'Read in initial step, x value andnumber of steps’
READ(*,*) initial_step , x, number_of_steps

I open file to write results on

OPEN(UNIT =7 ,FILE =’ out . dat )

I allocate space in memory for the ondimensional arrays

I h_step and computed_derivative

ALLOCATE (h_step(number_of steps),computed_derivative (numloér steps))
I compute the second derivative of exp(x)

I initialize the arrays

h_step = 0.0_dp; computed_derivative = 0.0_dp

CALL derivative (number_of_steps ,x,initial_step ,h_step myputed_derivative

)

' Then we print the results to file

DO loop=1, number_of_steps
WRITE (7, (E16.10,2X,E16.10) ') LOG10(h_step(loop)),&
LOG10 ( ABS ( (computed_derivative (loopEXP(x))/EXP(x)))

ENDDO

I free memory

DEALLOCATE ( h_step, computed_derivative)

I close the output file

CLOSE(7)

END PROGRAM second_derivative

TheMODULE declaration in Fortran allows one to place functions like éime which calculates second
derivatives in a module. Since this is a general method, onddcextend its functionality by simply
transfering the name of the function to differentiate. It case we use explicitely the exponential
function, but there is nothing which hinders us from definatger functions. Note the usage of the
moduleconstantswhere we define double and complex variables. If one wishesvitch to another
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3.2 — Numerical differentiation

precision, one just needs to change the declaration in ahefale program only. This hinders possible
errors which arise if one has to change variable declamfiorevery function and subroutine. Finally,
dynamic memory allocation and deallocation is in Fortranedwith the keywords\LLOCATE ( array(
size) andDEALLOCATE (array) Although most compilers deallocate and thereby free sagemory
when leaving a function, you should always deallocate aayamhen it is no longer needed. In case
your arrays are very large, this may block unnecessarilyeldractions of the memory. Furthermore,
you should always initialise arrays. In the example abowenete that Fortran allows us to simply write
h_step =0.0_dp; computed_derivative = 0.0_dpvhich means that all elements of these two arrays are
set to zero. Coding arrays in this manner brings us much rctosthe way we deal with mathematics.
In Fortran it is irrelevant whether this is a one-dimensiaranulti-dimensional array. In the next next
chapter, where we deal with allocation of matrices, we willaduce the numerical library Blitz++ which

allows for similar treatments of arrays in C++. By defaultinawer, these features are not included in the
ANSI C++ standard.

Results

In Table[31 we present the results afamerical evaluationfor various step sizes for the second deriva-
tive of exp (z) using the approximatiorfy = f’_sz# The results are compared with the exact ones
for variousz values. Note well that as the step is decreased we get ctofiee exact value. However, if

x h=0.1 h=0.01 h=0.001 h=0.0001 h=0.0000001 Exact
0.0 1.000834 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.720548 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.395216 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.102280 20.085704  20.085539  20.085537 20.250467 082887
4.0 54643664 54.598605 54.598155  54.598151 54.711789 598450

5.0 148.536878 148.414396 148.413172 148.413161 15(0635048.413159

Table 3.1: Result for numerically calculated second déviea ofexp (z) as functions of the chosen step
sizeh. A comparison is made with the exact value.

it is further decreased, we run into problems of loss of gieni This is clearly seen fdgr = 0.0000001.
This means that even though we could let the computer runsmidller and smaller values of the step,
there is a limit for how small the step can be made before wed@uoecision.

3.2.2 Error analysis

Let us analyze these results in order to see whether we cam fimdimal step length which does not
lead to loss of precision. Furthermore In Higl3.2 we havétedo

€ = logio (

as function oflogio(h). We used an intial step length bf= 0.01 and fixedz = 10. For large values of
h, that is—4 < logio(h) < —2 we see a straight line with a slope close to 2. Closkie(h) ~ —4
the relative error starts increasing and our computed akdrév with a step sizéngio(h) < —4, may no
longer be reliable.

" ey
computed exact

"
exact
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T T
Relative error

10 l l l l l l l
-14 -12 -10 -8 -6 -4 -2 0

|Oglo(h)

Figure 3.2: Log-log plot of the relative error of the secordivhtive ofe” as function of decreasing step
lengthsh. The second derivative was computed for 10 in the program discussed above. See text for
further details

Can we understand this behavior in terms of the discuss@an the previous chapter? In chadiér 2
we assumed that the total error could be approximated wighterm arising from the loss of numerical
precision and another due to the truncation or approximatiade, that is

€tot = €approx T €ro-

For the computed second derivative, Eq.1(3.4), we have

w_ Jn=2fo+ f-n 2502 féQjJrz) 1,2
(27 +2) 7

0 — 2
h =
and the truncation or approximation error goes like
(4)
€ R~ —fo h?
approx 12 .

If we were not to worry about loss of precision, we could innpiple makeh as small as possible.
However, due to the computed expression in the above progrkample

w fn=2fc+ fon  (fn—fo)+ (f=n — fo)

0 — h2 - h2 )
we reach fairly quickly a limit for where loss of precisionalto the subtraction of two nearly equal
numbers becomes crucial. (If v, — fo) are very close, we haugfr, — fo) =~ ey, where|ey| < 1077
for single ande,;| < 1071 for double precision, respectively.

We have then
| U= fo) + (f=n — fo)| _ 2em
| = <=L
h? h?

|fo
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Our total error becomes

(4)

2ens fo o

< — 4+ 2 he 3.6

|€tot| < 2 + 12 (3.6)

It is then natural to ask which value bfyields the smallest total error. Taking the derivativeegf;| with
respect toh results in

With double precision and = 10 we obtain
h~10"%

Beyond this value, it is essentially the loss of numericaicfgion which takes over. We note also that
the above qualitative argument agrees seemingly well \mighrésults plotted in Fig._3.2 and Tablel3.1.
The turning point for the relative error at approximatély: x 10~ reflects most likely the point where
roundoff errors take over. If we had used single precisiaaywsuld get ~ 10~2. Due to the subtractive
cancellation in the expression f@f' there is a pronounced detoriation in accuracy: @& made smaller
and smaller.

It is instructive in this analysis to rewrite the numeratbti®e computed derivative as

(fn = fo) + (fon — fo) = (" —€") + (" =€),
as
(fn = fo) + (f-n — fo) = " (" + e = 2),
since it is the differencée” 4 e~ — 2) which causes the loss of precision. The results, stilbfer 10
are shown in the Tab[e3.2. We note from this table thatat x 10~® we have essentially lost all leading

h e e et +eh—2

10~  2.0100083361116070 1.0008336111607280 2
10-2  2.0001000008333358 1.00000833336055681 *
10~3  2.0000010000000836 1.000000083406504@ 6
10~%  2.0000000099999999 1.000000005024 7593 8
10~  2.0000000001000000 9.9999897251734687 1
10~6  2.0000000000010001 9.9997787827987850 13
10~7  2.0000000000000098 9.9920072216264089 15
10~8  2.0000000000000000 0.0000000000000000°
109  2.0000000000000000 1.110223024625156% 6
1010 2.0000000000000000 0.0000000000000000°

Table 3.2: Result for the numerically calculated numerafdine second derivative as function of the step
sizeh. The calculations have been made with double precision.

digits.

From Fig[3:2 we can read off the slope of the curve and thedelsrmine empirically how truncation
errors and roundoff errors propagate. We saw thatfor< logio(h) < —2, we could extract a slope
close to2, in agreement with the mathematical expression for thection error.

We can repeat this for 10 < logio(h) < —4 and extract a slopes —2. This agrees again with our
simple expression in EJ.(3.6).
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3.3 Exercises and projects

Exercise 3.1: Computing derivatives numerically

We want you to compute the first derivative of

f(@) = tan™" ()

for z = /2 with step lengths:. The exact answer i&/3. We want you to code the derivative using the
following two formulae

ey = EIZIE o), @7

and
I

foe = T + O(1?), (3:8)

with £, = f(z £ h).

(&) Find mathematical expressions for the total error dueg® of precision and due to the numerical
approximation made. Find the step length which gives thdleastavalue. Perform the analysis
with both double and single precision.

(b) Make thereafter a program which computes the first divevaising Eqs[{317) anfl{3.8) as function
of various step lengths and leth — 0. Compare with the exact answer.
Your program should contain the following elements:

— A vector (array) which contains the step lengths. Use dynam@mory allocation.

— Vectors for the computed derivatives of E4S.13.7) (®Blpoth single and double preci-
sion.

— A function which computes the derivative and contains calvélue and reference (for C++
— Add a function which writes the results to file.

users only).
€ = logio ( ) ;

as function ofog;(h) for Egs. [3¥) and{318) for both single and double precisRint the results
and see if you can determine empirically the behavior of ¢ted error as function of.

(c) Compute thereafter
! /
computed ~ Jexact

/
exact
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Chapter 4

Linear algebra

In the training of programming for scientific computatiore ttmphasis has historically
been on squeezing out every drop of floating point performdaca given algorithm. ......
This practice, however, leads to highly tuned racecarlidwsare codes: delicate, easily
broken and difficult to maintain, but capable of outperfargiimore user-friendly family
cars.Smith, Bjorstad and Gropp, An introduction to MPI [16]

4.1 Introduction

In this chapter we deal with basic matrix operations, sudh@&solution of linear equations, calculate the
inverse of a matrix, its determinant etc. The solution ofdinequations is an important part of numerical
mathematics and arises in many applications in the sciertdese we focus in particular on so-called
direct or elimination methods, which are in principle detared through a finite number of arithmetic
operations. Iterative methods will be discussed in conoeatith eigenvalue problems in chapked 12.

This chapter serves also the purpose of introducing impbpeogramming details such as handling
memory allocation for matrices and the usage of the libsanibich follow these lectures. Classes and
pertinent programming aspects are relegated to the appendi

The algorithms we describe and their original source codesaken from the widely used software
package LAPACK [25], which follows two other popular packagleveloped in the 1970s, namely EIS-
PACK and LINPACK. The latter was developed for linear equadi and least square problems while
the former was developed for solving symmetric, unsymrmedrid generalized eigenvalue problems.
From LAPACK'’s websitehttp: //www.netlib.orglit is possible to download for free all source codes
from this library. Both C++ and Fortran versions are avddald\nother important library is BLAS [26],
which stands for Basic Linear Algebra Subprogram. It corstafficient codes for algebraic operations
on vectors, matrices and vectors and matrices. Basicdlm@dern supercomputer include this library,
with efficient algorithms. Else, Matlab offers a very effidiggrogramming environment for dealing with
matrices. The classic text from where we have taken mosteofdimalism exposed here is the book
on matrix computations by Golub and Van Loan [27]. Good reastnoductory texts are Kincaid and
Cheney [24] and Datta [28]. For more advanced ones see fiegfetnd Bau Il [29], Kress [30] and
Demmel [31]. Ref. [27] contains an extensive list of textk®on eigenvalue problems and linear alge-
bra. LAPACK [25] contains also extensive listings to thesiagh literature on matrix computations. For
the introduction of the auxiliary library Blitz++ [32], wbh allows for a very efficient way of handling
arrays in C++ we refer to the online manuahatp://www.oonumerics.org and the appendix.
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4.2 Mathematical intermezzo

The matrices we will deal with are primarily sauare real syetmia or hermitian ones, assuming thereby
that ann x n matrix A € R™*" for a real matrix and A € C"*" for a complex matrix. For the sake of
simplicity, we take a matriA € R*** and a corresponding identity matdix

ailr ai2 a13 ai4
as]y a2z az a4
A= 3 I=
azr a3z a3z a4
aq1 Q42 a43 Q44

, (4.1)

o O O =
O O = O
O = O O
_ o O O

wherea;; € R. The inverse of a matrix, if it exists, is defined by
ATl A=

In the following discussion, matrices are always two-digienal arrays while vectors are one-dimensional
arrays. In our nomenclature we will restrict boldfaced talpiletters such a& to represent a general
matrix, which is a two-dimensional array, whilg; refers to a matrix element with row numbeand
column numbeyj. Similarly, a vector being a one-dimensional array, is llablex and represented as (for
a real vector)

z1

xeR" «— | "2 |,
x3
T4

with pertinent vector elements € R. Note that this notation implies; € R**! and that the members
of x are column vectors. The elementsipfe R1** are row vectors.
Table[4.2 lists some essential features of various typesatfices one may encounter. Some of the

Table 4.1: Matrix properties

Relations Name matrix elements

A=AT symmetric aij = aji

A= (AT)_1 real orthogonal >, aiajr = >, ariar; = i
A=Ar real matrix aij = a;;

A=AT hermitian aij = aj;

A= (AN | unitary Dok ik = Dp G = O

matrices we will encounter are listed here

1. Diagonal ifa;; = 0 for i # j,

A reminder on mathematical symbols may be appropriate fdre symbolR is the set of real numbers. Correspondingly,
N, Z and C represent the set of natural, integer and complex numbespectively. A symbol likeR™ stands for am-
dimensional real Euclidean space, whilga, b] is the space of real or complex-valued continuous functmmshe interval
[a, b], where the latter is a closed interval. Similaley" [a, b] is the space ofn-times continuously differentiable functions on
the interval[a, b]. For more symbols and notations, see the main text.
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a1

0
0
0

. Lower triangular ifa;; = 0 for i < j

ail
az1
asi
a41

a12

a22
0
0

0
a22
as2
42

ai3
a3

ass
0

0
0
ass
a43

. Upper triangular it;; = 0 for ¢ > 5, which for a4 x 4 matrix is of the form

aiq
Qg4
a34

ann

O O O

44

Upper Hessenbergdf; = 0 for ¢ > j + 1, which is similar to a upper triangular except that it has
non-zero elements for the first subdiagonal row

a11

ag1
0
0

. Lower Hessenberg if;; = 0fori < j + 1

ail
az1
asi
a41

. Tridiagonal ifa;; = 0 for |i — j| > 1

ail
az1

0

a2
az2

a32
0

a2
az2
as2
Q42

a2
a22

as2
0

ai3
a3
ass
a43

az3
ass
a43

0
a23
ass
a43

a4
a24
a3zq
Q44

as4
a44

0
0
as4
ay4

There are many more examples, such as lower banded with lmdthgwior a;; = 0 for ¢ > j + p, upper
banded with bandwidtp for a;; = 0 for 7 < j + p, block upper triangular, block lower triangular etc.
For arealn x n matrix A the following properties are all equivalent

o & w0 nNoE

If the inverse ofA exists,A is nonsingular.

The equatiolAx = 0 impliesx = 0.
The rows ofA from a basis ofR".
The columns ofA from a basis oR™.

A is a product of elementary matrices.
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6. 0 is not an eigenvalue oA.
The basic matrix operations that we will deal with are additand subtraction
A:BiCﬁaij:bijicij, (42)

scalar-matrix multiplication
A =B = a;; = by,

vector-matrix multiplication

n
y = Ax = Y; = Zaijxj, (43)
j=1
matrix-matrix multiplication
n
A =BC — Q5 = Z bikckj, (44)
k=1

transposition
A= BT — Qjj = bji,

and if A € C™*"™, conjugation results in
_T —
A=B — az-j = bji,

where a variable = x — 1y denotes the complex conjugatezof x + wy. In a similar way we have the
following basic vector operations, namely addition andisadtion

X=ytz—z; =y; + 2,

scalar-vector multiplication
X =7y = T = VYi,

vector-vector multiplication (called Hadamard multigiiion)
X=Yz2 — T = YiZi,
the inner or so-called dot product

n
c:yTz — Cc= Zyjzj, (45)
j=1

with a ¢ a constant and the outer product, which yields a matrix,
A=yl — aij = YiZj, (4.6)

Other important operations are vector and matrix norms. aS<bf vector norms are the so-called
norms )
Ixllp = (|21 + [zl + - + [z ]?) 7,

wherep > 1. The most important are the 1, 2 andnorms given by
[[x|[1 = |z1] + |z2| + - - + |znl,
1 1
1x[|2 = (Jz1]* + |22 + - + |2a?)? = (xTx)2,

66



4.3 — Programming details

and
|[%[[oo = max [a],

for 1 < i < n. From these definitions, one can derive several importdaioas, of which the so-called
Cauchy-Schwartz inequality is of great importance for malgprithms. It reads for any andy in a
real or complex inner product space satisfy

xTy| < [xll2llyl2,

and the equality is obeyed onlyifandy are linearly dependent. An important relation which folsow
from the Cauchy-Schwartz relation is the famous trianglatien, which states that for anyandy in a
real or complex inner product space satisfy

[ +yll2 < [[x[[2 + [lyll2-

Proofs can be found in for example Ref. [27]. As discussedhmpted®, the analysis of the relative
error is important in our studies of loss of numerical precis Using a vector norm we can define the
relative error for the machine representation of a vegtowWe assume thafi(x) € R" is the machine
representation of a vectar€ R”. If x # 0, we define the relative error as

Using theco-norm one can define a relative error that can be translatedaistatement on the correct
significant digits off(x),
l _
17169 = xlos 11
[1%[foo
where the largest component ff(x) has roughlyi correct significant digits.
We can define similar matrix norms as well. The most freqyamked are the Frobenius norm

and thep-norms

assuming thak # 0. We refer the reader to the text of Golub and Van Loan [27] flurther discussion
of these norms.

The way we implement these operations will be discussedwhel® it depends on the programming
language we opt for.

4.3 Programming details
Many programming problems arise from improper treatmenarodys. In this section we will dis-
cuss some important points such as array declaration, nyeallocation and array transfer between

functions. We distinguish between two cases: (a) arrayatdaitbns where the array size is given at
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compilation time, and (b) where the array size is determihaihg the execution of the program, so-
called dymanic memory allocation. Useful references on @tggramming details, in particular on
the use of pointers and memory allocation, are Reek’s te3{t & pointers in C, Berryhil’'s mono-
graph [34] on scientific programming in C++ and finally Fraedkxt [35] on memory as a program-
ming concept in C and C++. Good allround texts on C++ prograrmgrm engineering and science are
the books by Flowers [19] and Barton and Nackman [20]. See taks online lecture notes on C++
athttp://heim.ifi.uio.no/~hpl/INF-VERK4830. For Fortran we recommend the online lectures
athttp://folk.uio.no/gunnarw/INF-VERK4820. These web pages contain extensive references to
other C++ and Fortran resources. Both web pages contairgbnoaterial, lecture notes and exercises,
in order to serve as material for own studies.

SEGMENTATION
FAULT.

: Jéﬁ#«wﬁ’f 6/3/:';
2 _Z

Figure 4.1: Segmentation fault, again and again! Alas, ithes situation you must likely will end up
in, unless you initialize, access, allocate or deallocabpgrly your arrays. Many program development
environments such as Dev C++&iw.bloodshed . netl provide debugging possibilities. Another possi-
bility, discussed in appendixXIA is to use the debugger GDBiwithe text editor emacs. Beware however
that there may be segmentation errors which occur due toseimdibraries of the operating system.
(Drawing: courtesy by Victoria Popsueva 2003.)

4.3.1 Declaration of fixed-sized vectors and matrices

Table[4.2 presents a small program which treats essendialréss of vector and matrix handling where
the dimensions are declared in the program code.

In line a we have a standard C++ declaration of a vector. The complerves memory to store
five integers. The elements are vec[0], vec[1].....,ved¥te that the numbering of elements starts with
zero. Declarations of other data types are similar, indgditructure data.
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The symbol vec is an element in memory containing the addeetg first element vec[0] and is a
pointer to a vector of five integer elements.

In line b we have a standard fixed-size C++ declaration of a matrix.irAtjee elements start with
zero, matr[0][0], matr[O][1], ..... , matr[0][4], matr[[q],.... . This sequence of elements also shows how
data are stored in memory. For example, the element mdi}[tllows matr[0][4]. This is important in
order to produce an efficient code and avoid memory stride.

There is one further important point concerning matrix destion. In a similar way as for the symbol
vec matr is an element in memory which contains an address to a vefdfore® elements, but now these
elements are not integers. Each element is a vector of figgens. This is the correct way to understand
the declaration idine b. With respect to pointers this means that matpdgnter-to-a-pointer-to-an-
integerwhich we can writesxmatr. Furthermoresmatr is a-pointer-to-a-pointeof five integers. This
interpretation is important when we want to transfer vestord matrices to a function.

In line ¢ we transfer vec[] and matr[][] to the function sub_1(). To $mecific, we transfer the
addresses of vec[] and matr[][] to sub_1().

In line d we have the function definition of sub_1(). Time vec]] is a pointer to an integer. Alterna-
tively we could writeint «vec. The first version is better. It shows that it is a vectoseferal integers,
but not how many. The second version could equally well bal usdransfer the address to a single
integer element. Such a declaration does not distinguiskeas the two cases.

The next definition ignt matr[][5]. This is a pointer to a vector of five elements and tdompiler
must be told that each vector element contains five integdese an alternative version could be int
(xmatr)[5] which clearly specifies that matr is a pointer to atge of five integers.

There is at least one drawback with such a matrix declaratiowe want to change the dimension
of the matrix and replace 5 by something else we have to dcatine €hange in all functions where this
matrix occurs.

There is another point to note regarding the declarationacfibles in a function which includes
vectors and matrices. When the execution of a function teatas, the memory required for the variables
is released. In the present case memory for all variablesin(nare reserved during the whole program
execution, but variables which are declared in sub_1()elemsed when the execution returns to main().

4.3.2 Runtime declarations of vectors and matrices in C++

As mentioned in the previous subsection a fixed size de®aralf vectors and matrices before com-
pilation is in many cases bad. You may not know beforehanchtiieally needed sizes of vectors and
matrices. In large projects where memory is a limited fagtoould be important to reduce memory re-
quirement for matrices which are not used any more. In C aniGs-possible and common to postpone
size declarations of arrays untill you really know what yaed and also release memory reservations
when it is not needed any more. The details are shown in T2Ble 4

In line a we declare a pointer to an integer which later will be useddoesan address to the first
element of a vector. Similarilyine b declares a pointer-to-a-pointer which will contain theradd to a
pointer of row vectors, each with col integers. This willtHgecome a matrix[col][col]

In line c we read in the size of vec[] and matr[][] through the numbers and col.

Next we reserve memory for the vectorline d. In line e we use a user-defined function to reserve
necessary memory for matrix[row][col] and again matr corgahe address to the reserved memory
location.

The remaining part of the function main() are as in the pnevicase down tbne f. Here we have a
call to a user-defined function which releases the resenadary of the matrix. In this case this is not
done automatically.
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Table 4.2: Matrix handling program where arrays are definempilation time

int main()

{

}

int k,m, row = 3, col =5;

int vec[5]; /I line a

int matr[3][5]; /I line b

for(k = 0; k < col; k++) vec[k] = k; /I data into vector[]

for(m = 0; m< row; m++) { /I data into matr[][]
for(k = 0; k < col ; k++) matr[m][k] = m + 10x k;

}

printf("\n\nVector data in main():\n"); /I print vector data

for(k = 0; k < col; k++) printf("vector [%d] = %d "k, vec[K]);
printf("\n\nMatrix data in main():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++)
printf("matr [%d] [[4d] = %d ",m.kmatrm][k]);
}

}

printf("\n");

sub_1(row, col, vec, matr); /I line ¢
return O;

/I End: function main()

void sub_1{nt row, int col, int vec(], int matr[][5]) /I line d

{

}

int k,m;

printf("\n\nVector data in sub_1():\n"); /I print vector data
for(k = 0; k < col; k++) printf("vector [%d] = %d "k, veclk]);
printf("\n\nMatrix data in sub_1():");

for(m = 0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++) {

printf("matr [%d] [[%d] = %d ".m, k, matr[m][K]);
}

}
printf("\n");
/I End: function sub_1()

70



4.3 — Programming details

Table 4.3: Matrix handling program with dynamic array a¢loon.

int main()

{
int xvec; /I line a
int xxmatr; /I line b

int m, k, row, col, total = 0;

printf("\n\nRead in number of rows = "); /Il 'line ¢
scanf('%d",&row);

printf("\n\nRead in number of column = ");

scanf('%d", &col);

vec =new int [col]; /I line d

matr = (nt «x)matrix(row, col,sizeofint)); /I line e

for(k = 0; k < col; k++) vec[k] = k; /I store data in vector(]

for(m = 0; m< row; m++) { /I store data in array[][]
for (k = 0; k < col; k++) matr[m][k] = m + 10« k;

}

printf("\n\nVector data in main():\n"); /I print vector data

for(k = 0; k < col; k++) printf("vector[%d] = %d "k,vec[k]);
printf("\n\nArray data in main():");
for(m = 0; m< row; m++) {
printf("\n");
for(k = 0; k < col; k++) {
printf("matrix [%d] [[%d] = %d ",m, k, matr[m][K]);

}

}

printf("\n");

for(m = 0; m< row; m++) { /I access the array
for (k = 0; k < col; k++) total += matr[m][K];

}

printf("\n\nTotal = %d\n",total);
sub_1(row, col, vec, matr);

free_matrix(yoid «x)matr); /I line f
delete[] vec; /I line g
return O;

} /I End: function main()

void sub_1{nt row, int col, int vec[], int x«xmatr) /I 'line h
{

int k,m;

printf("\n\nVector data in sub_1():\n"); /I print vector data

for(k = 0; k < col; k++) printf("*vector[%d] = %d "k, vec[K]);
printf("\n\nMatrix data in sub_1():");
for(m = 0; m< row; m++) {

printf("\n");

for(k = 0; k < col; k++) {

printf("matrix [%d] [[%d] = %d ",mk,matr[m][k]);

}
}
printf("\n");

} /I End: function sub_1()
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In line g the same procedure is performed for vec[]. In this case @nedsird C++ library has the
necessary function.

Next, inline h an important difference from the previous case occurst,Firs vector declaration is
the same, but the matr declaration is quite different. Theesponding parameter in the call to sub_1]]
in line g is a double pointer. Consequently, mattime h must be a double pointer.

Except for this difference sub_1() is the same as before n€hefeature in Table4 3 is the call to the
user-defined functionmatrix andfree_matrix. These functions are defined in the library fitecpp.
The code for the dynamic memory allocation is given below.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/cpp/cpluspluslibrary/lib.cpp
/%

x The function
* void sxmatrix ()
x reserves dynamic memory for a twdimensional matrix
x using the C++ command new . No initialization of the elements
x Input data:
x int row — number of rows
x int col — number of columns
x Iint num_bytes number of bytes for each
* element
x Returns a void xxpointer to the reserved memory location.
*/
void xxmatrix(int row, int col, int num_bytes)
¢ |
int i, num;
char xkpointer, xptr;

pointer =new(nothrow) charx [row];

if (!pointer) {
cout << "Exception handling: Memory allocation failed";
cout << " for "<< row << "row addresses !" << endl;
return NULL;

}

i = (row x col x num_bytes) kizeof(char);

pointer [0] = new(nothrow) char [i];

if (!pointer[0]) {
cout << "Exception handling: Memory allocation failed";
cout << " for address to " << | << " characters !" << endl;
return NULL;

}

ptr = pointer[0];

num = col * num_bytes;

for(i = 0; i < row; i++, ptr += num ) {
pointer[i] = ptr;

}

return (void =xx)pointer;
} // end: function void«xmatrix ()

As an alternative, you could write your own allocation andllteation of matrices. This can be
done rather straightforwardly with the following statertsenRecall first that a matrix is represented by
a double pointer that points to a contiguous memory segnmadiny a sequence of double* pointers in
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double * xA = double x A[0. .. 3]
Al0] A[OJ[OT | A[OJ[1] | Af0][2]| AfO][3]
All] A[LJ[o] | A[L[A] | A2]| A[1][3]
Al2] ALJ[OT | AR][1] | A[21[2]| Af21[3]
Al2] ABJ[OT| ABI[1]| A[3][2]| A[3][3]

Figure 4.2: Conceptual representation of the allocatioa miatrix in C++.

case our matrix is a double precision variable. Then eacbldbpointer points to a row in the matrix.
A declaration likedoublexx A; means that A is a pointer to the + 1-th row A[i] and Ai][;] is matrix
entry (i, j). The way we would allocate memory for such a matrix of dimemnaiity n x n is for example
using the following piece of code

int n;
double *xx A;

A = new doublex[n]
for (i = 0; i < n; i++)
A[i] = new double[N];

When we declare a matrix (a two-dimensional array) we mustdieclare an array of double variables.
To each of this variables we assign an allocation of a sidgiensional array. A conceptual picture on
how a matrixA is stored in memory is shown in Fig_#.2.

Allocated memory should always be deleted when it is no longeded. We free memory using the
statements

for (i = 0; i < n; i++)
delete[] A[i];
delete[] A;

delete [] A;, which frees an array of pointers to matrix rows.
However, including a library like Blitz+-http://www.oonumerics.org makes life much easier
when dealing with matrices. This is discussed in the appendi
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4.3.3 Matrix operations and C++ and Fortran features of matnandling

Many program libraries for scientific computing are writierFortran, often also in older version such
Fortran 77. When using functions from such program libsarieere are some differences between C++
and Fortran encoding of matrices and vectors worth notickhgre are some simple guidelines in order
to avoid some of the most common pitfalls.

First of all, when we think of am x n matrix in Fortran and C++, we typically would have a mental
picture of a two-dimensional block of stored numbers. Thapater stores them however as sequential
strings of numbers. The latter could be stored as row-majderoor column-major order. What do
we mean by that? Recalling that for our matrix elements ¢ refers to rows ang to columns, we
could store a matrix in the sequenggais ... a1,a21022 . .. a2y - . . apy If it IS row-major order (we go
along a given rowi and pick up all column element§ or it could be stored in column-major order
110421 .. .0p10A12G0922 ... AR ... Appy-

Fortran stores matrices in the latter way, i.e., by colurrajem while C++ stores them by row-major.
It is crucial to keep this in mind when we are dealing with ntas, because if we were to organize the
matrix elements in the wrong way, important properties the transpose of a real matrix or the inverse
can be wrong, and obviously yield wrong physics. Fortrarsstipts begin typically withl, although
it is no problem in starting with zero, while C++ starts wiitfor the first element. This means that
A(1,1) in Fortran is equivalent to1[0][0] in C++. Moreover, since the sequential storage in memory
means that nearby matrix elements are close to each othlex mémory locations (and thereby easier to
fetch) , operations involving e.g., additions of matricesyrtake more time if we do not respect the given
ordering.

To see this, consider the following coding of matrix additio C++ and Fortran. We have x n
matricesA, B andC and we wish to evaluatA = B + C according to Eq[{4]12). In C++ this would be
coded like

for(i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
} ali]ljil=bli][jl+c[i][]]

}

while in Fortran we would have

DO j=1, n

DO i=1, n
a(i,j)=b(i,j)+c(i,j)

ENDDO

ENDDO

Fig.[Z43 shows how & x 3 matrix A is stored in both row-major and column-major ways.

Interchanging the order éfand; can lead to a considerable enhancement in process timerthatro
we write the above statements in a much simpler szhytc However, the addition still involves n? op-
erations. Matrix multiplication or taking the inverse ré@gs ~ n? operations. The matrix multiplication
of Eq. (£3) of two matriceA = BC could then take the following form in C++

for(i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
for (k=0 ; k < n ; k++) {
\ afi][jl+=b[i][k] «c[k][]]
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al ai a2 a3 a1
a2 21 22 23 a21
— —
ais a3 asz2 ass as1
21 a12
a9 22
23 a32
asq a3
aso 23
ass as3

Figure 4.3: Row-major storage of a matrix to the left (C++ vayd column-major to the right (Fortran
way).
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}

and in Fortran we have

DO j=1, n
DO i=1, n
DOk =1, n
a(i,j)=a(i,j)+b(i,k)«c(i,j)
ENDDO
ENDDO
ENDDO

However, Fortran has an intrisic function called MATMUL ,catihe above three loops can be coded in
a single statemenrt=MATMUL(b,c). Fortran contains several array manipulation statemesnots) as dot
product of vectors, the transpose of a matrix etc etc. Therqubduct of two vectors is however not
included in Fortran. The coding of E@._{#.6) takes then thieviong form in C++

for (i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
ali]lil+=x[i] =y[j]
}
and in Fortran we have
DO j=1, n
DO i=1, n
a(i,j)=a(i,j)+x(j)=y(i)
ENDDO
ENDDO

A matrix-matrix multiplication of a general x n matrix with
a(i, j) = a(i, j) + b(i, k) * c(i, j),

in its inner loops requires a multiplication and an additidve define now a flop (floating point operation)
as one of the following floating point arithmetic operatioviz addition, subtraction, multiplication and
division. The above two floating point operations (flops)@waen? times meaning that a general matrix
multiplication require2n? flops if we have a square matrix. If we assume that our commgorms
10 flops per second, then to perform a matrix multiplication dfo@0 x 1000 case should take two
seconds. This can be reduced if we multiply two matrices lvhie upper triangular such as

ailp a2 a13 ai4
0 az azz axn
0 0 a3z asq
0 0 0 Qg4

A=

The multiplication of two upper triangular matricBeC yields another upper triangular matu, result-
ing in the following C++ code

for (i=0 ; i < n ; i++) {
for(j=i ; j <n; j++) {
for (k=i ; k < j ; k++) {
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ali][jl+=b[i][k] «c[k][]j]

}

The fact that we have the constraint j leads to the requirement for the computation.gfof 2(;j —i+1)
flops. The total number of flops is then

n n—i+1 n

ZZ ]—Z—|—1: 2] 2n—2+1 anzrr o)

i=1 j=1 =1 3 =1

I
—

where we used thatC?_, j = n(n +1)/2 = n? /2 for largen values. Using in addition thaﬁ:?zlﬁ ~
n3/3 for largen values, we end up with approximately /3 flops for the multiplication of two upper
triangular matrices. This means that if we deal with matrixitiplication of upper triangular matrices,
we reduce the number of flops by a factor six if we code our matriltiplication in an efficient way.

It is also important to keep in mind that computers are finite,can thus not store infinitely large
matrices. To calculate the space needed in memory far:am matrix with double precision, 64 bits or
8 bytes for every matrix element, one needs simply computen x 8 bytes . Thus, ifr = 10000, we
will need close to 1GB of storage. Decreasing the precisigirigle precision, only halves our needs.

A further point we would like to stress, is that one should @ngral avoid fixed (at compilation
time) dimensions of matrices. That is, one could alwaysifp#tat a given matrixA should have size
A[100][100], while in the actual execution one may use oAljt0][10]. If one has several such matrices,
one may run out of memory, while the actual processing of thgnam does not imply that. Thus, we
will always recommend that you use dynamic memory allocatemd deallocation of arrays when they
are no longer needed. In Fortran one uses the intrisic umeALLOCATE and DEALLOCATE ,
while C++ employs the functionsew anddelete

Fortran allocate statement and mathematical operations omrrays

An array is declared in the declaration section of a progmrawdule, or procedure using the dimension
attribute. Examples include

REAL, DIMENSION (10) :: x,y

REAL, DIMENSION (1:10) :: X,y
INTEGER , DIMENSION (—10:10) :: prob
INTEGER , DIMENSION (10,10) :: spin

The default value of the lower bound of an array is 1. For #éson the first two statements are equivalent
to the first. The lower bound of an array can be negative. T$teileo statements are examples of two-
dimensional arrays.

Rather than assigning each array element explicitly, weusaran array constructor to give an array
a set of values. An array constructor is a one-dimensiosalofi values, separated by commas, and
delimited by "(/* and "/)". An example is

a(1:3) = (/ 2.0, —3.0, —4.0 /)

is equivalent to the separate assignments
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a(l) = 2.0
a(2) = -3.0
a(3) = —-4.0

One of the better features of Fortran is dynamic storageatilon. That is, the size of an array can
be changed during the execution of the program. To see hodhyttemic allocation works in Fortran,
consider the following simple example where we set dp-a4 unity matrix.

IMPLICIT NONE
! The definition of the matrix, using dynamic allocation
REAL, ALLOCATABLE , DIMENSION (:,:) :: unity
! The size of the matrix
INTEGER :: n
! Here we set the dim n=4
n=4

' Allocate now place in memory for the matrix
ALLOCATE ( unity(n,n) )
I all elements are set equal zero
unity =0.
! setup identity matrix
DO i=1,n
unity (i,i)=1.
ENDDO
DEALLOCATE ( unity)

We always recommend to use the deallocation statemeng girgfrees space in memory. If the matrix
is transferred to a function from a calling program, one cangfer the dimensionality of that matrix
with the call. Another possibility is to determine the dirsEmality with theSIZE function. Writing a
statement liken=SIZE (unity,DIM=1) gives the number of rows, while using DIM=2 gives the numkfer o
columns. Note however that this involves an extra call torefion. If speed matters, one should avoid
such calls.

4.4 Linear Systems

In this section we outline some of the most used algorithmsotge sets of linear equations. These
algorithms are based on Gaussian elimination [27, 30] afidaldw us to catch several birds with a
stone. We will show how to rewrite a matrix in terms of an upper and a lower triangular matrix,
from which we easily can solve linear equation, compute tiverse ofA and obtain the determinant.
We start with Gaussian elimination, move to the more efficldd-algorithm, which forms the basis
for many linear algebra applications, and end the discassith special cases such as the Cholesky
decomposition and linear system of equations with a triatiad) matrix.

We begin however with an example which demonstrates theriapee of being able to solve linear
equations. Suppose we want to solve the following boundalyevequation

_dzu(x)
dx?

= [z, u(x)),
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with z € (a,b) and with boundary conditions(a) = u(b) = 0. We assume thaf is a continuous
function in the domain: € (a,b). Since, except the few cases where it is possible to find aoaly
solutions, we will seek after approximate solutions, wead®soto represent the approximation to the
second derivative from the previous chapter

fn=2fo+ f-n
= gt O(h?).
We subdivide our intervat € (a, b) into n subintervals by setting; = ih, withi = 0,1,...,n+ 1. The
step size is then given by = (b —a)/(n + 1) with n € N. For the internal grid points=1,2,...n we

replace the differential operator with the above formukuteéng in

u(z; + h) — 2u(z;) + u(z; — h)
h? ’

'U,”(.Z'i) ~

which we rewrite as

no Uil = 2Up Ui
ui ~ h2 .
We can rewrite our original differential equation in ternisaaliscretized equation with approximations

to the derivatives as
Uit — 2ui + Ui

> = f(zi;u(z:)),

with i« = 1,2,...,n. We need to add to this system the two boundary conditiglag = u( and
u(b) = un41. If we define a matrix

2 -1
-1 2 -1
1 -1 2 -1
A=
-1 2 -1
-1 2
and the corresponding vectas= (u1, us, ..., u,)" andf(u) = f(x1,29,...,Tn, uy, Uz, . .. ,u,)" We

can rewrite the differential equation including the bourydeonditions as a system of linear equations
with a large number of unknowns

Au = f(u). 4.7)

We assume that the solutiarexists and is unique for the exact differential equation tivat the boundary
value problem has a solution. But the discretization of theva differential equation leads to several
questions, such as how well does the approximate solutsemble the exact one as— 0, or does a
given small value oh allow us to establish existence and uniqueness of the soluti
Here we specialize to two particular cases. Assume firstitiesfunctionf does not depend o).
Then our linear equation reduces to
Au=f, (4.8)

which is nothing but a simple linear equation with a tridingbmatrix A. We will solve such a system
of equations in subsectidn 4.4.3.

If we assume that our boundary value problem is that of a gmambechanical particle confined by
a harmonic oscillator potential, then our functigtiakes the form (assuming that all constamts= =
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w=1) f(xi,u(r;)) = —2?u(x;) + 2 u(z;) with A being the eigenvalue.

%

we define first a new matriA as

Inserting this into our equation,

2 2 1
G
_1 2 42 1
h2 h2 2 h2
_LT 2 g2 L
2 2
A= BRIk ; (4.9)
1 2 2 1
2 et o TR
-4 2 4+ a2
h2 h2 n
which leads to the following eigenvalue problem
2 1
754—:13% —7Z U1 U1
1 2 2 1
52 ﬁ‘l‘(ﬂz 52 u9 ug
_ 1 2 42 1
2 RT3 TR —9)
1 2 2 1
o W—Hf”_l 2 2,
—7z 7z T Ty, Unp, Unp,

We will solve this type of equations in chapfed 12. Theseulechotes contain however several other
examples of rewriting mathematical expressions into matoblems. In chaptéll 7 we show how a set of
linear integral equation when discretized can be trangédrinto a simple matrix inversion problem. The
specific example we study in that chapter is the rewritingair8dinger’s equation for scattering prob-
lems. Other examples of linear equations will appear in @oussion of ordinary and partial differential
equations.

4.4.1 Gaussian elimination

Any discussion on the solution of linear equations showdd stith Gaussian elimination. This text is no
exception. We start with the linear set of equations

Ax =w.

We assume also that the mateis non-singular and that the matrix elements along the dialggatisfy
a;; # 0. We discuss later how to handle such cases. In the discussitimit ourselves again to a matrix
A € R**4 resulting in a set of linear equations of the form

a1l a2 a3 a4 T w1
a1 G2 G23 Q24 T3 N
a3l as2 a33 Q34 3 w3
a41 Q42 Q43 Q44 T4 Wy
or
a1121 + a12T2 + a1323 + a14T4 = W1
a21x1 + a22T2 + A23%3 + A24T4 = W2
a31T1 + a3z2T2 + a33xs + a34ry = w3
a41T1 + a49T9 + aq3x3 + 444 = Wy4.

The basic idea of Gaussian elimination is to use the firsttémjuto eliminate the first unknowsn; from
the remaining: — 1 equations. Then we use the new second equation to elimhmsztond unknown,
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from the remaining: — 2 equations. Wit — 1 such eliminations we obtain a so-called upper triangular
set of equations of the form

bi1w1 + biowa + bisws + buurs = Y1
boowa + bagws + baay = Yo

b3zws + baawy = Y3

baary = ya.

We can solve this system of equations recursively startiom fz,, (in our caser,) and proceed with
what is called a backward substitution. This process canxpeessed mathematically as

1 n
:Em:—<ym— Z bmkxk> m=n—1n—-2...,1.

b
mm k=m+1

To arrive at such an upper triangular system of equationsster¢ by eliminating the unknows; for
J = 2,n. We achieve this by multiplying the first equation &) /a1, and then subtract the result from
the jth equation. We assume obviously that # 0 and thatA is not singular. We will come back to
this problem below.

Our actualk x 4 example reads after the first operation

a11 ai2 a3 a4 1 Y1
0 (az— 942) (ayy — M) (gpy — mza) | [ g || W
0 (asp — “U82) (agg — W) (g — by || gy | T | 0
0 (as2 —*5752) (a3 — “5E)  (aus — “9) 4 wi?
or
biiz1 + bigxe + bigzs + bura = Y

a%)xg + a%)wg + aéi) Ty = wéz)

b ol o= ol

ag)xg + ai?wg + aﬁ) Ty = wf),

(4.10)

with the new coefficients
b1k :a&) k=1,...,n,

where eachz%j is equal to the originad,;, element. The other coefficients are

2) (1) a(.ll)a&)
A = Qg — J 0 5 k=2...,n,

agy

with a new right-hand side given by

1 2 1 a1 Wy
y1:w§)7w](): J()_ j(l) ]_27 ,
ag
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We have also sab@ = wi, the original vector element. We see that the system of umkea,, ..., z,
is transformed into an — 1) x (n — 1) problem.

This step is called forward substitution. Proceeding whthse substitutions, we obtain the general
expressions for the new coefficients

(m) (m)
a. '~ a
ag_zﬁl) _ aﬁn) _ Jm(im)"”“j,k: =m+1,...,n,
Amm
withm = 1,...,n — 1 and a right-hand side given by
(m), (m)
a:  Wm
§m+1):w§m)_mTj:m+1,...,n.
Amm

This set ofn — 1 elimations leads us to Eq.{4110), which is solved by baclstiuition. If the arithmetics

is exact and the matriA is not singular, then the computed answer will be exact. Wewas discussed
in the two preceeding chapters, computer arithmetics isnecessarily exact. We will always have
to cope with truncations and possible losses of precisiovenEhough the matrix elements along the
diagonal are not zero, numerically small numbers may appedsubsequent divisions may lead to large
numbers, which, if added to a small number may yield lossgsatfision. Suppose for example that our
first division in(ass — as1a1z/ar) results in—10~" and thats is one. one. We are then addin@y + 1.
With single precision this results itD?. Already at this stage we see the potential for producingigro
results.

The solution to this set of problems is called pivoting, arel distinguish between partial and full
pivoting. Pivoting means that if small values (especiaklyas) do appear on the diagonal we remove
them by rearranging the matrix and vectors by permuting @wescolumns. As a simple example, let us
assume that at some stage during a calculation we have towifay set of linear equations

1 3 4 6 T1 U1
0 1078 198 19 o || v
0 —-91 51 9 T3 a Y3
0 7 76 541 Ty Ya

The element at row = 2 and column2 is 10~% and may cause problems for us in the next forward
substitution. The elemerit= 2,5 = 3 is the largest in the second row and the elemest3,j = 2 is
the largest in the third row. The small element can be rembyeearranging the rows and/or columns
to bring a larger value into the= 2, j = 2 element.

In partial or column pivoting, we rearrange the rows of thearirand the right-hand side to bring the
numerically largest value in the column onto the diagonalt ¢ur example matrix the largest value of
column two is in element = 3, j = 2 and we interchange rows 2 and 3 to give

1 3 4 6 1 Y1
0 -91 51 9 o | | ws
0 1078 198 19 s | | we
0 7 76 541 Ty Ya

Note that our unknown variables remain in the same order which simplifies the implementatibn
this procedure. The right-hand side vector, however, has bearranged. Partial pivoting may be im-
plemented for every step of the solution process, or onlynathe diagonal values are sufficiently small
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as to potentially cause a problem. Pivoting for every stelplead to smaller errors being introduced
through numerical inaccuracies, but the continual reamdewill slow down the calculation.

The philosophy behind full pivoting is much the same as thedtild partial pivoting. The main
difference is that the numerically largest value in the nwoiwr row containing the value to be replaced.
In our example above the magnitude of element 2, j = 3 is the greatest in row 2 or column 2. We
could rearrange the columns in order to bring this elemetd tme diagonal. This will also entail a
rearrangement of the solution vectarThe rearranged system becomes, interchanging columnartaio
three,

1 6 3 4 1 Y1
0 198 10% 19 z3 | | e
0 51 —-91 9 ) - Y3
0 76 7 541 T4 Yaq

The ultimate degree of accuracy can be provided by reamgnigoth rows and columns so that the
numerically largest value in the submatrix not yet procgssérought onto the diagonal. This process
may be undertaken for every step, or only when the value odittgonal is considered too small relative
to the other values in the matrix. In our case, the matrix elemat; = 4, j = 4 is the largest. We could
here interchange rows two and four and then columns two amdtéobring this matrix element at the
diagonal position = 2,j = 2. When interchanging columns and rows, one needs to keep dfeal
permutations performed. Partial and full pivoting are dgged in most texts on numerical linear algebra.
For an in depth discussion we recommend again the text ofd@old Van Loan [27], in particular chapter
three. See also the discussion of chapter two in Ref. [36¢ libinary functions you end up using, be it
via Matlab, the library included with this text or other onde all include pivoting.

If it is not possible to rearrange the columns or rows to reenazero from the diagonal, then the
matrix A is singular and no solution exists.

Gaussian elimination requires however many floating pgietrations. Am x n matrix requires for
the simultaneous solution of a setoflifferent right-hand sides, a total af /3 + rn? — n/3 multi-
plications. Adding the cost of additions, we end up wik¥ /3 + O(n?) floating point operations, see
Kress [30] for a proof. Am x n matrix of dimensionaltyn = 103 requires, on a modern PC with a
processor that allows for something like® floating point operations per second (flops), approximately
one second. If you increase the size of the matrix te- 10* you need 1000 seconds, or roughly 16
minutes.

Although the direct Gaussian elmination algorithm allowesi yo compute the determinant Af via
the product of the diagonal matrix of the triangular matiixs seldomly used in normal applications.
The more practical elimination is provided by what is calledrer and upper decomposition. Once
decomposed, one can use this matrix to solve many other Bystems which use the same mathixviz
with different right-hand sides. With an LU decomposed mathe number of floating point operations
for solving a set of linear equations scale€is?). One should however remember that to obtain the LU
decompsed matrix requires rough}(n?) floating point operations. Finally, LU decomposition alow
for an efficient computation of the inverse Af

4.4.2 LU decomposition of a matrix

A frequently used form of Gaussian elimination is L(owemppkr) factorisation also known as LU De-
composition or Crout or Dolittle factorisation. In this §iea we describe how one can decompose a
matrix A in terms of a matrixl. with elements only below the diagonal (and thereby the ngriawer)
and a matrixJ which contains both the diagonal and matrix elements aldlmveiagonal (leading to the
labelling upper). Consider again the matAxgiven in Eq. [41l). The LU decomposition method means
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that we can rewrite this matrix as the product of two matricesxdU where

a1l a2 a13 a4 1 0 0 0 U1l U2 U3 Ul4

_ | a1 ax a3 ax | | 1 1 0 O 0 uoe wg3z wus
A=LU= - . (4.12)

az1 aszy asz a4 l31 I3 1 0 0 0 ‘ugz us

(41 Q42 Q43 Q44 lyr lag luz 1 0 0 0 uu

LU decomposition forms the backbone of other algorithmsriadr algebra, such as the solution of
linear equations given by

a1171 + @122 + a13%3 + 01474 = W1
(2171 + G22%2 + G23%3 + A24T4 = W2
a31%1 + 3272 + 3373 + A34T4 = W3
a41T1 + a49x9 + aq3x3 + @444 = W4.

The above set of equations is conveniently solved by usingiétbmposition as an intermediate step see
the next subsection for more details on how to solve lineaaggns with an LU decomposed matrix.
The matrixA € R™*" has an LU factorization if the determinant is different fraero. If the LU
factorization exists and\ is non-singular, then the LU factorization is unique and dieéerminant is
given by
det{A} = U11U22 ... Unpn-
For a proof of this statement, see chapter 3.2 of Ref. [27].

The algorithm for obtainind. andU is actually quite simple. We start always with the first cofum
In our simple ¢ x 4) case we obtain then the following equations for the firsticoi

a;r = un

as; = layun
a1 = lzun
ayr = lgua,

which determine the elemenis, l»1, l3; anduy; in L andU. Writing out the equations for the second
column we get

app = u12

agy = la1uiz + ug2
azy = lz1uiz + l32u00
agpg = lyuiz + lypuss.

Here the unknowns arng s, us9, l32 andlss which all can be evaluated by means of the results from
the first column and the elements Af Note an important feature. When going from the first to the
second column we do not need any further information fromntlagrix elementsy;;. This is a general
property throughout the whole algorithm. Thus the memoocaiions for the matriXA can be used to
store the calculated matrix elementsd.odndU. This saves memory.

We can generalize this procedure into three equations

1< j : l,-lulj + li2u2j + o+ liiuij = aj
) :j : l,-lulj + li2u2j +---+ l“-ujj = Qi
1>g 1 w4 Logugy + - + lijug = aq;

which gives the following algorithm:
Calculate the elements InandU columnwise starting with column one. For each colufn
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— Compute the first element; ; by
ulj = alj.

— Next, we calculate all elements;,i =2,...,j — 1
i—1
Uij = Qi — Zlikukzj-
k=1
— Then calculate the diagonal element
J—1
Ujj = Qg5 — Z Ljkuk;- (4.12)
k=1
— Finally, calculate the elementg,i > j

i—1
1
lij = - CLij — Z likukj s (413)
Uy
k=1

The algorithm is known as Doolittle’s algorithm since thagtnal matrix elements df are1. For the
case where the diagonal elementstdfare 1, we have what is called Crout’s algorithm. For the case
whereU = LT so thatu; = I;; for 1 < i < n we can use what is called the Cholesky factorization
algorithm. In this case the matriX has to fulfil several features; namely, it should be real, ragtnic
and positive definite. A matrix is positive definite if the guatic formx” Ax > 0. Establishing this
feature is not easy since it implies the use of an arbitracgorex # 0. If the matrix is positive definite
and symmetric, its eigenvalues are always real and posifieediscuss the Cholesky factorization below.

A crucial point in the LU decomposition is obviously the cagigerew;; is close to or equals zero,
a case which can lead to serious problems. Consider thevialjpsimple2 x 2 example taken from

Ref. [29]
0 1
A:<1 1).

The algorithm discussed above fails immediately, the fiegp simple states that;; = 0. We could
change slightly the above matrix by replacigvith 10-2° resulting in

10720 1
A=("0 )

U1 = 1020
Iy = 10%

yielding

andu; = 1 and

uyy = ayy — Iy =1 —10%

1 0
L_<1020 1)7

10720 1
U_< 0 1—1020>’

we obtain

and
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With the change from 0 to a small number like=2" we see that the LU decomposition is now stable,
but it is not backward stable. What do we mean by that? Firstete that the matri¥J has an element
uge = 1 — 10%°. Numerically, since we do have a limited precision, which double precision is
approximatelye,; ~ 10716 it means that this number is approximated in the maching,as- —102%°
resulting in a machine representation of the matrix as

10~20 1
U‘( 0 —1020>‘

If we multiply the matriced.U we have

1 0 10720 1 10720 1
(1020 1>< 0 —1020>_< 1 0>#A'

We do not get back the original matrix!

The solution is pivoting (interchanging rows in this casejuad the largest element in a columin
Then we are actually decomposing a rowwise permutation ebtiginal matrixA. The key point to
notice is that Eqs[{4.12) and (4113) are equal except focdlse that we divide by;; in the latter one.
The upper limits are always the sarhe= j — 1(= ¢ — 1). This means that we do not have to choose
the diagonal element;; as the one which happens to fall along the diagonal in theifissaince. Rather,
we could promote one of the undividégd’s in the columni = j 4 1,... N to become the diagonal of
U. The partial pivoting in Crout’'s or Doolittle’s methods nmsathen that we choose the largest value
for u;; (the pivot element) and then do the divisions by that elemé&hen we need to keep track of all
permutations performed. For the above matixt would have sufficed to interchange the two rows and
start the LU decomposition with

11
A= ( bl ) |

The error which is done in the LU decomposition ofrar n matrix if no zero pivots are encountered
is given by, see chapter 3.3 of Ref. [27],

LU =A+H,
with
H| < 3(n — Du(JA| + [LI[U]) + O(u?),
with |H| being the absolute value of a matrix ands the error done in representing the matrix elements

of the matrixA as floating points in a machine with a given precisign viz. every matrix element ai
is

[fl(ais) — aij| < waj,
with |u; ;| < epr resulting in
[f1(A) — A| < ulA].
The programs which perform the above described LU deconiposire called as follows

C++: ludcmp(double«xa, int n, intxindx, doublexd)
Fortran: CALL lu_decompose(a, n, indx, d)

Both the C++ and Fortran 90/95 programs receive as input #igxato be LU decomposed. In C++ this
is given by the double pointekxa. Further, both functions need the size of the matri®t returns the
variabled, which is+1 depending on whether we have an even or odd number of rowclaeges, a
pointerindz that records the row permutation which has been effectedrantdU decomposed matrix.
Note that the original matrix is destroyed.
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Cholesky'’s factorization

If the matrix A is real, symmetric and positive definite, then it has a unfgatrization (called Cholesky
factorization)
A=1LU=LL"

whereL” is the upper matrix, implying that
Ll = Lj.

The algorithm for the Cholesky decomposition is a speciaéaa the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

— Calculate the diagonal elemeht; by setting up a loop foi = 0toi = n — 1 (C++ indexing of
matrices and vectors)

i1 1/2
Lii = (A,—,- -y L§k> :
k=0

— within the loop ovet;, introduce a new loop which goes from= i + 1ton — 1 and calculate

i—1
1
Lji= 7 (Aij - ZLikljk> :
(3 k=0

For the Cholesky algorithm we have always thgt > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need fongivoti

To decide whether a matrix is positive definite or not needsesoareful analysis. To find criteria
for positive definiteness, one needs two statements fromixnthéory, see Golub and Van Loan [27] for
examples. First, the leading principal submatrices of digesdefinite matrix are positive definite and
non-singular and secondly a matrix is positive definite d anly if it has anLDL” factorization with
positive diagonal elements only in the diagonal maixA positive definite matrix has to be symmetric
and have only positive eigenvalues.

The easiest way therefore to test whether a matrix is pegifinite or not is to solve the eigenvalue
problemAx = Ax and check that all eigenvalues are positive.

4.4.3 Solution of linear systems of equations

With the LU decomposition it is rather simple to solve a syst# linear equations

1171 + 1222 + 1323 + 1424 = W1
21%1 + Q2222 + A23%3 + A24T4 = W2
a31%1 + 3272 + a33%3 + A34T4 = W3
a41T1 + a49T9 + aq3x3 + 444 = W4.

This can be written in matrix form as
Ax =w.

whereA andw are known and we have to solve for Using the LU dcomposition we write

Ax=LUx = w. (4.14)
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This equation can be calculated in two steps

Ly = w; Ux =y. (4.15)

To show that this is correct we use to the LU decompositiomwerite our system of linear equations as

LUx =w,

and since the determinat &fis equal to 1 (by construction since the diagonal¥. @fqual 1) we can use
the inverse oL to obtain

Ux =L lw =y,

which yields the intermediate step

Llw=y

and multiplying withB on both sides we reobtain E@._{4115). As soon as we lyaw@ can obtaink
throughUx = y.

For our four-dimentional example this takes the form

Yy1= wi

layi +y2 = wo

3191 + 13292 +y3 = w3

layr + lagys + lazys +ya = wa.

and

U11T1 + U222 + U13T3 + U14T4 = Y1
U22T2 + U3T3 + U24T4 = Y2

U33x3 + U34T4 = Y3

U44Tq = Y4

This example shows the basis for the algorithm needed t@ $bé set of, linear equations. The algo-
rithm goes as follows
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— Set up the matriXA and the vectow with their correct dimensions. This determin
the dimensionality of the unknown vecter

— Then LU decompose the matixthrough a call to the function

C++: ludcmp(double a, int n, int indx, double &d)
Fortran: CALL lu_decompose(a, n, indx, d)

This functions returns the LU decomposed mafixits determinant and the vecto
indx which keeps track of the number of interchanges of rdivihe determinant is
zero, the solution is malconditioned.

— Thereafter you call the function

C++: lubksb(double a, int n, int indx, double w)
Fortran: CALL lu_linear_equation(a, n, indx, w)

which uses the LU decomposed matfixand the vectow and returnx in the same
place asv. Upon exit the original content iw is destroyed. If you wish to keep thi
information, you should make a backup of it in your callingdtion.

4.4.4 Inverse of a matrix and the determinant

The basic definition of the determinantAfis

det{A} = Z(_)palm T A2py 7t Onpy
p

where the sum runs over all permutation®f the indicesl, 2, ...,n, altogethern! terms. Also to
calculate the inverse & is a formidable task. Here we have to calcultie complementary cofactal’
of each element;; which is the(n — 1)determinant obtained by striking out the réevand columny in
which the element;; appears. The inverse &fis then constructed as the transpose a matrix with the
elementg—)*7q%. This involves a calculation of? determinants using the formula above. A simplified
method is highly needed.

With the LU decomposed matrik in Eq. (4.11) it is rather easy to find the determinant

det{A} = det{L} x det{U} = det{U},
since the diagonal elementslofequal 1. Thus the determinant can be written

N
d€t{A} = H Uk -

k=1

The inverse is slightly more difficult to obtain from the LUadenposition. It is formally defined as
Al=U"L7L
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We use this form since the computation of the inverse goesugfr the inverse of the matricésand
U. The reason is that the inverse of a lower (upper) triangulatrix is also a lower (upper) triangular
matrix. If we callD for the inverse of., we can determine the matrix element®athrough the equation

1 0 0 0 1 0 0 0 1 000
loy 1 0 0 di 1 0 0| (0100
l31 Il 1 0 d33 dy 1 0] |00 10|’
lar lao lyz 1 dy1 dag dyz 1 0001
which gives the following general algorithm
i—1
dij = —lij — > lLindj, (4.16)

k=j+1

which is valid fori > j. The diagonal is 1 and the upper matrix elements are zeroolWe this equation
column by column (increasing order gf In a similar way we can define an equation which gives us the
inverse of the matrixJ, labelledE in the equation below. This contains only non-zero matreaetnts

in the upper part of the matrix (plus the diagonal ones)

€11 €12 €13 €y Ul U2 U3 Ul4 1 000
0 e e23 e 0O wa wug wg | [ 0O 1 0 O
0 0 €33 €34 0 0 UuU33 U34 - 00 10 ’
0 0 0 €44 0 0 0 Uq4 0 0 0 1
with the following general equation
1 2
eij = —F Z eikukj. (417)

I =1

fori < j.
A calculation of the inverse of a matrix could then be implatee in the following way:

— Set up the matrix to be inverted.
— Call the LU decomposition function.

— Check whether the determinant is zero or not.

— Then solve column by column EqE(4.16.3.17).

The following codes compute the inverse of a matrix usingegitC++ or Fortran as programming lan-
guages. They are both included in the library packages, buhelude them explicitely here as well as
two distinct programs. We list first the C++ code

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/programl . cpp

/+ The function
*ok inverse ()
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x+x perform a mtx inversion of the input matrix a[][] with
x+ dimension n.

*/
void inverse (double xxa, int n)
{
int i,j, xindx;
double d, xcol, *xxy;

/Il allocate space in memory

indx = new int[n];
col = new double[n];
y = (double xx) matrix(n, n, sizeof(double));

/Il first we need to LU decompose the matrix
ludcmp(a, n, indx, &d);
/1 find inverse of a[][] by columns
for(j = 0; j <n; j++) {
/I initialize right—side of linear equations
for(i = 0; i < n; i++) col[i] = 0.0;
col[j] = 1.0;
lubksb(a, n, indx, col);
/1l save result in y[][]
for(i = 0; i <n; i++) y[i][j] = col[i];

}
/I return the inverse matrix in a[][]
for(i = 0; i < n; i++) {
for(j = 0; j <n; j++) alillj] = y[il[il;
}
free_matrix ((void xx*) y); /Il release local memory

delete [] col;
delete []indx;

} // End: function inverse()

We first need to LU decompose the matrix. Thereafter we sofye E.16) and(4.17) by using the back
substitution method calling the functidnbksb and obtain finally the inverse matrix.
An example of a C++ function which calls this function is atgeen in the program and reads

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter04/cpp/programl . cpp

/I Simple matrix inversion example
#include <iostream >

#include <new>

#include <cstdio>

#include <cstdlib >

#include <cmath>

#include <cstring>

#include "lib.h"

using namespacestd;

/+ function declarations */

void inverse(double xx, int);
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[ *
x+x This program sets up a simple 3x3 symmetric matrix
xx and finds its determinant and inverse

*/
int main()
{
int i, j, k, result, n= 3;
double sxmatr, sum,
a[3][3] ={ {1.0, 3.0, 4.0},

{3.0, 4.0, 6.0},
{4.0, 6.0, 8.0}};
/I memory for inverse matrix
matr = (double xx) matrix(n, n, sizeof(double));
/1 various print statements in the original code are omitted

inverse(matr, n); /Il calculate and return inverse matrix
return O;
} // End: function main()

In order to use the program library you need to include libé file using the#include  "1ib.h"
statement. This function utilizes the library functioratrix andfree_matrix to allocate and free memory
during execution. The matrix[3][3] is set at compilation time. The corresponding Fortran aogfor
the inverse of a matrix reads

http://www.fys.uio.no/compphys/cp/programs/FYS3150/£901ibrary/f901ib.£90

I
! Routines to do mtx inversion, from Numerical

! Recipes, Teukolsky et al. Routines included

! below are MATINV, LUDCMP and LUBKSB. See chap 2
! of Numerical Recipes for further details

I

SUBROUTINE matinv(a,n, indx, d)

IMPLICIT NONE
INTEGER, INTENT (IN) :: n
INTEGER :: i, j
REAL (DP) , DIMENSION (n,n), INTENT (INOUT) :: a
REAL (DP) , ALLOCATABLE :: y(:,:)
REAL (DP) :: d
INTEGER, , INTENT (INOUT) :: indx(n)
ALLOCATE (y( n, n))
y=0.
! setup identity matrix
DO i=1,n
y(i,i)=1.
ENDDO

! LU decompose the matrix just once
CALL lu_decompose(a,n,indx,d)

! Find inverse by columns
DO j=1,n
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CALL lu_linear_equation(a,n,indx,y(:,j))

ENDDO

! The original matrix a was destroyed , now we equate it witheth
inverse y

a=y

DEALLOCATE ( vy )

END SUBROUTINE matinv

The Fortran programmatinv receives as input the same variables as the C++ program Asthesfunc-

tion for LU decompositioiu_decomposeand the function to solve sets of linear equatitbndinear_equation.
The program listed under programs/chapter4/programX&tbrms the same action as the C++ listed
above. In order to compile and link these programs it is coierd to use a so-callanakefile. Examples

of these are found under the same catalogue as the abovamsogr

Inverse of the Vandermonde matrix

In chapteEb we discuss how to interpolate a functfamhich is known only at+1 pointszg, 1, €2, . . ., s
with corresponding valueg(xo), f(z1), f(x2),..., f(z,). The latter is often a typical outcome of a
large scale computation or from an experiment. In most ciasth®e sciences we do not have a closed
form expressions for a functiofi The function is only known at specific points.

We seek a functional form for a functighwhich passes through the above pairs of values

(l’o, f(xO))v (1’1, f($1))7 (1’2, f(l?))? SRR (:L'm f($n))

This is normally achieved by expanding the functiffx) in terms of well-known polynomialg; (x),
such as Legendre, Chebyshev, Laguerre etc. The functibansapproximated by a polynomial of degree

n pp(x)

f@) = pa() =) aidi(@),
=0

wherea; are unknown coefficients angti (=) are a priori well-known functions. The simplest possible
case is to assume thaf(z) = «*, resulting in an approximation

f(z) = ag + a1x + asx® + - - + apz™
Our function is known at the points+ 1 pointsxzg, z1, o, . . . , z,, leading ton 4+ 1 equations of the type
f(z) = ag + a1x; + agz? + - - + apx?.

We can then obtain the unknown coefficients by rewriting oobfem as

1w 22 ... ... ap ag f(xo)
1 oz 23 ... .. al a fx1)
1 a9 23 ... ... 2% az | _ fx2)
1 a3 w% B 4 as flxs) |7
1z, 22 ... ... 2" an flxn)

an expression which can be rewritten in a more compact form as

Xa="f,
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with

1 x x% T 1

1 = x% B A

X — 1 x x% B 1

= 2

1 x3 x5 ... ... @y

2 n

1 =z, = T,

. This matrix is called a Vandermonde matrix and is by debnithon-singular since all points; are
different. The inverse exists and we can obtain the unknavefficients by invertingX, resulting in

a=X"'f.

Although this algorithm for obtaining an interpolating pobmial which approximates our data set
looks very simple, it is an inefficient algorithm since thengutation of the inverse requiréxn?) flops.
The methods we will discuss in chapiér 6 are much more effeétbom a numerical point of view. There
is also another subtle point. Although we have a data setwith points, this does not necessarily mean
that our functionf(z) is well represented by a polynomial of degmee On the contrary, our function
f(x) may be a parabola (second-ordemin meaning that we have a large excess of data points. In such
cases a least-square fit or a spline interpolation may bertagiproaches to represent the function. These
techniques are discussed in chapier 6.

4.4.5 Tridiagonal systems of linear equations

We start with the linear set of equations from Hg.}(4.8), viz
Au="f,

whereA is a tridiagonal matrix which we rewrite as

bl C1 0
ax by ¢
a3 bz c3

Gp—2 bn—l Cpn—1
Gn by,

wherea, b, c are one-dimensional arrays of length n. In the example of Eq[{4.8) the arraysandc

are equal, namely; = ¢; = —1/h%. We can rewrite Eq[T418) as
bl C1 0 . e e ul fl
as bg C2 (05) f2
A _ CLS b3 CS _ PPN

an, by, Unp fn

A tridiagonal matrix is a special form of banded matrix whelighe elements are zero except for those
on and immediately above and below the leading diagonal.abloee tridiagonal system can be written
as

a;jui—1 + bju; + ciuip1 = fi,
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fori =1,2,...,n. We see that._; andu,4; are not required and we can sgt= ¢, = 0. In many
applications the matrix is symmetric and we haye= ¢;. The algorithm for solving this set of equations
is rather simple and requires two steps only, a forward gubish and a backward substitution. These
steps are also common to the algorithms based on Gaussianation that we will discussed previously.
However, due to its simplicity, the number of floating poipeoations is in this case proportional with
O(n) while Gaussian elimination requirés? /3 + O(n?) floating point operations. In case your system
of equations leads to a tridiagonal matrix, it is clearly &er&ill to employ Gaussian elimination or the
standard LU decomposition. You will encounter several igpfibns involving tridiagonal matrices in
our discussion of partial differential equations in chafiig.

Our algorithm starts with forward substitution with a loogeo of the elementsand can be expressed
via the following piece of code taken from the Numerical Rediext of Teukolskyet al [36]

btemp = b[1];
ufl] = f[1]/btemp;
for(i=2 ; i <= n ; i++) {
temp[i] = c[i—1]/btemp;
btemp = b[il-a[i]«xtemp[i];
uli] = (f[i] — a[i]xu[i—=1])/btemp;

Note that you should avoid cases with= 0. If that is the case, you should rewrite the equations as a set
of ordern — 1 with us eliminated. Finally we perform the backsubstitution Ieadio the following code

for(i=n=1 ; i >= 1 ; i—-) {
uli] —= temp[i+1]xuli+1];
}

Note that our sums start with= 1 and that one should avoid cases with= 0. If that is the case, you
should rewrite the equations as a set of onder 1 with u, eliminated. However, a tridiagonal matrix
problem is not a guarantee that we can find a solution. ThexmAtwhich rephrases a second derivative
in a discretized form

o o0 o -1 2 -1

o 0 o 0 -1 2
fulfills the condition of a weak dominance of the diagonalthwb:| > |ci|, |bn| > |an| and|bg| >
lag| + |cx| for k = 2,3,...,n — 1. This is a relevant but not sufficient condition to guararttes the
matrix A yields a solution to a linear equation problem. The matrigdsealso to be irreducible. A
tridiagonal irreducible matrix means that all the elementandc; are non-zero. If these two conditions
are present, theA is nonsingular and has a unique LU decomposition.

We can obviously extend our boundary value problem to irekudirst derivative as well

_dzu(x)
dx?

du(z)
dz

+g(z) + h@)u(z) = f(2),

with z € [a,b] and with boundary conditions(a) = u(b) = 0. We assume athaf, g and h are
continuous functions in the domain € [a,b] and thath(x) > 0. Then the differential equation has
a unique solution. We subdivide our intervale [a,b] into n subintervals by setting; = ih, with
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i=0,1,...,n+ 1. The step size is then given by= (b — a)/(n + 1) with n € N. For the internal grid
pointsi = 1,2, ... n we replace the differential operators with

no Uil — 2U + Ui
u; ~ h2 .
for the second derivative while the first derivative is giv®n
u,- Uil — Uj—
‘ 2h )
We rewrite our original differential equation in terms ofiaatetized equation as

 Uit1 — 2ui + Ui DS Bl
h? ‘' 2h
with i« = 1,2,...,n. We need to add to this system the two boundary conditigfas = uo and
u(b) = un4+1. This equation can again be rewritten as a tridiagonal matoblem. We leave it as
an exercise to the reader to find the matrix elements, find @aheittons for having weakly dominant
diagonal elements and that the matrix is irreducible.

=t h = i,

4.5 Singular value decomposition

Finalized end fall 2008.

4.6 Exercises and projects

Exercise 2.1: Writing your own Gaussian elimination code

(a) Consider the linear system of equations

a11x1 + a12r2 +a13r3 = Wi
ag1x1 + G292 + A23T3 = W
a3171 + a3aZ2 + az3xr3 = ws.

This can be written in matrix form as
Ax =w.

We specialize here to the following case

—T1+ 22 —4a3 =
2x1 4 2z =
3x1 + 3x0 + 223 =

S i

Obtain the solution (by hand) of this system of equationsdipgl Gaussian elimination.

(b) Write therafter a program which implements Gaussiamiaktion (with pivoting) and solve the
above system of linear equations. How many floating pointaijms are involved in the solu-
tion via Gaussian elimination without pivoting? Can youireste the number of floating point
operations with pivoting?
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Exercise 4.2: Cholesky factorization

If the matrix A is real, symmetric and positive definite, then it has a unfgatrization (called Cholesky
factorization)
A=LU=LL"

whereL” is the upper matrix, implying that
Ll = Lj;.

The algorithm for the Cholesky decomposition is a speciaéaa the general LU-decomposition algo-
rithm. The algorithm of this decomposition is as follows

— Calculate the diagonal elemeht; by setting up a loop foi = 0to¢ = n — 1 (C++ indexing of
matrices and vectors)

i—1 1/2
L = (An' - Z L22k> . (4.18)
k=0

— within the loop ovet, introduce a new loop which goes from= i + 1ton — 1 and calculate

i—1
(Aij = Likzjk> . (4.19)
k=0

1

i

For the Cholesky algorithm we have always thgt > 0 and the problem with exceedingly large matrix
elements does not appear and hence there is no need fongivitirite a function which performs the
Cholesky decomposition. Test your program against thelatan_U decomposition by using the matrix

6 3 2
A= 3 21 (4.20)
2 11
Finally, use the Cholesky method to solve

0.05z1 + 0.07z2 4 0.06z3 + 0.05z4 = 0.23
0.07z1 4+ 0.10z2 4 0.08z3 + 0.07z4 = 0.32
0.06z1 + 0.08z2 + 0.10z3 + 0.0924 = 0.33
0.05z1 4+ 0.07z2 4+ 0.0923 + 0.10z4 = 0.31

You can also use the LU codes for linear equations to checiethdts.

Project 4.1: The one-dimensional Poisson equation

(&) We are going to solve the one-dimensional Poisson eguatith Dirichlet boundary conditions
by rewriting it as a set of linear equations.

The three-dimensional Poisson equation is a partial @iffiesl equation,

¢ %9 0% p(z,y,2)

W 8y2 022 N €0 ’
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whose solution we will discuss in chapfen 15. The functign, y, =) is the charge density angl

is the electrostatic potential. In this project we consitierone-dimensional case since there are a
few situations, possessing a high degree of symmetry, whisngossible to find analytic solutions.
Let us discuss some of these solutions.

Suppose, first of all, that there is no variation of the vagiquantities in the- and z-directions.
In this case, Poisson’s equation reduces to an ordinargrdiftial equation in:, the solution of
which is relatively straightforward. Consider for examplgacuum diode, in which electrons are
emitted from a hot cathode and accelerated towards an ambdenode is held at a large positive
potential V; with respect to the cathode. We can think of this as an esdlgndine-dimensional
problem. Suppose that the cathode igat 0 and the anode at = d. Poisson’s equation takes

the form )

()

dx2 €0 ’
where¢(z) satisfies the boundary conditiop$0) = 0 and¢(d) = V. By energy conservation,
an electron emitted from rest at the cathode has-gelocity v(x) which satisfies

1
imevz(w) —ep(z) = 0.

Furthermore, we assume that the curréns independent of between the anode and cathode,
otherwise, charge will build up at some points. From elenagnetism one can then show that
the currentl is given byl = —p(z)v(z)A, whereA is the cross-sectional area of the diode. The
previous equations can be combined to give

e _ I (2e) " g
dz?2 A \ 2¢ '
The solution of the above equation which satisfies the bayrztanditions is

o (2)"

p o deod (2N Ly
9 d?2 \m, o

This relationship between the current and the voltage incawa diode is called the Child-
Langmuir law.

with

Another physics example in one dimension is the famous Tkeareami model, widely used as a
mean-field model in simulations of quantum mechanical syst@7, 38], see Lieb for a newer and
updated discussion [39]. Thomas and Fermi assumed thersésbf an energy functional, and
derived an expression for the kinetic energy based on thsitgesf electronsp(r) in an infinite
potential well. For a large atom or molecule with a large nandf electrons. Schrddinger’s equa-
tion, which would give the exact density and energy, caneotdsily handled for large numbers
of interacting particles. Since the Poisson equation cctsrghe electrostatic potential with the
charge density, one can derive the following equation foeiptal V

v V32
a2z
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(b)

with V' (0) = 1.
In our case we will rewrite Poisson’s equation in terms of @lisionless variables. We can then
rewrite the equation as

—u"(z) = f(z), =z€(0,1), u(0)=u(l)=0.

and we define the discretized approximatiom @sv; with grid pointsz; = ih in the interval from
xg = 0to z,+1 = 1. The step length or spacing is definedhas- 1/(n + 1). We have then the
boundary conditionsy = v, 11 = 0. We approximate the second derivativeuofith

Uiyl +vi-1 — 204
72

=f; fori=1,...,n,
wheref; = f(x;). Show that you can rewrite this equation as a linear set cditeans of the form
Av = b,

whereA is ann x n tridiagonal matrix which we rewrite as

2 -1 0 0
-1 2 -1 0

A — 0o -1 2 -1 O
0 -1 2 -1
0 0o -1 2

andl;i = hzfl

In our case we will assume thd{x) = (3z + x2)e”, and keep the same interval and boundary
conditions. Then the above differential equation has atyaaolution given byu(z) = z(1 —
x)e® (convince yourself that this is correct by inserting theutioh in the Poisson equation). We
will compare our numerical solution with this analytic réésn the next exercise.

We can rewrite our matriA in terms of one-dimensional vectassh, ¢ of length1 : n. Our linear
equation reads

bl C1 0 (%1} b1
a9 b2 Co (%) b2
az by 3

an, by, Un by,

A tridiagonal matrix is a special form of banded matrix whallehe elements are zero except for
those on and immediately above and below the leading didgbha above tridiagonal system can
be written as

a;vi—1 + bjv; + c;vip1 = b,

fori = 1,2,...,n. The algorithm for solving this set of equations is rathene and requires
two steps only, a decomposition and forward substitutiahfarally a backward substitution.
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()

Your first task is to set up the algorithm for solving this sétfimear equations. Find also the
number of operations needed to solve the above equationsv tBat they behave lik&(n) with
n the dimensionality of the problem. Compare this with staddaaussian elimination.

Then you should code the above algorithm and solve the profde matrices of the siz&0 x 10,
100 x 100 and1000 x 1000. That means that you choose= 10, n = 100 andn = 1000 grid
points.

Compare your results (make plots) with the analytic redaltshe different number of grid points
in the intervalx € (0,1). The different number of grid points corresponds to diffiérgtep lengths
h.

Compute also the maximal relative error in the data setl, . . ., n,by setting up

).

as function ofog;o(h) for the function values,; andv;. For each step length extract the max value
of the relative error. Try to increaseto n = 10000 andn = 10°. Comment your results.

V; — Ujg

€; = logio (

)

Compare your results with those from the LU decompasitodes for the matrix of siz&)00 x
1000. Use for example the unix functiotime when you run your codes and compare the time
usage between LU decomposition and your tridiagonal sol@an you run the standard LU de-
composition for a matrix of the size)® x 10°? Comment your results.

Solution to exercise b)

The program listed below encodes a possible solution toly)ast the above project. Note that we have
employed Blitz++ as library and that the range of the varieerstors are now shifted from their default
ranges(0 : n — 1) to (1 : n) and that we access vector elements:@$ instead of the standard C++
declaratioru|[].

The program reads from screen the name of the ouput file ardirttension of the problem, which in
our case corresponds to the number of mesh points as wetlditian to the two endpoints. The function

f(x)

= (3x + 22) exp (z) is included explicitely in the code. An obvious change isefintk a separate

function, allowing thereby for a generalization to othemdtion f(z).

[

*/

#inc
#inc
#inc
#inc
usin
usin

/1

100

ofstream ofile;

Program to solve the onedimensional Poisson equation

—u’’(x) = f(x) rewritten as a set of linear equations

Au=f where A is an n x n matrix, and u and f are 1 x n vectors
In this problem f(x) = (3x+x%x)exp(x) with solution u(x) = x(&x)exp(x)
The program reads from screen the name of the output file.

Blitz++ is used here, with arrays starting from 1 to n

lude <iomanip>

lude <fstream>

lude <blitz/array.h>
lude <iostream >

g nhamespacestd;

g namespaceblitz;

Main program only, no other functions
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int main(int argc, charx argv([])
{
char xoutfilename;
int i, j, n;
double h, btemp;
/I Read in output file, abort if there are too few commaithe arguments
if ( argec <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{
outfilename=argv|[1];
}

ofile .open(outfilename);

cout << "Read in number of mesh points" << endl;

cin >> n;

h = 1.0/( (double) n+1);

/I Use Blitz to allocate arrays

/I Use range to change default arrays from 0:h to 1:n

Range r(1,n);

Array<double,1> a(r), b(r), c(r), y(r), f(r), temp(r);

I/l set up the matrix defined by three arrays, diagonal, uppamd lower
diagonal band

b=20;, a=-10 ; c=-1.0;
/I Then define the value of the right hand side f (multiplied hxh)
for(i=1; i <= n; i++){

/Il Explicit expression for f, could code as separate funatio
f(i) = hxhx(i*hx3.0+(ixh)*(ixh))xexp(ixh);
}
/I solve the tridiagonal system, first forward substitutio
btemp = b(1);
for(i = 2; i <= n; i++) {
temp (i) c(i—1) / btemp;

btemp b(i)— a(i) x temp(i);
y(i) = (f(i) —a(i) = y(i—-1)) / btemp;
}
/Il then backward substitution , the solution is in y()
for(i = n=1; i >= 1; i—) {
y(i) —= temp(i+1) = y(i+1);
}
/Il write results to the output file
for(i = 1; i <= n; i++){

ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision (8) <<xh;

ofile << setw(15) << setprecision (8) << y(i);

ofile << setw(15) << setprecision (8) <<xhx(1.0—ixh)xexp(ixh) <<endl;

ofile.close ();

}

The program writes also the exact solution to file. In Eigl wWedshow the results obtained with= 10.
Even with so few points, the numerical solution is very claséhe analytic answer. With = 100 it is
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1
Il\lumer_ical sollut_ion
Analytical solution- - - - -
0.8 _
0.6 _
u(x)
04r 1
0.2 _
0 - L | | |

Figure 4.4: Numerical solution obtained with= 10 compared with the analytical solution.

almost impossible to distinguish the numerical solutianfrthe analytical one, as shown in Hig.]4.5. It
is therefore instructive to study the relative error, whieh display in Tabl€ 414 as function of the step
lengthh = 1/(n + 1).

Table 4.4:]og; values for the relative error and the step lengttomputed at: = 0.5.
n  logio(h) € =logio (|(vi —w;)/uil)
10 -1.04 -2.29

100 -2.00 -4.19
1000 -3.00 -6.18
10* -4.00 -8.18
10° -5.00 -9.19
106 -6.00 -6.08

The mathematical truncation we made when computing thensegerivative goes lik€(h?). Our
results forn from n = 10 to somewhere betweem = 10* andn = 10° result in a slope which is
almost exactly equad,in good agreement with the mathematical truncation madeyoBdn = 10°
the relative error becomes bigger, telling us that thereoipaint in increasing:. For most practical
application a relative error betwe@f—% and10~8 is more than sufficient, meaning that= 10* may
be an acceptable number of mesh points. Beyend 10°, numerical round off errors take over, as
discussed in the previous chapter as well.
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Analytical solution- - - - -
0.8 _
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Figure 4.5: Numerical solution obtained with= 10 compared with the analytical solution.






Chapter 5

Non-linear equations and roots of
polynomials

5.1 Introduction

In physics we often encounter the problem of determiningrtim of a functionf(z). Especially, we
may need to solve non-linear equations of one variable. ®gclations are usually divided into two
classes, algebraic equations involving roots of polynésréad transcendental equations. When there
is only one independent variable, the problem is one-dimnaas namely to find the root or roots of a
function. Except in linear problems, root finding invaripkoceeds by iteration, and this is equally true
in one or in many dimensions. This means that we cannot seletlg the equations at hand. Rather,
we start with some approximate trial solution. The chosgrithm will in turn improve the solution
until some predetermined convergence criterion is satisfldne algoritms we discuss below attempt to
implement this strategy. We will deal mainly with one-dirseimal problems.

You may have encountered examples of so-called transceh@guations when solving the Schrodinger
equation (SE) for a particle in a box potential. The one-disi@nal SE for a particle with mass is

h2 d%u

-~ + V(z)u(x) = Eu(z), (5.1)

and our potential is defined as

Vo 0<z<
V(r):{ 00 ;ia“ (5.2)

Bound states correspond to negative endrggnd scattering states are given by positive energies. The
SE takes the form (without specifying the signiof

d>u(z) 2m
a2 + F (VO + E) U(IE) =0 z<a, (5.3)
and )
d*u(xz) = 2m

If we specialize to bound statds < 0 and implement the boundary conditions on the wave functien w

obtain
u(r) = Asin(y/2m(Vo — |E|)r/h) r<a, (5.5)
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100 :

50

f(E) [MeVD

-50

-100

|E| [MeV]

Figure 5.1: Plot off (E) Eq. (&8) as function of energy |E| in Mef{ E) has dimension MeV. Note well
that the energy is for bound states.

and
u(r) = Bexp (—+/2m|E|r/h) r > a, (5.6)

where A and B are constants. Using the continuity requirement on the viametion atr = a one
obtains the transcendental equation

V2m(Vo — | E])cot(v/2ma? (Vo — | E]) /h) = —/2m]| E]. (5.7)

This equation is an example of the kind of equations whicHd:be solved by some of the methods
discussed below. The algorithms we discuss are the bigentgthod, the secant, false position and
Brent's methods and Newton-Raphson’s method.

In order to find the solution for Eq(3.7), a simple procedsr® define a function

J(E) = \/2m(Vo — [Bl)eot(v/2ma® (Vo — |EN) /h) + \/2m[E]. (5.8)

and with chosen or given values feand1j make a plot of this function and find the approximate region
along theE — axis wheref(E) = 0. We show this in Fid._5]1 foV[, = 20 MeV, a = 2 fm andm = 938
MeV. Fig.[51 tells us that the solution is close|f6| ~ 2.2 (the binding energy of the deuteron). The
methods we discuss below are then meant to give us a numedkaion for E where f(E) = 0 is
satisfied and witllZ determined by a given numerical precision.

5.2 lteration methods

To solve an equation of the tyg&z) = 0 means mathematically to find all numbefsso thatf(s) = 0.
In all actual calculations we are always limited by a giveagmion when doing humerics. Through an

LIn the following discussion, the variableis reserved for the value af where we have a solution.
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iterative search of the solution, the hope is that we cancagabr, within a given tolerance a valuex
which is a solution tof (s) = 0 if
|z — s| <, (5.9)

andf(s) = 0. We could use other criteria as well like

Trog— S

< €, (5.10)
s

and|f(zo)| < e or acombination of these. However, it is not given that teeaitive process will converge
and we would like to have some conditions pwhich ensures a solution. This condition is provided by
the so-called Lipschitz criterion. If the functigf) defined on the intervak, b] satisfies for alk;; andz,

in the chosen interval the following condition

|f(z1) = f(z2)| < k|21 — 229, (5.11)

with k a constant, therf is continuous in the intervak, b]. If f is continuous in the intervak, b], then
the secant condition gives

fay) = fl@2) = f1(€)(x1 — x2), (5.12)
with 1, zo within [a, b] and within [z, z2]. We have then
|f (1) = f@2)| < £ ()21 — 2] (5.13)

The derivative can be used as the constantVe can now formulate the sufficient conditions for the
convergence of the iterative search for solutiong o) = 0.

1. We assume thgtis defined in the intervdh, b].
2. f satisfies the Lipschitz condition with< 1.

With these conditions, the equatigiiz) = 0 has only one solution in the intervgl, b and it coverges
aftern iterations towards the solutionirrespective of choice far in the intervalfa, b]. If we let z,, be
the value ofr aftern iterations, we have the condition

|s — x| < |z1 — xaf. (5.14)

k
11—k
The proof can be found in the text of Bulirsch and Stoer. Sihigdifficult numerically to find exactly
the point wheref (s) = 0, in the actual numerical solution one implements three tekthe type

1.
|zy, — s] <, (5.15)

and

|f(s)| <6, (5.16)

3. and a maximum number of iteratioNg,.«iter iN actual calculations.
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5.3 Bisection method

This is an extremely simple method to code. The philosopimybest be explained by choosing a region
in e.g., Fig[&Il which is close to whef¢E') = 0. In our casgE| ~ 2.2. Choose a regiofu, b] so that
a = 1.5 andb = 3. This should encompass the point whére- 0. Define then the point

= “;b, (5.17)

and calculatef(c). If f(a)f(c) < 0, the solution lies in the regiofa, ¢] = [a, (a + b)/2]. Change then

b — cand calculate a new value forIf f(a)f(c) > 0, the new interval is ific, b] = [(a+b)/2, b]. Now
you need to change < ¢ and evaluate then a new value foWe can continue to halve the interval till
we have reached a value fewhich fulfils f(c¢) = 0 to a given numerical precision. The algorithm can
be simply expressed in the following program

fa = f(a);
fb = f(b);
/1 check if your interval is correct, if not return to main
if ( faxfb > 0) {
cout << ‘“‘\n Error, root not in interval’’ << endl;
return ;
}
for (j=1; j <= iter_max; j++) {
c=(a+b)/2;
fc=f(c)
/1l if this test is satisfied , we have the root c
if ( (abs(ab) < epsilon ) || fc < delta );return to main
if ( faxfc < 0){
b=c ; fb=fc;
}
else
a=c ; fa=fc;
}
}

Note that one needs to define the values,efanditer_max when calling this function.

The bisection method is an almost foolproof method, althoitignay converge slowly towards the
solution due to the fact that it halves the intervals. Aftativisions by2 we have a possible solution in
the interval with length

2in b—al, (5.18)

and if we setry = (a + b)/2 and letz,, be the midpoints in the intervals we obtain afteiterations that
Eq. (51%) results in
1
|s —zp| <= W’b_CW (5.19)

since the nth interval has length — a|/2". Note that this convergence criterion is independent of the
actual functionf(z) as long as this function fulfils the conditions discussechadonditions discussed
in the previous subsection.
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As an example, suppose we wish to find how many iteration sispsieeded in order to obtain a
relative precision o10~12 for z,, in the interval[50, 63], that is

% <1072, (5.20)
S

It suffices in our case to study> 50, which results in

|s — x|

< 10712 5.21
o <107 (5.21)
and with Eq.[[5.1P) we obtain
13 —12
<1 5.22
on+lg0) — 0 ’ ( )
meaningn > 37. The code for the bisection method can look like this

[ *

xx This function

xx calculates a root between x1 and x2 of a function
xx pointed to by func) using the method of bisection
xx The root is returned with an accuracy of—+xacc.

*/

double bisection (double (xfunc)(double), double x1, double x2, double xacc)

{

int i

double dx, f, fmid, xmid, rtb;
f = (xfunc)(x1);

fmid = (xfunc) (x2);

if (fxfmid >= 0.0) {
cout << "\n\nError in function rtbis():" << endl;
cout << "\nroot in function must be within" << endl;

cout << "x1 =77 << x1 << ‘fand x2 ¢¢ << x2 << endl;
exit (1);
}
rtb = f < 0.0 7 (dx = x2 - x1, x1) : (dx = x1 - x2, x2);
for(j = 0; j < max_iterations; j++) {
fmid = (*func) (xmid = rtb + (dx *= 0.5));
if (fmid <= 0.0) rtb=xmid;
if (fabs(dx) < xacc || fmid == 0.0) return rtb;
}
cout << "Error in the bisection" << endl; // should never reach

this point
cout "Too many iterations" << endl;
exit(1);
}

// End: function bisection

In this function we transfer the lower and upper limit of théerval where we seek the solutidm; , z5].
The variablexacc is the precision we opt for. Note that in this function the té&) < § is not imple-
mented. Rather, the test is done throygk) = 0, which is not necessarily a good option.

Note also that this function transfer a pointer to the nanteefjiven function throughouble (xfunc
) (double).
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5.4 Newton-Raphson’s method

Perhaps the most celebrated of all one-dimensional rodiafyroutines is Newton’s method, also called
the Newton-Raphson method. This method is distinguishaith the previously discussed methods by
the fact that it requires the evaluation of both the functfoand its derivativef’ at arbitrary points. In
this sense, it is taylored to cases with e.g., transcendegtations of the type shown in EQ.{b.8) where
itis rather easy to evaluate the derivative. If you can oalgulate the derivative numerically and/or your
function is not of the smooth type, we discourage the useisfiiethod.

The Newton-Raphson formula consists geometrically ofrediteg the tangent line at a current point
until it crosses zero, then setting the next guess to thesasasof that zero-crossing. The mathematics
behind this method is rather simple. Employing a Taylor esjan forz sufficiently close to the solution
s, we have

(s — 2)?

f(s)=0= f(x)+ (s —a)f (z) + 5 () +.... (5.23)

For small enough values of the function and for well-behaftatttions, the terms beyond linear are
unimportant, hence we obtain

fl@)+ (s —a)f'(z) =0, (5.24)
yielding
f(z)
SR T — . 5.25
@) (629
Having in mind an iterative procedure, it is natural to sif@tating with
f(zn)
Tl =T = g (5.26)

This is Newton-Raphson’s method. It has a simple geomettarpretation, namely.,,, 1 is the point
where the tangent frorw,,, f(z,)) crosses the—axis. Close to the solution, Newton-Raphson con-
verges fast to the desired result. However, if we are far feoroot, where the higher-order terms in the
series are important, the Newton-Raphson formula can gogsty inaccurate results. For instance, the
initial guess for the root might be so far from the true root@set the search interval include a local
maximum or minimum of the function. If an iteration placesialtguess near such a local extremum, so
that the first derivative nearly vanishes, then Newton-Raphmay fail totally. An example is shown in
Fig.52

Itis also possible to extract the convergence behaviorisitiethod. Assume that the functigrhas
a continuous second derivative around the solugiolfiwe define

f(zn)

el — s =y — s, 5.27
entl = gl =8 = In =g S =8 (5.27)

and using Eq{5.23) we have

—enf'(zn) +en/2f"(€) _ €n/21"(&)

) = ) (5.28)

€n+l = €n +
This gives
lena| _ 1 [F"©) _11f(s)]
lenl> 20" (@n)> 2[f'(s)?
whenz, — s. Our error constant is then proportional tof”(s)|/|f/(s)|? if the second derivative is
different from zero. Clearly, if the first derivative is sthahe convergence is slower. In general, if we are

(5.29)
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5.4 — Newton-Raphson’s method

20 I I
f(z) =2 —2cos(x) ——
15 L C=1I9 i

Figure 5.2: Example of a case where Newton-Raphson’s methed not converge. For the function
f(z) =z — 2cos(x), we see that if we start at= 7, the first iteration gives us that the first point where
we cross ther—axis is given byx;. However, usinge; as a starting point for the next iteration results
in a pointxs which is close to a local minimum. The tangent here is closeeto and we will never
approach the point whergz) = 0.

able to start the iterative procedure near a root and we cally esaluate the derivative, this is the method

of choice. In cases where we may need to evaluate the deevatimerically, the previously described

methods are easier and most likely safer to implement wepeaet to loss of numerical precision. Recall

that the numerical evaluation of derivatives involvesaiinces between function values at different
We can rewrite the last equation as

lent1] = Clen]?, (5.30)

with C' a constant. If we assume th@t ~ 1 and lete, ~ 1078, this results ine,,; ~ 107!, and
demonstrates clearly why Newton-Raphson’s method mayergaevaster than the bisection method.

Summarizing, this method has a solution whghis continuous and is a simple zero off. Then
there is a neighborhood sfand a constant’ such that if Newton-Raphson’s method is started in that
neighborhood, the successive points become steadilyrdlmseand satisfy

|5 = zpq1| < Cls — $n|2>

with n > 0. In some situations, the method guarantees to convergedsit@d solution from an arbitrary
starting point. In order for this to take place, the functjohas to belong t@'?(R), be increasing, convex
and having a zero. Then this zero is unique and Newton’s rdathoverges to it from any starting point.
As a mere curiosity, suppose we wish to compute the squat@femumberR, i.e.,v/R. Let R > 0
and define a function
f(z) =2 - R.

The variablez is a root if f(x) = 0. Newton-Raphson’s method yields then the following iteeat
approach to the root

1
Tpil = = <:Un + E) , (5.31)
2 T,
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Non-linear equations and roots of polynomials

a formula credited to Heron, a Greek engineer and architbotlived sometime between 100 B.C. and
A.D. 100.

Suppose we wish to computgl3 = 3.6055513 and start withzy = 5. The first iteration gives
x1 = 3.8, 9 = 3.6105263, x3 = 3.6055547 andx, = 3.6055513. With just four iterations and a not
too optimal choice ofy we obtain the exact root to a precision of 8 digits. The abayegon, together
with range reduction , is used in the intrisic computatidoalkction which computes square roots.

Newton’s method can be generalized to systems of severdimear equations and variables. Con-
sider the case with two equations

filzr,z2) =0
. (5.32)

which we Taylor expand to obtain

0= fl(acl + hi,x0 + h2) — fl(xl,wg) + hlafl/awl + hgafl/awg + ... (5 33)
0= fo(xy + hi, 22 + he) = fo(x1,22) + h10f2/0x1 + hoOfa /0 + ... '

Defining the Jacobian matrik we have

s [ 0fi/0x1 Of1/0xs
I= ( df2/0z1 O fs/0ms > ’ (5.34)

we can rephrase Newton’s method as
et [ at hy
()‘( \ws ) 639

hi g-1( Ji(at,a3) >
=-J ’ . 5.36
( g ) ( folt, o) (5.30)
We need thus to compute the inverse of the Jacobian matriit &tb understand that difficulties may
arise in casd is nearly singular.
It is rather straightforward to extend the above schemegteays of more than two non-linear equa-

tions.
The code for Newton-Raphson’s method can look like this

/%

xx This function

xx calculates a root between x1 and x2 of a function pointed to
xx by (xfuncd) using the NewtorRaphson method. The usedefined

xx function funcd() returns both the function value and its §itr
xx derivative at the point x,

xx The root is returned with an accuracy of—+xacc.

*/

where we have defined

double newtonraphsonyoid (xfuncd)(double, double x, double x), double x1,
double x2,
double xacc)

int i
double df, dx, f, rtn;
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5.5 — The secant method and other methods

rtn = 0.5 x (x1 + x2); [l initial guess
for(j = 0; j < max_iterations; j++) {

(xfuncd) (rtn, &f, &df);

dx = f/df;

rtn —= dx;

if (x1 — rtn) * (rtn — x2) < 0.0) {
cout << "\n\nError in function newtonraphson:" << endl ;
cout << "Jump out of interval bracket" << endl;
exit(1);

if (fabs(dx) < xacc)return rtn;
}
cout << "Error in function newtonraphson:" << endl;
cout << "Too many iterations!" << endl;
exit(1);
}

/!l End: function newtonraphson

We transfer again the lower and upper limit of the intervabrehwe seek the solutiofi, z2] and the
variablexacc. Firthermore, it transfers a pointer to the name of the giuation throughdouble (xfunc
) (double).

5.5 The secant method and other methods

For functions that are smooth near a root, the methods knegpectively as false position (or regula
falsi) and secant method generally converge faster thactii® but slower than Newton-Raphson. In
both of these methods the function is assumed to be apprtelyrimear in the local region of interest,
and the next improvement in the root is taken as the point evtier approximating line crosses the axis.
The algorithm for obtaining the solution for the secant rodtis rather simple. We start with the
definition of the derivative
f(xn) = f(wn1)

/ J—

fi(zn) = £y — Ty 1

and combine it with the iterative expression of Newton-Rsapts
_ f(an)
T )
to obtain
Tp — Tn—1
Tpa1 = Tn — f(Tn , 5.37

which we rewrite to
Tni1 = f(xn)xn—l - f(wn—l)xn
" f(xn) — f(Tn-1)
This is the secant formula, implying that we are drawing aight line from the pointx,,_1, f(z,—1))
to (xy, f(zy)). Where it crosses the— azis we have the new point,, ;. This is illustrated in Fid.5]3.

(5.38)

In the numerical implementation found in the program ligrahe quantitiesr,, 1, x,, z,1 are
changed tai, b andc respectively, i.e., we determineby the point where a straight line from the point
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100

50

f(E) [MeVD

-50

-100

|E| [MeV]

Figure 5.3: Plot off(FE) Eq. (538) as function of energy |E|. The poinis determined by where the
straight line from(a, f(a)) to (b, (b)) crosses the — axis.

(a, f(a)) to (b, f(b)) crosses the — axis, that is

o= 1bla—fla)b (5.39)

f() = f(a)

We then see clearly the difference between the bisectiohadetnd the secant method. The convergence
criterion for the secant method is

lent+1| = Alen|®, (5.40)

with o« = 1.62. The convergence is better than linear, but not as good asddeRaphson’s method
which converges quadratically.

While the secant method formally converges faster tharctise one finds in practice pathological
functions for which bisection converges more rapidly. Ehean be choppy, discontinuous functions, or
even smooth functions if the second derivative changepbBhaear the root. Bisection always halves the
interval, while the secant method can sometimes spend nyafgscslowly pulling distant bounds closer
to a root. We illustrate the weakness of this method in[EdjvBhere we show the results of the first three
iterations, i.e., the first point is= x1, the next iteration gives = x5 while the third iterations ends with
c = x3. We may risk that one of the endpoints is kept fixed while theepbne only slowly converges to
the desired solution.

The search for the solution proceeds in much of the same fashion as for the bisectionangth
namely after each iteration one of the previous boundamtpas discarded in favor of the latest estimate
of the root. A variation of the secant method is the so-cdidse position method (regula falsi from
Latin) where the interval [a,b] is chosen so thfdt) f(b) < 0, else there is no solution. This is rather
similar to the bisection method. Another possibility is wtermine the starting point for the iterative
search using three points, f(a)), (b, f(b)) and(c, f(c)). One can use Lagrange’s interpolation formula
for a polynomial, see the discussion in the next chapters ptocedure leads to Brent's method.
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140 T I T
f&x):25x4—x2/2—2 —
120_ C:wl
C =T
100_ C:wg

Figure 5.4: Plot off (x) = 252* — 22/2 — 2. The various straight lines correspond to the determinatio
of the pointc after each iterationc is determined by where the straight line frdm f(a)) to (b, f(b))
crosses the: — axis. Here we have chosen three values dprq, x5 andxzs which refer to the first,
second and third iterations respectively.

5.6 Exercises and projects

Exercise 5.1: Comparison of methods

Write a code which implements the bisection method, NevRaphson’s method and the secant method.
Find the positive roots of

2? — 4drsinx + (2sinz)? = 0,

using these three methods and compare the achieved accunanber of iterations needed to find the
solution. Give a critical discussion of the methods.

Project 5.1: Schrodinger’s equation

We are going to study the solution of the Schrddinger eqnaifE) for a system with a neutron and
proton (the deuteron) moving in a simple box potential.

We begin our discussion of the SE with the neutron-protout@ten) system with a box potential
V(r). We define the radial part of the wave functi@tr) and introduce the definition(r) = rR(R)
The radial part of the SE for two particles in their cententdss system and with orbital momentum
Il =0isthen

h? d?u(r)
R + V(r)u(r) = Eu(r),
with
g Tl
mp + my,

wherem,, andm,, are the masses of the proton and neutron, respectively. @barem = 938 MeV.
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Non-linear equations and roots of polynomials

Our potential is defined as
Vo 0<r<a

V(T):{ 0 r>a

Bound states correspond to negative endfggnd scattering states are given by positive energies. The
SE takes the form (without specifying the signiof

Fulr) |7 ) =0 r<a,

dr? h?
and ()
d“u(r m
72 + ﬁEu(T) =0 7r>a.
We are now going to search for eventual bound states,H.e<, 0. The deuteron has only one bound
state at energyy = —2.223 MeV. Discuss the boundary conditions on the wave functiah #se these

to show that the solution to the SE is
u(r) = Asin(kr) r<a,

and
u(r) = Bexp (—fr) r>a,

whereA and B are constants. We have also defined

k= /m(Vo — [ED)/h,

and
B = +/m|E|/h.
Show then, using the continuity requirement on the wavetfandhat atr = a you obtain the transcen-

dental equation
kcot(ka) = —f. (5.41)

Insert values off = 60 MeV anda = 1.45 fm (1 fm = 10~'5 m) and make a plot plotting programs)
of Eq. (&41) as function of energy in order to find eventual eigenvalues. See if these valuesdt iasa
bound state fo.

When you have localized on your plot the point(s) where Egpis satisfied, obtain a numerical
value for £/ using Newton-Raphson’s method, the bisection method amddlant method. Make an
analysis of these three methods and discuss how many dtesatie needed to find a stable solution.

What is smallest possible value & which gives a bound state?
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Chapter 6

Numerical interpolation, extrapolation and
fitting of data

6.1 Introduction

Numerical interpolation and extrapolation are frequensigd tools in numerical applications to physics.
The often encountered situation is that of a functfoat a set of points; ... x,, where an analytic form
is missing. The functiory may represent some data points from experiment or the rekaliengthy
large-scale computation of some physical quantity thahoghbe cast into a simple analytical form.

We may then need to evaluate the functjoat some point: within the data set; ... x,,, but where
x differs from the tabulated values. In this case we are dgalitth interpolation. Ifz is outside we are
left with the more troublesome problem of numerical exttafpon. Below we will concentrate on two
methods for interpolation and extrapolation, namely polyial interpolation and extrapolation and the
qubic spline interpolation approach.

6.2 Interpolation and extrapolation

6.2.1 Polynomial interpolation and extrapolation

Let us assume that we have a sef\of+ 1 pointsyy = f(zo),y1 = f(z1),...,yn = f(zn) Where none
of thex; values are equal. We wish to determine a polynomial of degrsethat

Pn(z;) = f(xi) = vi, i=0,1,...,N (6.1)
for our data points. If we then writ€,, on the form
Py (z) = ag + a1(z — xg) + ag(z — x0)(x —21) + -+ an(x — x9) ... (r — zN—-1), (6.2)
then Eq.[[&11) results in a triangular system of equations

ap = f(zo)
ap+ al(xl - xO) = f(fﬂl) (6.3)
aot+ ai(ra —x0)+ az(w2 —x0)(r2 — 1) = f(22) '

The coefficientsi, . . ., ay are then determined in a recursive way, starting withu, . . ..
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Numerical interpolation, extrapolation and fitting of data

The classic of interpolation formulae was created by Laggeend is given by

N
Pete) =3I —Fwe (6.4)

i=0 ki

If we have just two points (a straight line) we get

r — X Tr — I

Pl(fL') =

- Y1 Yo, (65)
xr1 — To To — X1

and with three points (a parabolic approximation) we have

( —x0)(z — 21) (z — x0) (7 — x2) (z —z1)(z — 29)

Pale) = (22— z0) (w2 —21) " (w1 —wo)(x1 —x2)" " (z0 — x1) (w0 — 22)

Yo (6.6)

and so forth. It is easy to see from the above equations themwh- =; we have thaff (z) = f(x;) Itis
also possible to show that the approximation error (or ersh} is given by the second term on the right

hand side of
w1 () fNF(E)

The functionwy 11 () is given by
wn+1(z) = an(z — z0) ... (z — 2N), (6.8)

and¢ = £(x) is a point in the smallest interval containing all intergma pointsz ; andz. The algorithm
we provide however (the code POLINT in the program libras\ased on divided differences. The recipe
is quite simple. If we take: = z in Eq. (62), we then have obviously that = f(xzg) = yo. Moving

ag over to the left-hand side and dividing by— xy we have

f(x) — f(0)

=a;t+a(r—x1)+ - +an(x—z1)(z —22)...(x —xN_1), (6.9)
T — X0

where we hereafter omit the rest term

(N+1)
e = ma).. o= o) 6.10)
The quantity
fon = L@ = J@0), 6.11)
r — X

is a divided difference of first order. If we then take= x;, we have thati; = fy;. Moving a; to the
left again and dividing by — x; we obtain

M =ay+---t+an(®z—x2)...(x —xN_1). (6.12)
r — I
and the quantity
fore = J = Jor. (6.13)
Tr — X
is a divided difference of second order. We note that thefiooeft
ar = for, (6.14)
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6.2 — Interpolation and extrapolation

is determined fromfy, by settingz = z;. We can continue along this line and define the divided

difference of ordek 4 1 as

Fot e = fot..(k—1) — fOl...(k—l)k’ (6.15)
T — Tp,

meaning that the corresponding coefficieptis given by

ar = for..(k—1)k- (6.16)

With these definitions we see that Hg.{6.7) can be rewritten a

_ w41 () fATD(€)
f(x) =ag+ ;; N for k(@ —a0) ... (x — zp_1) + ] (6.17)
If we replacezg, z1, . . .,z in Eq. (&I5) withe; 11, z;49, . . ., g, that is we count fromi+ 1 to k instead

of counting fromoO to k£ and replacer with z;, we can then construct the following recursive algorithm
for the calculation of divided differences

B Jripraw — feiwigran_y ) (6.18)

ili41 k I'k _ fEi

Assuming that we have a table with function vales, f(z;) = y;) and need to construct the coeffi-
cients for the polynomiaPy (x). We can then view the last equation by constructing theviolig table
for the case wher&y = 3.
Lo Yo
e
T Y faoz1
fmlmg f:poxlmgmg . (619)
T2 Y2 Je1zoms
f:c?xg
3 Ys

The coefficients we are searching for will then be the elematuing the main diagonal. We can under-
stand this algorithm by considering the following. Firsteanstruct the unique polynomial of order zero
which passes through the poing, 1o. This is justag discussed above. Therafter we construct the unique
polynomial of order one which passes through hatiy andx,y;. This corresponds to the coefficient
and the tabulated valug,,., and together witlu, results in the polynomial for a straight line. Likewise
we define polynomial coefficients for all other couples offp®isuch ag,, ., andf,,.,. Furthermore, a
coefficient likeas = f1,2,2, SPans now three points, and adding together, we obtain a polynomial
which represents three points, a parabola. In this fash@moam continue till we have all coefficients. The
function POLINT included in the library is based on an exien®f this algorithm, knowns as Neville’'s
algorithm. It is based on equidistant interpolation paifthe error provided by the call to the function
POLINT is based on the truncation error in Hgq.16.7).

Exercise 6.1

Use the functiory (z) = 23 to generate function values at four poimts= 0, x; = 1, 25 =

5 andxsz = 6. Use the above described method to show that the interpglatlynomial
becomes?;(z) = x + 6x(x — 1) + z(x — 1)(z — 5). Compare the exact answer with th
polynomial P; and estimate the rest term.
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6.3 Richardson’s deferred extrapolation method

Here we present an elegant method to improve the precisiaurofmathematical truncation, without
too many additional function evaluations. We will againdstuhe evaluation of the first and second
derivatives ofexp () at a given pointc = &. In Egs. [3B) and(34) for the first and second derivatives,
we noted that the truncation error goes IReh>7).

Employing the mid-point approximation to the derivativiee tvarious derivative® of a given func-
tion f(z) can then be written as

D(h) = D(0) + a1h® + ash* 4+ azh® + ..., (6.20)

whereD(h) is the calculated derivativd)(0) the exact value in the limit — 0 anda; are independent
of h. By choosing smaller and smaller values fgwe should in principle be able to approach the exact
value. However, since the derivatives involve differenage may easily loose numerical precision as
shown in the previous sections. A possible cure is to appth&dson’s deferred approach, i.e., we
perform calculations with several values of the skepnd extrapolate té = 0. The philososphy is to
combine different values df so that the terms in the above equation involve only larg@eepts forh.
To see this, assume that we mount a calculation for two valfitise steph, one withh and the other
with h/2. Then we have

D(h) = D(0) + a1h® + ash* 4+ azhS + ..., (6.21)

and
al h2 a9 h4 as h6

D(h/2) = D(0) + 1 16 ol cey (6.22)
and we can eliminate the term with by combining
_ 4 6
Duum4-D“””3‘D“):1xm-“f _5?? (6.23)

We see that this approximation f(0) is better than the two previous ones since the error now gces |
O(h*). As an example, let us evaluate the first derivative of a fancf using a step with lengths and
h/2. We have then

@%§ﬁ=ﬁ+mﬁx (6.24)
fh/%f‘h/? = fy+O(h?/4), (6.25)
which can be combined, using ER.(8.23) to yield
—Sn A 82 =8fnp+fon o, B
= fo— — . 6.26
6h 0~ 1807 (6.26)

D
D(()l) DgO)
p® p{ DY , (6.27)
2 1 0
) p® p p©
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6.4 — Qubic spline interpolation

where the elements in the first column represent the giveroajppations
D = D(h)2¥). (6.28)

This means thaﬂgo) in the second column and row is the result of the extrapajdtimsed orD(()O) and
D((]l). An eIementDﬁ,’f) in the table is then given by

(k+1) (k)
D -D
D% =pW® m‘im 1 md (6.29)

with m > 0. l.e., it is a linear combination of the element to the lefitand the element right over the
latter.

In Table[31 we presented the results for various step sirehé second derivative ekp (x) using
0= f’”i# The results were compared with the exact ones for variovslues. Note well that
as the step is decreased we get closer to the exact value.vEliouiat is further increased, we run into
problems of loss of precision. This is clearly seenfice 0000001. This means that even though we
could let the computer run with smaller and smaller valuethefstep, there is a limit for how small the
step can be made before we loose precision. Consider noveshéis in Tabl€6l1 where we choose to
employ Richardson’s extrapolation scheme. In this catmiave have computed our function with only
three possible values for the step size, nanieljt/2 andh/4 with h = 0.1. The agreement with the
exact value is amazing! The extrapolated result is based tim use of Eq{6.29). We will use this

x h=0.1 h =0.05 h =0.025 Extrapolat Error
0.0 1.00083361 1.00020835 1.00005208 1.00000000 0.000000
1.0 2.72054782 2.71884818 2.71842341 2.71828183 0.00Q@000
2.0 7.39521570 7.39059561 7.38944095 7.38905610 0.00B000
3.0 20.10228045 20.08972176  20.08658307 20.08553692 0@009
40 54.64366366 54.60952560 54.60099375 54.59815003 0@00Q4
5.0 148.53687797 148.44408109 148.42088912 148.4131591M0000064

Table 6.1: Result for numerically calculated second déviga ofexp (z) using extrapolation. The first
three values are those calculated with three different siegs,h, h/2 andh/4 with h = 0.1. The
extrapolated result th = 0 should then be compared with the exact ones from Table 3.1.

method to obtain improved eigenvalues in chapfér 12.

6.4 Qubic spline interpolation

Qubic spline interpolation is among one of the mostly usethods for interpolating between data points
where the arguments are organized as ascending series.liiortiry program we supply such a function,
based on the so-called qubic spline method to be descrided.be

A spline function consists of polynomial pieces defined opbirsiervals. The different subintervals
are connected via various continuity relations.

Assume we have at our disposaH+ 1 points xg, z1,...x, arranged so thaty < z1 < z3 <

...xn_1 < T, (such points are called knots). A spline functioof degreek with n + 1 knots is defined
as follows
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Numerical interpolation, extrapolation and fitting of data

— On every subintervdle;_1, x;) s is a polynomial of degreg k.
— s hask — 1 continuous derivatives in the whole interjab, x,,].

As an example, consider a spline function of degree 1 defined as follows

so(x) = apzx + by x € [x9,21)
s(z) = s1(z) = a1z + by x € [x1,22) (6.30)
Sn—l(w) =ap—17 + bn—l VS [xn—lawn]

In this case the polynomial consists of series of straigtgdiconnected to each other at every end-
point. The number of continuous derivatives is thiier 1 = 0, as expected when we deal with straight
lines. Such a polynomial is quite easy to construct giwenl pointszg, x1, . . . ¢, and their correspond-
ing function values.

The most commonly used spline function is the one Witk 3, the so-called qubic spline function.
Assume that we have in adddition to the+ 1 knots a series of functions valugs = f(zo),y1 =
f(x1),...yn = f(x,). By definition, the polynomials;_; ands; are thence supposed to interpolate the
same point, i.e.,

si—1(wi) = yi = si(xi), (6.31)

with 1 < i < n — 1. In total we have: polynomials of the type
si(x) = aio + anx + appz’® + apa’, (6.32)
yielding 4n coefficients to determine. Every subinterval provides iditawh the2n conditions
yi = s(xi), (6.33)

and
5(Tiy1) = Yis1, (6.34)
to be fulfilled. If we also assume thatands” are continuous, then

si_y(x;) = si(x;), (6.35)

yieldsn — 1 conditions. Similarly,
si_1(xi) = 7 (i), (6.36)

results in additionak — 1 conditions. In total we havén coefficients andn — 2 equations to determine
them, leaving us witl2 degrees of freedom to be determined.
Using the last equation we define two values for the secondadiee, namely

si (i) = fi, (6.37)
and
st (zig1) = fir1, (6.38)
and setting up a straight line betwegrand f; 1 we have
si () = L(xi—i-l —x)+ L(ﬂc - z;), (6.39)
Tit1 — T4 LTi41 — T4
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6.4 — Qubic spline interpolation

and integrating twice one obtains

fi

6(ziy1 — ;)

fit1

si(z) = (zig1 — ) + m(ﬂc — )’ + c(w — z;) + d(zip1 —x).  (6.40)

Using the conditions;(x;) = y; ands;(z;+1) = ;11 we can in turn determine the constantandd
resulting in

si(z) = m(%‘-ﬁ-l — )’ + m(ﬂc —x;)°
+ (%Tj—l% o fi+1(mi6+1_xi))(w B ‘T’) + (mi+?ii—mi o fi(mi%l_xi))(wi-i-l - ‘T) (641)

How to determine the values of the second derivatjfjemd f;..1? We use the continuity assumption
of the first derivatives

si—1 (i) = si(xi), (6.42)
and setr = x;. Definingh; = z;11 — x; we obtain finally the following expression
6 6
hi—1fi—1 + 2(hi + hi—1) fi + hifirn = E(yi—i-l —vi) — o (Yi — yi-1), (6.43)

and introducing the shorthands = 2(h; + hi—1), vi = 2= (yi+1 — ¥i) — h%(yi — y;_1), We can
reformulate the problem as a set of linear equations to beedahrough e.g., Gaussian elemination,
namely

uy 0 .. fi U1
hi us  ho 0 .. f2 V2
0 hy w3 hy O f3 v3 (6.44)
0 hn—3 Up—2 hn—2 fn—2 Un—2
L 0 hn—2 up—1 1 L fn—l | L Un—1

Note that this is a set of tridiagonal equations and can beedahrough onlyO(n) operations. The
functions supplied in the program library ag@ine andsplint. In order to use qubic spline interpolation
you need first to call

spline (double x[], double y[], int n, double ypl, double yp2, double y2[])

This function takes as input[0,..,n — 1] andy|0, ..,n — 1] containing a tabulationy; = f(z;) with
xo < 1 < .. < x,—1 together with the first derivatives ¢f(x) at 2o andz,,_, respectively. Then the
function returng20, .., n — 1] which contanin the second derivativesfdf:;) at each point;. n is the
number of points. This function provides the qubic splinefipolation for all subintervals and is called
only once. Thereatfter, if you wish to make various interpiotes, you need to call the function

splint (double x[], double y[], double y2a[], int n, double x, double xy)

which takes as input the tabulated valugg, ..,n — 1] andy|0, ..,n — 1] and the output y2a[0,..,n - 1]
from spline. It returns the valug corresponding to the point
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Chapter 7

Numerical integration

7.1 Introduction

In this chapter we discuss some of the classic formulae ssitheatrapezoidal rule and Simpson’s rule
for equally spaced abscissas and formulae based on Gaggsidrature. The latter are more suitable
for the case where the abscissas are not equally spacedniiiasis is on methods for evaluating one-
dimensional integrals. In chaptér 8 we show how Monte Carhimds can be used to compute multi-
dimensional integrals. We discuss also how to compute Engutegrals and outline a physics project
which combines numerical integration techniques and se/@f a matrix to solve quantum mechanical
scattering problems.

We end this chapter with an extensive discussion on MPI arallpbcomputing. The examples focus
on parallelization of algorithms for computing integrals.

The integral

I= /bf(ac)dw (7.1)

has a very simple meaning. If we consider Hig 7.1 the intefamply represents the area enscribed
by the functionf(x) starting fromz = @ and ending at: = . Two main methods will be discussed
below, the first one being based on equal (or allowing forhsligodifications) steps and the other on
more adaptive steps, hamely so-called Gaussian quadrattteods. Both main methods encompass a
plethora of approximations and only some of them will be used here.

7.2 Newton-Cotes quadrature: equal step methods

In considering equal step methods, our basic tool is theoFa{pansion of the functioyfi(x) around a
pointz and a set of surrounding neighbouring points. The algorithrather simple, and the number of
approximations unlimited!

— Choose a step size
b—a
N
whereNN is the number of steps andandb the lower and upper limits of integration.

h =

— Choose then to stop the Taylor expansion of the funcfior) at a certain derivative. You should
also choose how many points aroundre to be included in the evaluation of the derivatives.
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Y

a a+h a+ 2h a—+ 3h b x

Figure 7.1: Area enscribed by the functigtr) starting fromz = a tox = b. Itis subdivided in several
smaller areas whose evaluation is to be approximated byetimigues discussed in the text. The areas
under the curve can for example be approximated by rectanbokes or trapezoids.
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7.2 — Newton-Cotes quadrature: equal step methods

— With these approximations tfz) perform the integration.

Such a small measure may seemingly allow for the derivatiovanous integrals. To see this, let us
briefly recall the discussion in the previous section anceegfly Fig.[31. First, we can rewrite the
desired integral as

b a+2h a+4h b
/ flz)der = / f(x)dx + / flx)dx + ... f(x)dz.
a a a+2h b—2h
The strategy then is to find a reliable Taylor expansionffar) in the smaller sub intervals. Consider

e.g., evaluating
+h

f(x)dx (7.2)
h

where we will Taylor expandf(z) around a pointz,, see Figl:31l. The general form for the Taylor
expansion aroung, goes like

h2f// N h3f///

4
5 e oY),

flx=z0Eh)= f(xo) £ hf +
Let us now suppose that we split the integral in EQ.](7.2) io parts, one from-h to 2y and the other
from xg to h. Next we assume that we can use the two-point formula for énwative, that is we can
approximatef(x) in these two regions by a straight line, as indicated in therég This means that
every small element under the functig(x) looks like a trapezoid, and as you may expect, the pertinent
numerical approach to the integral bears the predictabigeriiapezoidal rule’. It means also that we
are trying to approximate our functiof{z) with a first order polynomial, that i§(x) = a + bx. The
constant is the slope given by the first derivativeaat= x

f(xo + h) — f(x0)

/
= h
f - +0(h).
or ;
f/: f(xo)_i(xo_ ) +O(h),
and if we stop the Taylor expansion at that point our funcbenomes,
fn—fo

f@) = fot+ =——a +0(?),

forx = xgtoxr = 29 + h and

fa) = fo+ 20 1 0w,

for x = zg — hto z = xo. The error goes liké(z?). If we then evaluate the integral we obtain

+h h
. f(z)dx = §(fh+2f0‘|‘f—h)+0(h3)a (7.3)

which is the well-known trapezoidal rule. Concerning theoein the approximation made)(h?) =
O((b — a)®/N3), you should note the following.This is the local error! Since we are splitting the
integral froma to b in IV pieces, we will have to perform approximately such operations. This means

127



Numerical integration

that theglobal error goes like~~ O(h?). To see that, we use the trapezoidal rule to compute theraiteg

of Eq. [Z),
b
= / F(x)de = h(f(a)/2+ fla+h) + fa+2) + -+ fo—h) + fo/2),  (7.4)

with a global error which goes lik€(h?). The correct mathematical expression for the local error fo
the trapezoidal rule is

b _ 3
| @de = 252 @) + 10 = - 1512,
and the global error reads

b—a

2 £(2)
22 f @),

b
/fmm—nmz—

whereT}, is the trapezoidal result aride [a, b]. It can easily be implemented numerically through the
following simple algorithm

— Choose the number of mesh points and fix the step.
— calculatef (a) and f(b) and multiply withh /2

— Perform aloop overn = 1ton — 1 (f(a) andf(b) are known) and sum up the term
fla+h)+ f(a+2h)+ f(a+3h)+---+ f(b—h). Each step in the loop correspon
to a given valuer + nh.

— Multiply the final result byh and addh f (a)/2 andh f(b)/2.

A simple function which implements this algorithm is as dolis

double trapezoidal_rule(@ouble a, double b, int n, double (xfunc)(double))
{
double trapez_sum;
double fa, fb, x, step;
int i;
step=(b-a) /((double) n);
fa=(xfunc)(a)/2. ;
fb=(xfunc)(b)/2.
trapez_sum =0.;
for (j=1; j <= n=1; j++){
X=jxstep+a;
trapez_sum+=(func) (x);
}
trapez_sum=(trapez_sum+fb+fagtep;
return trapez_sum;
} // end trapezoidal_rule

The function returns a new value for the specific integradulgh the variablérapez_sum There is one
new feature to note here, namely the transfer of a user defimetion calledfunc in the definition
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7.2 — Newton-Cotes quadrature: equal step methods

void trapezoidal_rule@ouble a, double b, int n, double xtrapez_sum,
double (xfunc) (double) )

What happens here is that we are transferring a pointer toathee of a user defined function, which
has as input a double precision variable and returns a dqubtgsion number. The functiomape-
zoidal_rule is called as

trapezoidal_rule(a, b, n, &myfunction )

in the calling function. We note tha, b andn are called by value, whil&rapez_sumand the user
defined functiommy_function are called by reference.

Another very simple approach is the so-called midpoint otaiggle method. In this case the integra-
tion area is split in a given number of rectangles with lenfgnd height given by the mid-point value
of the function. This gives the following simple rule for apgimating an integral

b N
I= [ f@s = b3 faio). (7.5)
a i=1

where f(x;_1/2) is the midpoint value off for a given rectangle. We will discuss its truncation error
below. It is easy to implement this algorithm, as shown here

double rectangle_rule@ouble a, double b, int n, double (xfunc)(double))
{
double rectangle_sum;
double fa, fb, x, step;
int i
step=(b-a) /((double) n);
rectangle_sum=0.;
for (j = 0; j <= n; j++){
X = (j+0.5)xstep +; /I midpoint of a given rectangle
rectangle_sum+=(func) (x); /I add value of function.
}
rectangle_sumx= step; // multiply with step length.
return rectangle_sum;
} // end rectangle_rule

The correct mathematical expression for the local errotiferrectangular rulé; (i) for element is

" pydo — Rulh) =~ 12 5
|t = R =~ 1260)

and the global error reads
b—

b
[ o = Rutr) = 22120,

whereR), is the result obtained with rectangular rule &nd [a, b].

Instead of using the above linear two-point approximatifamsf, we could use the three-point for-
mula for the derivatives. This means that we will choose fdem based on function values which lie
symmetrically around the point where we preform the Taylkpamsion. It means also that we are ap-
proximating our function with a second-order polynomjalr) = a + bz + cx?. The first and second
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derivatives are given by
Jn—f-n X, fEEy

Jh—J-h _ R2i
2h f°+22+1) ’

and (2542)
fO ’ h2_]

fh_2f0+f—h " i
(27 +2)! 7

o ot?
Jj=

and we note that in both cases the error goesdikg?'). With the latter two expressions we can now
approximate the function as

F@) = fot I ;hf—thr fh—22j;(L)2+ f-n 22

Inserting this formula in the integral of EQ.{¥.2) we obtain

+ O(a%).

+h h
f(z)dr = 3 (fn+ 4fo + f-n) + O(R®),

which is Simpson’s rule. Note that the improved accuracyhin évaluation of the derivatives gives a
better error approximation)(h’) vs. O(h3) . But this is just thelocal error approximation Using
Simpson'’s rule we can easily compute the integral of EQJ) {0.be

b
[:/f(m)dw:g(f(a)+4f(a+h)+2f(a+2h)+---+4f(b—h)+fb), (7.6)

with a global error which goes lik&(h*). More formal expressions for the local and global errors are
for the local error

/ ' fla)d

and for the global error

a 5
[F(@) + 4 ((a-+ )/2) + F(0)] = — 5= 7€),

/ Pl — () = =L Tht (e,

with ¢ € [a,b] and Sy, the results obtained with Slmpsons method. The method eaityebe imple-
mented numerically through the following simple algorithm

— Choose the number of mesh points and fix the step.
— calculatef (a) and f(b)

— Perform aloop oven = 1ton — 1 (f(a) andf(b) are known) and sum up the term
4f(a+ h)+2f(a+ 2h) +4f(a+3h) +--- +4f(b — h). Each step in the loop
corresponds to a given value+ nh. Odd values of. give 4 as factor while even
values yiel®2 as factor.

— Multiply the final result byz.
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7.3 — Gaussian quadrature

In more general terms, what we have done here is to approximafiven functionf(x) with a
polynomial of a certain degree. One can show that given 1 distinct pointsz, ..., z, € [a,b] and
n + 1 valuesyy, . . ., y, there exists a unique polynomig},(x) with the property

pn(zj) =y; 7=0,...,n

In the Lagrange representation discussed in chlpter Gnthipolating polynomial is given by

Py=> Ly,
k=0

with the Lagrange factors

1=0

i #k
see for example the text of Kress [30] or Burlich and Stoet fd0details. If we for example set = 1,
we obtain

T — 21 T—To Y1~ Yo Y1Zo + YoT1
+ % = T —
o — 1 I — o 1 — Zo I1 — o
which we recognize as the equation for a straight line.
The polynomial interpolatory quadrature of ordewith equidistant quadrature pointg = a + kh
and steph = (b — a)/n is called the Newton-Cotes quadrature formula of ordeFhe integral is

b b n
[ t@ie [ pu@rde = 3" wes @)
a a k=0

Pi(x) = yo

with i
Ch o
W = hm/o H (Z —j)dZ,
ji=0
J#k

fork=0,...,n.

7.2.1 Romberg integration

7.3 Gaussian quadrature

The methods we have presented hitherto are taylored togunabivhere the mesh points are equidis-
tantly spacedy; differing from x;,1 by the steph. These methods are well suited to cases where the
integrand may vary strongly over a certain region or if wegnate over the solution of a differential
equation.

If however our integrand varies only slowly over a large imé, then the methods we have discussed
may only slowly converge towards a chosen precﬂiaks an example,

I= /lbw_Qf(ac)dw,

1You could e.g., impose that the integral should not chanderagion of increasing mesh points beyond the sixth digit.
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may converge very slowly to a given precisiorbiis large and/orf (x) varies slowly as function of at
large values. One can obviously rewrite such an integrahlayging variables to = 1/x resulting in

1
I=[ f(t7ha,
b*l

which has a small integration range and hopefully the nuroberesh points needed is not that large.

However there are cases where no trick may help, and whelttintbeexpenditure in evaluating an
integral is of importance. For such cases, we would like tomemend methods based on Gaussian
quadrature. Here one can catch at least two birds with a st@mely, increased precision and fewer
(less time) mesh points. But it is important that the integraaries smoothly over the interval, else we
have to revert to splitting the interval into many small sibivals and the gain achieved may be lost. The
mathematical details behind the theory for Gaussian quadréormulae is quite terse. If you however
are interested in the derivation, we advice you to conseltéit of Stoer and Bulirsch [3], see especially
section 3.6. Here we limit ourselves to merely delineatepthitosophy and show examples of practical
applications.

The basic idea behind all integration methods is to appratérthe integral

b N
I= / flz)dr ~ Zwif(xi),
a i=1

wherew and z are the weights and the chosen mesh points, respectivelgurliprevious discussion,
these mesh points were fixed at the beginning, by choosingea giumber of pointsV. The weigthsy
resulted then from the integration method we applied. Sampsule, see Eq[{7.6) would give

w:{h/3,4h/3,2h/3,4h/3, ... 4h/3,h/3},
for the weights, while the trapezoidal rule resulted in
w:{h/2,h,h,... h,h/2}.

In general, an integration formula which is based on a Tagdoies usingV points, will integrate exactly
a polynomialP of degreeN — 1. That is, thelV weightsw,, can be chosen to satisfy linear equations,
see chapter 3 of Ref. [3]. A greater precision for a given amhofi numerical work can be achieved if
we are willing to give up the requirement of equally spacddgration points. In Gaussian quadrature
(hereafter GQ), both the mesh points and the weights aredeteemined. The points will not be equally
spaceE. The theory behind GQ is to obtain an arbitrary weighhrough the use of so-called orthogonal
polynomials. These polynomials are orthogonal in somevateay e.g., [-1,1]. Our points; are chosen
in some optimal sense subject only to the constraint that sheuld lie in this interval. Together with
the weights we have thelnV (N the number of points) parameters at our disposal.

Even though the integrand is not smooth, we could renderadbgimby extracting from it the weight
function of an orthogonal polynomial, i.e., we are rewgtin

b b N
I= [tz = [ W)~ Y wif (@), 7.7)
a a i—1

2Typically, most points will be located near the origin, venfew points are needed for largevalues since the integrand is
supposed to vary smoothly there. See below for an example.
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7.3 — Gaussian quadrature

where g is smooth and/¥ is the weight function, which is to be associated with a gieetnogonal
polynomial.
The weight functiortV is non-negative in the integration intervale [a, b] such that for any. > 0

f; |z|"W (z)dz is integrable. The naming weight function arises from the flaat it may be used to give
more emphasis to one part of the interval than another. Arqiia@ formula

b N
[ W@ = 3w, 7.9
N i=1

with NV distinct quadrature points (mesh points) is a called a Gasgiadrature formula if it integrates
all polynomialsp € P,y _1 exactly, that is

b N
/ W(z)p(z)dx = Zwip(aci), (7.9)
a i=1
It is assumed thdt/(x) is continuous and positive and that the integral

/ab W(x)dx

exists. Note that the replacement of— W g is normally a better approximation due to the fact that we
may isolate possible singularities @f and its derivatives at the endpoints of the interval.

The quadrature weights or just weights (not to be confuséld thé weight function) are positive and
the sequence of Gaussian quadrature formulae is convefgleatsequencé)y of quadrature formulae

b
() = Q) = [ flayda,
in the limit n — oco. Then we say that the sequence
N
Qn(f) =Y wM ™),
=1

is convergent for all polynomials, that is

if there exits a constarit’ such that

for all N which are natural numbers.
The error for the Gaussian quadrature formulae of ofdes given by

b N 2N b
[ W@ 3wt =10 [ Wl @)
a =1 - Ja

wheregqy is the chosen orthogonal polynomial ahts a number in the intervadk, b. We have assumed
that f € C?Vla, b], viz. the space of all real or compl@¥ times continuously differentiable functions.

In physics there are several important orthogonal polyatsmwhich arise from the solution of dif-
ferential equations. These are Legendre, Hermite, Laguard Chebyshev polynomials. They have the
following weight functions
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Weight function Interval Polynomial
Wi(x)=1 xz € [-1,1] Legendre
W(z)=e® -—-co<z<oo Hermite
W(x)=e" 0<z<o0 Laguerre
Wi(x)=1/(V1—2z?) —1<2<1 Chebyshev

The importance of the use of orthogonal polynomials in treueation of integrals can be summarized
as follows.

— As stated above, methods based on Taylor series gipgints will integrate exactly a polynomial
P of degreeN — 1. If a function f(x) can be approximated with a polynomial of degrée- 1

f(z) = Py_1(x),
with N mesh points we should be able to integrate exactly the polyedaPy_ ;.

— Gaussian quadrature methods promise more than this. Westarbgtter polynomial approxima-
tion with order greater thafv to f(x) and still get away with onlyNV mesh points. More precisely,
we approximate

f(z) =~ Pon—1(2),

and with only N mesh points these methods promise that

N—1
/f(x)dm R /PQN_l(ac)dx = Z Pon—1(x)w;,
i=0

The reason why we can represent a functfgm) with a polynomial of degree N — 1 is due to
the fact that we haveN equations/V for the mesh points an®¥ for the weights.

The mesh points are the zeros of the chosen orthogonal puolghof order NV, and the weights are
determined from the inverse of a matrix. An orthogonal polyials of degreeV defined in an interval
[a, b] has preciselyV distinct zeros on the open interval, b).

Before we detail how to obtain mesh points and weights withagonal polynomials, let us revisit
some features of orthogonal polynomials by specializinfiggendre polynomials. In the text below,
we reserve hereafter the labellidgy for a Legendre polynomial of orde¥, while Py is an arbitrary
polynomial of orderN. These polynomials form then the basis for the Gauss-Legendthod.

7.3.1 Orthogonal polynomials, Legendre

The Legendre polynomials are the solutions of an importéfgrdntial equation in physics, hamely

C(l—z)P—miP+ (1 - wz)% ((1 - w%%) =0.
C'is a constant. Famn; = 0 we obtain the Legendre polynomials as solutions, whetgag 0 yields the
so-called associated Legendre polynomials. This difteakaquation arises in for example the solution
of the angular dependence of Schridinger's equation whiersgally symmetric potentials such as the
Coulomb potential.
The corresponding polynomial? are

1 dF

_ 2 k _
—ﬁw(l‘ —1) ]{7—0,1,2,,

Li(z)
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which, up to a factor, are the Legendre polynomiajs The latter fulfil the orthorgonality relation

1
2
Li(z)L; == 5, 7.10
[ m@)n@is = 5=, (7.10)
and the recursion relation
G+ Ljpa(x)+jLj—1(x) — (2§ + 1)zL;(x) = 0. (7.11)

It is common to choose the normalization condition
Ly(1)=1.

With these equations we can determine a Legendre polynarhéabitrary order with input polynomials
of orderN — 1 andN — 2.
As an example, consider the determinatiorLgf L1 and L,. We have that

Lo(z) = ¢,
with ¢ a constant. Using the normalization equatiaj{1) = 1 we get that
Ly(z) = 1.
For L;(x) we have the general expression
Li(z) = a+ bz,

and using the orthorgonality relation
1
/ Lo(z)L1(z)dz = 0,
-1

we obtaina = 0 and with the conditiorL; (1) = 1, we obtainb = 1, yielding
Li(x) = x.
We can proceed in a similar fashion in order to determine tiedficients ofL-
Loy(z) = a + bx + ca?,

using the orthorgonality relations

1
/_ Lo(xz)La(z)dz = 0,

1
and

1
/_ Ly () La(x)d = 0,

1
and the conditiorL(1) = 1 we would get

Lo(z) = % (32% —1). (7.12)

We note that we have three equations to determine the thedficentsa, b andc.
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Alternatively, we could have employed the recursion relatf Eq. [ZIll), resulting in
2L2(1‘) = 31‘L1((£) - LQ,

which leads to EqI{Z.12).
The orthogonality relation above is important in our distos on how to obtain the weights and

mesh points. Suppose we have an arbitrary polyno@jal ; of orderN — 1 and a Legendre polynomial
Ly (z) of order N. We could represer y_; by the Legendre polynomials through

N-1
QN_l(I') = Z akLk(ac), (713)
k=0

whereqy,’s are constants.
Using the orthogonality relation of Eq._{7]10) we see that

1 N-1 .
/ In@)Qn1(@)dz = Y / L () g L (@) = 0. (7.14)
1 =)

We will use this result in our construction of mesh points amights in the next subsection.
In summary, the first few Legendre polynomials are

LQ(I‘) = 1,

Lyi(z) =,
Ly(z) = (32% — 1)/2,
Ly(x) = (52% — 3x)/2,
and
Ly(z) = (352" — 3022 + 3)/8.

The following simple function implements the above reaumsielation of Eq.[[Z11). for computing
Legendre polynomials of ordey .

/I This function computes the Legendre polynomial of degite

double legendre(int n, double x)
{
double r, s, t;
int m;
r =0, s=1.;
/I Use recursion relation to generate pl and p2
for (m=0; m < n; m++ )
{
t r,r=s;
S (2¢m+21)xxxr — mxt;
s /= (m+1);
} // end of do loop
return s;
} /1l end of function legendre

The variables representd. ;. (x), while  holds L ; (z) and¢ the valueL;_; ().
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7.3 — Gaussian quadrature

7.3.2 Mesh points and weights with orthogonal polynomials

To understand how the weights and the mesh points are gedevet define first a polynomial of degree
2N —1 (since we haveN variables at hand, the mesh points and weights\fqoints). This polynomial
can be represented through polynomial division by

Pyn-1(z) = Ln(z) Pn-1(2) + Qn-1(2),

where Py _1(z) and@y—1(z) are some polynomials of degréé — 1 or less. The functior. y(x) is a
Legendre polynomial of orde¥.

Recall that we wanted to approximate an arbitrary funciién) with a polynomial P,y_; in order
to evaluate

1 1
/_1 f(x)dx =~ /_1 Pyn_1(x)dz,

we can use Eq[{Z14) to rewrite the above integral as

1 1 1
/ PgN_l(ac)dm :/ (LN(w)PN_l(w) +QN_1((£))CZI' :/ QN_l(x)dx,
-1 -1 -1
due to the orthogonality properties of the Legendre polyiatsn We see that it suffices to evaluate the
integral overf_l1 QnN-1(z)dz in order to evaluatq_l1 Pyn_1(x)dz. In addition, at the points; where
Ly i1s zero, we have

Pon_1(7y) = Qn—1(xp) k=0,1,...,N -1,

and we see that through thedepoints we can fully defin€) y_; (z) and thereby the integral. Note that
we have chosen to let the numbering of the points run fidm/N — 1. The reason for this choice is that
we wish to have the same numbering as the order of a polynahitdgreeN — 1. This numbering will
be useful below when we introduce the matrix elements whafnd the integration weights;.

We develope thef) y_1(z) in terms of Legendre polynomials, as done in Eq.17.13),

Qn-1(z) = Y oiLi(=). (7.15)
Using the orthogonality property of the Legendre polyndsee have
1 N-1 1
/ Qn-1(x)dx = Z a,-/ Lo(z)Li(z)dz = 2ay,
-1 i=0 -1

where we have just insertelth(x) = 1! Instead of an integration problem we need now to define the
coefficientay. Since we know the values 6f y_; at the zeros of. 5, we may rewrite EQL{Z15) as

N-1 N-1
Qn-1(zx) = Z o;Li(xg) = Z a; L, k=0,1,...,N - 1. (7.16)
i=0 =0

Since the Legendre polynomials are linearly independeetioh other, none of the columns in the ma-
trix L;; are linear combinations of the others. This means that thexmb;;, has an inverse with the
properties

L7'L=1
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Multiplying both sides of Eq{Z16) with "' L' results in

N-1

> (ki@ (2) = a, (7.17)

=0

and since
/ Py (z)dz = / Qn-1(z)dz =200 = 2 Z DoiPan—1(2:),

we see that if we identify the weights wit{L.—1)o;, where the points; are the zeros of, we have an
integration formula of the type

N-1

1
/_1 Pyy_i(x)dx = Z wiPan—1(x;)

i=0
and if our functionf (x) can be approximated by a polynomilof degree2 N — 1, we have finally that

N-1

/f dSL'N/ Pon_q(z dm—ZwZPgN (x4).

In summary, the mesh poinis are defined by the zeros afwhile the weights are given B(L~1)o;.

7.3.3 Application to the cast = 2

Let us visualize the above formal results for the cAse= 2. This means that we can approximate a
function f () with a polynomialPs(z) of order2N — 1 = 3.

The mesh points are the zeros bf(z) = 1/2(3z% — 1). These points are, = —1/+/3 and
T = 1/\/§
Specializing Eq.[{Z16)
N-1
QN—l(wk): Za,L,(mk) k:O,l,...,N—l.
=0
to N = 2yields
Q1(70) = ap — 041%,
and 1
Q1(r1) = ap + a7

sinceLo(x = +1/v/3) = 1 and L (z = +1/V/3) = £1//3.
The matrixL;, defined in Eq.[(Z6) is then

&
ol
|
N
[
|
Sl

with an inverse given by

E
=L
Il
ol%
N
L&k

r—ta|»—t
N———
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The weights are given by the matrix eleme®téo,)~!. We have thence, = 1 andw; = 1.

Obviously, there is no problem in changing the numberingpefhatrix elements £ = 0,1,2,..., N—
1toi,k = 1,2,...,N. We have chosen to start from zero, since we deal with polyalenof degree
N —1.

Summarizing, for Legendre polynomials withh = 2 we have weights

w:{l,1},

Fand)

and mesh points

If we wish to integrate

with f(z) = 22, we approximate
1 N-1
I :/ zidr ~ Z wix?,
-1 i=0

The exact answer &/3. Using N = 2 with the above two weights and mesh points we get

1 1
I :/ a?dr = E wiz? =
-1 i=0

2
37

Wl
+
Wl

the exact answer!
If we were to emply the trapezoidal rule we would get

! b— 1—(~1

I= / 2ldr = 5 a ((a)? + (b)?) /2 = # (-1 + (1)) /2=1!
-1

With just two points we can calculate exactly the integrald@econd-order polynomial since our meth-

ods approximates the exact function with higher order pamiyial. How many points do you need with

the trapezoidal rule in order to achieve a similar accuracy?

7.3.4 General integration intervals for Gauss-Legendre

Note that the Gauss-Legendre method is not limited to amvalt¢-1,1], since we can always through a
change of variable
b—a b+a

t =
2w+2,

rewrite the integral for an interval [a,b]

/abf(t)dt _ b;a /_11 ; <(b —2a)w . b;a) .

If we have an integral on the form
| s
0
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we can choose new mesh points and weights by using the mapping
~ T
Z; = tan {Z(l + xz)} ,

and
™ Wy

YT L os? (F(1+ay))’

wherex; andw; are the original mesh points and weights in the intepval, 1], while z; and®; are the
new mesh points and weights for the inter{@aloo].

To see that this is correct by inserting the the valug;of —1 (the lower end of the intervdl-1, 1])
into the expression far;. That givesz; = 0, the lower end of the intervadl, oc]. Forz; = 1, we obtain
Z; = oo. To check that the new weights are correct, recall that thight® should correspond to the
derivative of the mesh points. Try to convince yourself thatabove expression fulfils this condition.

7.3.5 Other orthogonal polynomials
Laguerre polynomials

If we are able to rewrite our integral of EG.{¥.7) with a weifiimction W (x) = z*e~* with integration
limits [0, o], we could then use the Laguerre polynomials. The polynani@im then the basis for the
Gauss-Laguerre method which can be applied to integratsediorm

= /O " (w)dy = /0 " e g (2)da,

These polynomials arise from the solution of the differgngiquation

(d—2—§+5—l(l“)>c(g¢):o,

dx? 2

wherel is an integeri > 0 and A\ a constant. This equation arises e.g., from the solutiohefadial
Schrédinger equation with a centrally symmetric poterdiath as the Coulomb potential. The first few
polynomials are

Li(x)=1-—u=z,
Lo(z) =2 — da + 22,
L3(z) =6 — 18z + 9z — 23,

and
L4(z) = 2 — 162 + 722% — 962 + 24.

They fulfil the orthorgonality relation

/ e "Ly (x)dr =1,

—0o0

and the recursion relation

m+1)Lpt1(z) = 2n+1—2)Lp(x) — nly_1(z).
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Hermite polynomials

In a similar way, for an integral which goes like

I= /_Z fz)dx = /_C: e " g(z)dz.

we could use the Hermite polynomials in order to extract Wesigand mesh points. The Hermite polyno-
mials are the solutions of the following differential eqoat

d*H (x) dH ()
dz? — 2 dx

A typical example is again the solution of Schrédinger'satun, but this time with a harmonic oscillator
potential. The first few polynomials are

+(A—1)H(z) = 0. (7.18)

Ho(z) =1,
Hy(z) = 2z,
Hy(z) = 42 — 2,
Hs(z) = 82° — 12,

and
Hy(z) = 162" — 482% + 12.

They fulfil the orthorgonality relation

/ e Hy,(z)2dz = 2"nl\/,
and the recursion relation
Hyi1(x) =2zHy(z) — 2nH,—1(x).

7.3.6 Applications to selected integrals

Before we proceed with some selected applications, it iomapt to keep in mind that since the mesh
points are not evenly distributed, a careful analysis oftbieavior of the integrand as functionofand
the location of mesh points is mandatory. To give you an exenipthe Table below we show the mesh
points and weights for the integration interval [0,100] fr= 10 points obtained by the Gauss-Legendre
method. Clearly, if your function oscillates strongly inyasubinterval, this approach needs to be refined,
either by choosing more points or by choosing other intégmanethods. Note also that for integration
intervals like for example: € [0, cc], the Gauss-Legendre method places more points at the lreginn
of the integration interval. If your integrand varies slgvibr large values of:, then this method may be
appropriate.

Let us here compare three methods for integrating, namelyrépezoidal rule, Simpson’s method
and the Gauss-Legendre approach. We choose two functiomzgpate:

/100 exp (_w)dm
1

X

3
1
dz.
/02—1—38238

A program example which uses the trapezoidal rule, Simgsaté and the Gauss-Legendre method is
included here. The corresponding Fortran program is locaseprograms/chapter7/program1.f90.

and
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Table 7.1: Mesh points and weights for the integration irakf0,100] with N = 10 using the Gauss-
Legendre method.

) ZT; W;
1 1305 3334
2 6.747 7.473
3 16.030 10.954
4 28.330 13.463
5 42556 14.776
6 57.444 14.776
7 71.670 13.463
8 83.970 10.954
9 093.253 7.473
10 98.695 3.334

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter07/cpp/programl . cpp

#include <iostream>
#include "1lib.h"
using namespacestd;
/1 Here we define various functions called by the main progra
/1 this function defines the function to integrate
double int_function (double x);
/1 Main function begins here
int main()
{ .
int n;
double a, b;
cout << "Read in the number of integration points" << endl;
cin >> n;
Cout << "Read in integration limits" << endl;
cin >> a >> b;
/1l reserve space in memory for vectors containing the meshnp®
/1l weights and function values for the use of the gaulesgendre
/1 method
double xx = new double [n];
double xw = new double [n];
/1 set up the mesh points and weights
gauleg(a, b,x,w, n);
/1l evaluate the integral with the Gaustegendre method
/1 Note that we initialize the sum

double int_gauss = 0.;
for (int i = 0; i < n; i++){
int_gauss+=w[ikint_function(x[i]);
}
/1l final output

cout << "Trapez-rule = " << trapezoidal_rule(a, b,n, int_function)
<< endl;

cout << "Simpson’s rule = " << simpson(a, b,n, int_function)
<< endl;
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cout << "Gaussian quad = " << int_gauss << endl;
delete [] x;

delete [] w;

return O;

} // end of main program

/!l this function defines the function to integrate

double int_function (double x)

{
double value = 4./(1.+x%x);
return value;

} /I end of function to evaluate

To be noted in this program is that we can transfer the namegofesn function to integrate. In Table
[Z2 we show the results for the first integral using varioushmgoints, while Tablé—7.3 displays the
corresponding results obtained with the second integralnte here that, since the area over where we

Table 7.2: Results foffoo exp (—x)/xzdz using three different methods as functions of the number of
mesh pointsV.

N Trapez Simpson  Gauss-Legendre
10 1.821020 1.214025 0.1460448
20 0.912678 0.609897 0.2178091
40 0.478456 0.333714 0.2193834
100 0.273724 0.231290 0.2193839
1000 0.219984 0.219387 0.2193839

integrate is rather large and the integrand goes slowly rto fre large values of:, both the trapezoidal
rule and Simpson’s method need quite many points in ordeppooach the Gauss-Legendre method.
This integrand demonstrates clearly the strength of thes&hagendre method (and other GQ methods
as well), viz., few points are needed in order to achieve g kigsh precision.

The second Table however shows that for smaller integratinvals, both the trapezoidal rule and
Simpson’s method compare well with the results obtained thié Gauss-Legendre approach.

Table 7.3: Results fof03 1/(2+ 2?)dx using three different methods as functions of the numberesfm
points V.

N Trapez Simpson  Gauss-Legendre
10 0.798861 0.799231 0.799233
20 0.799140 0.799233 0.799233
40 0.799209 0.799233 0.799233
100 0.799229 0.799233 0.799233
1000 0.799233 0.799233 0.799233
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7.4 Treatment of singular Integrals

So-called principal value (PV) integrals are often emptbyephysics, from Green’s functions for scat-
tering to dispersion relations. Dispersion relations drenorelated to measurable quantities and provide
important consistency checks in atomic, nuclear and panpicysics. A PV integral is defined as

L (N e (O B L 1)
”x)—P/& dty 7 = [/ dtm%ﬁdtm]’

and arises in applications of Cauchy’s residue theorem wiepolex lies on the real axis within the
interval of integratiora, b].

An important assumption is that the functif(x) is continuous on the interval of integration.

In casef(t) is an analytic expression or it has an analytic continuaiticihe complex plane, it may
be possible to obtain an expression on closed form for theegimbegral.

However, the situation which we are often confronted witthat f(¢) is only known at some points
t; with corresponding valueg(¢;). In order to obtain/ (z) we need to resort to a numerical evaluation.

To evaluate such an integral, let us first rewrite it as

D (O A () b f(@) A ()
P/a dtm_/a dtm+/g[:+Adtm+PL_A dt=——=,

where we have isolated the principal value part in the lasgnal.
Defining a new variable = ¢t — z, we can rewrite the principal value integral as

Ia(z) = P/ZA du@. (7.19)

One possibility is to Taylor expanfl(u + x) aroundu = 0, and compute derivatives to a certain order
as we did for the Trapezoidal rule or Simpson’s rule. Sintteais with even powers af in the Taylor
expansion dissapear, we have that

N’nL(L:L‘ (2 +1) A27’L+1
Ia(e)~ D, o0 (@) 2n+ D)2n+ 1)

n=0

To evaluate higher-order derivatives may be both time cmisg and delicate from a numerical point
of view, since there is always the risk of loosing precisiohew calculating derivatives numerically.
Unless we have an analytic expression fou + =) and can evaluate the derivatives in a closed form, the
above approach is not the preferred one.

Rather, we show here how to use the Gauss-Legendre methasinjoute Eq.[(Z19). Let us first
introduce a new variable = u/A and rewrite Eq.[{Z19) as

+1
In(z) =P dsw. (7.20)
-1

The integration limits are now from 1 to 1, as for the Legendre polynomials. The principal value
in Eq. (Z20) is however rather tricky to evaluate numelycahainly since computers have limited pre-
cision. We will here use a subtraction trick often used whealidg with singular integrals in numerical
calculations. We introduce first the calculus relation

+1 d
/ oo
-1 S
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It means that the curvk/(s) has equal and opposite areas on both sides of the singutarspsei0.
If we then note thaf () is just a constant, we have also

+1 ds +1 ds
@ [ T r@T=o
Subtracting this equation from E@.(7120) yields

In(z) =P HdsM: Hdsf(A”ﬁ)_f(‘r), (7.21)
~1 1

and the integrand is now longer singular since we havelthat,,(f(s + x) — f(x)) = 0 and for the
particular case = 0 the integrand is now finite.
Eq. (Z21) is now rewritten using the Gauss-Legendre matbsudlting in

/H s Bs )~ f@) iwimsi ) = f(@) (7.22)
-1 S im1 S;
wheres; are the mesh points\{ in total) andw; are the weights.

In the selection of mesh points for a PV integral, it is impattto use an even number of points, since
an odd number of mesh points always pisks= 0 as one of the mesh points. The sum in EQ.{J7.22) will
then diverge.

Let us apply this method to the integral

+1 et
I@)=P | di—. (7.23)

-1

The integrand diverges at=t = 0. We rewrite it using Eq{7.21) as

+1 ot +1 gt _q
P/ dt= = / -, (7.24)
4t 4t
sincee” = ¢ = 1. With Eq. [Z22) we have then
+1 t ti
et —1 e —1
~ ; . 7.25
| ey (7.25)
=1
The exact results i8.11450175075..... With just two mesh points we recall from the previous sub-
section thatv; = ws = 1 and that the mesh points are the zerod.g¢fr), namelyz; = —1/+/3 and

r9 = 1/4/3. SettingN = 2 and inserting these values in the last equation gives
Iz =0) =3 (eWg - e_l/\/g) — 2.1120772845.
With six mesh points we get even the exact result to the tegth d
Ig(x = 0) = 2.11450175075!

We can repeat the above subtraction trick for more compglitategrands. First we modify the
integration limits tot+oo and use the fact that
< dk
—00 k — ko

0.
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It means that the curve/(k — kq) has equal and opposite areas on both sides of the singularigoi
If we break the integral into one over positi¥eand one over negativie, a change of variable — —k
allows us to rewrite the last equation as

gk
= —o
/0 k2 — kg

We can use this to express a principal values integral as

< fk)ydk [ (f(k) — f(ko))dk
pA W—%_A T (7.26)

where the right-hand side is no longer singulak at k, it is proportional to the derivativef /dk, and
can be evaluated numerically as any other integral.
Such a trick is often used when evaluating integral equatias discussed in the next section.

7.5 Adaptive quadrature methods

To be finalized end fall 2008

7.6 Multi-dimensional integrals

To be finalized end fall 2008

7.7 Parallel computing

We end this chapter by discussing modern supercomputingeps like parallel computing. In particu-
lar, we will introduce you to the usage of the Message Padsiegface (MPI) library. MPI is a library,
not a programming language. It specifies the names, cakiggesces and results of functions or sub-
routines to be called from C++ or Fortran programs, and thesels and methods that make up the MPI
C++ library. The programs that users write in Fortran or Cte-@mpiled with ordinary compilers and
linked with the MPI library. MPI programs should be able ta an all possible machines and run all MPI
implementetations without change. An excellent referéatke text by Karniadakis and Kirby Il [17].

7.7.1 Brief survey of supercomputing concepts and terrogies

Since many discoveries in science are nowadays obtainedrge-scale simulations, there is an ever-
lasting wish and need to do larger simulations using shaxenputer time. The development of the
capacity for single-processor computers (even with iregdgorocessor speed and memory) can hardly
keep up with the pace of scientific computing. The solutiothtoneeds of the scientific computing and
high-performance computing (HPC) communities has theedbeen parallel computing.

The basic ideas of parallel computing is that multiple pssoes are involved to solve a global prob-
lem. The essence is to divide the entire computation evantyng collaborative processors.

Today’s supercomputers are parallel machines and carvagh@ak performances almost uplt®
floating point operations per second, so-called peta-smaieputers, see for example the list over the
world’s top 500 supercomputersatw.top500.o0rg. This list gets updated twice per year and sets up
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the ranking according to a given supercomputer’s perfoomam a benchmark code from the LINPACK
library. The benchmark solves a set of linear equationgyusia best software for a given platform.

To understand the basic philosophy, it is useful to have ghrqaicture of how to classify different
hardware models. We distinguish betwen three major grofijpspnventional single-processor com-
puters, normally called SISD (single-instruction-sindkta) machines, (ii) so-called SIMD machines
(single-instruction-multiple-data), which incorporates idea of parallel processing using a large num-
ber of processing units to execute the same instruction fiereint data and finally (iii) modern parallel
computers, so-called MIMD (multiple-instruction- muligpdata) machines that can execute different
instruction streams in parallel on different data. On a MIMiachine the different parallel process-
ing units perform operations independently of each othamly; subject to synchronization via a given
message passing interface at specified time intervals. MiMRhines are the dominating ones among
present supercomputers, and we distinguish between tvas tgp MIMD computers, namely shared
memory machines and distributed memory machines. In shmesdory systems the central processing
units (CPU) share the same address space. Any CPU can angadata in the global memory. In dis-
tributed memory systems each CPU has its own memory. The @rRltnnected by some network and
may exchange messages. A recent trend are so-called ccNOdthAg-coherent-non-uniform-memory-
access) systems which are clusters of SMP (symmetric matessing) machines and have a virtual
shared memory.

Distributed memory machines, in particular those based®a&sters, are nowadays the most widely
used and cost-effective, although farms of PC clustersinedarge infrastuctures and yield additional
expenses for cooling. PC clusters with Linux as operatirgjesys are easy to setup and offer several ad-
vantages, since they are built from standard commodityvieare with the open source software (Linux)
infrastructure. The designer can improve performancegtmmally with added machines. The com-
modity hardware can be any of a number of mass-market, stim#- compute nodes as simple as two
networked computers each running Linux and sharing a fileesysr as complex as thousands of nodes
with a high-speed, low-latency network. In addition to thereased speed of present individual proces-
sors (and most machines come today with dual cores or foesceo-called quad-cores) the position of
such commodity supercomputers has been strenghtened facttieat a library like MPI has made par-
allel computing portable and easy. Although there are séimplementations, they share the same core
commands. Message-passing is a mature programming peradid widely accepted. It often provides
an efficient match to the hardware.

7.7.2 Parallelism

When we discuss parallelism, it is common to subdivide kffie algorithms in three major groups.

— Task parallelism:ithe work of a global problem can be divided into a number dépendent tasks,
which rarely need to synchronize. Monte Carlo simulationd aumerical integration are exam-
ples of possible applications. Since there is more or lessamomunication between different
processors, task parallelism results in almost a perfetitenaatical parallelism and is commonly
dubbed embarassingly parallel (EP). The examples in tlapteln fall under that category. The use
of the MPI library is then limited to some few function callsdathe programming is normally very
simple.

— Data parallelism: use of multiple threads (e.g., one thread per processatjssect loops over
arrays etc. This paradigm requires a single memory addpege s Communication and synchro-

nization between the processors are often hidden, anchiigsdasy to program. However, the user
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surrenders much control to a specialized compiler. An exaropdata parallelism is compiler-
based parallelization.

— Message-passingll involved processors have an independent memory agldpase. The user is
responsible for partitioning the data/work of a global peot and distributing the subproblems to
the processors. Collaboration between processors isvachi®/ explicit message passing, which
is used for data transfer plus synchronization.

This paradigm is the most general one where the user hasoiufial. Better parallel efficiency
is usually achieved by explicit message passing. Howevessage-passing programming is more
difficult. We will meet examples of this in connection withetlsolution eigenvalue problems in
chaptefZIR and of partial differential equations in chalffif&r

Before we proceed, let us look at two simple examples. Wealslh use these simple examples to
define the speedup factor of a parallel computation. Thedase is that of the additions of two vectors
of dimensionn,

Z = ax + ﬁY7

wherea and 3 are two real or complex numbers aagk,y € R™ or € C". For every element we have
thus

zi = owi + Py

For every element; we have three floating point operations, two multiplicasi@md one addition. If we
assume that these operations take the sameditnéhen the total time spent by one processor is

Tl = 3nAt.

Suppose now that we have access to a parallel supercomptheP \wrocessors. Assume also that<
n. We split then these addition and multiplication operation every processor so that every processor
performs3n /P operations in total, resulting in a tinf’® = 3nAt/ P for every single processor. We also
assume that the time needed to gather together these sutssuegtible

If we have a perfect parallelism, our speedup shouldbéhe number of processors available. We
see that this is case by computing the relation betweenrie tised in case of only one processor and
the time used if we can acceBsprocessors. The speedfp is defined as

T1 3nAt

S = Ty T nagp - D

a perfect speedup. As mentioned above, we call calculatiatsyield a perfect speedup for embarass-
ingly parallel. The efficiency is defined as

Our next example is that of the inner product of two vectoffinée in Eq. [4b),

n
Cc= E TjilYyj-
j=1

We assume again th& < n and definel = n/P. Each processor is assigned with its own subset of
local multiplicationscp = Zp zpyp, Wherep runs over all possible terms for processor P. As an example,
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assume that we have four processors. Then we have

n/4 n/2
1 = E TilYj, Co = E TilYj,
7=1 j:n/4—|—1
3n/4 n
C3 = E xjyj, Cqy = E acjyj.
j=n/2+1 j=3n/4+1

We assume again that the time for every operatiafvdisif we have only one processor, the total time is
T, = (2n — 1)At. For four processors, we must now add the time needed to,add; + c3 + ¢4, which
is 3At (three additions) and the time needed to communicate tta tesultcp to all other processors.
This takes roughly P — 1)At., whereAt,. need not equalt.

The speedup for four processors becomes now

T (2n — 1)At _4n -2
Ty (n/2-1)At+3At+3At.  10+n’

Sy

if At = At.. Forn = 100, the speedup i§; = 3.62 < 4. For P processors the inner products yields a
speedup

(2n —1)
2I+P—-2))+(P—-1)y’

with v = At./At. Even withy = 0, we see that the speedup is less tifan

The communication timeé\t¢. can reduce significantly the speedup. However, even if itrials
there are other factors as well which may reduce the effigigpcFor example, we may have an uneven
load balance, meaning that not all the processors can perfseful work at all time, or that the number
of processors doesn’t match properly the size of the probtemrmemory problems, or that a so-called
startup time penalty known as latency may slow down the tearsf data. Crucial here is the rate at
which messages are transferred

Sp =

7.7.3 MPI with simple examples

When we want to parallelize a sequential algorithm, theecahleast two aspects we need to consider,
namely

— ldentify the part(s) of a sequential algorithm that can becexed in parallel. This can be difficult.

— Distribute the global work and data amo#yprocessors. Stated differently, here you need to
understand how you can get computers to run in parallel. Fr@mactical point of view it means
to implement parallel programming tools.

In this chapter we focus mainly on the last point. MPI is thetoa@ for writing programs to run in
parallel, without needing to know much (in most cases ngihabout a given machine’s architecture.
MPI programs work on both shared memory and distributed nmgmmachines. Furthermore, MPI is a
very rich and complicated library. But it is not necessaryde all the features. The basic and most used
functions have been optimized for most machine architestur

Before we proceed, we need to clarify some concepts, inqodati the usage of the words process
and processor. We refer to process as a logical unit whictugge its own code, in an MIMD style. The
processor is a physical device on which one or several pseseme executed. The MPI standard uses the
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concept process consistently throughout its documentatifmwever, since we only consider situations
where one processor is responsible for one process, wddrergse the two terms interchangeably in
the discussion below, hopefully without creating ambigsit

The six most important MPI functions are

— MPIL_ Init - initiate an MP1 computation

MPI_Finalize - terminate the MPI computation and clean up

MPI_Comm_size - how many processes participate in a givehddiputation.

MPI1_Comm_rank - which rank does a given process have. THeisas humber between 0 and
size-1, the latter representing the total number of prasess

MPI_Send - send a message to a particular process within acdafputation

MPI_Recv - receive a message from a particular processmathiMP| computation.

The first MPI C++ program is a rewriting of our ’hello world’ ggram (without the computation of
the sine function) from chaptEl 2. We let every process WHiglo world" on the standard output.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program?.cpp

/1 First C++ example of MPI Hello world
using namespacestd ;

#include <mpi.h>

#include <iostream >

int main (int nargs, charx args][])

{
int numprocs, my_rank;
/1 MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &nhumprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank);
cout << "Hello world, I have rank " << my_rank <<'" out of " <<
numprocs << endl;

/1 End MPI
MPI_Finalize ();
return O0;
}

The corresponding Fortran program reads

PROGRAM hello
INCLUDE "mpif.h"
INTEGER :: numprocs, my_rank, ierr

CALL MPIL_INIT(ierr)

CALL MPI_COMM_SIZE (MPI_COMM_WORLD, numprocs, ierr)

CALL MPI_COMM_RANK(MPI_ COMM WORLD, my_rank, ierr)

WRITE (% ,*)"Hello world, I’ve rank ",my_rank,) out of ",numprocs
CALL MPI_FINALIZE(ierr)

END PROGRAM hello
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MPI is a message-passing library where all the routines aaeeresponding C++—bindirﬂfs/lPI_Command_name
or Fortran-bindings (function names are by convention ipaupase, but can also be in lower case)
MPI_COMMAND_NAME

To use the MPI library you must include header files which amntlefinitions and declarations that
are needed by the MPI library routines. The following linesthappear at the top of any source code
file that will make an MPI call. For Fortran you must put in thegningINCLUDE 'mpif.h’ while for
C++ you need to include the statemeftclude "mpi.h". These header files contain the declarations of
functions, variabels etc. needed by the MPI library.

The first MPI call must bavPI_INIT, which initializes the message passing routines, as deifimed
for exampleINTEGER :: ierr and CALL MPI_INIT(ierr) for the Fortran example. The variablerr is an
integer which holds an error code when the call returns. Ehegevof ierr is however of little use since,
by default, MPI aborts the program when it encounters arr.eHowever, ierr must be included when
MPI starts. For the C++ code we have the call to the funcimonMPI_Init( int xargc, charxargv)where
argcandargvare arguments passed to main. MPI does not use these arguimany way, however, and
in MPI-2 implementations, NULL may be passed instead. Whaun lyave finished you must call the
functionMPI1_Finalize In Fortran you use the statemeniLL MPI_FINALIZE(ierr) while for C++ we use
the functionint MPI_Finalize(void)

In addition to these calls, we have also included calls teated inquiry functions. There are
two MPI calls that are usually made soon after initializatioThey are for C++MPI_COMM_SIZE
((MPI_COMM_WORLD, &numprocspndCALL MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)
for Fortran. The functiomMPIl_COMM_SIZEreturns the number of tasks in a specified MPI communicator
(comm when we refer to it in generic function calls below).

In MPI you can divide your total number of tasks into groupsljexl communicators. What does
that mean? All MPI communication is associated with what calés a communicator that describes a
group of MPI processes with a name (context). The commumicksignates a collection of processes
which can communicate with each other. Every process isittentified by its rank. The rank is only
meaningful within a particular communicator. A commundas thus used as a mechanism to identify
subsets of processes. MPI has the flexibility to allow youdfing different types of communicators, see
for example [16]. However, here we have used the commumitsd COMM_WORLDthat contains all
the MPI processes that are initiated when we run the program.

The variablenumprocsrefers to the number of processes we have at our disposal. fuRicdon
MPI_COMM_RANK returns the rank (the name or identifier) of the tasks runttiegcode. Each task (or
processor) in a communicator is assigned a numiyerankfrom 0 to numprocs — 1.

We are now ready to perform our first MPI calculations.

Running codes with MPI

To compile and load the above C++ code (after having undsddtow to use a local cluster), we can use
the command

mpicxx -02 -o program2.x program2.cpp
and try to run with ten nodes using the command

mpiexec -np 10 ./program2.x

3The C++ bindings used in practice are the same as the C bmdafitnough reading older texts like [15-17] one finds
extensive discussions on the difference between C and Gxelirlgis. Throughout this text we will use the C bindings.

151



Numerical integration

If we wish to use the Fortran version we need to replace the &piler statementpicc with
mpif90 or equivalent compilers. The name of the compiler is ob\iosgstem dependent. The command
mpirunmay be instead ahpiexec Here you need to check your own system.

When we run MPI all processes use the same binary executatdi®n of the code and all processes
are running exactly the same code. The question is then hawveatell the difference between our
parallel code running on a given number of processes andeh sede? There are two major distinctions
you should keep in mind: (i) MPI lets each process have aquéati rank to determine which instructions
are run on a particular process and (ii) the processes comatarwith each other in order to finalize a
task. Even if all processes receive the same set of insing;tthey will normally not execute the same
instructions.We will exemplify this in connection with omtegration example below.

The above example spits out the following output

Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank

out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.

DN O N0 O W~ O

The output to screen is not ordered since all processesyang to write to screen simultaneously. It
is then the operating system which opts for an ordering. lfvigh to have an organized output, starting
from the first process, we may rewrite our program as follows

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program3.cpp

/1 Second C++ example of MPI Hello world
using namespacestd;

#include <mpi.h>

#include <iostream >

int main (int nargs, char« args][])
{
int numprocs, my_rank, i;
/1 MPI initializations
MPI1_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &nhumprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank);

for (i = 0; i < numprocs; i++) {
MPI_Barrier (MPL_COMM_WORLD) ;
if (i == my_rank) {

cout << "Hello world, I have rank " << my_rank <<" out of " <<
numprocs << endl;
fflush (stdout);

}
}
/1 End MPI
MPI_Finalize ();
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return O;

}

Here we have used tiPI_Barrierfunction to ensure that every process has completed itd settouc-
tions in a particular order. A barrier is a special colleetoperation that does not allow the processes to
continue until all processes in the communicator (n¢f_COMM_WORLD) have calledviPI_Barrier.
The output is now

Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank
Hello world, I’ve rank

out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.
out of 10 procs.

© 0 NO Ok W DN B+ O

The barriers make sure that all processes have reachedtlegysit in the code. Many of the collective
operations likeviPI_ALLREDUCE to be discussed later, have the same property; viz. no [g@egsexit
the operation until all processes have started. Howewverjgtslightly more time-consuming since the
processes synchronize between themselves as many tinfesasite processes. In the next Hello world
example we use the send and receive functions in order toeaghgaynchronized action.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/program4.cpp

/1 Third C++ example of MPI Hello world
using namespacestd ;

#include <mpi.h>

#include <iostream >

int main (int nargs, charx args][])
{
int numprocs, my_rank, flag;
/1l MPI initializations
MPI_Status status;
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank) ;
/1 Send and Receive example
if (my_rank > 0)
MPI_Recv (&flag, 1, MPIL_INT, my_rank1l, 100, MPI COMM WORLD, &status
cout << "Hello world, I have rank " << my_rank <<" out of " <<
numprocs << endl;
if (my_rank < numprocs1)
MPI_Send (&my_rank, 1, MPI_INT, my_rank+1, 100, MPI_COMMORLD) ;
/1 End MPI
MPI_Finalize ();
return O;
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The basic sending of messages is given by the funetien SEND, which in C++ is defined as

int MPI_Send{oid xbuf, int count, MPI_Datatype datatype int dest, int tag,
MPI_Comm comm)

while in Fortran we would call this function with the follong parameters
CALL MPI_SEND(buf, count, MPI_TYPE, dest, tag, comm, ierr)

This single command allows the passing of any kind of vaeaéVven a large array, to any group of tasks.
The variablebuf is the variable we wish to send whiteuntis the number of variables we are passing. If
we are passing only a single value, this should be 1. If wesfesran array, it is the overall size of the
array. For example, if we want to send a 10 by 10 array, counddvbe 10 x 10 = 100 since we are
actually passing 100 values.

We define the type of variable usimgPl_TYPE in order to let MPI function know what to expect.
The destination of the send is declared via the varidbkt which gives the ID number of the task we are
sending the message to. The variatalgis a way for the receiver to verify that it is getting the megsa
it expects. The message tag is an integer number that we sigm asy value, normally a large number
(larger than the expected number of processes). The commatariommis the group ID of tasks that the
message is going to. For complex programs, tasks may beedivido groups to speed up connections
and transfers. In small programs, this will more than like¢yinMPI_COMM_WORLD.

Furthermore, when an MPI routine is called, the Fortran ot Gata type which is passed must match
the corresponding MPI integer constant. An integer is ddfe@VPI_INT in C++ andMPI_INTEGER
in Fortran. A double precision real MPI_DOUBLE in C++ andMPI_DOUBLE_PRECISIONN Fortran
and single precision real igPI_FLOAT in C++ andMPI_REAL in Fortran. For further definitions of data
types see chapter five of Ref. [16].

Once you have sent a message, you must receive it on anogker The functionMPI_RECV is
similar to the send call. In C++ we would define this as

int MPI_Recv( void x«buf, int count, MPI_Datatype datatype int source, int
tag, MPI_Comm comm, MPI|_Statusstatus )

while in Fortran we would use the call
CALL MPI_RECV(buf, count, MPI_TYPE, source, tag, comm, sts , ierr)}.

The arguments that are different from thos@linl_SENDarebuf which is the name of the variable where
you will be storing the received datsgurcewhich replaces the destination in the send command. This is
the return ID of the sender.

Finally, we have use®PI_Status statuswhere one can check if the receive was completed. The
source or tag of a received message may not be known if widdedues are used in the receive function.
In C++, MPI Status is a structure that contains further imfation. One can obtain this information using

MPI_Get_count (MPI_Statuscstatus , MPI_Datatype datatypeint xcount)}

The output of this code is the same as the previous examlapbuprocess 0 sends a message to process
1, which forwards it further to process 2, and so forth.

Armed with this wisdom, performed all hello world greetingge are now ready for serious work.
7.7.4 Numerical integration with MPI
To integrate numerically with MPI we need to define how to sand receive data types. This means
also that we need to specify which data types to send to MRkitums.
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The program listed here integrates

by simply adding up areas of rectangles according to theithgo discussed in EqLC(4.5), rewritten here

b N
I= / f(z)dx ~ hZf($i—1/2)>
a 1

i=

wheref (z) = 4/(1+x?). Thisis a brute force way of obtaining an integral but suffittedemonstrate our
first application of MPI to mathematical problems. What wegito subdivide the integration rangec

[0, 1] into n rectangles. Increasingshould obviously increase the precision of the result, ssudised in
the beginning of this chapter. The parallel part proceedstting every process collect a part of the sum
of the rectangles. At the end of the computation all the suors the processes are summed up to give
the final global sum. The program below serves thus as a siexpl@ple on how to integrate in parallel.
We will refine it in the next examples and we will also add a dargxample on how to implement the
trapezoidal rule.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/programb.cpp

1 /1 Reactangle rule and numerical integration using MPI semadd
Receive

2 using namespacestd ;

3 #include <mpi.h>

4 #include <iostream>

5 int main (int nargs, charx args[])

6

7 int numprocs, my_rank, i, n = 1000;

8 double local _sum, rectangle_sum, x, h;

9 /1l MPI initializations

10 MPI_Init (&nargs, &args);

11 MPI_Comm_size (MPI_COMM WORLD, &numprocs);

12 MPI_Comm_rank (MPI_COMM WORLD, &my_rank) ;

13 /1l Read from screen a possible new vaue of n

14 if (my_rank == 0 & nargs > 1) {

15 n = atoi(args[1l]);

16 }

17 h = 1.0/n;

18 I/l Broadcast n and h to all processes

19 MPI_Bcast (&n, 1, MPL_INT, 0, MPI_COMM WORLD) ;

20 MPI_Bcast (&h, 1, MPI_DOUBLE, 0, MPI_COMM WORLD);

21 /I Every process sets up its contribution to the integral

22 local_sum = 0.;

23 for (i = my_rank; i < n; i += numprocs) {

24 x = (i+0.5)h;

25 local _sum += 4.0/(1.0+xx);

26 }

27 local _sum=x= h;

28 if (my_rank == 0) {

29 MPI_Status status;
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30 rectangle_sum = local_sum;

31 for (i=1; i < numprocs; i++) {

32 MPI_Recv(&local_sum ,1,MPI_DOUBLE,MPI_ANY_SOURCEQSH,
MPI_COMM_WORLD,& status) ;

33 rectangle_sum += local_sum;

34 }

35 cout << "Result: " << rectangle_sum << endl;

36 } else

37 MPI_Send(&local_sum ,1,MPI_DOUBLE,0,500,MPI_ COMMORLD) ;

38 /!l End MPI

39 MPI_Finalize ();

40 return O;

41 }

After the standard initializations with MPI such as

MPI1_Init, MPI_Comm_size, MPI_Comm_rank,

MPI_COMM_WORLD contains now the number of processes defined by using forgram
mpirun -np 10 ./prog.x

In line 4 we check if we have read in from screen the number afimpointsn. Note that in line 7 we
fix n = 1000, however we have the possibility to run the code with a diifémumber of mesh points as
well. If my_rankequals zero, which correponds to the master node, then wweareaw value of. if the
number of arguments is larger than two. This can be done lsviolvhen we run the code

mpiexec -np 10 ./prog.x 10000

Inline 17 we define also the step lengthin lines 19 and 20 we use the broadcast funcitidh_Bcast We
use this particular function because we want data on on@gsoc (our master node) to be shared with all
other processors. The broadcast function sends data taip gf@rocesses. The MPI routitdPI|_Bcast
transfers data from one task to a group of others. The fororathe call is in C++ given by the pa-
rameters oMPI_Bcast (&n, 1, MPL_INT, 0, MPI_COMM_WORLD);MPI_Bcast (&h, 1, MPI_DOUBLE, 0,
MPI_COMM_WORLD);in case of a double. The general structure of this functiantisvPl_Bcast(void
xbuf, int count, MPI_Datatype datatypent root, MPI_Comm comm) All processes call this function,
both the process sending the data (with rank zero) and abitther processes iMPI_COMM_WORLD.
Every process has now copiesroindh, the number of mesh points and the step length, respectively
We transfer the addressesofindh. The second argument represents the number of data sent. In
case of a one-dimensional array, one needs to transfer théaruof array elements. If you have an
n X m matrix, you must transfet x m. We need also to specify whether the variable type we traisfe
a non-numerical such as a logical or character variable wrenigal of the integer, real or complex type.
We transfer also an integer varialite root. This variable specifies the process which has the original
copy of the data. Since we fix this value to zero in the call imedi 19 and 20, it means that it is the
master process which keeps this information. For Forttds ftinction is called via the statemetw\LL
MPI_BCAST(buff, count, MPI_TYPE, root, comm, ierr)
In lines 23-27, every process sums its own part of the finalgsma by the rectangle rule. The receive
statement collects the sums from all other processes imoagank == ( else an MPI send is performed.
The above function is not very elegant. Furthermore, the MBiructions can be simplified by
using the function$1Pl_Reduceor MPI_Allreduce The first function takes information from all processes
and sends the result of the MPI operation to one process tymigally the master node. If we use
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MPI_Allreduce the result is sent back to all processes, a feature whickeilwhen all nodes need the
value of a joint operation. We limit ourselvesNtPl_Reducesince it is only one process which will print
out the final number of our calculation, The argumentsIR)_Allreduceare the same.

The MPI_Reducefunction is defined as followsnt MPI_Bcast(void *senddata ,void+ resultdata ,
int count, MPI_Datatype datatype, MPI_Qpt root, MPI_Comm comm)The two variablesenddatand

resultdata are obvious, besides the fact that one sends the address wétilable or the first element
of an array. If they are arrays they need to have the same $hze variablecountrepresents the total
dimensionality, 1 in case of just one variable, whM@I_Datatypedefines the type of variable which is
sent and received. The new featureMiBl_Op. MPI_Op defines the type of operation we want to do.
There are many options, see again Refs. [15-17] for full listour case, since we are summing the
rectangle contributions from every process we defiiRé_Op = MPI_SUM If we have an array or matrix
we can search for the largest og smallest element by senifiver BIPI_MAX or MPI_MIN. If we want
the location as well (which array element) we simply transfi®l_MAXLOC or MPI_MINOC. If we
want the product we writ®lPl_PROD MPI_Allreduceis defined asnt MPI_Bcast(void xsenddata ,voidx

resultdata ,int count, MPI_Datatype datatype, MPI_Op, MPI_Comm comm)

The function we list in the next example is the MPI extensibprograml.cpp. The difference is that
we employ only the trapezoidal rule. Itis easy to extenddbide to include gaussian quadrature or other
methods.

It is also worth noting that every process has now its owrtistpand ending point. We read in
the number of integration points and the integration limits andb. These are called andb. They
serve to define the local integration limits used by evergess. The local integration limits are defined
as local_a = a + my_rank(b—a)/numprocsand local_b = a + (my_rank1)x(b—a)/numprocs These two
variables are transfered to the method for the trapezoidal These two methods return the local sum
variablelocal_sum MPI_Reducecollects all the local sums and returns the total sum, wisichritten out
by the master node. The program below implements this. We &0 added the possibility to measure
the total time used by the code via the call$tel_Wtime.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/MPI/chapter07/programb.cpp

/1l Trapezoidal rule and numerical integration using MPI witMPI_Reduce
using namespacestd ;

#include <mpi.h>

#include <iostream >

/1 Here we define various functions called by the main progra

double int_function (double );
double trapezoidal_ruledouble , double , int , double (x)(double));

/1 Main function begins here
int main (int nargs, charx args][])
{
int n, local_n, numprocs, my_rank;
double a, b, h, local _a, local_b, total sum, local_sum;
double time_start, time_end, total _time;
/I MPI initializations
MPI_Init (&nargs, &args);
MPI_Comm_size (MPI_COMM WORLD, &numprocs);
MPI_Comm_rank (MPI_COMM WORLD, &my_rank);
time_start = MPI_Wtime () ;
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I/l Fixed values for a, b and n
a=200;b=10; n=1000;
= (b-a)/n; I/l h is the same for all processes
ocal_n = n/numprocs; // make sure n > numprocs, else integer division

gives zero
/Il Length of each process’ interval of

/I integration = local_nxh.
local_a = a + my_ranklocal_nxh;
local_b = local_a + local_nh;
total_sum = 0.0;

local _sum = trapezoidal_rule(local_a, local b, local &int_function);

MPI_Reduce(&local _sum, &total _sum, 1, MPI_DOUBLE, MPUS, O,
MPI_COMM_WORLD) ;

time_end = MPI_Wtime () ;

total _time = time_endtime_start;

if ( my_rank == 0) {

cout << "Trapezoidal rule = " << total_sum << endl;
cout << "Time = " << total_time <<" on number of processors: " <<
numprocs << endl;
}
/! End MPI
MPI_Finalize ();
return O;

} // end of main program

/1l this function defines the function to integrate

double int_function (double x)

{
double value = 4./(1.+x%x);
return value;

} /1 end of function to evaluate

/!l this function defines the trapezoidal rule
double trapezoidal_ruledouble a, double b, int n, double (xfunc)(double))
{
double trapez_sum;
double fa, fb, x, step;
int i
step=(b-a)/((double) n);
fa=(«func)(a)/2. ;
fb=(xfunc)(b)/2. ;
trapez_sum =0.;
for (j=1; j <= n-1; j++){
X=j*xstep+a;
trapez_sum+={func) (x) ;
}
trapez_sum=(trapez_sum+fb+fagtep;
return trapez_sum;
} [/l end trapezoidal_rule

An obvious extension of this code is to read from file or scrbenintegration variables. One could also
use the program library to call a particular integration moett
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Chapter 8

Outline of the Monte-Carlo strategy

‘lacta Alea est’, the die is cast, is what Julius Caesar isnted by Suetonius to have
said on January 10, 49 BC as he led his army across the Rivécduim Northern Italy.
(Twelve Ceasar§aius Suetonius

8.1 Introduction

Monte Carlo methods are nowadays widely used, from the riateg of multi-dimensional integrals
to solving ab initio problems in chemistry, physics, meakgibiology, or even Dow-Jones forecasting.
Computational finance is one of the novel fields where MontéoGaethods have found a new field of
applications, with financial engineering as an emergingl figkée for example Refs. [41, 42]. Emerging
fields like econophysics [43-45] are new examples of widdiegtpns of Monte Carlo methods.

Numerical methods that are known as Monte Carlo methods edadsely described as statistical
simulation methods, where statistical simulation is defimequite general terms to be any method that
utilizes sequences of random numbers to perform the simnlafAs mentioned in the introduction to
this text, a central algorithm in Monte Carlo methods is thetfdpolis algorithm, ranked as one of the
top ten algorithms in the last century. We discuss this @lgorin the next chapter.

Statistical simulation methods may be contrasted to cdiomal numerical discretization methods,
which typically are applied to ordinary or partial diffete equations that describe some underlying
physical or mathematical system. In many applications oftd&arlo, the physical process is simulated
directly, and there is no need to even write down the difféaéaquations that describe the behavior of the
system. The only requirement is that the physical (or magtieel) system be described by probability
distribution functions (PDF’s). Once the PDF'’s are knowre Monte Carlo simulation can proceed by
random sampling from the PDF’s. Many simulations are thefopmed (multiple “trials” or “histories”)
and the desired result is taken as an average over the nurbbservations (which may be a single
observation or perhaps millions of observations). In maraciical applications, one can predict the
statistical error (the “variance”) in this average resattig] hence an estimate of the number of Monte Carlo
trials that are needed to achieve a given error. If we asshatétte physical system can be described by a
given probability density function, then the Monte Carlmslation can proceed by sampling from these
PDF’s, which necessitates a fast and effective way to genemadom numbers uniformly distributed on
the interval [0,1]. The outcomes of these random sampliog$sials, must be accumulated or tallied
in an appropriate manner to produce the desired resulthbutgsential characteristic of Monte Carlo is
the use of random sampling techniques (and perhaps othedsralgp manipulate the outcomes) to arrive
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at a solution of the physical problem. In contrast, a coneeat numerical solution approach would
start with the mathematical model of the physical systestrdtizing the differential equations and then
solving a set of algebraic equations for the unknown statieeo$ystem. It should be kept in mind though,
that this general description of Monte Carlo methods maydirectly apply to some applications. It is
natural to think that Monte Carlo methods are used to simul@hdom, or stochastic, processes, since
these can be described by PDF’s. However, this couplingtigHy too restrictive because many Monte
Carlo applications have no apparent stochastic contecty, asithe evaluation of a definite integral or the
inversion of a system of linear equations. However, in thes®es and others, one can pose the desired
solution in terms of PDF’s, and while this transformationyrsaem artificial, this step allows the system
to be treated as a stochastic process for the purpose ofadiorubnd hence Monte Carlo methods can
be applied to simulate the system.

There are, at least four ingredients which are crucial ireptd understand the basic Monte-Carlo
strategy. These are

1. Random variables,

2. probability distribution functions (PDF),
3. moments of a PDF

4. and its pertinent variance

All these topics will be discussed at length below. We feekéner that a brief explanation may be
appropriate in order to convey the strategy behind a MorageC:alculation. Let us first demistify the
somewhat obscure concept of a random variable. The exangtéhoose is the classic one, the tossing
of two dice, its outcome and the corresponding probabilityprinciple, we could imagine being able to
determine exactly the motion of the two dice, and with givatial conditions determine the outcome of
the tossing. Alas, we are not capable of pursuing this idgsme. However, it does not mean that we
do not have a certain knowledge of the outcome. This partialvkedge is given by the probablity of
obtaining a certain number when tossing the dice. To be mmaEige, the tossing of the dice yields the
following possible values
[2,3,4,5,6,7,8,9,10,11,12]. (8.1)

These values are called tdemain To this domain we have the correspondprgbabilities
[1/36,2/36/3/36,4/36,5/36,6/36,5/36,4/36,3/36,2/36,1/36]. (8.2)

The numbers in the domain are the outcomes of the physiceépsaossing the dic&Ve cannot tell be-
forehand whether the outcome is 3 or 5 or any other numberngdibmain. This defines the randomness
of the outcome, or unexpectedness or any other synonimadswtich encompasses the uncertitude of
the final outcomeThe only thing we can tell beforehand is that say the outcoimm&s2a certain probabil-
ity. If our favorite hobby is to spend an hour every eveningwing dice and registering the sequence of
outcomes, we will note that the numbers in the above domain

2,3,4,5,6,7,8,9,10,11,12], (8.3)
appear in a random order. After 11 throws the results may likek
[10,8,6,3,6,9,11,8,12,4, 5]. (8.4)
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Eleven new attempts may results in a totally different saqaef numbers and so forth. Repeating this
exercise the next evening, will most likely never give yoa #ame sequences. Thus, we say that the
outcome of this hobby of ours is truely random.

Random variables are hence characterized by a domain whinkams all possible values that the
random value may take. This domain has a corresponding PDF.

To give you another example of possible random number spaeedctivities, consider the radioac-
tive decay of am-particle from a certain nucleus. Assume that you have atgisposal a Geiger-counter
which registers every 10 ms whether@particle reaches the counter or not. If we record a hit asdl an
no observation as zero, and repeat this experiment for atioreg the outcome of the experiment is also
truely random. We cannot form a specific pattern from the almhservations. The only possibility to
say something about the outcome is given by the PDF, whichisncase is the well-known exponential
function

Aexp —(Ax), (8.5)

with X\ being proportional to the half-life of the given nucleus efhdecays.

Good texts on Monte Carlo methods are the monographs of RabdrCasella, Johnson and Fish-
man, see Refs. [46-48].
8.1.1 Firstillustration of the use of Monte-Carlo methodsjde integration

With this definition of a random variable and its associatédRve attempt now a clarification of the
Monte-Carlo strategy by using the evaluation of an integsabur example.
In chaptef7 we discussed standard methods for evaluatingegral like

N
I= /01 f(z)dx ~ ;wif(xi), (8.6)

wherew; are the weights determined by the specific integration naegliice Simpson’s or Taylor's meth-

ods) withzx; the given mesh points. To give you a feeling of how we are téuenva the above integral

using Monte-Carlo, we employ here the crudest possiblecaghr: Later on we will present slightly more
refined approaches. This crude approach consists in sattweights equal 1p; = 1. That corresponds

to the rectangle method presented in [EQ](7.5), displayeihdgre

X N
= / fl@)dz ~h Y flai),
a i=1

wheref (x;_, 2) is the midpoint value of for a given valuer;_, s,. Settingh = (b—a)/N whereb = 1,
a = 0, we can then rewrite the above integral as

1 1 N
I= /O f(2)dx ~ ~ ;f(azi), (8.7)

wherex; are the midpoint values af. Introducing the concept of the average of the functfofor a
given PDFp(z) as

1 N
() =5 D Flai)p(ai), (8.8)
i=1
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and identifyp(x) with the uniform distribution, vip(z) = 1 whenz € [0, 1] and zero for all other values
of x. The integral is is then the average jobver the intervak: € [0, 1]

1
I:/O f(z)dx =~ (f). (8.9)

In addition to the average valug) the other important quantity in a Monte-Carlo calculatigrthe
variances? and the standard deviatian We define first the variance of the integral wittior a uniform
distribution in the intervak € [0,1] to be

N
07 = 5 2 = (1)Pp(ai), (8.10)

, 1y 2 1 2
Uf:NZf(xi) - NZf(xi) ; (8.11)

or

of = (/%) = (N?). (8.12)
which is nothing but a measure of the extent to whjckeviates from its average over the region of
integration. The standard deviation is defined as the sqoatef the variance. If we consider the above
results for a fixed value oN as a measurement, we could however recalculate the aboregavend

variance for a series of different measurements. If each swgasumerent produces a set of averages for
the integrall denoted f);, we have forM measurements that the integral is given by

(D = 37 > (e (8.13)

=1

We show in sectiof 83 that if we can consider the probabhiftgorrelated events to be zero, we can
rewrite the variance of these series of measurements aat@g/ = N)

0,2
Ao () - (17 = 2 814

We note that the standard deviation is proportional withitirerse square root of the number of mea-

surements 1
N vN ( )

The aim of Monte Carlo calculations is to hawg as small as possible afté¥ samples. The results
from one sample represents, since we are using conceptsstadistics, a ‘'measurement’.

The scaling in the previous equation is clearly unfavoraolepared even with the trapezoidal rule.
In the previous chapter we saw that the trapezoidal ruléesaartruncation erra®(h?), with h the step
length. In general, methods based on a Taylor expansionasutie trapezoidal rule or Simpson’s rule
have a truncation error which goes like O(h*), with & > 1. Recalling that the step size is defined as
h = (b—a)/N, we have an error which goes like N .

However, Monte Carlo integration is more efficient in highd@nensions. To see this, let us assume
that our integration volume is a hypercube with sileand dimensiond. This cube contains hence
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N = (L/h)? points and therefore the error in the result scalevas/? for the traditional methods.
The error in the Monte carlo integration is however indeemnafd and scales as ~ 1/v/N, always!
Comparing this error with that of the traditional methodsows that Monte Carlo integration is more
efficient than an order-k algorithm wheh> 2k. In order to expose this, consider the definition of the
quantum mechanical energy of a system consisting of 10cestin three dimensions. The energy is the
expectation value of the Hamiltonidd and reads

_ JdRidRs ... dRNV*(R1, Ry, ..., Ry)H(R1,Rs,...,RN)¥(Rq,Rs, ..., Ry)

E
[dR1dR; ... dRyU*(Ry, Ry, ..., Ry)¥(Ry, Ry, ..., Ry) ’

whereV is the wave function of the system alt} are the coordinates of each particle. If we want to
compute the above integral using for example Gaussian guadrand use for example ten mesh points
for the ten particles, we need to compute a ten-dimensioniagial with a total ofl03° mesh points.
As an amusing exercise, assume that you have access tosddastgst computer with a theoretical peak
capacity of more than 100 Teraflops, thal @8 floating point operations per second. Assume also that
every mesh point corresponds to one floating operation meEmge Estimate then the time needed to
compute this integral with a traditional method like Gaassjuadrature and compare this number with
the estimated lifetime of the universg,~ 4.7 x 10'"s. Do you have the patience to wait?

We end this first part with a discussion of a brute force Morae@program which integrates

1 4
d = 8.16
/0 i (8.16)

where the input is the desired number of Monte Carlo samplete that we transfer the variabléum in
order to initialize the random number generator from thefiom ran0. The variableédum gets changed
for every sampling. This variable is called tbeed

What we are doing is to employ a random number generator @irobumbersz; in the interval
[0, 1] through a call to one of the library functionan0, ranl, ran2 or ran3 which generate random
numbers in the intervat € [0, 1]. These functions will be discussed in the next section. Mereimply
employ these functions in order to generate a random varigkll random number generators produce
pseudo-random numbers in the inter{@l1] using the so-called uniform probability distributigriz)

defined as .

:b—a

with a = 0 ogb = 1. If we have a general interval, b], we can still use these random number generators
through a change of variables

p(z) Oz — a)O(b— x), (8.17)

z=a+ (b—a)z, (8.18)

with z in the intervall0, 1].

The present approach to the above integral is often callediét or 'Brute-Force’ Monte-Carlo.
Later on in this chapter we will study refinements to this dargpproach. The reason for doing so is that
a random generator produces points that are distributeth@megenous way in the intervgl, 1]. If our
function is peaked around certain valuesrpfwe may end up sampling function values whéfe) is
small or near zero. Better schemes which reflect the pr@sesfithe function to be integrated are thence
needed.

The algorithm is as follows

— Choose the number of Monte Carlo samplés
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— Perform aloop oveN and for each step generate a a random numperthe interval[0, 1] trough
a call to a random number generator.

— Use this number to evaluajé ;).
— Evaluate the contributions to the mean value and the stdrtidasiation for each loop.
— After N samples calculate the final mean value and the standardidevia

The following C/C++ prograﬁnmplements the above algorithm using the library functten0 to com-
puter. Note again the inclusion of tHeéb.h file which has the random number generator functimD.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/programl . cpp
#include <iostream >
#include "1lib.h"
using namespacestd;

/1 Here we define various functions called by the main progra
/1 this function defines the function to integrate

double func(double x);

/1 Main function begins here
int main()
{ . .

int i, n;

long idum;

double crude_mc, x, sum_sigma, fx, variance;
cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;
crude_mc = sum_sigma=0. ; idum% ;

/1l evaluate the integral with the a crude Mont€arlo method
for (i = 1; i <= n; i++){

x=ran0(&idum) ;

fx=func (x);

crude_mc += fx;

sum_sigma += fxfx;
}
crude_mc = crude_mc/(double) n );
sum_sigma = sum_sigma/@ouble) n );
variance=sum_sigmacrude_ma&crude_mc;

/1l final output
cout << " variance= " << variance <<" Integral = "
<< crude_mc <<'" Exact= " << M_PI << endl;

} // end of main program
/1 this function defines the function to integrate
double func(double x)

{

double value;

The Fortran 90/95 programs are not listed in the main tegly tire found under the corresponding chapter as program-
s/chapter8/progranif90.
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Table 8.1: Results fof = fol dz1/(1+ x?) as function of number of Monte Carlo sampl&s The exact
answer i3.14159F + 00 for the integral and..13581F — 01 for the variance with six leading digits.
N T ON
10 3.10263E+00 3.98802E-01
100 3.02933E+00 4.04822E-01
1000 3.13395E+00 4.22881E-01
10000 3.14195E+00 4.11195E-01
100000 3.14003E+00 4.14114E-01
1000000 3.14213E+00 4.13838E-01
10000000 3.14177E+00 4.13523E-01
10° 3.14162E+00 4.13581E-01

value = 4/(1.+x%x);
return value;
} /I end of function to evaluate

We note that agv increases, the integral itself never reaches more thanraeragnt to the fourth or
fifth digit. The variance also oscillates around its exati@d.13581 F — 01. Note well that the variance
need not be zero but one can, with appropriate redefinitibtisecintegral be made smaller. A smaller
variance yields also a smaller standard deviation. Imprmrés to this crude Monte Carlo approach will
be discussed in the coming sections.

As an alternative, we could have used the random numberaen@rovided by the C/C++ compiler
through the functionsrand andrand. In this case we initialise it via the functiomand. The random
number generator is called via the functiomnd, which returns an integer from 0 to its the maximum
value, defined by the variabRAND_MAX as demonstrated in the next few lines of code.

invers_period = 1./RAND MAX;
/I initialise the random number generator
srand (time (NULL) ) ;
/l obtain a floating number x in [0,1]
X = double(rand () )xinvers_period;

8.1.2 Second illustration, particles in a box

We give here an example of how a system evolves towards a efelled! equilibrium state.

Consider a box divided into two equal halves separated byllaAtghe beginning, time = 0, there
are N particles on the left side. A small hole in the wall is then g and one particle can pass through
the hole per unit time.

After some time the system reaches its equilibrium stath aually many particles in both halves,
N/2. Instead of determining complicated initial conditions éosystem ofN particles, we model the
system by a simple statistical model. In order to simulaie sgstem, which may consist of > 1
particles, we assume that all particles in the left half hegpeal probabilities of going to the right half.
We introduce the label; to denote the number of particles at every time on the le§, fiddn, = N —n;
for those on the right side. The probability for a move to tightrduring a time steg\¢ is n;/N. The
algorithm for simulating this problem may then look like afidws

— Choose the number of particl@s.
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Make a loop over time, where the maximum time should be laftgar the number of particles.

For every time step\t there is a probability,; /N for a move to the right. Compare this probability
with a random numbet.

If z < n;/N, decrease the number of particles in the left half by onei;e= n; — 1. Else, move
a particle from the right half to the left, i.ey; = n; + 1.

Increase the time by one unit (the external loop).

In this case, a Monte Carlo sample corresponds to one tinte\#ni
The following simple C/C++-program illustrates this madel

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program?.cpp

/!l Particles in a box
#include <iostream>
#include <fstream >
#include <iomanip>
#include "1ib.h"
using namespace std;

ofstream ofile;
int main(int argc, charx argv[])
{
char xoutfilename;
int initial_n_particles , max_time, time, random_n, nleft;
long idum;
/I Read in output file, abort if there are too few commatthe arguments
if ( argec <=1 ){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
else{
outfilename=argv[1l];
}

ofile .open(outfilename);

// Read in data

cout << "Initial number of particles = " << endl
cin >> initial_n_particles;

/Il setup of initial conditions

nleft = initial_n_particles;
max_time = 1Ginitial_n_particles;
idum = —1;

/!l sampling over number of particles

for ( time=0; time <= max_time; time++){
random_n = ((nt) initial_n_particlescran0(&idum));
if ( random_n <= nleft){

nleft —= 1;
}
else{

nleft += 1;
}
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ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw (15) << time;
ofile << setw(15) << nleft << endl;
}
return O;
} // end main function

The enclosed figure shows the development of this systemnatida of time steps. We note that
for N = 1000 after roughly2000 time steps, the system has reached the equilibrium statereTdre
however noteworthy fluctuations around equilibrium.

If we denote(n;) as the number of particles in the left half as a time averatgr afuilibrium is
reached we can define the standard deviation as

o =/(n?) — ()2 (8.19)

This problem has also an analytic solution to which we canpamm our numerical simulation. If
ny(t) are the number of particles in the left half aftenoves, the change im(¢) in the time intervalAt

is
(N =—m(t)  m(t)
An = ( N - At, (8.20)
and assuming that; andt¢ are continuous variables we arrive at
dnl(t) 2nl(t)
=1- 8.21
o N (8.21)
whose solution is N
_ —2t/N
() = 5 <1+—e ), (8.22)

with the initial conditionn; (¢t = 0) = N.

8.1.3 Radioactive decay

Radioactive decay is among one of the classical examples@wnfuMonte-Carlo simulations. Assume
that a the time = 0 we haveN (0) nuclei of typeX which can decay radioactively. At a tinie> 0 we
are left with NV (¢) nuclei. With a transition probability, which expresses the probability that the system
will make a transition to another state during a time stepnaf ®econd, we have the following first-order
differential equation

dN(t) = —wN(t)dt, (8.23)
whose solution is
N(t) = N(O)e‘“’t, (8.24)
where we have defined the mean lifetimef X as
S (8.25)
w

If a nucleusX decays to a daugther nuclebswhich also can decay, we get the following coupled
eqguations
dNx (t)
dt
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Figure 8.1: Number of particles in the left half of the contaias function of the number of time steps.
The solution is compared with the analytic expressiyn= 1000.

and
dNy (t)

dt

The program example in the next subsection illustrates hevean simulate such the decay process of
one type of nuclei through a Monte Carlo sampling procedure.

= —wyNy(t) + wXNx(t). (8.27)

8.1.4 Program example for radioactive decay of one type ofeus

The program is split in four tasks, a main program with vasideclarations,

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program3. cpp

I/l Radioactive decay of nuclei

#include <iostream >

#include <fstream>

#include <iomanip>

#include "1lib.h"

using namespace std;

ofstream ofile;

/!l Function to read in data from screen

void initialise (int&, int&, int&, double& ) ;

/I The Mc sampling for nuclear decay

void mc_sampling(nt, int, int, double, intx);

/!l prints to screen the results of the calculations

void output(int, int, int x);

int main(int argc, charx argv[])

{
char xoutfilename;
int initial_n_particles , max_time, number_cycles;
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double decay_probability;

int xncumulative;

/I Read in output file, abort if there are too few commatthe arguments
if ( argc <= 1 ){

Cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
elseg{
outfilename=argv[1];
}

ofile .open(outfilename);

/I Read in data

initialise (initial_n_particles , max_time, number_cyed,
decay_probability) ;

ncumulative =new int [max_time+1];

/I Do the mc sampling

mc_sampling (initial_n_particles , max_time, number_bys,
decay_probability , ncumulative);

/1l Print out results

output(max_time, number_cycles, ncumulative);

delete [] ncumulative;

return O;

} // end of main function

followed by a part which performs the Monte Carlo sampling

void mc_sampling (nt initial_n_particles , int max_time,
int number_cycles ,double decay_probability ,
int xncumulative)
{
int cycles, time, np, n_unstable, particle_limit;
long idum;

idum=—1; // initialise random number generator
/l loop over monte carlo cycles
/l One monte carlo loop is one sample
for (cycles = 1; cycles <= number_cycles; cycles++){
n_unstable = initial_n_particles;
/I accumulate the number of particles per time step per trial
ncumulative [0] += initial_n_particles;
/l loop over each time step
for (time=1; time <= max_time; time++){
/I for each time step, we check each particle
particle_limit = n_unstable;
for ( np = 1; np <= particle_limit; np++) {
if ( ran0(&idum) <= decay_probability) {
n_unstable=n_unstablel;
}
} // end of loop over particles
ncumulative [time] += n_unstable;
} // end of loop over time steps
} /!l end of loop over MC trials
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‘} /1 end mc_sampling function

and finally functions for reading input and writing outputalaThe latter are not listed here, see under
program/chapter8/program3.cpp for a full listing. Theunhpariables are the number of Monte Carlo

cycles, the maximum number of time steps, the initial nundbgarticles and the decay probability. The

output consists of the number of remaining nuclei at each stap.

8.1.5 Brief summary

In essence the Monte Carlo method contains the followingeignts
— A PDF which characterizes the system

— Random numbers which are generated so as to cover in a asmarfopossible way on the unity
interval [0,1].

— A sampling rule
— An error estimation
— Techniques for improving the errors

In the next section we discuss various PDF’s which may belefaace here, thereafter we discuss
how to compute random numbers. Secfiod 8.4 discusses Marte {Dtegration in general, how to
choose the correct weighting function and how to evalugsgnals with dimensiong > 1.

8.2 Probability distribution functions

Hitherto, we have tacitly used properties of probabilitgtdbution functions in our computation of ex-
pectation values. Here and there we have referred to theramiPDF. It is now time to present some
general features of PDFs which we may encounter when doiggigghand how we define various ex-
pectation values. In addition, we derive the central litnédrem and discuss its meaning in the light of
properties of various PDFs.

The following table collects properties of probability wiilsution functions. In our notation we re-
serve the labeb(x) for the probability of a certain event, while(x) is the cumulative probability.

Table 8.2: Important properties of PDFs.

Discrete PDF Continuous PDF
Domain {.1'1,33‘2,33‘3,...,33‘]\[} [CL, b]
Probability p(x;) p(z)dz
Cumulative P=3_ plx) P(z) = [T p(t)dt
Positivity 0<p(xz;) <1 p(z) >0
Positivity 0<P<1 0<P(zx)<1
Monotonic P, >Pjifx; >x; P(x;) > P(zj) if x; > z;
Normalization Py =1 Pb)=1
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With a PDF we can compute expectation values of selecteditjgarsuch as

N
1
By _ L k(.
(zF) = N;xlp(w,), (8.28)
if we have a discrete PDF or ,
(zF) = / a*p(a)de, (8.29)

in the case of a continuous PDF. We have already defined the va&ze . and the variance?.
The expectation value of a quantifyx) is then given by for example

b
) = / f(@)p(z)de. (8.30)

We have already seen the use of the last equation when wesapé crude Monte Carlo approach to
the evaluation of an integral.

There are at least three PDFs which one may encounter. Tretgea

1. uniform distribution )
“b-a
yielding probabilities different from zero in the intenjal b]. The mean value and the variance for
this distribution are discussed in section 8.3.

p(z) Oz —a)O(b —x), (8.31)

2. The exponential distribution

p(x) = ae™ %, (8.32)
yielding probabilities different from zero in the intenjal oo) and with mean value
oo o0 1
= / xp(x)dx = / rzae” “dr = — (8.33)
0 0 o
and variance - )
o2 = / 22p(x)de — p? = —- (8.34)
0 (6%

3. Finally, we have the so-called univariate normal distiitn, or just the normal distribution

1 (x — a)2
p(z) = o exp <— 552 > (8.35)

with probabilities different from zero in the intervé-oo, co). The integral [~ exp (—(z?)dx
appears in many calculations, its valuei&, a result we will need when we compute the mean
value and the variance. The mean value is

B o) B 1 e ) (33 _ a)z
1 —/0 xp(x)dx = Wor /_Ooxexp <_T> dz, (8.36)

which becomes with a suitable change of variables

1
H= b\ 27

/OO bV2(a + bv2y) exp —y2dy = a. (8.37)
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Similarly, the variance becomes

2 _ RY: _ (r —a)?
i ) exp( 552 >dm, (8.38)
and inserting the mean value and performing a variable ahamgobtain
o2 b\f bV2y)? exp (—y?)dy = 26° [ y*exp (—y?)dy, (8.39)
b\/_ VT oo

and performing a final integration by parts we obtain the akebwn resultz? = b2. It is useful
to introduce the standard normal distribution as well, @gfiby . = a = 0, viz. a distribution
centered around zero and with a variapée= 1, leading to

2
p(x) = \/12_7r exp (—%) (8.40)

The exponential and uniform distributions have simple clative functions, whereas the normal
distribution does not, being proportional to the so-ca#éewr functioner f (x), given by

2
P(x) = \/%/ exp< >dt (8.41)

which is difficult to evaluate in a quick way. Later in this gi@r we will present an algorithm by Box and
Mueller which allows us to compute the cumulative distriatusing random variables sampled from
the uniform distribution.

Some other PDFs which one encounters often in the natusriees are the binomial distribution

p(l‘) = < " >yx(1_y)n_xl‘ :07 17"'7”7 (8'42)

X

wherey is the probability for a specific event, such as the tossirgadin or moving left or right in case
of a random walker. Note thatis a discrete stochastic variable.
The sequence of binomial trials is characterized by thewotig definitions

— Every experiment is thought to consistSfindependent trials.

— In every independent trial one registers if a specific sibmahappens or not, such as the jump to
the left or right of a random walker.

— The probability for every outcome in a single trial has theeaalue, for example the outcome of
tossing a coin is always/2.

In the next chapter we will show that the probability distitibn for a random walker approaches the
binomial distribution.
In order to compute the mean and variance we need to recalldi&sibinomial formula

w235 (7 )a

n=0
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which can be used to show that

> ( ; ) yl—y)" " =wy+1-y" =1 (8.43)

X
=0

the PDF is normalized to one. The mean value is

- = n! - i
u:;)x< Z >y$(1—y)n—m:;xmy (1—y)" 2, (8.44)
resulting in
_ n (n—1)! 2ol vmele(e—1)
M_;)w(w—l)!(n—l—(x—m)!y ML=y, (8.45)

which we rewrite as
n—1 nel—v n_
= nyZ < ) YA—y)" T =nyly+1-y)" " =ny. (8.46)

The variance is slightly trickier to get, see the next exsasi It reads? = ny(1 — y).
Another important distribution with discrete stochastariablesz is the Poisson model, which re-
sembles the exponential distribution and reads
ATy
p(:ﬂ):—le x=0,1,...,;2>0. (8.47)
i

In this case both the mean value and the variance are easalctdate,

0 T e 2\T— 1
_ X — e
,u—goww!e = 51 T 1) (8.48)

and the variance is? = ). Example of applications of the Poisson distribution is toeinting of
the number ofa-particles emitted from a radioactive source in a given tinterval. In the limit of
n — oo and for small probabilitieg;, the binomial distribution approaches the Poisson ditidb.
Setting\ = ny, with y the probability for an event in the binomial distribution wen show that

: n T(1 _ o, \—T,—A = _ﬁ —-A
lim <x )y (I—y)" e Z— e ", (8.49)

n—oo

see for example Refs. [46, 47] for a proof.

8.2.1 Multivariable Expectation Values

Let us recapitulate some of the above concepts using a tise2F (which is what we end up doing
anyway on a computer). The mean value of a random vari&blégth rangex, zo,..., N is

1 N
r) = p= 5 D wila),
i=1
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Outline of the Monte-Carlo strategy

and the variance is
9y 1 Y 2 1 Y 2
(0%) = N ;:1(%‘ —(x))*p(z;) = N ;:1((%‘ — 1i)%).

Assume now that we have two independent sets of measuretigratad X, with corresponding mean
and variance:; andus and(o?) x, and{c?)x,. It follows that if we define the new stochastic variable

Y =X + Xy, (8.50)
we have
Py = p1 + pe, (8.51)
and
(0%)y = (Y = puy)?) = (X1 — m1)*) + (X2 — p2)®) + 2((X1 — 1)(X2 — p2)). (8.52)

It is useful to define the so-called covariance, given by

(cov(X1, X2)) = (X1 — 1) (X2 — p2)) (8.53)

where we consider the averagesand» as the outcome of two separate measurements. The covariance
measures thus the degree of correlation between variabtesan then rewrite the variance Y¥fas

2
(0)y =Y ((X; = pj)%) + 2cov(X1, X3), (8.54)
j=1

which in our notation becomes
(eDy = (6B x, + () x, + 2cov(X1, X2). (8.55)

If X, and X> are two independent variables we can show that the covarisnzero, but one cannot

deduce from a zero covariance whether the variables ar@éndent or not. If our random variables
which we generate are truely random numbers, then the emarishould be zero. We will see tests of
standard random number generators in the next section. Aevaneasure the correlation between two
sets of stochastic variables is the so-called correlatiootfon p(X;, X ) defined as

(cov(X1, X2)) .
V{(o?)x, (0%)x,

Obviously, if the covariance is zero due to the fact that tméables are independent, then the correlation
is zero. This quantity is often called the correlation cagffit betweenX; and X,. We can extend this
analysis to a set of stochastic variablés= (X; + X3 + --- + Xx). We now assume that we hape
different measurements of the mean and variance of a givesible. Each measurement consists again
of N measurements, although we could have chosen the latterdiffeent from V. As an example,
every evening forV days you measuré&’ throws of two dice. The mean and variance are defined as
above. The total mean value is defined as

p(X1, Xz2) = (8.56)

N

(y) =D (i) (8.57)

i=1
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8.2 — Probability distribution functions

The total variance is however now defined as

N N N
@)y = (Y = py)®) =Y (X =) =D (0")x;, +2D> (X5 — p)){(Xx — ), (8.58)
j=1 j=1 i<k
or
N N
@)y =D (0%)x, +2)  cov(X;, Xp). (8.59)
j=1 i<k

If the variables are independent, the covariance is zerdhandariance is reduced to

N

@)y = (o)x,, (8.60)

j=1
and if we assume that all sets of measurements produce treevgaiance/o2), we end up with
(c%)y = N{(o?). (8.61)

In the next subsection we combine these results with theaeimhit theorem in order to obtain the
classical expression for the standard deviation.

8.2.2 The central limit theorem

Suppose we have a PD¥x) from which we generate a seridsof averagesz;). Each mean valuér;)
is viewed as the average of a specific measurement, e.qgwitlgralice 100 times and then taking the
average value, or producing a certain amount of random nisnber notational ease, we get) = z;
in the discussion which follows.
If we compute the meanof N such mean values;

1+ T4 TN
= ~ ,
the question we pose is which is the PDF of the new variable
The probability of obtaining an average valués the product of the probabilities of obtaining arbi-
trary individual mean values;, but with the constraint that the average idMe can express this through
the following expression

(8.62)

S s e I\

) = [ dowptan) [ doap(oa).... [ donplan)ale . ), (863)

where thed-function enbodies the constraint that the mean.isAll measurements that lead to each
individual z; are expected to be independent, which in turn means that wexgaess as the product
of individual p(z;).

If we use the integral expression for tidunction

& (5 T1TT2T AT N
5z — 1+ x2 + —HUN) _ i/ dqg(zq(z 1422t N)>’ (6.64)
N 27 J_ o
and inserting:**4—*4 wherey is the mean value we arrive at
1 0o ) 0o ) N
Pe) = 5 / dqeliaz—1) { / dap(a)eiat—am | (8.65)
T J—c0 —00
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with the integral over resulting in

o] 2

iglp—z)  ¢*(p—x)

N onz T (8:66)

/OO drp(x) exp (ig(p — z)/N) = /

—00 — 00

dap(z) {1 +

The second term on the rhs disappears since this is just the ar& employing the definition of we
have

0 ) q20,2
/ drp(z)elar—a)/N) — 1 _ SN +o., (8.67)
resulting in
00 N 202 N
{/ dxp(zx)exp (iq(p — x)/N)} ~ {1 ~oN? +.. ] , (8.68)
and in the limitN — oo we obtain
- 1 (z — p)? >
— - 8.69
p(Z) \/%(O'/\/N) exp < 2(0’/\/N)2 ( )

which is the normal distribution with variane&, = 02 /N, whereo is the variance of the PDFz) and
w is also the mean of the PDfx).

Thus, the central limit theorem states that the BIDF) of the average ofV random values corre-
sponding to a PDp(z) is a normal distribution whose mean is the mean value of thE @) and
whose variance is the variance of the PR{k) divided by N, the number of values used to compute

The theorem is satisfied by a large class of PDFs. Note hovileaefor a finiteV, it is not always
possible to find a closed expression fgr). The central limit theorem leads then to the well-known
expression for the standard deviation, given by

o = . (8.70)

The latter is true only if the average value is known exacElyis is obtained in the limiftV.— oo only.
Because the mean and the variance are measured quantitidgairethe familiar expression in statistics

ON & . (8.71)

8.3 Random numbers

Uniform deviates are just random numbers that lie withinecdjed range (typically 0 to 1), with any one
number in the range just as likely as any other. They arehieratords, what you probably think random
numbers are. However, we want to distinguish uniform degiitom other sorts of random numbers, for
example numbers drawn from a normal (Gaussian) distribuifespecified mean and standard deviation.
These other sorts of deviates are almost always generatpdrfrming appropriate operations on one
or more uniform deviates, as we will see in subsequent sexti®o, a reliable source of random uniform
deviates, the subject of this section, is an essential ibgildlock for any sort of stochastic modeling
or Monte Carlo computer work. A disclaimer is however appiadp. It should be fairly obvious that
something as deterministic as a computer cannot generegly pandom numbers.

Numbers generated by any of the standard algorithm arelityrpaeudo random numbers, hopefully
abiding to the following criteria:
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Figure 8.2: Plot of the logistic mapping;, = cz;(1 — z;) for xo = 0.1 andc = 3.2 andc = 3.98.

1. they produce a uniform distribution in the interval [0,1]
2. correlations between random numbers are negligible

3. the period before the same sequence of random numbenseatee is as large as possible and
finally

4. the algorithm should be fast.

That correlations, see below for more details, should berasl @s possible resides in the fact that
every event should be independent of the other ones. As anpdgaa particular simple system that
exhibits a seemingly random behavior can be obtained frenit¢ative process

Tip1 = cxi(l — x;), (8.72)

which is often used as an example of a chaotic systasconstant and for certain values«dndz, the
system can settle down quickly into a regular periodic seqe®f valuescy, zo, x3,.... Forzyg = 0.1
andc = 3.2 we obtain a periodic pattern as shown in igl 8.2. Changitoy: = 3.98 yields a sequence
which does not converge to any specific pattern. The valuas séem purely random. Although the
latter choice ofc yields a seemingly random sequence of values, the varidussvafx harbor subtle
correlations that a truly random number sequence would osggss.

The most common random number generators are based onlet-ciaear congruential relations

of the type
N; = (aN;_1 + c)MOD(M), (8.73)

which yield a number in the interval [0,1] through
x; = N;/M (8.74)
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Outline of the Monte-Carlo strategy

The numbeiM is called the period and it should be as large as possiblévgrglthe starting value, or
seed. The functiohlOD means the remainder, that is if we were to evalasMOD(9), the outcome
is the remainder of the divisiol8/9, namely4.

The problem with such generators is that their outputs aiiedtie; they will start to repeat themselves
with a period that is at most/. If however the parametersandc are badly chosen, the period may be
even shorter.

Consider the following example

N; = (6N;_1 + T)MOD(5), (8.75)

with a seedVy = 2. This generator produces the sequefice 3,0,2,4,1,3,0,2,......,i.e., a sequence
with period5. However, increasing/ may not guarantee a larger period as the following exammesh

N; = (27N;_; + 11)MOD(54), (8.76)

which still, with Ny = 2, results inl1, 38,11, 38,11, 38, ..., a period of jus®.

Typical periods for the random generators provided in tloggm library are of the order ef 10°
or larger. Other random number generators which have beacwreasingly popular are so-called shift-
register generators. In these generators each successi®ndepends on many preceding values (rather
than the last values as in the linear congruential gengradtor example, you could make a shift register
generator whosé#h number is the sum of the— ith andl — jth values with moduldl/,

N; = (aN;_; + ¢N;_;)MOD(M). (8.77)

Such a generator again produces a sequence of pseudoranddrers but this time with a period much
larger thanM. It is also possible to construct more elaborate algorithyngcluding more than two past
terms in the sum of each iteration. One example is the gawephtMarsaglia and Zaman [49] which
consists of two congruential relations

N; = (N;_3 — N;_1)MOD(2%! — 69), (8.78)

followed by
N; = (69069N;_; + 1013904243)MOD (232), (8.79)

which according to the authors has a period larger fan
Moreover, rather than using modular addition, we could heebitwise exclusive-OR%) operation
so that

Ny = (Ni—i) @ (Ni—j) (8.80)

where the bitwise action ab means that ifV;_; = N;_; the result is0 whereas ifN;_; # N;_; the
result is1. As an example, consider the case whafe; = 6 andN;_; = 11. The first one has a bit
representation (using 4 bits only) which re@d40 whereas the second number s 1. Employing the
@ operator yieldd 101, or 23 4 22 + 20 = 13.

In Fortran90, the bitwise> operation is coded through the intrinsic functibbfOR(m, n) wherem
andn are the input numbers, while i@ it is given bym A n. The program below (from Numerical
Recipes, chapter 7.1) shows the functiam0 implements

N; = (aN;_1)MOD(M). (8.81)
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8.3 — Random numbers

However, sincer and V;_; are integers and their multiplication could become gretdizn the standard
32 bit integer, there is a trick via Schrage’s algorithm vkhapproximates the multiplication of large
integers through the factorization

M =aq+r,
where we have defined
q= [M/a]>
and
r =M MOD a.

where the brackets denote integer division. In the codewb#te numbers; andr are chosen so that
r < q. To see how this works we note first that

(aN;—1)MOD(M) = (aN;—1 — [Ni—1/q|M)MOD(M), (8.82)

since we can add or subtract any integer multipl@ofrom aN;_. The last termiN;_; /q] MMOD (M)
is zero since the integer divisidiV;_ /¢] just yields a constant which is multiplied wiftY. We can now

rewrite Eq. [8.8R) as

(aN;_1)MOD(M) = (aN;_, — [Ni_1/q)(aq + 7))MOD(M), (8.83)
which results in
(aN;—1)MOD(M) = (a(Ni-1 — [Ni-1/qlq) — [Ni-1/q]r)) MOD(M), (8.84)
yielding
(aN;_1)MOD(M) = (a(N;—;MOD(q)) — [N;_1/q]r)) MOD(M). (8.85)

The term[N;_1/q]r is always smaller or equaV;_;(r/q) and withr < ¢ we obtain always a number
smaller thanV;_;, which is smaller thard/. And since the numbeW;_;MOD(q) is between zero and
g — 1 thena(N;_1MOD(q)) < ag. Combined with our definition of = [M/a] ensures that this term
is also smaller thad/ meaning that both terms fit into a 32-bit signed integer. Nofrithese two terms
can be negative, but their difference could. The algorittelolw adds)/ if their difference is negative.
Note that the program uses the bitwiseoperator to generate the starting point for each generafian
random number. The period ofn0 is ~ 2.1 x 10°. A special feature of this algorithm is that is should
never be called with the initial seed setito

[ %
xx The function
ok rano ()

xx IS an "Minimal" random number generator of Park and Miller

xx (see Numerical recipe page 279). Set or reset the input value
xx idum to any integer value (except the unlikely value MASK)

xx to initialize the sequence; idum must not be altered between
xx calls for sucessive deviates in a sequence.

xx The function returns a uniform deviate between 0.0 and 1.0.
*/

double ran0O(long &idum)

{
const int a = 16807, m = 2147483647, q = 127773,
const int r = 2836, MASK = 123459876;
const double am = 1./m;
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long K;
double ans;
idum ~= MASK;

k = (xidum)/q;
idum = ax(idum — kxq) — rxk;
/I add m if negative difference
if (idum < 0) idum += m;
ans=amx(idum) ;
idum "= MASK;
return ans;
} // End: function ranO ()

The other random number generaters:1, ran2 andran3 are described in detail in chapter 7.1 of
Numerical Recipes. Here we limit ourselves to study setbpteperties of these generators.

8.3.1 Properties of selected random number generators

As mentioned previously, the underlying PDF for the genenabf random numbers is the uniform
distribution, meaning that the probability for finding a noenz in the interval [0,1] isp(z) = 1.

A random number generator should produce numbers whiclomanliy distributed in this interval.
Table[B3B shows the distribution df = 10000 random numbers generated by the functions in the
program library. We note in this table that the number of t®in the various interval9.0 — 0.1,

0.1 — 0.2 etc are fairly close ta000, with some minor deviations.
Two additional measures are the standard deviatiand the meap = (x).
For the uniform distribution withV points we have that the average®) is

N
1
ky _ k )
(x¥) = N ;:1 xip(x;), (8.86)
and taking the limitNV=— oo we have

1 1
(%) :/ dzp(x)z” :/ dea® = —— (8.87)
0 0
sincep(z) = 1. The mean valug is then

(8.88)
while the standard deviation is

1
— 2 2 —
o (x?) — p Nip 0.2886. (8.89)

The various random number generators produce results velgicke rather well with these limiting
values. In the next section, in our discussion of probabdistribution functions and the central limit
theorem, we are to going to see that the uniform distributdarives towards a normal distribution in the
limit N — co.

There are many other tests which can be performed. Oftentargiof the numbers generated may
reveal possible patterns.
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8.4 — Improved Monte Carlo integration

Table 8.3: Number at-values for various intervals generated by 4 random numbeemtors, their cor-
responding mean values and standard deviations. All cdlonk have been initialized with the variable
idum = —1.

x-bin ran0 ranl ran2 ran3
0.0-0.1 1013 991 938 1047
0.1-0.2 1002 1009 1040 1030
0.2-0.3 989 999 1030 993
0.3-0.4 939 960 1023 937
0.4-0.5 1038 1001 1002 992
0.5-0.6 1037 1047 1009 1009
0.6-0.7 1005 989 1003 989
0.7-0.8 986 962 985 954
0.8-0.9 1000 1027 1009 1023
0.9-1.0 991 1015 961 1026
1 0.4997 0.5018 0.4992 0.4990

o 0.2882 0.2892 0.2861 0.2915

Since our random numbers, which are typically generatedalinear congruential algorithm, are
never fully independent, we can then define an importanwbith measures the degree of correlation,
namely the so-called auto-correlation functiop

(Tirrai) — (2:)?

Cr = @ — (@) (8.90)
with Cy = 1. Recall thatr? = (2?) — (x;)2. The non-vanishing of’; for k& # 0 means that the random
numbers are not independent. The independence of the randotbers is crucial in the evaluation of
other expectation values. If they are not independent, ssuraption for approximatingy in Eq. (8.13)
is no longer valid.

The expectation values which enter the definitiorCgfare given by

1 N—k
RT) = —— Tk 8.91

Fig.[8:3 compares the auto-correlation function calcdldtem ran0 andranl. As can be seen, the
correlations are non-zero, but small. The fact that caiicela are present is expected, since all random
numbers do depend in some way on the previous numbers.

8.4 Improved Monte Carlo integration

In section 811 we presented a simple brute force approaaftegration with the Monte Carlo method.
There we sampled over a given number of points distributéumly in the interval[0, 1]

1 N 1 N
1= [ e = 3wt = 3 31w = ()
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01 T T T T —
C, with ranO
C withranl -----
0.05F _
f ! ik ' | v i |
. l ,\; '\l In)\ (1 | LA h e . i
gt 1A A Ry RN D i b et [
5) 0k l{ IR R A O T W W e
© i B " Thl i |'%“.’!‘ KAWL ]
-0.05F _
0.1 | ] | ] |

500 1000 1500 2000 2500 3000
k

Figure 8.3: Plot of the auto-correlation functiof for variousk-values forN = 10000 using the random
number generatorszn0 andranl.

with the weightsv; = 1.

Here we introduce two important topics which in most casgzave upon the above simple brute
force approach with the uniform distributigriz) = 1 for z € [0, 1]. With improvements we think of a
smaller variance and the need for fewer Monte Carlo sampldgugh each new Monte Carlo sample
will most likely be more times consuming than correspondngs of the brute force method.

— The first topic deals with change of variables, and is linkethe cumulative functiorP(x) of a
PDFp(z). Obviously, not all integration limits go from = 0 to « = 1, rather, in physics we are
often confronted with integration domains likec [0, c0) or z € (—o0, c0) etc. Since all random
number generators give numbers in the interval [0, 1], we need a mapping from this integration
interval to the explicit one under consideration.

— The next topic deals with the shape of the integrand itsedft us for the sake of simplicity just
assume that the integration domain is again from 0 to z = 1. If the function to be integrated
f(z) has sharp peaks and is zero or small for many valuescf0, 1], most samples of (x) give
contributions to the integrdl which are negligible. As a consequence we need maisgmples to
have a sufficient accuracy in the region whé(e) is peaked. What do we do then? We try to find
anew PDFp(x) chosen so as to matgh{z) in order to render the integrand smooth. The new PDF
p(z) has in turn anc domain which most likely has to be mapped from the domain efuthiform
distribution.

Why care at all and not be content with just a change of va&abi cases where that is needed?
Below we show several examples of how to improve a Monte Gatégration through smarter choices
of PDFs which render the integrand smoother. However orssicl&xample from quantum mechanics
illustrates the need for a good sampling function.

In quantum mechanics, the probability distribution fuastis given byp(z) = ¥(x)*¥(x), where
U(z) is the eigenfunction arising from the solution of e.g., tineetindependent Schrddinger equation.
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If U(z) is an eigenfunction, the corresponding energy eigenvalgé/en by
H(z)¥(z) = EV(x), (8.92)

where H(z) is the hamiltonian under consideration. The expectatidnevaf H, assuming that the
quantum mechanical PDF is normalized, is given by

(Hy = /dx\I/(x)*H(w)\I/(x) (8.93)

We could insert¥(z) /¥ (x) right to the left of 4 and rewrite the last equation as

(H) = /dxw(x)*\p(x)g((gw(x), (8.94)
or
(H) = / dap(z)H (z), (8.95)
which is on the form of an expectation value with
iy~ H@) g
H(z) = \I/(x)qj( ). (8.96)

The crucial point to note is that i (z) is the exact eigenfunction itself with eigenvalBethenH ()
reduces just to the constahtand we have

(H) = /dxp(ac)E =FE, (8.97)

sincep(x) is normalized.

However,in most cases of interest we do not have the eadBut if we have made a clever choice
for W(z), the expressiorH () exhibits a smooth behavior in the neighbourhood of the esalction.
The above example encompasses the main essence of the Malagkilosophy. It is a trial approach,
where intelligent guesses lead to hopefully better results

8.4.1 Change of variables

The starting point is always the uniform distribution

de 0<x<1
p(x)dx = { 0 else (8.98)
with p(z) = 1 and satisfying
/ p(z)dz = 1. (8.99)

All random number generators provided in the program lipbgeanerate numbers in this domain.
When we attempt a transformation to a new variable: y we have to conserve the probability

p(y)dy = p(x)dz, (8.100)
which for the uniform distribution implies

p(y)dy = dx. (8.101)
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Let us assume tha(y) is a PDF different from the uniform PDKz) = 1 with = € [0, 1]. If we integrate
the last expression we arrive at

z(y) = /0 yp(y’)dy’, (8.102)

which is nothing but the cumulative distribution ofy), i.e.,

z(y) = P(y) = /O yp(y’)dy’- (8.103)

This is an important result which has consequences for eakmprovements over the brute force
Monte Carlo.
To illustrate this approach, let us look at some examples.

Example 1

Suppose we have the general uniform distribution
A a<y<b
p(y)dy = @ (8.104)

If we wish to relate this distribution to the one in the int@ry € [0, 1] we have

pw)dy = ;2 = dn, (8.105)

and integrating we obtain the cumulative function

Yy dy/
O (8.106)
yielding
y=a+ (b—a)r, (8.107)

a well-known result!

Example 2, the exponential distribution

Assume that
ply)=e?, (8.108)

which is the exponential distribution, important for theabysis of e.g., radioactive decay. Agapi;x)
is given by the uniform distribution with: € [0, 1], and with the assumption that the probability is
conserved we have

p(y)dy = e Ydy = du, (8.109)
which yields after integration
Yy
z(y) = P(y) = /0 exp (—y)dy’ =1 — exp (—y), (8.110)
or
y(x) = =In(1 — x). (8.111)
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This gives us the new random variahjein the domainy € [0,00) determined through the random
variablex € [0, 1] generated by functions likexn0.
This means that if we can factor ottp (—y) from an integrand we may have

IZ/O F(y)dyz/o exp (—y)G(y)dy (8.112)
which we rewrite as
| e cncway = [T Lowir~ S Gly(e) (8.113)
0 0o dy N e

i=1
wherez; is a random number in the interval [0,1]. Note that in pradtimplementations, our random
number generators for the uniform distribution never mretexactly O or 1, but we we may come very
close. We should thus in principle set (0, 1).

The algorithm for the last example is rather simple. In thecfion which sets up the integral, we
simply need to call one of the random number generatorsrli#e), ranl, ran2 or ran3 in order to
obtain numbers in the interval [0,1]. We obtajrby the taking the logarithm ofl — x). Our calling
function which sets up the new random variapleay then include statements like
idum=-1;
x=ran0(&idum) ;
y=-log(l.-x);

Example 3

Another function which provides an example for a PDF is
dy
dy = ——, 8.114
p(y)dy @t by ( )
with n > 1. It is normalizable, positive definite, analytically intagle and the integral is invertible,
allowing thereby the expression of a new variable in termth@fold one. The integral

©dy B 1
/0 (a+by)*  (n—1)ban—1’ (8.115)

gives
(n —1)ba™!
dy = ————dy, 8.116
p(y)dy b W ( )
which in turn gives the cumulative function
Y(n—1)ba"t ,
o) = Ply) = [ Py = 8.117)
resulting in
1
—1_ _ 8.118
z(y) AT b/ag) " ( )
or a
i _ ) Y1)
y=73 ((1 z) 1) . (8.119)

With the random variable: € [0, 1] generated by functions likean0, we have again the appropriate
random variable, for a new PDF.

185



Outline of the Monte-Carlo strategy

Example 4, the normal distribution

For the normal distribution, expressed here as
g(x,y) = exp (—(m2 + yz)/2)dwdy. (8.120)

it is rather difficult to find an inverse since the cumulativistidbution is given by the error function
erf(z).

If we however switch to polar coordinates, we havedf@ndy

1/2 1T

r= (22 +y?) 0 = tan ” (8.121)

resulting in
g(r,0) = rexp (—r?/2)drdé, (8.122)

where the anglé could be given by a uniform distribution in the regi@n 2x7]. Following example 1
above, this implies simply multiplying random numbers= [0, 1] by 27. The variabler, defined for

r € [0,00) needs to be related to to random numbers [0, 1]. To achieve that, we introduce a new
variable

u==r° (8.123)

and define a PDF
exp (—u)du, (8.124)

with v € [0, 00). Using the results from example 2, we have that
u=—In(l—21"), (8.125)

wherez’ is a random number generated fdre [0, 1]. With

x = rcos(0) = V2ucos (), (8.126)
and
y = rsin(f) = V2usin(d), (8.127)

we can obtain new random numbaertg, through

x =+/—2In(1 — x')cos(H), (8.128)

and
y =+/—2In(1 — z')sin(0), (8.129)

with 2’ € [0, 1] and@ € 2x[0, 1].
A function which yields such random numbers for the normatritiution would include statements
like

idum=-1;
radius=sqrt(-2*1n(1.-ran0(idum)));
theta=2*pi*ran0(idum) ;
x=radius*cos(theta);
y=radius*sin(theta);



8.4 — Improved Monte Carlo integration

8.4.2 Importance sampling

With the aid of the above variable transformations we addresv one of the most widely used ap-
proaches to Monte Carlo integration, namely importancepiam

Let us assume that(y) is a PDF whose behavior resembles that of a funchatefined in a certain
interval [a, b]. The normalization condition is

b
/ p(y)dy = 1. (8.130)
We can rewrite our integral as

’ ()
I /a F(y)dy /a p(y) P dy. (8.131)
This integral resembles our discussion on the evaluatidgheoénergy for a quantum mechanical system
in Eq. (89%).
Since random numbers are generated for the uniform disiibw(x) with « € [0, 1], we need to
perform a change of variables— y through

Yy
z(y) = / p(y)dy, (8.132)
where we used
p(z)dx = dx = p(y)dy. (8.133)

If we can invertz(y), we findy(z) as well.
With this change of variables we can express the integrabofI31) as

[P Fly) [P F(y(2))
= /a Ply) p(y) = /a p(y(x)) o (6.134)
meaning that a Monte Carlo evalutaion of the above integvalsg
PFly(@) 1 5~ Fly()
[ o=~ 2 S (6139

The advantage of such a change of variables in pagefollows closelyF' is that the integrand becomes
smooth and we can sample over relevant values for the imdgtais however not trivial to find such a
functionp. The conditions om which allow us to perform these transformations are

1. pis normalizable and positive definite,
2. itis analytically integrable and
3. the integral is invertible, allowing us thereby to exgramew variable in terms of the old one.

The variance is now with the definition

i @) (8.136)

given by
s 1L a2 P
o :N;(F> - <N2F> . (8.137)
The algorithm for this procedure is
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— Use the uniform distribution to find the random varialén the interval [0,1]. p(z) is a user
provided PDF.

— Evaluate thereafter

b b
= / Fo)de = / p(x)i((j))dx, (8.138)
by rewriting
RO A A1)
/a P() p(x) d _/a p(z(y)) dy, (8.139)
since
Z—i = (). (8.140)

— Perform then a Monte Carlo sampling for

PFla(y) , 1 s Fla(y)
/a p(z(y)) Wy ; p(z(yi))’ (8.141)

with y; € [0, 1],

— and evaluate the variance as well according to [EQ.(8.137).

8.4.3 Acceptance-Rejection method

This is rather simple and appealing method after von Neumassume that we are looking at an interval
x € [a,b], this being the domain of the POKx). Suppose also that the largest value our distribution
function takes in this interval i8/, that is

p(r) <M x € [a,b]. (8.142)

Then we generate a random numbeirom the uniform distribution for: € [a, b] and a corresponding
numbers for the uniform distribution betweej, M. If

p(x) > s, (8.143)

we accept the new value of else we generate again two new random numbensds and perform the
test in the latter equation again.
As an example, consider the evaluation of the integral

3
I:/ exp (x)dx.
0

Obviously to derive it analytically is much easier, howetrer integrand could pose some more difficult
challenges. The aim here is simply to show how to implent dweptance-rejection algorithm. The
integral is the area below the curydz) = exp (z). If we uniformly fill the rectangle spanned by
z € [0,3] andy € [0,exp (3)], the fraction below the curve obatained from a uniform dstion,
and multiplied by the area of the rectangle, should appraténthe chosen integral. It is rather easy to
implement this numerically, as shown in the following code.
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Acceptance-Rejection algorithm

/1 Loop over Monte Carlo trials n
integral =0.;
for (int i = 1; i <= n; i++){
/1l Finds a random value for x in the interval [0,3]
X = 3xran0(&idum);
/1 Finds y-value between [0,exp(3)]
y = exp(3.0)}xran0(&idum);
/1l if the value of y at exp(x) is below the curve, we accept
if (y < exp(x)) s = s+ 1.0;
/1 The integral is area enclosed below the line f(x)=exp(x)

}

/I Then we multiply with the area of the rectangle and dividg bhe number
of cycles
Integral = 3xexp(3.)xs/n

8.5 Monte Carlo integration of multidimensional integrals

When we deal with multidimensional integrals of the form

1 1 1
1= / dl’l / dl’Q ce / dl’dg(l’l, ce ,J}d), (8.144)
0 0 0
with z; defined in the interval;, b;] we would typically need a transformation of variables of fibren
r; = a; + (b — a;)t;,

if we were to use the uniform distribution on the inter{all]. In this case, we need a Jacobi determinant

and to convert the functiog(z1, ..., z4) to
g(x1,...,2q) — glar + (by — a1)ts, ..., aq + (bg — aq)ta)-

As an example, consider the following sixth-dimensioné&tgmnal

/ dxdyg(x,y), (8.145)
where
g(x,y) =exp(—x* —y* — (x —y)?/2), (8.146)
with d = 6.

We can solve this integral by employing our brute force saheon using importance sampling and
random variables distributed according to a gaussian P@xRhe latter, if we set the mean value= 0
and the standard deviation= 1/ V2, we have

L exp (—a?), (8.147)

NG
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and through
S
w3 — exp (—xf)) exp (—(x — y)?/2)dx;. ... dxg, (8.148)
/ 131 (ﬁ v

we can rewrite our integral as

6
/f(l’l,...,:L‘d)F(:El,...,:I)d)Hdl‘i, (8.149)
=1

wheref is the gaussian distribution.
Below we list two codes, one for the brute force integratio $he other employing importance
sampling with a gaussian distribution.

8.5.1 Brute force integration

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/program4. cpp

#include <iostream >
#include <fstream >
#include <iomanip>
#include "1lib.h"
using namespacestd ;

double brute_force_MC(@ouble x);

/1l Main function begins here
int main()
{

int n;

double x[6], vy, fx;

double int_mc = 0.; double variance = 0.;

double sum_sigma= 0. ;long idum=1 ;

double length=5.; // we fix the max size of the box to L=5
double volume=pow((2length) ,6);

cout << "Read in the number of Monte-Carlo samples" << endl;

cin >> n;
/1l evaluate the integral with importance sampling
for (int i = 1; i <=n; i++){

/1 x[] contains the random numbers for all dimensions
for (int j = 0; j< 6; j++) {
x[j]=—length+2length«xran0(&idum);
}

fx=brute_force_MC(x);
int. mc += fx;
sum_sigma += fxfx;
}
int_ mc = int_mc/((double) n );
sum_sigma = sum_sigma/@double) n );
variance=sum_sigmaint_mcxint_mc;
/1 final output
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << " Monte carlo result= " << setw(10) << setprecision(8) <<
volumexint_mc;
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cout << " Sigma= " << setw(1l0) << setprecision(8) << volumeqrt(
variance /((double) n )) << endl;
return 0;

} // end of main program
/1 this function defines the integrand to integrate
double brute _force_MCg@ouble xx)

{
double a = 1.; double b = 0.5;
/!l evaluate the different terms of the exponential
double xx=x[0]xx[0]+x[1]*x[1]+x[2]*x[2];
double yy=x[3]xx[3]+x[4]*x[4]+x[5]*x[5];
double xy=pow ((x[0]-x[3]) ,2)+pow ((x[1]-x[4]) ,2)+pow ((x[2]-Xx[5]) ,2);
return exp(—axxx—axyy—bxxy);
} /1 end function for the integrand

8.5.2 Importance sampling

This code includes a call to the functietwormal_random, which produces random numbers from a
gaussian distribution.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter08/cpp/programb. cpp

/Il importance sampling with gaussian deviates
#include <iostream >

#include <fstream >

#include <iomanip>

#include "1lib.h"

using namespacestd;

double gaussian_MCd@ouble x);
double gaussian_deviatdéng x);

/1 Main function begins here
int main ()
{

int n;

double x[6], vy, fx;
cout << "Read in the number of Monte-Carlo samples" << endl;
cin >> n;
double int_mc = 0.; double variance = 0.;
double sum_sigma= 0. ;long idum=1 ;
double length=5.; // we fix the max size of the box to L=5
double volume=pow(acos{1.),3.);
double sqrt2 = 1./sqrt(2.);
/1 evaluate the integral with importance sampling
for (int i = 1; i <= n; i++){
/1l x[] contains the random numbers for all dimensions
for (int j = 0; j < 6; j++) {
X[j] = gaussian_deviate(&idumgsqrt2;
}
fx=gaussian_MC(x);
int_mc += fx;
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sum_sigma += fxfx;
}
int_mc = int_mc/((double) n );
sum_sigma = sum_sigma/@double) n );
variance=sum_sigmaint_mcx«int_mc;
/1l final output

cout << setiosflags(ios::showpoint | ios::uppercase);

cout << " Monte carlo result= " << setw(10) << setprecision(8) <<
volumexint_mc;

cout << " Sigma= " << setw (10) << setprecision(8) << volumsqrt(
variance /((double) n )) << endl;

return O;

} // end of main program
/1 this function defines the integrand to integrate

double gaussian_MCg@ouble xx)

{
double a = 0.5;

/Il evaluate the different terms of the exponential
double xy=pow ((x[0]-x[3]) ,2)+pow ((x[1]-x[4]) ,2)+pow ((x[2]-x[5]) .2);
return exp(—axxy);

} // end function for the integrand

/1 random numbers with gaussian distribution

double gaussian_deviatdfng =« idum)

{
static int iset = O0;
static double gset;
double fac, rsq, vl, v2;

if ( idum < 0) iset =0;
if (iset == 0) {

do {
vl = 2xran0O(idum) —1.0;
v2 = 2.xran0(idum) —1.0;

rsqg = vilxvl+v2xv2;
} while (rsq >= 1.0 || rsq == 0.);
fac = sqrt(-2.xlog(rsq)/rsq);
gset = vikfac;
iset = 1;
return v2xfac;
} else {
iset =0;
return gset;
}

} // end function for gaussian deviates

The following table lists the results from the above two pamgs as function of the number of Monte
Carlo samples. The suffix stands for the brute force approach whitestands for the use of a Gaussian
distribution function. One sees clearly that the approdither Gaussian distribution function yields a
much improved numerical result, with fewer samples.
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Table 8.4: Results for as function of number of Monte Carlogi@s/N. The exact answer i~ 10.9626
for the integral. The suffixr stands for the brute force approach whitestands for the use of a Gaussian
distribution function. All calculations use ran0 as functito generate the uniform distribution.
N Icr [gd
10000 1.15247E+01 1.09128E+01
100000 1.29650E+01 1.09522E+01
1000000 1.18226E+01 1.09673E+01
10000000 1.04925E+01 1.09612E+01

8.6 Exercises and projects

Exercise 8.1: Cumulative functions

Calculate the cumulative functio3(z) for the binomial and the Poisson distributions and theii-var
ances.

Exercise 8.2: Random number algorithm

Make a program which computes random numbers accordingetalgjorithm of Marsaglia and Zaman,

Egs. [B7B) and[{8.79). Compute the correlation functignand compare with the auto-correlation
function from the function-an0.

Exercise 8.3: Normal distribution and random numbers

Make a functiommormal_random which computes random numbers for the normal distributiasell
on random numbers generated from the functionoO.

Exercise 8.4: Exponential distribution and random numbers

Make a functiorexp_random which computes random numbers for the exponential digtobyw(y) =
e~ based on random numbers generated from the functiof.

Exercise 8.5: Monte Carlo integration

(a) Calculate the integral

1 2
I:/ e *dzx,
0

using brute force Monte Carlo with(z) = 1 and importance sampling wiih(x) = ae™* where
a is a constant.

(b) Calculate the integral

i 1
=/ — 4
/0 22 + cos?(x) “

with p(z) = ae™* wherea is a constant. Determine the valuecofvhich minimizes the variance.
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Project 8.1: Decay of'°Bi and?'°Po

In this project we are going to simulate the radioactive gemfathese nuclei using sampling through
random numbers. We assume that at 0 we haveNx (0) nuclei of the typeX which can decay
radioactively. At a given time we are left withNx (¢) nuclei. With a transition rate’x, which is the
probability that the system will make a transition to anotsiate during a time step of one second, we
get the following differential equation

dNX (t) = —wXNX (t)dt,

whose solution is
Nx(t) = Nx(0)e ",

and where the mean lifetime of the nucleXiss
1

T=—"
wx
If the nucleusX decays tdr’, which can also decay, we get the following coupled equation
dNx (t)

— > = —wxNx(t
dt wx X()a

and
dNy (t)

dt
We assume that @t = 0 we haveNy (0) = 0. In the beginning we will have an increase &f
nuclei, however, they will decay thereafter. In this projee let the nucleud'°Bi representX. It decays
through 3-decay to*'°Po, which is theY” nucleus in our case. The latter decays through emision of an
a-particle to2°Pb, which is a stable nucleu$!’Bi has a mean lifetime of 7.2 days whit¢’Po has a

mean lifetime of 200 days.

= —wy Ny (t) + wx Nx(t).

a) Find analytic solutions for the above equations assugongjnuous variables and setting the num-
ber of219Po nuclei equal zero at= 0.

b) Make a program which solves the above equations. Whatdasonable choice of timestép.?
You could use the program on radioactive decay from the vegle f the course as an example
and make your own for the decay of two nuclei. Compare thdteeBom your program with the
exact answer as function ofx (0) = 10, 100 and1000. Make plots of your results.

c) When?'°Po decays it produces arparticle. At what time does the production@particles reach
its maximum? Compare your results with the analytic ones\Mg(0) = 10, 100 and1000.

Project 8.2: Numerical integration of the correlation eggrof the helium atom

The task of this project is to integrate in a brute force maargx-dimensional integral which is used to
determine the ground state correlation energy between leetrens in a helium atom. We will employ
both Gauss-Legendre quadrature and Monte-Carlo integrafiurthermore, you will need to parallelize
your code for the Monte-Carlo integration.

We assume that the wave function of each electron can be taddide the single-particle wave
function of an electron in the hydrogen atom. The singldigarwave function for an electrohnin the
1s state is given in terms of a dimensionless variable (the i@vetion is not properly normalized)

r, = x;e; + Yi€y + z;€e,,
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as

Prs(r;) = e,

r; = \/m?—l—y?—l—z?.

We will fix a = 2, which should correspond to the charge of the helium atos 2.
The ansatz for the wave function for two electrons is theremiby the product of twds wave
functions as

whereq is a parameter and

U(ry,rp) = e lmr2),

Note that it is not possible to find an analytic solution to 1®dnger's equation for two interacting
electrons in the helium atom.

The integral we need to solve is the quantum mechanical &dat value of the correlation energy
between two electrons, namely

1 & 1

— )= / dridroe=20m+r2)___— (8.150)
[ty — 12 oo r1 — 12

Note that our wave function is not normalized. There is a radiation factor missing, but for this project

we don’t need to worry about that.

a) Use Gauss-Legendre quadrature and compute the intggiratelgrating for each variable,, y1,
21, T2, Y2, 22 from —oo to co. How many mesh points do you need before the results corvetge
the level of the fourth leading digit? Hint: the single-peld wave functiore™*" is more or less
zero atr; ~ 10 — 15. You can therefore replace the integration limitso and oo with —10 and
10, respectively. You need to check that this approximaticsatssfactory.

b) Compute the same integral but now with brute force MontddCand compare your results with
those from the previous point. Discuss the differenceshWitice force we mean that you should
use the uniform distribution.

¢) Improve your brute force Monte Carlo calculation by usingportance sampling. Hint: use the
exponential distribution. Does the variance decrease beeCPU time used compared with the
brute force Monte Carlo decrease in order to achieve the sameacy? Comment your results.

d) Parallelize your code from the previous point and compiaeeCPU time needed with that from
point [c)]. Do you achieve a good speedup?

e) The integral of EqL{8.I50) has an analytical expres<tam you find it?
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Chapter 9

Random walks and the Metropolis
algorithm

Nel mezzo del cammin di nostra vita, mi ritrovai per una selsaura, ché la diritta via
era smarrita. (Divina Commedia, Inferno, Canto I, D&pte Alighieri

The way that can be spoken of is not the constant way. (Tao TegCBook I, 1.1} .ao
Tzu

9.1 Motivation

In the previous chapter we discussed technical aspects ofévidarlo integration such as algorithms
for generating random numbers and integration of multidisi@nal integrals. The latter topic served to
illustrate two key topics in Monte Carlo simulations, naynalproper selection of variables and impor-
tance sampling. An intelligent selection of variables, djgampling techniques and guiding functions
can be crucial for the outcome of our Monte Carlo simulatioBsamples of this will be demonstrated
in the chapters on statistical and quantum physics apjitat Here we make a detour however from
this main area of applications. The focus is on diffusion erdlom walks. The rationale for this is that
the tricky part of an actual Monte Carlo simulation residethie appropriate selection of random states,
and thereby numbers, according to the probability distidiou(PDF) at hand. With appropriate there is
however much more to the picture than meets the eye.

Suppose our PDF is given by the well-known normal distrimutiThink of for example the velocity
distribution of an ideal gas in a container. In our simulasiove could then accept or reject new moves
with a probability proportional to the normal distributiohis would parallel our example on the sixth
dimensional integral in the previous chapter. Howeverhia tase we would end up rejecting basically
all moves since the probabilities are exponentially snraliniost cases. The result would be that we
barely moved from the initial position. Our statistical eages would then be significantly biased and
most likely not very reliable.

Instead, all Monte Carlo schemes used are based on Markaegs®s in order to generate new
random states. A Markov process is a random walk with a salgmtobability for making a move. The
new move is independent of the previous history of the sysfEme Markov process is used repeatedly
in Monte Carlo simulations in order to generate new randatest The reason for choosing a Markov
process is that when it is run for a long enough time startiith & random state, we will eventually
reach the most likely state of the system. In thermodynantiiis means that after a certain number of
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Markov processes we reach an equilibrium distribution.sThimicks the way a real system reaches its
most likely state at a given temperature of the surroundings

To reach this distribution, the Markov process needs to dlveymportant conditions, that of ergod-
icity and detailed balance. These conditions impose thestraints on our algorithms for accepting or
rejecting new random states. The Metropolis algorithmudised here abides to both these constraints
and is discussed in more detail in Secfiod 9.5. The Metre@orithm is widely used in Monte Carlo
simulations of physical systems and the understanding wsifs within the interpretation of random
walks and Markov processes. However, before we do that veeisisthe intimate link between random
walks, Markov processes and the diffusion equation. InieefL3 we show that a Markov process is
nothing but the discretized version of the diffusion equatiDiffusion and random walks are discussed
from a more experimental point of view in the next sectionefBhwe show also a simple algorithm for
random walks and discuss eventual physical implications.ewd this chapter with a discussion of one
of the most used algorithms for generating new steps, natheliletropolis algorithm. This algorithm,
which is based on Markovian random walks satisfies both thedicity and detailed balance require-
ments and is widely in applications of Monte Carlo simulasion the natural sciences. The Metropolis
algorithm is used in our studies of phase transitions inssiizdl physics and the simulations of quantum
mechanical systems.

9.2 Diffusion equation and random walks

Physical systems subject to random influences from the armb#ve a long history, dating back to the
famous experiments by the British Botanist R. Brown on podiedifferent plants dispersed in water. This
lead to the famous concept of Brownian motion. In generaglisinactions of any system exhibit the same
behavior when exposed to random fluctuations of the mediultihodgh apparently non-deterministic,
the rules obeyed by such Brownian systems are laid out will@rframework of diffusion and Markov
chains. The fundamental works on Brownian motion were agaxl by A. Einstein at the turn of the last
century.

Diffusion and the diffusion equation are central topics @tfbPhysics and Mathematics, and their
ranges of applicability span from stellar dynamics to ttudion of particles governed by Schrédinger’s
equation. The latter is, for a free particle, nothing butdifiision equation in complex time!

Let us consider the one-dimensional diffusion equation. sStiely a large ensemble of particles
performing Brownian motion along the-axis. There is no interaction between the particles.

We definew(z, t)dx as the probability of finding a given number of particles inraterval of length
dxinz € [z, x+dz] atatimet. This quantity is our probability distribution functionfF). The quantum
physics equivalent ofv(z,t) is the wave function itself. This diffusion interpretatiof Schrodinger’s
equation forms the starting point for diffusion Monte Cadchniques in quantum physics.

Good overview texts are the books of Robert and Casella anakdés, see Refs. [46, 50].

9.2.1 Diffusion equation

From experiment there are strong indications that the flugaoficles;j(z,t), viz., the number of par-
ticles passinge at a timet is proportional to the gradient afi(x,¢). This proportionality is expressed
mathematically through

ow(z,t)

jast) = D=0, 9.1
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where D is the so-called diffusion constant, with dimensionaligndti? per time. If the number of
particles is conserved, we have the continuity equation

dj(z,t) _ Ow(x,?)

Oz ot ’

(9.2)

which leads to
ow(w,t) Dazw(aj, t)
ot ox?
which is the diffusion equation in one dimension.
With the probability distribution functiom (x, t)dz we can use the results from the previous chapter

to compute expectation values such as the mean distance

(9.3)

(x(t)) = /_OO zw(x,t)dx, 9.4)
or o
(2*(t)) :/_ z2w(z, t)dz, (9.5)

which allows for the computation of the variangg = (x2(t))— (z(t))2. Note well that these expectation
values are time-dependent. In a similar way we can also defipectation values of functionqz, t) as

(f(x,t)) = /_OO f(z, t)w(z, t)dz. (9.6)

Sincew(z,t) is now treated as a PDF, it needs to obey the same criterissagsdied in the previous
chapter. However, the normalization condition

/OO w(z,t)dx =1 (9.7)

imposes significant constraints arfx, t). These are

0"w(z,t)

w(z = £o0,t) =0 B |z=a00

=0, (9.8)

implying that when we study the time-derivatiggx(t)) /0t, we obtain after integration by parts and

using Eq.[[@B)
ox) [ Ow(z,t), © Jw(x,t)
leading to
ox) . Ow(x,t) B * Jw(z,t)
BT = Dx gy lo=-too D/_OO g dx, (9.10)
implying that
ox) _
o 0. (9.112)

This means in turn thatr) is independent of time. If we choose the initial positioft = 0) = 0,
the average displacemefit) = 0. If we link this discussion to a random walk in one dimensiathw
equal probability of jumping to the left or right and with amitial positionxz = 0, then our probability
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distribution remains centered aroufx} = 0 as function of time. However, the variance is not necessaril

0. Consider first )
O{x*) Zﬁw( t)  OJw(zx,t)
T = Dz pe lo=too — 2D/ o ——~duz, (9.12)

where we have performed an integration by parts as we di@é—fer A further integration by parts results
in

a<$2> 00
5 = —Dzw(z,t)|z=t00 + 2D w(x,t)dr = 2D, (9.13)
leading to
(x*) = 2Dt, (9.14)
and the variance as
(z?) — () = 2Dt. (9.15)

The root mean square displacement after a tiisghen

V(x?) — ()2 = V2Dt. (9.16)

This should be contrasted to the displacement of a freecpaxtiith initial velocity vg. In that case the
distance from the initial position after a timés x(¢) = vt whereas for a diffusion process the root mean
square value i/ (z?) — o v/t. Since diffusion is strongly linked with random walks, weutthsay
that a random walker escapes much more slowly from the rsgigpidint than would a free particle. We
can vizualize the above in the following figure. In Hig.]9.1 khave assumed that our distribution is given
by a normal distribution with variancg? = 2Dt, centered at = 0. The distribution reads

x2

1
= exp (——
VAn Dt P 4Dt

Atatimet = 2s the new variance i8> = 4Ds, implying that the root mean square valug/igr?) — (z)? =
2v/D. At a further timet = 8 we have,/(z2) — (z)2 = 4v/D. While time has elapsed by a factor of
4, the root mean square has only changed by a factor of 2.[Higdémonstrates the spreadout of the
distribution as time elapses. A typical example can be tffasibn of gas molecules in a container or
the distribution of cream in a cup of coffee. In both cases areassume that the the initial distribution
is represented by a normal distribution.

w(zx, t)dx )dx. (9.17)

9.2.2 Random walks

Consider now a random walker in one dimension, with prolitgb®® of moving to the right and. for
moving to the left. Att = 0 we place the walker at = 0, as indicated in Fid.912. The walker can
then jump, with the above probabilities, either to the laftamthe right for each time step. Note that
in principle we could also have the possibility that the vealkemains in the same position. This is not
implemented in this example. Every step has len§jth= [. Time is discretized and we have a jump
either to the left or to the right at every time step. Let us m@sume that we have equal probabilities for
jumping to the left or to the right, i.el, = R = 1/2. The average displacement aftetime steps is

=> Az; =0 Az, = +l, (9.18)
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w(zx,t)dx0.1 -
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Figure 9.1: Time development of a normal distribution witirignces? = 2Dt and withD = 1m?/s.
The solid line represents the distributiontat 2s while the dotted line stands for= 8s.

-3l -2 —l z=0 l 2l 3l

Figure 9.2: One-dimensional walker which can jump eithethto left or to the right. Every step has
lengthAxz = 1.
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since we have an equal probability of jumping either to ttiedeto right. The value ofz(n)?) is
n 2 n n
(z(n)?) = (Z Awi> = Z Ax? + Z Az;Az; = I*n. (9.19)
i i i#j

For many enough steps the non-diagonal contribution is

N
> AxiAx; =0, (9.20)
i#j
sinceAxz; ; = £1. The variance is then
(x(n)?) — (z(n))? = I’n. (9.21)

It is also rather straightforward to compute the variancelfez R. The result is
(z(n)?) — (z(n))*> = ALRI*n. (9.22)

In Eq. (321) the variable represents the number of time steps. If we define ¢/At, we can then
couple the variance result from a random walk in one dimensiith the variance from the diffusion
equation of Eq.[{9.15) by defining the diffusion constant as

l2

In the next section we show in detail that this is the case.

The program below demonstrates the simplicity of the omeedisional random walk algorithm. Itis
straightforward to extend this program to two or three disi@ms as well. The input is the number of time
steps, the probability for a move to the left or to the right #me total number of Monte Carlo samples. It
computes the average displacement and the variance foendem walker for a given number of Monte
Carlo samples. Each sample is thus to be considered as oegregpt with a given number of walks.
The interesting part of the algorithm is described in thecfiom mc_sampling The other functions read
or write the results from screen or file and are similar incttrce to programs discussed previously. The
main program reads the name of the output file from screenetadip the arrays containing the walker's
position after a given number of steps. The correspondingram for a two-dimensional random walk
(not listed in the main text) is found under programs/ch&apeogram?2.cpp

D (9.23)

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/programl . cpp

/%
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/

#include <iostream >

#include <fstream >

#include <iomanip>

#include "1ib.h"

using namespace std;

// Function to read in data from screen, note call by referenc
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9.2 — Diffusion equation and random walks

void initialise (int&, int&, double&) ;

[/l The Mc sampling for random walks

void mc_sampling(nt, int, double, int x, int x);

/I prints to screen the results of the calculations
void output(int, int, int x, int x);

int main()
{
int max_trials, number_walks;
double move_probability;
/I Read in data
initialise (max_trials , number_walks, move_probability;
int xwalk_cumulative =new int [number_walks+1];
int xwalk2_cumulative =new int [number_walks+1];
for (int walks = 1; walks <= number_walks; walks++){
walk_cumulative[walks] = walk2_cumulative[walks] = O0;
} // end initialization of vectors
/I Do the mc sampling
mc_sampling (max_trials , number_walks, move_ probalyiljt
walk_cumulative , walk2_cumulative);
/1l Print out results
output(max_trials , number_walks, walk_cumulative ,
walk2 cumulative);
delete [] walk_cumulative; // free memory
delete [] walk2_cumulative;
return O;
} // end main function

The input and output functions are

void initialise (int& max_trials, int& number_walks, double& move_ probability

)

cout << "Number of Monte Carlo trials =";
cin >> max_trials;
cout << "Number of attempted walks=",;
cin >> number_walks;
cout << "Move probability=";
cin >> move_probability;
} // end of function initialise

void output(int max_trials, int number_walks,
int xwalk_cumulative , int xwalk2_cumulative)
{

ofstream ofile ("testwalkers.dat");

for( int i = 1; i <= number_walks; i++){
double xaverage = walk_cumulative[i]/(double) max_trials);
double x2average = walk2_ cumulative[i]/(double) max_trials);
double variance = x2average xaveragexaverage;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(6) << i;
ofile << setw(15) << setprecision (8) << xaverage;
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ofile << setw(15) << setprecision(8) << variance << endl;

ofile.close ();
} // end of function output

The algorithm is in the functiomc_samplingand tests the probability of moving to the left or to the right
by generating a random number.

void mc_sampling (nt max_trials , int number_walks,
double move_probability , int xwalk_cumulative ,
int xwalk2_cumulative)
{
long idum;
idum=—1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks; walks++){
if (ran0(&idum) <= move_probability) {
position += 1;
}

else {
position —= 1;
}
walk _cumulative[walks] += position;
walk2 cumulative[walks] += positiorposition;
} /1 end of loop over walks
} // end of loop over trials
} /1 end mc_sampling function

Fig.[@.3 shows that the variance increases linearly asiimctf the number of time steps, as expected
from the analytic results. Similarly, the mean displacenieirig.[9.4 oscillates around zero.

9.3 Microscopic derivation of the diffusion equation

When solving partial differential equations such as thiudibn equation numerically, the derivatives are
always discretized. Recalling our discussions from Chdifiteve can rewrite the time derivative as

ow(z,t) w(i,n+1)—w(i,n)

ot At ’ (9.24)
whereas the gradient is approximated as
0w (z,t) w(i+1,n) +w(i — 1,n) — 2w(i,n)

D "~ =~ D : : : 9.25
Ox? (Az)? ’ (9-25)

resulting in the discretized diffusion equation

w(i,n+1)—w(,n)  _wi@+1n)+w(i—1n)—2w(i,n)

A7 =D (An)? , (9.26)

wheren represents a given time step analstep in thes-direction. We will come back to the solution of
such equations in our chapter on partial differential eiguat see Chapt&€ril5. The aim here is to show
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Figure 9.3: Time development of for a random walker. 100000 Monte Carlo samples were usédd wit
the function ranl and a seed setio.
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Figure 9.4: Time development @¢&(¢)) for a random walker. 100000 Monte Carlo samples were used
with the function ranl and a seed sett0.
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that we can derive the discretized diffusion equation froifeakov process and thereby demonstrate the
close connection between the important physical procdfssidin and random walks. Random walks
allow for an intuitive way of picturing the process of diffas. In addition, as demonstrated in the
previous section, it is easy to simulate a random walk.

9.3.1 Discretized diffusion equation and Markov chains

A Markov process allows in principle for a microscopic dgstion of Brownian motion. As with the
random walk studied in the previous section, we considertcfgmwhich moves along the-axis in the
form of a series of jumps with step lengthiz = /. Time and space are discretized and the subsequent
moves are statistically indenpendent, i.e., the new moper#s only on the previous step and not on the
results from earlier trials. We start at a positien= jI = jAx and move to a new positian = iAx
during a stepAt = ¢, wherei > 0 andj > 0 are integers. The original probability distribution fuioct
(PDF) of the patrticles is given by;(t = 0) wherei refers to a specific position on the grid in HIg.]9.2,
with ¢ = 0 representing: = 0. The functionw; (¢ = 0) is now the discretized version af(z, t). We can
regard the discretized PDF as a vector. For the Markov psogeshave a transition probability from a
positionz = jl to a positionz = il given by

Wiile) = Wil —jley = 2 li=dl=1 9.27)
Y ' 0 else '

We call W;; for the transition probability and we can represent it, selevs, as a matrix. Our new PDF
w;(t = €) is now related to the PDF at= 0 through the relation

This equation represents the discretized time-developofen original PDF. It is a microscopic way of
representing the process shown in [Eig] 9.1. Since Bétandw represent probabilities, they have to be
normalized, i.e., we require that at each time step we have

> wi(t) =1, (9.29)

and
YW —i)=1. (9.30)
J

The further constraints ae< W;; < 1 and0 < w; < 1. Note that the probability for remaining at the
same place is in general not necessarily equal zero. In odkdMgrocess we allow only for jumps to
the left or to the right.

The time development of our initial PDF can now be represktiteough the action of the transition
probability matrix appliedh times. At a timet,, = ne our initial distribution has developed into

wi(tn) = Z Wij(tn)wj(0)7 (9.31)
J
and defining
W (il — jl,ne) = (W"(€)); (9.32)
we obtain
wi(ne) =Y (W"(€))iw;(0), (9.33)

J
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or in matrix form )
w(ne) = W"(e)w(0). (9.34)

The matrix/¥ can be written in terms of two matrices
R 1 /.
W= (L n R) , (9.35)

whereL andR represent the transition probabilities for a jump to thedetthe right, respectively. For a
4 x 4 case we could write these matrices as

0 0 0 O

. 1 0 00

R = 0100 | (9.36)
0 010

and

01 0 O

A 0010

L= 00 0 1 (9.37)
0 0 0 O

However, in principle these are infinite dimensional masisince the number of time steps are very
large or infinite. For the infinite case we can write these itedrR;; = 0; ;1) and L;; = (41,5,
implying that

LR =RL=1, (9.38)

and R R
L=R" (9.39)

To see thal.R = RL = 1, perform e.g., the matrix multiplication
LR=> LyBj = 6(is1)uh,(j+1) = it1,5+1 = 0ij, (9.40)
! p

and only the diagonal matrix elements are different fronozer
For the first time step we have thus

e 1. 4
W= (L+R), (9.41)
and using the properties in EgE.(9.38) dnd (9.39) we haee @b time steps
572 L oo 5o X
W2(20) = 5 (L + R+ 2RL> , (9.42)
and similarly after three time steps

W3(3¢) = (133 + R+ 3RL? + 31%%) . (9.43)

|

Using the binomial formula

n

< Z ) ako"F = (a +b)", (9.44)
k=0
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we have that the transition matrix afteitime steps can be written as

n

n o 1 n pk1tn—k
W(ne))—2—nz<k>RL , (9.45)
k=0
or
Tn o 1 - n rn—2k 1 2 n H2k—n
W(ne))—2—nz<k>L _Q_nZ<k>R , (9.46)
k=0 k=0
and usingR;? = &; (j1m) andL;} = d(;1m),; We arrive at
W(il — jl,ne) ={ 2" ( Lin+i—j) ) i—jl<n , (9.47)
0 else

andn + i — 7 has to be an even number. We note that the transition matraNtarkov process has three
important properties:

— It depends only on the difference in space j, it is thus homogenous in space.
— Itis also isotropic in space since it is unchanged when wea@u {i, j) to (—i, —j).

— It is homogenous in time since it depends only the differdme®veen the initial time and final
time.

If we place the walker at = 0 att = 0 we can represent the initial PDF with;(0) = d; . Using
Eq. (83%4) we have

n 1 n
wi(ne) = Zj:(W (€))ijw; (0) = ZJ: o0 < Ln+i—j) > 35,05 (9.48)
resulting in
(ne) = — n | < (9.49)
w;(ne) = 7\ L+ li| <n :
Using the recursion relation for the binomials
n+1 _ n n
<%(n+1+z‘)>>_<%<n+z‘+1>>+<%(nﬂ')—l) 9:50)
we obtain, defining: = il, t = ne and setting
w(z,t) = w(il, ne) = w;(ne), (9.51)
w(z,t+¢€) = %w(m+l,t) + %w(:n—l,t), (9.52)

and adding and subtracting(z, t) and multiplying both sides witt? /¢ we have

p— 2 - -
w(x,t +€) —w(x,t) _ ;_w(x +1,t) 27«”53257 ) +w@—1, t)’ (9.53)
€ €

and identifyingD = [?/2¢ and lettingl = Az ande = At we see that this is nothing but the discretized
version of the diffusion equation. Taking the limitst — 0 andA¢ — 0 we recover
ow(w,t) Dazw(ac,t)
ot ox?

the diffusion equation.
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9.3 — Microscopic derivation of the diffusion equation

An illustrative example

The following simple example may hglp in understanding theaning of the transition matrik’ and
the vectorp. Consider the x 3 matrix W

1/4 1/8 2/3
W=\ 3/4 5/8 0 |,
0 1/4 1/3

and we choose our initial state as

wt=0)=| 0
0

We note that both the vector and the matrix are properly nizeth Summing the vector elements gives
one and summing over columns for the matrix results also & &¥de act then om with 1. The first
iteration is

wilt = €) = W(j — iJu;(t = 0),

resulting in
1/4
w(t=¢€) =1 3/4
0

The next iteration results in
wilt = 2€¢) = W(j — iJw;(t = e),

resulting in
5/23
W(t =2¢) = | 21/32
6/32
Note that the vectot) is always normalized td. We find the steady state of the system by solving the

linear set of equations
w(t =00) = Ww(t = 00).

~—

This linear set of equations reads

anl(t = OO) + ngwg(t = OO) + W13w3(t = OO) = wl(t = OO)
ngwl(t = OO) + ngwg(t = OO) + ng’wg(t = OO) = wg(t = OO)
ngwl(t = OO) + ngwg(t = OO) + ng’wg(t = OO) = ’wg(t = OO)

(9.54)

with the constraint that

Zwi(t =o0) =1,

yielding as solution
4/15
w(t=00)=1[ 8/15
3/15
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Table 9.1: Convergence to the steady state as function obeuof iterations.

lteration w; wWo w3
1.00000 0.00000 0.00000
0.25000 0.75000 0.00000
0.15625 0.62625 0.18750
0.24609 0.52734 0.22656
0.27848 0.51416 0.20736
0.27213 0.53021 0.19766
0.26608 0.53548 0.19844
0.26575 0.53424 0.20002
0.26656 0.53321 0.20023
9 0.26678 0.53318 0.20005
10 0.26671 0.53332 0.19998
11 0.26666 0.53335 0.20000
12 0.26666 0.53334 0.20000
13 0.26667 0.53333 0.20000
w(t =o00) 0.26667 0.53333 0.20000

coO~NO O~ WNPEFO

Table[9.1 demonstrates the convergence as a function ofithber of iterations or time steps. We have
aftert-steps

Ww(t) = W (0),

with w(0) the distribution at = 0 andW representing the transition probability matrix. We canagiss
expandw (0) in terms of the right eigenvectofsof W as

W(O) = Z Oél'\A/Z',
%

resulting in
W(t) = Wiw(0) = W'D a9 =Y Moy,

with \; thei*® eigenvalue corresponding to the eigenveétor

If we assume thah is the largest eigenvector we see that in the limit> oo, W(t) becomes
proportional to the corresponding eigenvectgr This is our steady state or final distribution.
9.3.2 Continuous equations

Hitherto we have considered discretized versions of albéqgns. Our initial probability distribution
function was then given by

w;(0) = 04,0,
and its time-development after a given time step= ¢ is

wi(t) = Z W (j — i)w;(t = 0).

J
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The continuous analog to; (0) is
w(x) — §(x), (9.55)

where we now have generalized the one-dimensional posittona generic-dimensional vectar The
Kroeneckemn function is replaced by thédistribution functioni(x) at¢ = 0.
The transition from a statgto a state is now replaced by a transition to a state with posigoinom
a state with positiorx. The discrete sum of transition probabilities can then Ipdad by an integral
and we obtain the new distribution at a time- At as
w(y,t+ At) = /W(y,x, At)w(x, t)dx, (9.56)
and aftemn time steps we have
w(y,t +mAt) = /W(y,x,mAt)w(x,t)dx. (9.57)
When equilibrium is reached we have

w(y) = /W(y,x,t)w(x)dx. (9.58)

We can solve the equation far(y,¢) by making a Fourier transform to momentum space. The PDF
w(x, t) is related to its Fourier transform(k, ¢) through

w(x,t) = /OO dk exp (ikx)w(k,t), (9.59)

—00

and using the definition of thé&function
1 [ .
i(x) = 2—/ dk exp (ikx), (9.60)
7T — o

we see that
w(k,0) = 1/27. (9.61)

We can then use the Fourier-transformed diffusion equation

ok, t) _ —DK%i(k, 1), (9.62)
ot
with the obvious solution
w(k,t) = w(k,0)exp [—(Dk*t)) = 2i exp [—(Dk?t)]. (9.63)
v

Using Eqg. [Q.5P) we obtain

_[7 : 1 o L 2
w(x,t) = /_OO dk exp [ikx] 5 CXP [—(Dk*t)] = \/mexp [—(x*/4Dt)], (9.64)
with the normalization condition -
w(x,t)dx = 1. (9.65)
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It is rather easy to verify by insertion that EQ.(9.64) is luson of the diffusion equation. The solution
represents the probability of finding our random walker aifmn x at time¢ if the initial distribution
was placed ak = 0 att = 0.

There is another interesting feature worth observing. Tiberete transition probabilityl itself is
given by a binomial distribution, see ER.{9.47). The resfutim the central limit theorem, see Séct. 8.2.2,
state that transition probability in the limit— oo converges to the normal distribution. Itis then possible
to show that

W (il — jl,ne) — W(y,x, At) = xp [~ ((y — x)?/ADAt)], (9.66)

1
— ¢
VAT DAt

and that it satisfies the normalization condition and idfisssolution to the diffusion equation.

9.3.3 Numerical simulation

In the two previous subsections we have given evidence tiharov process actually yields in the
limit of infinitely many steps the diffusion equation. It ks therefore in a physical intuitive way the
fundamental process of diffusion with random walks. It cbtilerefore be of interest to visualize this
connection through a numerical experiment. We saw in théque subsection that one possible solution
to the diffusion equation is given by a normal distributiolm addition, the transition rate for a given
number of steps develops from a binomial distribution inftmamal distribution in the limit of infinitely
many steps. To achieve this we construct in addition a hiatogvhich contains the number of times the
walker was in a particular positian. This is given by the variablgrobability, which is normalized in
the output function. We have omitted the initialization dtion, since this identical to programl.cpp or
program?2.cpp of this chapter. The arrayobability extends from-number_walk$o +number_walks

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter09/cpp/program?.cpp

[ *
1-dim random walk program.
A walker makes several trials steps with
a given number of walks per trial

*/

#include <iostream >

#include <fstream>

#include <iomanip>

#include "1lib.h"

using namespace std;

/! Function to read in data from screen, note call by referenc
void initialise (int&, int&, double&) ;

I/l The Mc sampling for random walks

void mc_sampling(nt , int, double, int %, int x, int x);

/I prints to screen the results of the calculations

void output(int, int, int x, int x, int x);

int main()
{
int max_trials, number_walks;
double move_probability;
// Read in data
initialise (max_trials , number_walks, move_probability;
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int xwalk_cumulative =new int [number_walks+1];

int xwalk2_cumulative =new int [number_walks+1];

int xprobability =new int [2x(number_walks+1)];

for (int walks = 1; walks <= number_walks; walks++){
walk_cumulative[walks] = walk2_cumulative[walks] = O0;

}

for (int walks = 0; walks <= 2number_walks; walks++){
probability [walks] = 0;

} // end initialization of vectors

/1 Do the mc sampling

mc_sampling (max_trials , number_walks, move_ probalyiljt

walk _cumulative , walk2 cumulative, probability);
/I Print out results
output(max_trials , number_walks, walk_cumulative ,
walk2 cumulative , probability);

delete [] walk_cumulative; // free memory

delete [] walk2_ cumulative; delete [] probability;

return O;

} // end main function

The output function contains now the normalization of thebability as well and writes this to its own
file.

void output(int max_trials , int number_walks,
int xwalk_cumulative , int xwalk2_cumulative ,int % probability)
{
ofstream ofile ("testwalkers.dat");
ofstream probfile (probability.dat");
for( int i = 1; i <= number_walks; i++){
double xaverage = walk_cumulative[i]/(double) max_trials);
double x2average = walk2_ cumulative[i]/(double) max_trials);
double variance = x2average xaveragexaverage;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(6) << i;
ofile << setw(15) << setprecision(8) << xaverage;
ofile << setw(15) << setprecision(8) << variance << endl;
ofile.close ();
/1 find norm of probability
double norm = 0.;
for( int i = —number_walks; i <= number_walks; i++){
norm += (double) probability[i+number_walks];
}
/1l write probability
for( int i = —number_walks; i <= number_walks; i++){
double histogram = probability[i+number_walks]/norm;
probfile << setiosflags(ios::showpoint | ios::uppercase
probfile << setw(6) << i;
probfile << setw(15) << setprecision(8) << histogram << énd
probfile.close ();
} // end of function output
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The sampling part is still done in the same function, but @mstnow the setup of a histogram containing
the number of times the walker visited a given position

void mc_sampling (nt max_trials , int number_walks,
double move_probability , int xwalk_cumulative ,
int xwalk2_cumulative , int xprobability)
{
long idum;
idum=—1; // initialise random number generator
for (int trial=1; trial <= max_trials; trial++){
int position = 0;
for (int walks = 1; walks <= number_walks; walks++){
if (ran0(&idum) <= move_probability) {
position += 1;
}

else {
position —= 1;
}

walk _cumulative[walks] += position;
walk2 _cumulative[walks] += positiorposition;
probability[position+number_walks] += 1;
} // end of loop over walks
} // end of loop over trials
} /I end mc_sampling function

Fig.[33 shows the resulting probability distribution aftesteps In Figi-915 we have plotted the probabil-
ity distribution function after a given number of time step® you recognize the shape of the probabiliy
distributions?

9.4 Entropy and Equilibrium Features

We use this section to motivate, in a physically intuitivethe importance of the ergodic hypothesis via
a discussion of how a Markovian process reaches an equititsituation after a given number of random
walks. It serves then the scope of bridging the gap betweemarkdvian process and our discussion of
the Metropolis algorithm in the next section.

To achieve this, we will use the program from the previousigecsee programs/chapter9/program3.cpp
and introduce the concept of entroy We discuss the thermodynamical meaning of the entropy and
its link with the second law of thermodynamics in the nextptba Here it will suffice to state that the
entropy is a measure of the disorder of the system, thus amsystich is fully ordered and stays in its
fundamental state (ground state) has zero entropy, whiisadired system has a large and nonzero
entropy.

The definition of the entropy (as a dimensionless quantity here) is

S==Y win(w), (9.67)

whereuw; is the probability of finding our system in a statd-or our one-dimensional random walk case
discussed in the previous sections it represents the piibpédr being at positioni = iAx after a given

number of time steps. In order to test this, we start with tfeipus program but assume now that we
haveN random walkers at= 0 andt = 0 and let these random walkers diffuse as function of timesThi
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0 ! ! ! ! ! ! !
0 1 2 3 4 5 6 7 8

Time steps in units of 0’

Figure 9.6: Entropy5; as function of number of time stegdor a random walk in one dimension. Here
we have used 100 walkers on a lattice of length frbrs —50 to L = 50 employing periodic boundary
conditions meaning that if a walker reaches the ppiat L it is shifted tox = —L and ifx = —L itis
shifted tox = L.

means simply an additional loop. We compute then, as in tx@quis program example, the probability
distribution for N walkers after a given number of stepalongx and time stepg. We can then compute
an entropyS; for a given number of time steps by summing over all probiddic. We show this in
Fig.[@.8. The code used to compute these results is in pragchapterd/program4.cpp. Here we have
used 100 walkers on a lattice of length fram= —50 to L = 50 employing periodic boundary conditions
meaning that if a walker reaches the point L it is shifted tox = —L and ifx = — L it is shifted to

x = L. We see from Fid. 916 that for small time steps, where alliglag N are in the same position or
close to the initial position, the entropy is very small, eefing the fact that we have an ordered state. As
time elapses, the random walkers spread out in space (hereidimension) and the entropy increases
as there are more states, that is positions accesible toyitens We say that the system shows an
increased degree of disorder. After several time stepspedhat the entropy reaches a constant value, a
situation called a steady state. This signals that the syktes reached its equilibrium situation and that
the random walkers spread out to occupy all possible availsthtes. At equilibrium it means thus that
all states are equally probable and this is not baked intadgingmical equations such as Newton’s law
of motion. It occurs because the system is allowed to ex@bneossibilities. An important hypothesis,
which has never been proven rigorously but for certain systas the ergodic hypothesis which states
that in equilibrium all available states of a closed systewehequal probability. This hypothesis states
also that if we are able to simulate long enough, then oneldhmiable to trace through all possible
paths in the space of available states to reach the equitibsituation. Our Markov process should be
able to reach any state of the system from any other state itiwvéor long enough. Markov processes
fullfil the requirement of ergodicity since all new steps ardependent of the previous ones and the
random walkers can thus explore with equal probability eligible positions. In general however, we
know that physical processes are not independent of eael. otthe relation between ergodicity and
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physical systems is an unsettled topic.

The Metropolis algorithm which we discuss in the next seci®based on a Markovian process and
fullfils the requirement of ergodicity. In addition, in thext section we impose the criterion of detailed
balance.

9.5 The Metropolis algorithm and detailed balance

Let us recapitulate some of our results about Markov chaidsandom walks.

— The time development of our PDKt), after one time-step froth= 0 is given by
wi(t =€) =W(j — i)w;(t =0).

This equation represents the discretized time-developofean original PDF. We can rewrite this
asa
wi(t = 6) = Wijwj(t = O)

with the transition matriX¥y” for a random walk given by

. Loli—jl=1
Wit = wii-jo-{ 3 "I

We call W;; for the transition probability and we represent it as a rratri

— Both W andw represent probabilities and they have to be normalizednmgdhat that at each
time step we have
Z wi(t) =1,

and
S w(—i)=1.
J
The further constraints afe< W;; < 1and0 < w; < 1.

— We can thus write the action & as
wi(t+1) = Z Wijwj(t), (9.68)
J
or as vector-matrix relation
Wt +1) = Ww(t), (9.69)

and if we have thaliw (¢ + 1) — w(t)|| — 0, we say that we have reached the most likely state of
the system, the so-called steady state or equilibrium.sfatether way of phrasing this is

w(t =00) = Ww(t = 00). (9.70)

An important condition we require that our Markov chain ddosatisfy is that of detailed balance. In
statistical physics this condition ensures that it is e, Boltzmann distribution which is generated
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when equilibrium is reached. The definition for being in éQuium is that the rates at which a system
makes a transition to or from a given stateave to be equal, that is

ZW(j — Dw; = ZW(Z’ — jw;. (9.71)

However, the condition that the rates should equal eachr @l general not sufficient to guarantee
that we, after many simulations, generate the correctiloligion. We therefore introduce an additional
condition, namely that of detailed balance

W(j — iw; = W(i — juw;. (9.72)

At equilibrium detailed balance gives thus

W —i)  w;
= —. 9.73
We introduce the Boltzmann distribution
exp (—((E;))
g = —— 9.74
Z (9.74)

which states that probability of finding the system in a siatéth energyF; at an inverse temperature

B = 1/kpT is w; x exp(—B(E;)). The denominatotZ is a normalization constant which ensures
that the sum of all probabilities is normalized to one. It &ided as the sum of probabilities over all
microstateg of the system

Z =Y exp(—B(E)). (9.75)
J

From the partition function we can in principle generateirgitresting quantities for a given system in
equilibrium with its surroundings at a temperatdreThis is demonstrated in the next chapter.

With the probability distribution given by the Boltzmannsttibution we are now in the position
where we can generate expectation values for a given vachtirough the definition

(A) =3 Aju, = 254 GXZ(_ﬁ(Ej). (9.76)
J

In general, most systems have an infinity of microstates nggitiereby the computation &f practi-
cally impossible and a brute force Monte Carlo calculatiseraa given number of randomly selected
microstates may therefore not yield those microstatesiwaie important at equilibrium. To select the
most important contributions we need to use the conditiordé&tailed balance. Since this is just given
by the ratios of probabilities, we never need to evaluateptmtition functionZ. For the Boltzmann
distribution, detailed balance results in

= = exp (~B(E; - Ey)). (9.77)
J

Let us now specialize to a system whose energy is defined lyidmation of single spins. Consider
the state, with given energyE; represented by the followingy spins

r+r1T ... v L1 .. 1T |
123 ... k-1%kk+1 ... N-1 N
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We are interested in the transition with one single spinfiip hew statg with energyF;

(T AN A PR A
123 ... k=1 k k+1 ... N-1 N

This change from one microstatgor spin configuration) to another microstateés the configuration
space analogue to a random walk on a lattice. Instead of pgrfpom one place to another in space, we
‘jump’ from one microstate to another.

However, the selection of states has to generate a finalbdistm which is the Boltzmann distribu-
tion. This is again the same we saw for a random walker, fodiberete case we had always a binomial
distribution, whereas for the continuous case we had a datisi@ibution. The way we sample con-
figurations should result in, when equilibrium is estaldighin the Boltzmann distribution. Else, our
algorithm for selecting microstates has to be wrong.

Since we do not know the analytic form of the transition rate are free to model it as

Wi —j) = g(i — j)A(i — j), (9.78)

whereg is a selection probability whilel is the probability for accepting a move. It is also called the
acceptance ratio. The selection probability should be gamal possible spin orientations, namely

1
; ) = —. 9.79
g(i — j) N (9.79)
With detailed balance this gives
g(j — DAY —9)
- - . < =exp (—08(E; — E;)), 9.80
but since the selection ratio is the same for both transtiare have
A(j — 1) B
m = exp (—B(E; — Ej)) (9.81)

In general, we are looking for those spin orientations wigisitespond to the average energy at equilib-
rium.

We are in this case interested in a new stafevhose energy is lower thalii;, viz.,, AE = E; — E; <
0. A simple test would then be to accept only those microstatesh lower the energy. Suppose we have
ten microstates with energfy < E1 < FEy < E3 < --- < Ey. Our desired energy i&y. At a given
temperaturd” we start our simulation by randomly choosing state Flipping spins we may then find
a path fromEy — Egs — E7--- — E1 — Ey. This would however lead to biased statistical averages
since it would violate the ergodic hypothesis discussetiénprrevious section. This principle states that
it should be possible for any Markov process to reach evesgipte state of the system from any starting
point if the simulations is carried out for a long enough time

Any state in a Boltzmann distribution has a probability eliéint from zero and if such a state cannot
be reached from a given starting point, then the system iengatdic. This means that another possible
path toF, could beEy — E7 — Eg--- — E9 — E5 — Egand so forth. Even though such a path could
have a negligible probability it is still a possibility, affdve simulate long enough it should be included
in our computation of an expectation value.

Thus, we require that our algorithm should satisfy the ppilecof detailed balance and be ergodic.
One possible way is the Metropolis algorithm, which reads

Mgy { TPCHEB) BBy

clse (9.82)
This algorithm satisfies the condition for detailed balaacd ergodicity. It is implemented as follows:
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Establish an initial energy;

Do a random change of this initial state by e.g., flipping attiviilual spin. This new state has
energyE;. Compute thel\E = E; — Ej,

If AF < 0 accept the new configuration.

If AE > 0, computew = e~ (BAE),

— Comparew with a random number. If » < w accept, else keep the old configuration.
— Compute the terms in the surhs A ws.

— Repeat the above steps in order to have a large enough nuftharostates

— For a given number of MC cycles, compute then expectationegal

The application of this algorithm will be discussed in detathe next two chapters.

9.6 Exercises and projects

Exercise 9.1: Two dimensional randow walk

Extend the first program discussed in this chapter to a tweedsional random walk with probability
1/4 for a move to the right, left, up or down. Compute the variafizeboth thex andy directions and
the total variance.

Exercise 9.1: Two dimensional randow walk

Use the second program to fit the computed probability tistion with a normal distribution using your
calculated values of? and(z).

Project 9.1: simulation of the Boltzmann distribution

In this project the aim is to show that the Metropolis algontgenerates the Boltzmann distribution

P(B) = : (9.83)

with § = 1/kT being the inverse temperatur®, is the energy of the system aifflis the partition
function. The only functions you will need are those to gaterandom numbers.

We are going to study one single particle in equilibrium withsurroundings, the latter modeled via
a large heat bath with temperatufre

The model used to describe this particle is that of an ideslmanedimension and with velocity-v
orv. We are interested in finding (v)dv, which expresses the probability for finding the system \aith
given velocityv € [v,v + dv]. The energy for this one-dimensional system is

1 1,
E= §kT =35v (9.84)

with massm = 1. In order to simulate the Boltzmann distribution, your prog should contain the
following ingredients:

220



9.6 — Exercises and projects

— Reads in the temperatué the number of Monte Carlo cycles, and the initial velocitgu should
also read in the change in velocity used in every Monte Carlo step. Let the temperature have
dimension energy.

— Thereafter you choose a maximum velocity given by eug., ~ 10v/7. Then you construct
a velocity interval defined by,,., and divided it in small intervals throughy,,.../N, with N ~
100 — 1000. For each of these intervals your task is to find out how mamngsia given velocity
during the Monte Carlo sampling appears in each specificvalte

— The number of times a given velocity appears in a specifievatés used to construct a histogram
representingP(v)dv. To achieve this you should construct a vecijtV] which contains the
number of times a given velocity appears in the subintervaH dv.

In order to find the number of velocities appearing in eachrir@l we will employ the Metropolis
algorithm. A pseudocode for this is

for ( montecarlo_cycles=1; Max_cycles; montecarlo_cycle} H{+

/!l change speed as function of delta v

v_change = (2ranl(&idum) -1 )x delta_v;

v_new = v_old+v_change;

/!l energy change

delta_ E = 0.5%(v_newv_new — v_old«v_old) ;

/I Metropolis algorithm begins here

if ( ranl(&idum) <= exp¢betaxdelta_E) ) {

accept_step = accept_step + 1 ;
v_old = v_new ;

/I thereafter we must fill in P[N] as a function of
/I the new speed
P[?] =

/I upgrade mean velocity , energy and variance

}

a) Make your own algorithm which sets up the histogrB(w)dv, find the mean velocity, the energy,
the energy variance and the number of accepted steps foea ggmperature. Study the change
of the number of accepted moves as a functioiwof Compare the final energy with the analytic
result E = kT'/2 for one dimension. Us& = 4 and set the intial velocity to zero, i.e;; = 0.
Try different values obv. A possible start value i&v = 4. Check the final result for the energy as
a function of the number of Monte Carlo cycles.

It can be useful to check your results against the analytigtisns. These can be obtained by
computing the partition function of the system of interéstour case it is given by

+00
Z = / eV 2y = V212

(e}
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From the partition function we can in turn compute the exgtgah value of the mean velocity and
the variance. The mean velocity is given by

+o0 5

(v) = / ve PV 2dy =0
—0o0

The above expression holds as the integrand is an odd farmti@a The mean energy and energy

variance can be easily calculated. The expression&dpando; assume the following form:

oo 2
<E>:/+ U_e—ﬁv2/2dv:_la_z_lg—1:1T

o 2 ZoB 2 2
+oo .4 2
2y _ v e, 1072 3,5 3.9
<E>_/_OO ¢ T=gaE Tt =T

and )
op = (E*) — (E)? = 5T2
an expected results. It is useful to compare these restulstmdse from your program.

b) Make thereafter a plot df(P(v)) as function ofE' and see if you get a straight line. Comment
the result.

Project 9.2: Random Walk in two dimensions

For this project you can build upon program programs/chi@fgeogram2.cpp (or the f90 version). You
will need to compute the expectation valuesN)), (y(N)) and

(ARY(N)) = (z*(N)) + (y*(N)) — (z(N))? = (y(NV))®
whereN is the number of time steps.

a) Enumerate all random walks on a square latticeNot= 2 and obtain exact results f@r:(N)),
(y(N)) and(AR?(N)). Verify your results by comparing your Monte Carlo simutat with the
exact results. Assume that all four directions are equathpgble.

b) Do a Monte Carlo simulation to estimat& 2?(N)) for N = 10, 40, 60 and100 using a reasonable
number of trials for eactV. Assume that we have the asymptotic behavior

(AR*(N)) ~ N*,

and estimate the exponenfrom a log-log plot of( AR?(N)) versusN. If v ~ 1/2, estimate the
magnutide of the self-diffusion coefficiefi given by

(AR%*(N)) ~ 2dDN,
with d the dimension of the system.
c) Compute now the quantiti€s(N)), (y(N)), (AR?(N)) and
(RA(IN)) = (2*(N) + (> (),

for the same values oW as in the previous case but now with the step probabilRigs 1/6,
1/6 and1/6 corresponding to right, left, up and down, respectivelyisTdhoice corresponds to
a biased random walk with a drift to the right. What is the fiptetation of(x(V)) in this case?
What is the dependence A R?(N)) on N and doegR?(N)) depend simply onV?
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d) Consider now a random walk that starts at a site that istartiey = h above a horisontal line
(ground). If the probability of a step down towards the gmbisbigger than the probability of a
step up, we expect that the walker will eventually reach asbatal line. This walk is a simple
model of the fall of a rain drop in the presence of a randomzameAssume that the probabilities are
0.1, 0.6, 0,15 and0.15 corresponding to up, down, right and left, respectively. &Ddonte Carlo
simulation to determine the mean timdor the walker to reach any site on the linerat 0. Find
the functional dependence ofon h. Can you define a velocity in the vertical direction? Sinee th
walker does not always move vertically, it suffers a netldispmentAx in the horizontal direction.
Compute(Ax?) and find its dependence énandr.
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Chapter 10

Monte Carlo methods in statistical physics

When you are solving a problem, don’t worry. Now, after youénaolved the problem,
then that’s the time to wornRichard Feynman

10.1 Introduction and motivation

The aim of this chapter is to present examples from the phlsidences where Monte Carlo meth-
ods are widely applied. Here we focus on examples from statigphysics. and discuss one of the
most studied systems, the Ising model for the interactionrayrclassical spins. This model exhibits
both first and second order phase transitions and is perhapofothe most studied system in sta-
tistical physics with respect to simulations of phase ttars. The Norwegian-born chemist Lars
Onsagetittp://nobelprize.org/nobel_prizes/chemistry/laureates/1968/onsager-bio.html,
1903-1976, developed in 1944 an ingenious mathematicatigden of the Ising model meant to simu-
late a two-dimensional model of a magnet composed of manyl atoanic magnets. This work proved
later useful in analyzing other complex systems, such assgaigcking to solid surfaces, and hemoglobin
molecules that absorb oxygen. He got the Nobel prize in chteynin 1968 for his studies of non-
equilibrium thermodynamics. Many people argue he showe Ineceived the Nobel prize in physics as
well for his work on the Ising model. Another model we discasthe end of this chapter is the so-called
class of Potts models, which exhibits both first and secoderatype of phase transitions. Both the
Ising model and the Potts model have been used to model plaasgions in solid state physics, with a
particular emphasis on ferromagnetism and antiferrontame

Metals like iron, nickel, cobalt and some of the rare eanffasl0linium, dysprosium) exhibit a unique
magnetic behavior which is called ferromagnetism because(ferrum in Latin) is the most common
and most dramatic example. Ferromagnetic materials éxiloing-range ordering phenomenon at the
atomic level which causes the unpaired electron spins ¢aipparallel with each other in a region called
a domain. The long range order which creates magnetic denmaierromagnetic materials arises from
a quantum mechanical interaction at the atomic level. Titeraction is remarkable in that it locks the
magnetic moments of neighboring atoms into a rigid paraltder over a large number of atoms in spite
of the thermal agitation which tends to randomize any atdenel order. Sizes of domains range from
a 0.1 mm to a few mm. When an external magnetic field is applfedldomains already aligned in the
direction of this grow at the expense of their neighbors. &gjiven ferromagnetic material the long
range order abruptly disappears at a certain temperatuighwdcalled the Curie temperature for the
material. The Curie temperature of iron is about 1043 K wimkgals like cobalt and nickel have a Curie
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Figure 10.1: Example of a cubic lattice with atoms at eacme&or Each atom has a finite magnetic
moment which points in a particular direction.

temperature of 1388 K and 627 K, respectively, and some ofateeearth metals like gadolinium and
dysprosium have 293 K and 85 k. We could think of an actual hastaomposed of for example a cubic
lattice with atoms at each corner with a resulting magneticnent pointing in a particular direction, as
portrayed in FiglZIOI1. In many respects, these atomic mage like ordinary magnets and can be
thought of in terms of little magnet vectors pointing fronuoto north poles. The Ising model provides
a simple way of describing how a magnetic material respamttsermal energy and an external magnetic
field. In this model, each domain has a corresponding spirodhror south. The spins can be thought
of as the poles of a bar magnet. The model assigns a value of +Lto the spins north and south
respectively. The direction of the spins influences thd fmitential energy of the system.

Another physical case where the application of the Ising ehedjoys considerable success is the
description of antiferromagnetism. This is a type of maignetwhere adjacent ions spontaneously align
themselves at relatively low temperatures into oppositeantiparallel, arrangements throughout the
material so that it exhibits almost no gross external magmet In antiferromagnetic materials, which
include certain metals and alloys in addition to some ioolas, the magnetism from magnetic atoms
or ions oriented in one direction is canceled out by the setajnetic atoms or ions that are aligned in
the reverse direction.

This spontaneous antiparallel coupling of atomic magrewisrupted by heating and disappears
entirely above a certain temperature, called the Néel teatyoe, characteristic of each antiferromagnetic
material. (The Néel temperature is named for Louis Néehéhghysicist, who in 1936 gave one of the
first explanations of antiferromagnetism.) Some antifeagnetic materials have Néel temperatures at,
or even several hundred degrees above, room temperattigsually these temperatures are lower. The
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Figure 10.2: The open (white) circles at each lattice poam epresent a vacant site, while the black
circles can represent the absorption of an atom on a metaksur

Néel temperature for manganese oxide, for example, is 122 K.

Antiferromagnetic solids exhibit special behaviour in @pléed magnetic field depending upon the
temperature. At very low temperatures, the solid exhibdsresponse to the external field, because
the antiparallel ordering of atomic magnets is rigidly ntained. At higher temperatures, some atoms
break free of the orderly arrangement and align with thereatdield. This alignment and the weak
magnetism it produces in the solid reach their peak at the téégerature. Above this temperature,
thermal agitation progressively prevents alignment ofattoens with the magnetic field, so that the weak
magnetism produced in the solid by the alignment of its atoomiinuously decreases as temperature is
increased. For further discussion of magnetic propertiessalid state physics, see for example the text
of Ashcroft and Mermin [51].

As mentioned above, spin models like the Ising and Potts mada be used to model other systems
as well, such as gases sticking to solid surfaces, and hetviaginolecules that absorb oxygen. We
sketch such an application in F[g._10.2.

However, before we present the Ising model, we feel it is aypiate to refresh some important quan-
tities in statistical physics, such as various definitiohstatistical ensembles, their partition functions
and relevant variables.

10.2 Review of Statistical Physics

In statistical physics the concept of an ensemble is one efctrerstones in the definition of ther-
modynamical quantities. An ensemble is a collection of opbwysics systems from which we derive
expectations values and thermodynamical propertiesecekat experiment. As an example, the specific
heat (which is a measurable quantity in the laboratory) ofséesn of infinitely many particles, can be
derived from the basic interactions between the microscopnstituents. The latter can span from elec-
trons to atoms and molecules or a system of classical spith$hese microscopic constituents interact
via a well-defined interaction. We say therefore that dtesisphysics bridges the gap between the mi-
croscopic world and the macroscopic world. Thermodynahgjgantities such as the specific heat or net
magnetization of a system can all be derived from a micrdsdbpory.

There are several types of ensembles, with their pertingréataction values and potentials. Table
107 lists the most used ensembles in statistical physyegher with frequently arising extensive (depend
on the size of the systems such as the number of particleshtmdive variables (apply to all components
of a system), in addition to associated potentials.
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Table 10.1: Overview of the most common ensembles and thembles. Here we have define - to

be the magnetizatiori) - the electric dipole moment{ - the magnetic field and - to be the electric
field. The last two replace the pressure as an intensiveblariehile the magnetisation and the dipole
moment play the same role as volume, viz they are extensii@l@as. The invers temperatdregulates
the mean energy while the chemical potentiakgulates the mean number of particles.

Microcanonical| Canonical| Grand canonical| Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V,M,D V,.M,D V,.M,D PHE
parameters E T T T

N N I N
Potential Entropy Helmholtz PV Gibbs
Energy Internal Internal Internal Enthalpy

10.2.1 Microcanonical Ensemble

The microcanonical ensemble represents an hypothetisaligted system such as a nucleus which does
not exchange energy or particles via the environment. Taartbdynamical quantity of interest is the
entropyS which is related to the logarithm of the number of possiblerngcopic stateQ(F) at a given
energyFE that the system can access. The relation is

S = kplnQ. (10.1)

When the system is in its ground state the entropy is zere ghere is only one possible ground state.
For excited states, we can have a higher degeneracy thamdrtbwes an entropy which is larger than
zero. We may therefore loosely state that the entropy meaghie degree of order in a system. At
low energies, we expect that we have only few states whicltaecessible and that the system prefers
a specific ordering. At higher energies, more states becatessible and the entropy increases. The
entropy can be used to compute observables such as the sgorper

1 oln2
T <—8E )Ny, (10.2)
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the pressure

D 0ln$)
—— = == 10.3
ksT < v >N,E7 ( :
or the chemical potential.
I dlnf)
= === . 10.4
kT ( ON >V’E ( )

It is very difficult to compute the density of stat®$£) and thereby the partition function in the micro-
canonical ensemble at a given eneigy since this requires the knowledge of all possible mictesta
at a given energy. This means that calculations are selddorlg in the microcanonical ensemble. In
addition, since the microcanonical ensemble is an isolgystem, it is hard to give a physical meaning
to a quantity like the microcanonical temperature.

10.2.2 Canonical Ensemble

One of the most used ensembles is the canonical one, whielaisd to the microcanonical ensemble via
a Legendre transformation. The temperature is an intersiiable in this ensemble whereas the energy
follows as an expectation value. In order to calculate etgtien values such as the mean eneffy at

a given temperature, we need a probability distributioms ¢fiven by the Boltzmann distribution

Fi(B) = (10.5)

with 5 = 1/kgT being the inverse temperatureg is the Boltzmann constang; is the energy of a
microstate; while Z is the partition function for the canonical ensemble defiagd

M
Z =Y e, (10.6)
=1

where the sum extends over all microstadds The potential of interest in this case is Helmholtz’ free
energy. It relates the expectation value of the energy atengemperatuf’ to the entropy at the same
temperature via

F=—kgTinZ = (E)—-TS. (10.7)

Helmholtz’ free energy expresses the struggle betweennwpoitant principles in physics, namely the
strive towards an energy minimum and the drive towards migh&opy as the temperature increases. A
higher entropy may be interpreted as a larger degree ofddisdWhen equilibrium is reached at a given
temperature, we have a balance between these two principlesnumerical expression is Helmholtz’
free energy. The creation of a macroscopic magnetic fielsh fadounch of atom-sized mini-magnets, as
shown in Fig[IOMN results from a careful balance betweesetlo somewhat opposing principles in
physics, order vs. disorder.
In the canonical ensemble the entropy is given by

S =kpinZ + kT (&ﬂ) , (10.8)
o )Ny
and the pressure by
olnZz
= kT | —— . 10.9
p= ot (% )N’T (10.9)
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Similarly we can compute the chemical potential as

olnZz
= —kpT . 10.10
n=—to? (52 ) (10.10)
For a system described by the canonical ensemble, the eisemgyexpectation value since we allow
energy to be exchanged with the surroundings (a heat bathtevitperaturd’).
This expectation value, the mean energy, can be calculaiad u

E) = kpT? (al"Z> 10.11
(E) =kp o ). ( )

or using the probability distributiof®; as
M 1 M
(E) =) E;P(B) = Z > B (10.12)
i=1 =1

The energy is proportional to the first derivative of the ptitsd, Helmholtz' free energy. The correspond-
ing variance is defined as

| M M 2
of = (B —(B)? = — > B} - (2 ZEiB_BEi> : (10.13)
i=1 i=1

If we divide the latter quantity wittk7"> we obtain the specific heat at constant volume

1
kT2

which again can be related to the second derivative of Hellziftee energy. Using the same prescrip-
tion, we can also evaluate the mean magnetization through

Cy

((B?) —(E)?), (10.14)

(M) = f: M;P(B) = % f: M;e PEL (10.15)
and the corresponding variance
| M | M 2
oo = (M) = (M)? = 7 ;M?e_ﬁEi - (E ;Mie_ﬁEZ) . (10.16)
This quantity defines also the susceptibility
X = kBLT (M) = (M)?). (10.17)

10.2.3 Grand Canonical and Pressure Canonical

Two other ensembles which are much used in statistical phgsid thermodynamics are the grand canon-
ical and pressure canonical ensembles. In the first we allewvgystem (in contact with a large heat bath)
to exchange both heat and particles with the environment pidiential is, with a partition function
=(V, T, n) with variablesV, T" and s,

pV = kgTInZ, (10.18)
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and the entropy is given by

S = kpinz + kpT (272 (10.19)
or )y,
while the mean number of particles is
In=
(N = kpT (a " ) . (10.20)
o ) yr
The pressure is determined as
In=
p=kpT (a " > . (10.21)
8V qu

In the pressure canonical ensemble we employ with Gibbe’ éreergy as the potential. It is related
to Helmholtz’ free energy vi& = F + pV. The partition function isA(N, p,T'), with temperature,
pressure and the number of particles as variables. Theupesssd volume term can be replaced by other
external potentials, such as an external magnetic field {pawtational field) which performs work on
the system. Gibbs’ free energy reads

G = —kgTlinA, (10.22)
and the entropy is given by
S = kplnA + kgT (%@A)W. (10.23)
We can compute the volume as
V = —kpT (azm) , (10.24)
Ip N,T
and finally the chemical potential
4= —kgT (ag;&)ﬂ. (10.25)

In this chapter we work with the canonical ensemble only.

10.3 Ising model and phase transitions in magnetic systems

10.3.1 Theoretical background

The model we will employ in our studies of phase transitiohinite temperature for magnetic systems
is the so-called Ising model. In its simplest form the enesggxpressed as

N N
E=-JY spsi—BY s (10.26)

<kl> k

with s, = £1, N is the total number of sping] is a coupling constant expressing the strength of the
interaction between neighboring spins ands an external magnetic field interacting with the magnetic
moment set up by the spins. The symbolkl > indicates that we sum over nearest neighbors only.
Notice that forJ > 0 it is energetically favorable for neighboring spins to bigrd. This feature leads
to, at low enough temperatures, a cooperative phenomeriaa spontaneous magnetization. That is,
through interactions between nearest neighbors, a givegmata moment can influence the alignment
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of spins that are separated from the given spin by a macr@sdgbance. These long range correlations
between spins are associated with a long-range order irhvthélattice has a net magnetization in the
absence of a magnetic field. In our further studies of theglemodel, we will mostly limit the attention
to cases with3 = 0 only.

In order to calculate expectation values such as the meagye(¥€) or magnetizatioM) in statis-
tical physics at a given temperature, we need a probabibtyiloution

(10.27)

with 3 = 1/kT being the inverse temperaturethe Boltzmann constang; is the energy of a state
while Z is the patrtition function for the canonical ensemble defiagd

M
Z =Y e (10.28)
=1

where the sum extends over all microstadds P, expresses the probability of finding the system in a
given configuration.
The energy for a specific configuratiots given by

Ei=-J) sps. (10.29)

To better understand what is meant with a configuration, idendirst the case of the one-dimensional
Ising model with3 = 0. In general, a given configuration &f spins in one dimension may look like

rr1.or T Tl
1 2 3 i-1 i i+1 ... N—-1 N

In order to illustrate these features let us further spe@adb just two spins.
With two spins, since each spin takes two values only, it re¢laat in total we have? = 4 possible
arrangements of the two spins. These four possibilities are

L=11 2=1l 3=11 4=l

What is the energy of each of these configurations?
For small systems, the way we treat the ends matters. Twe easeften used.

1. In the first case we employ what is called free ends. For tieedimensional case, the energy is
then written as a sum over a single index

N-1
Ei=—J sjsj, (10.30)
j=1

If we label the first spin as; and the second as we obtain the following expression for the
energy
E = —J81$2. (1031)

The calculation of the energy for the one-dimensionaldattvith free ends for one specific spin-
configuration can easily be implemented in the followingsn
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for ( j=1; j < N; j++) {
energy += spin[jkspin[j+1];
}

where the vectospin[] contains the spin valug, = +1. For the specific stat&;, we have chosen
all spins up. The energy of this configuration becomes then

Ey=FEyp =—J.
The other configurations give

Ey = ETl = +4J,

E3 = E” = —|—J,
and

E,=FE| =—J.

. We can also choose so-called periodic boundary conditibhis means that if = NV, we set the
spin number ta = 1. In this case the energy for the one-dimensional latticdgea

N
Ei=-J) 5si+, (10.32)
j=1

and we obtain the following expression for the two-spin case
E = —J(s1582 + s251). (10.33)
In this case the energy fdt, is different, we obtain namely
Ey = By = —2J.
The other cases do also differ and we have
Ey = By = +2J,

E3 = ElT = —|—2J,

and
Ey=FE| =-2J.

If we choose to use periodic boundary conditions we can deglalbove expression as

jm=N;

for (j=1; j <=N ; j++) {
energy += spin[jkspin[jm];
jm =j
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Table 10.2: Energy and magnetization for the one-dimeasitsing model withNV = 2 spins with free
ends (FE) and periodic boundary conditions (PBC).

State Energy (FE) Energy (PBC) Magnetization

1=11 —J —2J 2
2 =1 J 2J 0
3=|1 J 2J 0
4=|| —J —2J -2

Table 10.3: Degeneracy, energy and magnetization for teedomensional Ising model wittv' = 2
spins with free ends (FE) and periodic boundary conditi®3Q).

Number spins up Degeneracy Energy (FE) Energy (PBC) Magatain

2 1 —J —2J 2
1 2 J 2J 0
0 1 —J —-2J -2

The magnetization is however the same, defined as
N
M; = Z 55, (10.34)
j=1

where we sum over all spins for a given configuration

Table[TIO.2 lists the energy and magnetization for both frels end periodic boundary conditions.

We can reorganize Talle_ID.2 according to the number of gaimsing up, as shown in TableID.3.
It is worth noting that for small dimensions of the lattidee tenergy differs depending on whether we use
periodic boundary conditions or free ends. This means absiothe partition functions will be different,
as discussed below. In the thermodynamic limit howeler- oo, the final results do not depend on the
kind of boundary conditions we choose.

For a one-dimensional lattice with periodic boundary ctiads, each spin sees two neighbors. For
a two-dimensional lattice each spin sees four neighbonimgss How many neighbors does a spin see in
three dimensions?

In a similar way, we could enumerate the number of states taoadimensional system consisting
of two spins, i.e., & x 2 Ising model on a square lattice wigieriodic boundary conditiondn this case
we have a total o2* = 16 states. Some examples of configurations with their resmgeetiergies are
listed here

__ T _ T _ L __ L
E=-8J pp E=0 tp E=0 P E=-8 I

In the Tabld_TOM we group these configurations accordinkyeio total energy and magnetization.

Exercise 10.1

Convince yourself that the values listed in TabIe1L0.4 arescth
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Table 10.4: Energy and magnetization for the two-dimeraitsing model withV = 2 x 2 spins with
periodic boundary conditions.

Number spinsup Degeneracy Energy Magnetization

4 1 —8J 4
3 4 0 2
2 4 0 0
2 2 8J 0
1 4 0 -2
0 1 —8J -4

For the one-dimensional Ising model we can compute rathelyahe exact partition function for a
system ofN spins. Let us consider first the case with free ends. The gmeegls

N-1
E=-J E S§58541-
j=1

The partition function forV spins is given by

N-1
ZN: Z Z eXp(ﬁJz;Sij+1), (1035)
j=

s1==£1 sy==1

and since the last spin occurs only once in the last sum ingbenential, we can single out the last spin
as follows
Z exp (BJsn—_15Nn) = 2cosh(BJ). (10.36)
sy==%1
The partition function consists then of a part from the la# and one from the remaining spins resulting
in
ZN = ZNn—12cosh((BJ). (20.37)

We can repeat this process and obtain

Zn = (2cosh(BJ))N "2 Z,, (10.38)
with Z, given by
Zy= Y > exp(BJsisy) = 4cosh(BJ), (10.39)
s1==x1s9=%1
resulting in
Zn = 2(2cosh(BJ))N L. (10.40)

In the thermodynamical limit where we |18t — oo, the way we treat the ends does not matter. However,
since our computations will always be carried out with a t@divalue ofN, we need to consider other
boundary conditions as well. Here we limit the attentioneoqdic boundary conditions.
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If we use periodic boundary conditions, the partition fumictis given by

N
Iy= > - >, eXp(ﬁJZ:lsjsj_H), (10.41)
iz

s1==%1 sy==%1

where the sum in the exponential runs frarto IV since the energy is defined as

N
E = _stjsj—i-l'
J=1

We can then rewrite the partition function as

N
ZN = Z HeXp(ﬁJ3i3i+l)> (10.42)

{si=%1}i=1

where the first sum is meant to represent all lattice sitasodncing the matrixI’ (the so-called transfer
matrix)

i\ e 10.43
T\ e B BT ) (10.43)
with matrix elements;; = e/, t,_; = e 7, t_1; = €%/ andt_,_; = ¢’/ we can rewrite the partition
function as

Zy= Y TaoTas . Taye =TrTV. (10.44)
{SZ:ﬂ:l}

The 2 x 2 matrix T is easily diagonalized with eigenvalugs = 2cosh(BJ) and Ay = 2sinh((3J).
Similarly, the matrixI'V has eigenvaluesY and\ and the trace oT'" is just the sum over eigenvalues
resulting in a partition function

Zy = AV 4 AY =2V ([cosh(ﬂJ)]N + [sz’nh(ﬂJ)]N> . (10.45)

In the limit N — oo the two partition functions with free ends and periodic bidany conditions agree,
see below for a demonstration.

In the development phase of an algorithm and its pertinehé @ds always useful to test the numerics
against analytic results. It is therefore instructive tanpoite properties like the internal energy and the
specific heat for these two cases and test the results aganrs&t produced by our code. We can then
calculate the mean energy with free ends from the above farfouthe partition function using

olnz

(B) = =55 = (N = )Jtanh(3J). (10.46)

Helmholtz's free energy is given by
F = —kpTinZy = —NkgTIn (2cosh(5J)) . (10.47)

If we take our simple system with just two spins in one-dim@mswe see immediately that the above
expression for the partition function is correct. Using dledinition of the partition function we have

2
Zy =Y e PP =2e707 4 2eM = dcosh(B) (10.48)
=1
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If we take the limit7T" — 0 (6 — oo0) and setV = 2, we obtain

JB _ o—IB
lim (E) = —J S ¢

fmroo A (10:49)

which is the energy where all spins point in the same diractiét low T', the system tends towards a
state with the highest possible degree of order.
The specific heat in one-dimension with free ends is

1 92

= mam

_ BI_\*
InZy = (N — 1)k (W(W)) . (10.50)

Note well that this expression for the specific heat from the-dimensional Ising model does not diverge
or exhibits discontinuities, as can be seen from [Eig.]10.3.

0.45
0.4} .
0.35f .
0.3 .
0.25| .
0.2 .
0.15f .
0.1F .
0.05 .

0 ! ! ! I I
0 1 2 3 4 5 6 7

Inverse Temperaturg.J

Figure 10.3: Heat capacity per spi@y(/(N — 1)kp as function of inverse temperatugefor the one-
dimensional Ising model.

In one dimension we do not have a second order phase tramsitibough this is predicted by mean field
models [52].

We can repeat this exercise for the case with periodic baoyratmditions as well. Helmholtz's free
energy is in this case

F = —kgTin(\Y + \y) = —kpT {Nln()\l) +n (1 + (%)N> } : (10.51)
1
which in the limit N — oo results inF = —kgT Nin()\;) as in the case with free ends. Since other
thermodynamical quantities are related to derivativebeftee energy, all observables become identical

in the thermodynamic limit.
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Exercise 10.2
Calculate the internal energy and heat capacity of the @amestsional I1sing model using

periodic boundary conditions and compare the results witlse for free ends in the limi
N — oo.

Hitherto we have limited ourselves to studies of systemb mgtro external magnetic field, viz = 0.
We will mostly study systems which exhibit a spontaneous mitegtion. It is however instructive to

extend the one-dimensional Ising modeldc# /, yielding a partition function (with periodic boundary
conditions)

B
Zy= Y - Y exp( Z (Jsj8j+1 + 5 (85 + s541)), (10.52)

s1==*1 sy==x1

which yields a new transfer matrix with matrix elements = ¢*/*8) ¢, _; = ¢ 87, ¢t_;; = %/ and
t_1_1 = ePU=B) with eigenvalues

A = €% cosh(B) + (2 sinh?(BB) + e~ 207)1/2, (10.53)

and
M1 = ¥ cosh(B) — (€2 sinh?(BB) + e 287)1/2, (10.54)

The partition function is given by = AV +\Y and in the thermodynamic limit we obtain the following
free energy

F = —NkgTln (eﬁJcosh(ﬂJ) + (€207 sinh?(8B) + e—%’)l/?) . (10.55)

It is now useful to compute the expectation value of the maggiBon per spin

1 OF

(M/N) = NZZM :_N%’ (10.56)

resulting in
sinh(BB)
(sinh2(ﬁl§) + e—2ﬁJ)1/2) .

We see that foBB = 0 the magnetisation is zero. This means that for a one-dimeaklsing model we
cannot have a spontaneous magnetization. For the two-dioreal model however, see the discussion
below, the Ising model exhibits both a spontaneous magtetisand a specific heat and susceptibility
which are discontinuous or even diverge. However, excaphio simplest case such as< 2 lattice of
spins, with the following partition function

(M/N) =

(10.57)

7 =2e7 88  2¢878 412, (10.58)

and resulting mean energy
_ 1 8J8 _ 1p.—8J0
(E) = 7 (16e 16e > ) (10.59)

it is a highly non-trivial task to find the analytic expressitor Z in the thermodynamic limit. The
analytic expression for the Ising model in two dimensions wlatained in 1944 by the Norwegian chemist
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Lars Onsager [53]. The exact partition function fgrspins in two dimensions and with zero magnetic
field B is given by

Zn = [2cosh(B.])e']" (10.60)
with . .
I=- i doln {5 (1 +(1— m%m%)l/?)] , (10.61)
and
K = 2sinh(23.J)/cosh*(26.J). (10.62)
The resulting energy is given by
(E) = —Jcoth(26.J) {1 + %(2tcmh2(2ﬂJ) - 1)K1(q)} : (10.63)

with ¢ = 2sinh(23J)/cosh?(26J) and the complete elliptic integral of the first kind

(10.64)

K B /2 do
1le) = /0 V1= ¢2sin2¢

Differentiating once more with respect to temperature wiakthe specific heat given by

4k
Cy = =2 (BJcoth(26))* { K1(q) = Kalg) — (1 — tanh?(28)) | 5 + (2tanh?(28J) = VEK1(a)| }
(10.65)
with
w/2
Ks(q) = / do/1 — ¢%sin2¢. (10.66)
0
is the complete elliptic integral of the second kind. Near thitical temperaturd ¢ the specific heat
behaves as )
2 ( 2J T
P p— In|l—— . 10.67
Cy - <kBTC> n ‘ o + const ( )
In theories of critical phenomena one has that
T —
~ |1 — — 10.68
ovnli-] (10.69

and Onsager’s result is a special case of this power law @h&ihe limiting form of the function
1
lima—o— (Y ™% —1) = —InY, (10.69)
o

meaning that the analytic result is a special case of the plamesingularity witha: = 0. To compute
the spontaneous magnetisation per spin is also highly maatt Here we list the result

(1 — tanh?(8J))*7"®

(M(T)/N) = |1 — T6tanhi(5.J) , (10.70)
for T' < T and0 for T' > T¢. The behavior is thus a8 — T from below
(M(T)/N) ~ (Te: — T)V8. (10.71)
The susceptibility behaves as
X(T) ~ |Te — T4, (10.72)
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10.3.2 Phase Transitions

The Ising model in two dimensions and with= 0 undergoes a phase transition of second order. What
it actually means is that below a given critical temperatLire the Ising model exhibits a spontaneous
magnetization with M) # 0. Above T, the average magnetization is zero. The one-dimensioma Isi
model does not predict any spontaneous magnetization dfirateytemperature. The physical reason
for this can be understood from the following simple consitien. Assume that the ground state for an
N-spin system in one dimension is characterized by the fatigwonfiguration

L e A e
123 ... i-14 i+l ... N-1 N

which has a total energy VJ and magnetizatioV, where we used periodic boundary conditions. If
we flip half of the spins we arrive and special to a configuratidhere the first half of the spins point
upwards and last haf points downwards we arrive at the canatligun

T T 7 ! ! !
123 ... N2-1 N/2 N2+1 ... N—-1 N

with energy(—N + 4)J and net magnetization zero. This state is an example of aj@sksordered
state with net magnetization zero. The change in energyigver too small to stabilize the disordered
state. There are many other such states with net magnetizagio with energies slightly larger than the
above case. But it serves to demonstrate our point, we caelpdmmild states at low energies compared
with the ordered state with net magnetization zero. And tiezgy difference between the ground state is
too small to stabilize the system. In two dimensions how#weexcitation energy to a disordered state is
much higher, and this difference can be sufficient to stabilne system. In fact, the Ising model exhibits
a phase transition to a disordered phase both in two and dimresnsions.

For the two-dimensional case, we move from a phase with findgnetization M) # 0 to a para-
magnetic phase witiM) = 0 at a critical temperatur@.. At the critical temperature, quantities like
the heat capacity’y, and the susceptibility are discontinuous or diverge at the critical point in the
thermodynamic limit, i.e., with an infinitely large latticélhis means that the variance in energy and
magnetization are discontinuous or diverge. For a finiticahowever, the variance will always scale
as~ 1/v/M, M being e.g., the number of configurations which in our casedpqrtional with L, the
number of spins in a the andy directions. The total number of spinsAs = L x L resulting in a total
of M = 2" microstates. Since our lattices will always be of a finite eliisions, the calculated;. or
x Will not exhibit a diverging behavior. We will however nati@ broad maximum in e.g(fy nearlc.
This maximum, as discussed below, becomes sharper andeslaatpis increased.

NearT we can characterize the behavior of many physical quamtityea power law behavior. As
an example, we demonstrated in the previous section thatéa® magnetization is given by

(M(T)) ~ (T = Tc)”, (10.73)

whereg = 1/8 is a so-called critical exponent. A similar relation apglie the heat capacity

Cy(T) ~|Tc —T)77, (10.74)
and the susceptibility

X(T) ~ |Te =T, (10.75)
with « = 0 andy = —7/4. Another important quantity is the correlation length, e¥his expected to

be of the order of the lattice spacing fbr>> T». Because the spins become more and more correlated
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asT approached, the correlation length increases as we get closer to thieatriemperature. The
discontinuous behavior gfnearl¢ is

§T) ~|Tc —=TI™". (10.76)

A second-order phase transition is characterized by alatime length which spans the whole system.
Since we are always limited to a finite latticewill be proportional with the size of the lattice.

Through finite size scaling relations [54—-56] it is possiloleelate the behavior at finite lattices with
the results for an infinitely large lattice. The critical feenature scales then as

Te(L) —To(L = o0) ~ aL ™Y, (10.77)

with a a constant and defined in Eq.[[T0.16). The correlation length is given by

§T)~L~|Te—T7. (10.78)
and if we sefl’ = T one obtains
(M(T)) ~ (T = Te)’ — L7, (10.79)
Cy(T) ~ |Tc —T|™" — Lo/, (10.80)
and
X(T) ~ |Te =T — LY. (10.81)

10.4 The Metropolis algorithm and the two-dimensional IgirModel

The algorithm of choice for solving the Ising model is the ilm@eh proposed by Metropolit al.[57] in
1953. As discussed in chapfér 9, new configurations are geukfrom a previous one using a transition
probability which depends on the energy difference betwhkerinitial and final states.
In our case we have as the Monte Carlo sampling function tblegmility for finding the system in a
states given by
e_(ﬁEs)
Py = 7
with energyE,, 8 = 1/kT andZ is a normalization constant which defines the partition fiamcin the
canonical ensemble. As discussed above

2(8) = 3 e )

is difficult to compute since we need all states. In a calcutadf the Ising model in two dimensions, the
number of configurations is given &' with N = L x L the number of spins for a lattice of lengih
Fortunately, the Metropolis algorithm considers onlygatbetween probabilities and we do not need to
compute the partition function at all. The algorithm goe$odlsws

1. Establish an initial state with enerdy, by positioning yourself at a random position in the lattice

2. Change the initial configuration by flipping e.g., one gmity. Compute the energy of this trial
stateF;.
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3. CalculateAE = E; — Ep. The number of valuea F is limited to five for the Ising model in two
dimensions, see the discussion below.

4. If AE < 0 we accept the new configuration, meaning that the energywierém and we are
hopefully moving towards the energy minimum at a given terajuee. Go to step 7.

5. If AE > 0, calculatew = ¢~ (BAE)

6. Compareav with a random number. If
r < w,

then accept the new configuration, else we keep the old caafign.
7. The next step is to update various expectations values.
8. The steps (2)-(7) are then repeated in order to obtainfizesoly good representation of states.

9. Each time you sweep through the lattice, i.e., when yoe lsavsnmed over all spins, constitutes
what is called a Monte Carlo cycle. You could think of one sagble as a measurement. At the
end, you should divide the various expectation values whiéhtbtal number of cycles. You can
choose whether you wish to divide by the number of spins arligbu divide with the number of
spins as well, your result for e.g., the energy is now thegnper spin.

The crucial step is the calculation of the energy differeand the change in magnetization. This
part needs to be coded in an as efficient as possible way $iecghtinge in energy is computed many
times. In the calculation of the energy difference from opi@ €onfiguration to the other, we will limit
the change to the flipping of one spin only. For the Ising madelko dimensions it means that there will
only be a limited set of values fak E. Actually, there are only five possible values. To see tlaked
first a random spin positiom, y and assume that this spin and its nearest neighbors areiatiingoup.
The energy for this configuration 5 = —4.J. Now we flip this spin as shown below. The energy of the
new configuration i = 4.J, yielding AF = 8J.

T T
E=-4J T — E=4J Tl
|

|

The four other possibilities are as follows

T T
E=-2J 117 — E=2J L
T T
with AE = 4J,
T T
E=0 U = E=0 LT
! !
with AE =0,
i i
E=2J 11T — E=-2J LT
i i
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with AE = —4J and finally

with AE = —8J. This means in turn that we could construct an array whichaios all values o0&~ %
before doing the Metropolis sampling. Else, we would havevaluate the exponential at each Monte
Carlo sampling. For the two-dimensional Ising model theeecaly five possible values. It is rather easy
to convice oneself that for the one-dimensional Ising madehave only three possible values. The main
part of the Ising model program is shown here (there is alswr@sponding Fortran program).

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter10/cpp/ising_2dim.cpp
K

Program to solve the twedimensional Ising model
The coupling constant J =1
Boltzmann’'s constant = 1, temperature has thus dimensiorergy
Metropolis sampling is used. Periodic boundary conditions
x/
#include <iostream>
#include <fstream>
#include <iomanip>
#include "1ib.h"
using namespace std;
ofstream ofile;
/! inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {
return (i+limit+add) % (limit);
}

I/l Function to read in data from screen

void read_input(nt&, int&, double&, double&, double&);

/!l Function to initialise energy and magnetization

void initialize (int , double, int xx, double&, double&);

/I The metropolis algorithm

void Metropolis(int, long&, int xx, double&, double&, double x);
/Il prints to file the results of the calculations

void output(int, int, double, double x);

/I main program
int main(int argc, charx argv[])

{

char xoutfilename;
long idum;
int xxspin_matrix, n_spins, mcs;
double w[17], average[5], initial_temp , final_temp, E, M, temptep;
/I Read in output file , abort if there are too few commaitthe arguments
if ( argec <=1 ){

Cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);

}
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else{

outfilename=argv[1l];
}
ofile .open(outfilename);
/1 Read in initial values such as size of lattice, temp and k<
read_input(n_spins, mcs, initial _temp , final _temp, tenspep);
spin_matrix = (intxx) matrix(n_spins, n_spins ,izeof(int));

idum = —1; // random starting point

for ( double temp = initial_temp; temp <= final_temp; temp+=temp_stgp)
/1 initialise energy and magnetization
E=M= 0.;

/I setup array for possible energy changes
for( int de =—8; de <= 8; de++) w[de+8] = 0;
for( int de =—8; de <= 8; de+=4) w[de+8] = exp{de/temp);
/l initialise array for expectation values
for( int i = 0; i < 5; i++) average[i] = 0.;
initialize (n_spins, double temp, spin_matrix, E, M);
/I start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++)({
Metropolis(n_spins, idum, spin_matrix, E, M, w);
/Il update expectation values
average[0] += E; average[l] +=+«E;
average|[2] += M; average[3] +=M; average[4] += fabs(M);
}
/Il print results
output(n_spins, mcs, temp, average);
}
free_matrix ((void =xx) spin_matrix); // free memory
ofile .close(); // close output file
return O;

}

The arrayw[17] contains values oA E spanning from—8.J to 8J and it is precalculated in the main
part for every new temperature. The program takes as inpunttial temperature, final temperature, a
temperature step, the number of spins in one direction (veefihe lattice to be a square lattice, meaning
that we have the same number of spins inthand they directions) and the number of Monte Carlo
cycles. For every Monte Carlo cycle we run through all spinthe lattice in the functiometropolisand

flip one spin at the time and perform the Metropolis test. Hmveevery time we flip a spin we need to
compute the actual energy differendg” in order to access the right element of the array which stores
ePAE This is easily done in the Ising model since we can expl@tféttt that only one spin is flipped,
meaning in turn that all the remaining spins keep their \&alfiseed. The energy difference between a
stateF; and a statdv, with zero magnetic field is

N N
AE=FE,—Er=JY sisi—J Y sisi, (10.82)
<kl> <kl>
which we can rewrite as N
AE=-J > si(sf - s), (10.83)
<kl>
where the sum now runs only over the nearest neighbarfsthe spin Since the spin to be flipped takes
only two values,s] = +1 ands? = %1, it means that ifs; = 1, thens? = —1 and ifs] = —1, then
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s? = 1. The other spins keep their values, meaning that s2. If s} = 1 we must haves] — s? = 2,
and ifs] = —1 we must haves] — s7 = —2. From these results we see that the energy difference can be
coded efficiently as

N
AE=2Js0 > s, (10.84)
<k>
where the sum runs only over the nearest neighbarfsspini. We can compute the change in magnetisa-
tion by flipping one spin as well. Since only spirs flipped, all the surrounding spins remain unchanged.
The difference in magnetisation is therefore only given Im'diifferencesll — sl2 = +2, or in a more
compact way as
My = M + 257, (10.85)

where M, and M- are the magnetizations before and after the spin flip, réispgc Eqs. [I0.84) and
([@I0.83) are implemented in the functiemetropolisshown here

void Metropolis(int n_spins, long& idum, int xxspin_matrix, double& E,
double&M, double xw)
{
/I loop over all spins
for(int y =0; y < n_spins; y++) {
for (int x= 0; X < n_spins; x++){
// Find random position
int ix (int) (ranl(&idum)x(double)n_spins);
int iy (int) (ranl(&idum)x(double)n_spins);
int deltaE = Zspin_matrix[iy][ix]x*
(spin_matrix[iy][periodic (ix,n_spins+1)]+
spin_matrix[periodic (iy,n_spins51)][ix] +
spin_matrix[iy][ periodic (ix,n_spins,1)] +
spin_matrix[periodic (iy,n_spins ,1)][ix]);
/!l Here we perform the Metropolis test
if ( ranl(&idum) <= w[deltaE+8] ) {
spin_matrix[iy][ix] == —1; [/ flip one spin and accept new spin
config
/Il update energy and magnetization
M += (double) 2xspin_matrix[iy][ix];
E += (double) deltaE;
}
}

}

} /1 end of Metropolis sampling over spins

Note that we loop over all spins but that we choose the laftamtionsz andy randomly. If the move
is accepted after performing the Metropolis test, we uptfaesnergy and the magnetisation. The new
values are used to update the averages computed in the matiofu

When setting up the values of the spins it can be useful to aaisualization of the lattice, as shown
for the7 x 7 lattice of Fig[IO.}.

Another important function is the functionnitialize . This function sets up the initial energy, mag-
netisation and spin values for the different lattice posi The latter sets all spins equal one if the
temperature is low, which for the two-dimensional Ising mlocheans temperaturds < 1.5. Else, it
keeps the value from the preceeding temperature. We haltaipuh code where we run over a larger
temperature span, typically with valu&se [1.0, 3.0].
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Figure 10.4: Example of a two-dimensiorialx 7 lattice with spins pointing either up or down. The
variablespin_matrix [0][1] takes the value +1 whilepin_matrix [6][0] is —1.
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/!l function to
void

initialise energy, spin matrix and magnetitian
initialize (int n_spins, double temp, int xxspin_matrix,
double& E, double& M)

{
/Il setup spin matrix and intial
for(int y =0; y < n_spins; y++) {

for (int x= 0; X < n_spins; x++){
if (temp < 1.5) spin_matrix[y][x] = 1;// spin orientation for the
ground state
M += (double) spin_matrix[y][x];
}

magnetization

}

/I setup initial energy
for(int y =0; y < n_spins; y++) {
for (int x= 0; x < n_spins; x++){
E —= (double) spin_matrix[y][x]*
(spin_matrix[periodic(y,n_spins51)][x] +
spin_matrix[y][periodic (x,n_spins51)]);

}
}

}// end function

initialise

In the functionoutputwe print the final results, spanning from the mean energydastisceptibility. Note

that we divide by all spins. All the thermodynamical varigblve compute are so-called extensive ones
meaning that they depend linearly on the number of spingeSar results will depend on the size of the
lattice, we need to divide by the total number of spins in ptdesee whether quantities like the energy
or the heat capacity stabilise or not as functions of inéngdsittice size.

void output(int

{

n_spins, int mcs, double temp, double xaverage)

double total_spins = 1/(n_spinsn_spins); // divided by total number of
spins

double norm = 1/((double) (mcs)); // divided by total number of cycles

double Eaverage = average[@horm;

double E2average = average[%horm;

double Maverage = average [Z]norm;

double M2average = average [3]horm;

double Mabsaverage = average [4horm;

[/l all expectation values are per spin, divide by 1/n_spimskpins

double Evariance = (E2average EaverageEaverage)/total _spins;

double Mvariance = (M2average- MabsaverageMabsaverage)/total_spins;
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision (8) << temp;

ofile << setw(15) << setprecision (8) << Eaverage/totaling;

ofile << setw(15) << setprecision (8) << Evariance/tempmte;

ofile << setw(15) << setprecision (8) << Maverage/total_isp;

ofile << setw(15) << setprecision (8) << Mvariance/temp;

ofile << setw(15) << setprecision (8) << Mabsaverage/totapins << endl;

} // end output function
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10.5 Selected results for the Ising model

In Figs.[IO.H-T0I8 we display selected results from the qammgdiscussed in the previous section. The
results have all been obtained with one million Monte Casfoles and the Metropolis algorithm for
different two-dimensional lattices. A temperature stepddf = 0.1 was used for all lattices except
the 100 x 100 results. For the latter we single out a smaller temperateiggon close to the critical
temperature and used7” = 0.05. Fig.[I0.% shows the energy to stabilize as function ofdatsize. We
note that the numerics indicates a smooth and continuowg ¢or the energy, although there is a larger
increase close to the critical temperatile ~ 2.269.

0 T T T T
"10 x 10" ——
"40 x 40" ~----
P "80 x 80" - i
0.5 "100 X 100" -

E/J

25 1 1 1 1

1.6 1.8 2 2.2 2.4 2.6
kT

Figure 10.5: Average energy per spin as function of theclattize for the two-dimensional Ising model.

We mentioned previously that the two-dimensional Ising eledth zero external magnetic field exhibits
a second-order phase transition and a spontaneous magioetizelowl~. Fig.[I0.6 shows the absolute
value of the magnetisation as function of the number of spile note that with increasing lattice size
we approach a steeper line and the transition from a smalsgmnetisation to a larger one becomes
sharper. This is a possible sign of a phase transition, wiverenove from a state where all spins (or
most of them) align in a specific direction (high degree ofoydo a phase where both spin directions are
equally probable (high degree of disorder) and result ino pet magnetisation. The ordered phase at low
temperatures is called for a ferromagnetic phase while ib@radkbred phase is called the paramagnetic
phase, with zero net magnetisation. Since we are plottie@bsolute value, our net magnetisation will
always be above zero since we are taking the average of a nuvhimh is never negative.

The reason we choose to plot the average absolute valuadnstéhe net magnetisation is that slightly
below T, the net magnetisation may oscillate between negative asitie values since the system, as
function of the number of Monte Carlo cycles is likely to hdigespins pointing up or down. This means
that after a given number of cycles, the net spin may be $figlitsitive but could then occasionaly jump
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T T
14} "10 x 10" —+—
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[{(M)]]

Figure 10.6: Absolute value of the average magnetizatiorsp@ as function of the lattice size for the
two-dimensional Ising model.

to a negative value and stay there for a given number of Moatébo@ycles. Above the phase transition
the net magnetisation is always zero.

The fact that the system exhibits a spontaneous magnetizato external field applied) beloWf-
leads to the definition of the magnetisation as an order petenml he order parameter is a quantity which
is zero on one side of a critical temperature and non-zerti®wother side. Since the magnetisation is a
continuous quantity df-, with the analytic results

(1 — tanh2(3J))*1Y®
16tanh*(3J) ’

for T < T and0 for T' > T, our transition is defined as a continuous one or as a secadied phase
transition. From Ehrenftest's definition of a phase tramsitve have that a second order or continu-
ous phase transition exhibits second derivatives of Helirhfsee energy (the potential in this case)
with respect to e.g., temperature that are discontinuousverge atl. The specific heat for the two-
dimensional Ising model exhibits a power-law behavior atbii- with a logarithmic divergence. In
Fig.[IO.T we show the corresponding specific heat.

We see from this figure that as the size of the lattice is irs@@athe specific heat develops a sharper and
shaper peak centered around the critical temperature. #asioase happens for the susceptibility, with
an even sharper peak, as can be seen froniEid. 10.8.

The Metropolis algorithm is not very efficient close to thiical temperature. Other algorihms such
as the heat bath algorithm, the Wolff algorithm and othesterting algorithms, the Swendsen-Wang
algorithm, or the multi-histogram method [58, 59] are muadbrerefficient in simulating properties near
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Figure 10.7: Heat capacity per spin as function of the lkatsize for the two-dimensional Ising model.
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Figure 10.8: Susceptibility per spin as function of theitatsize for the two-dimensional Ising model.
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the critical temperature. For spin models like the classgifiér-order Potts models discussed in section
[[0O.1, the efficiency of the Metropolis algorithm is simpladequate. These topics are discussed in depth
in the textbooks of Newman and Barkema [56] and Landau andeBif60] and in chaptér18.

10.6 Correlation functions and further analysis of the Isgyimodel

10.6.1 Thermalization

In the code discussed above we have assumed that one pedaatcilation starting with low tempera-
tures, typically well belowl>. For the Ising model this means to start with an ordered cordigpn. The
final set of configurations that define the established dayiutin at a giveri’, will then be dominated by
those configurations where most spins are aligned in onéfigpaicection. For a calculation starting at
low T, it makes sense to start with an initial configuration whéire@ns have the same value, whereas
if we were to perform a calculation at high, for example well abovd, it would most likely be more
meaningful to have a randomly assigned value for the spmesuft code example we use the final spin
configuration from a lower temperature to define the inigmhsconfiguration for the next temperature.

In many other cases we may have a limited knowledge on thaldeiinitial configurations at a given
T. This means in turn that if we guess wrongly, we may need aicenumber of Monte Carlo cycles
before we reach the most likely equilibrium configuratio®hen equilibrium is established, various
observable such as the mean energy and magnetizatiorateseitbund their mean values. A parallel is
the particle in the box example discussed in chdgter 8. Thereonsidered a box divided into two equal
halves separated by a wall. At the beginning, titme 0, there areV particles on the left side. A small
hole in the wall is then opened and one particle can passghrthe hole per unit time. After some time
the system reaches its equilibrium state with equally mamigbes in both halvesy/2. Thereafter, the
mean number of particles oscillates arouvigR.

The number of Monte Carlo cycles needed to reach this equitib position is referred to as the
thermalization time, or equilibration timg,. We should then discard the contributions to various expec-
tation values till we have reached equilibrium. How to detiee the thermalization time can be done
in a brute force way, as demonstrated in F[gs.]10.9[and 1 0rl Big. [10.9 the calculations have been
performed with a0 x 40 lattice for a temperaturéz7'/J = 2.4, which corresponds to a case close
to a disordered system. We compute the absolute value of dymetization after each sweep over the
lattice. Two starting configurations were used, one withnaloan orientation of the spins and one with an
ordered orientation, the latter corresponding to the giiatate of the system. As expected, a disordered
configuration as start configuration brings us closer to tleeame value at the given temperature, while
more cycles are needed to reach the steady state with aredrdenfiguration. Guided by the eye, we
could obviously make such plots and discard a given numbsaimiples. However, such a rough guide
hides several interesting features. Before we switch to eerdetailed analysis, let us also study a case
where we start with the 'correct’ configuration for the relet/temperature.

Fig.[IOI0D displays the absolute value of the mean magtietisas function of time for a 100 x 100
lattice for temperatureép7/J = 1.5 andkgT/J = 2.4. For the lowest temperature, an ordered
start configuration was chosen, while for the temperatursecto the critical temperature, a disordered
configuration was used. We notice that for the low tempeeatase the system reaches rather quickly
the expected value, while for
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Figure 10.9: Absolute value of the mean magnetisation astifum of time¢. Time is represented by
the number of Monte Carlo cycles. The calculations have Ipegformed with al0 x 40 lattice for a
temperaturéig7/J = 2.4. Two start configurations were used, one with a random aimt of the
spins and one with an ordered orientation, which correspémthe ground state of the system.
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Figure 10.10: Absolute value of the mean magnetisationradifun of timet. Time is represented by the
number of Monte Carlo cycles. The calculations were peréatmith a100 x 100 lattice for temperatures
kgT/J = 1.5 andkpT/J = 2.4. For the lowest temperature, an ordered start configurataschosen,

while for the temperature close 1@, a disordered configuration was used.
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the temperature close g7/ J ~ 2.269 it takes more time to reach the actual steady state.

It seems thus that the time needed to reach a steady stategisr ltor temperatures close to the
critical temperature than for temperatures away. In tha seksection we will define more rigorously
the equilibration timet, in terms of the so-called correlation time The correlation time represents
the typical time by which the correlation function discubg® the next subsection falls off. There are a
number of ways to estimate the correlation timéne that is often used is to set it equal the equilibration
time T = t.q. The correlation time is a measure of how long it takes théesydo get from one state to
another one that is significantly different from the first.ridally the equilibration time is longer than the
correlation time, mainly because two states close to tredgtstate are more similar in structure than a
state far from the steady state.

Here we mention also that one can show, using scaling reiafl6], that at the critical temperature
the correlation time- relates to the lattice size as

T ~ Ld+z,

with d the dimensionality of the system. For the Metropolis aldyoni based on a single spin-flip process,
Nightingale and Bldte obtained = 2.1665 + 0.0012 [61]. This is a rather high value, meaning that our
algorithm is not the best choice when studying propertigb@ising model nedf¢.

We can understand this behavior by studying the developofehe two-dimensional Ising model as
function of temperature. The first figure to the left showsdtagt of a simulation of 40 x 40 lattice at a
high temperature. Black dots stand for spin down-@rwhile white dots represent spin up-1). As the
system cools down, we see in the picture to the right thahitstleveloping domains with several spins
pointing in one particular direction.

R x5 AR

Cooling the system further we observe clusters pervadirgeteareas of the lattice, as seen in the
next two pictures. The rightmost picture is the one Vitlelose to the critical temperature. The reason
for the large correlation time (and the parametgfor the single-spin flip Metropolis algorithm is the
development of these large domains or clusters with allsspirinting in one direction. It is quite difficult
for the algorithm to flip over one of these large domains bsedthas to do it spin by spin, with each
move having a high probability of being rejected due to theofaagnetic interaction between spins.
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Since all spins point in the same direction, the chance dbpaing the flip

|

1
E=—-4J T = E=4J T 17
T

leads to an energy difference &fE = 8.J. Using the exact critical temperatukg;T¢/J ~ 2.2.69,

we obtain a probabilityexp —(8/2.269) = 0.029429 which is rather small. The increase in large cor-
relation times due to increasing lattices can be diminidhedsing so-called cluster algorithms, such
as that introduced by Ulli Wolff in 1989 [62] and the Swend&®lang [63] algorithm from 1987. The
two-dimensional Ising model with the Wolff or Swendsen-\Watgorithms exhibits a much smaller cor-
relation time, with the variable = 0.25 4+ 001. Here, instead of flipping a single spin, one flips an entire
cluster of spins pointing in the same direction. We deferdiseussion of these methods to chapidr 18.

10.6.2 Time-correlation functions

The so-called time-displacement autocorrelatigt) for the magnetization is given By

b(t) = / dt' [M(t') — (M)] [M(E +8) — (M)], (10.86)
which can be rewritten as
6(t) = / dt' [M(EYM(E +t) — (MY?] (10.87)

where(M) is the average value of the magnetization andt) its instantaneous value. We can discretize
this function as follows, where we used our set of computédegaM(¢) for a set of discretized times
(our Monte Carlo cycles corresponding to a sweep over tiiedat

tmax—t tmax—t tmax—t
B 1 max , , 1 max , 1 max /
o) = —— ;0 MEVME +) = —— tz_:o R — tz_:o M(t +1). (10.88)

One should be careful with times closettg,., the upper limit of the sums becomes small and we end up
integrating over a rather small time interval. This meaas the statistical error ind(¢) due to the random
nature of the fluctuations iM (¢) can become large. Note also that we could replace the magtieti
with the mean energy, or any other expectation values ofdste

1we follow closely chapter 3 of Ref. [56].
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The time-correlation function for the magnetization gigeseasure of the correlation between the
magnetization at a timé and a time’ +¢. If we multiply the magnetizations at these two differentéds,
we will get a positive contribution if the magnetizationg #uctuating in the same direction, or a negative
value if they fluctuate in the opposite direction. If we thetegrate over time, or use the discretized
version of Eq.[(10.88), the time correlation functioft) should take a non-zero value if the fluctuations
are correlated, else it should gradually go to zero. Fordiméong way apart the magnetizations are
most likely uncorrelated and(¢) should be zero. Fig_T0I1 exhibits the time-correlatiomcfion for
the magnetization for the same lattice and temperaturesstied in Fig_10.10.

1.2

1

0.8

0.6

0.4

Figure 10.11: Time-autocorrelation function with timmas number of Monte Carlo cycles. It has been
normalized withg(0). The calculations have been performed far0a x 100 lattice atkpT/J = 2.4
with a disordered state as starting point anélzt’/.J = 1.5 with an ordered state as starting point.

We notice that the time needed befa¥g) reaches zero is ~ 300 for a temperaturép7’/J = 2.4.
This time is close to the result we found in Hig._10.10. Simylafor kzT/J = 1.5 the correlation
function reaches zero quickly, in good agreement again tvéttresults of Fig._10.10. The time-scale, if
we can define one, for which the correlation function falfssbfould in principle give us a measure of
the correlation time- of the simulation.

We can derive the correlation time by observing that our bfmilis algorithm is based on a random
walk in the space of all possible spin configurations. We Itdoam chapte® that our probability
distribution functionw (¢) after a given number of time stepsould be written as

Ww(t) = WtW(0),

with w(0) the distribution at = 0 andW representing the transition probability matrix. We canagiss
expandw (0) in terms of the right eigenvectors éfof W as

Ww(0) =) i, (10.89)
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resulting in
W(t) = Wiw(0) = W'D a9 =) Moy, (10.90)

with \; the i" eigenvalue corresponding to the eigenvector If we assume thad is the largest
eigenvector we see that in the limit— oo, w(¢) becomes proportional to the corresponding eigenvector
V. This is our steady state or final distribution.

We can relate this property to an observable like the meametagtion. With the probabiltyv ()
(which in our case is the Boltzmann distribution) we can afite mean magnetization as

(M) =D W(t)M,, (10.91)
m

or as the scalar of a vector product
(M(t)) = W(t)m, (10.92)
with m being the vector whose elements are the valuesgfin its various microstateg. \We rewrite
this relation as
(M(t)) = W(t)m = Y Moy ¥;m;. (10.93)

If we definem; = ¥;m; as the expectation value ¥ in the i* eigenstate we can rewrite the last
equation as

(M) =D Naim. (10.94)

Since we have that in the limit— oo the mean magnetization is dominated by the the largest\agen
Ao, We can rewrite the last equation as

(M()) = (M(00)) + > Maim,. (10.95)
i#0
We define the quantity
1

Ti = T logh,’ (10.96)

and rewrite the last expectation value as
(M(t)) = (M(o0)) + Z aymie T (10.97)

i#0

The quantities; are the correlation times for the system. They control discauto-correlation function
discussed above. The longest correlation time is obviogstgn by the second largest eigenvalye
which normally defines the correlation time discussed abBee large times, this is the only correlation
time that survives. If higher eigenvalues of the transitinatrix are well separated frork; and we
simulate long enoughy; may well define the correlation time. In other cases we maybeohble to
extract a reliable result far,. Coming back to the time correlation functigift) we can present a more
general definition in terms of the mean magnetizatiohs(t)). Recalling that the mean value is equal to
(M(o0)) we arrive at the expectation values

o(t) = (M(0) = M(00))(M(t) — M(o0)), (10.98)
and using Eq{I0.97) we arrive at
o(t) = Z miaimjaje_t/”, (10.99)
i,j#0

which is appropriate for all times.
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10.7 Exercises and projects

Project 10.1: Thermalization and the One-Dimensionalddihodel

In this project we will use the Metropolis algorithm to geauter states according to the Boltzmann distri-
bution. Each new configuration is given by the change of onky spin at the time, that i, — —sg.
Use periodic boundary conditions and set the magnetic Bete0.

a) Write a program which simulates the one-dimensionablsimodel. Choose/ > 0, the number
of spinsN = 20, temperaturd” = 3 and the number of Monte Carlo sampless = 100. Let
the initial configuration consist of all spins pointing ug.js; = 1. Compute the mean energy
and magnetization for each cycle and find the number of cywdesled where the fluctuation of
these variables is negligible. What kind of criterium woutii use in order to determine when the
fluctuations are negligible?

Change thereafter the initial condition by letting the spiake random values, eitherl or 1.
Compute again the mean energy and magnetization for eadd ayd find the number of cycles
needed where the fluctuation of these variables is negdigibl

Explain your results.

b) Letmes > 1000 and computd E), (E?) andCy as functions ofl’ for 0.1 < 7' < 5. Plot the
results and compare with the exact ones for periodic boyrttanditions.

¢) Using the Metropolis sampling method you should now firertimber of accepted configurations
as function of the total number of Monte Carlo samplings. Hbwes the number of accepted
configurations behave as function of temperaflifeExplain the results.

d) Compute thereafter the probabiliy( F') for a system withV = 50 atT" = 1. Choosencs > 1000
and plotP(E) as function ofE. Count the number of times a specific energy appears and build
thereafter up a histogram. What does the histogram mean?

Project 10.2: simulation of the two-dimensional Ising mlode

a) Assume that the number of spins in thandy directions are two, viZ, = 2. Find the analytic
expression for the partition function and the correspogdirean values foE, M, the capacity
Cy and the suceptibilityy as function ofl” using periodic boundary conditions.

b) Write your own code for the two-dimensional Ising modethaperiodic boundary conditions and
zero external fields. Set. = 2 and compare your numerical results with the analytic ona® fr
the previous exercise. usirig = 0.5 and7 = 2.5. How many Monte Carlo cycles do you need
before you reach the exact values with an unceertainty hess #? What are most likely starting
configurations for the spins. Try both an ordered arrangéwighe spins and a randomly assigned
orientations for both temperature. Analyse the mean eremgymagnetisation as functions of the
number of Monte Carlo cycles and estimate how many therat#diz cycles are needed.

c) We will now study the behavior of the Ising model in two dims@ns close to the critical temper-
ature as a function of the lattice sizex L, with L the number of spins in the andy directions.
Calculate the expectation values fdr) and (M), the specific heaf’y, and the susceptibility
as functions off" for L = 10, L = 20, L = 40 andL = 80 for T' € [2.0,2.4] with a step in
temperatureAT = 0.05. Plot(E), (M), Cy andy as functions off’. Can you see an indication
of a phase transition?
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d) Use Eq.[[I0.47) and the exact result= 1 in order to estimatd in the thermodynamic limit
L — oo using your simulations witl, = 10, L = 20, L = 40 and L = 80.

e) In the remaining part we will use the exact restil;/.J = 2/in(1 + 2) ~ 2.269 andv = 1.
Determine the numerical values 6%/, xy and M at the exact valu&' = T for L = 10, L = 20,
L =40 andL = 80. Plotlog1g M andy som funksjon avog;o L and use the scaling relations of
Egs. [10.7P) and(10.B1) in order to determine the constaatsdy. Are your log-log plots close
to straight lines? The exact values are- 1/8 andy = 7/4.

f) Make a log-log plot using the results fa@ry as function ofL for your computations at the ex-
act critical temperature. The specific heat exhibits a ltlgaic divergence withn = 0, see
Eqgs. [10.6b) and{1I0.67). Do your results agree with thisbien? Make also a plot of the specific
heat computed at the critical temperature for the giverctatt

The exact specific heats behaves as

2/ 2J \?
N —— l
Cv T <k‘BTC> "

1 T
Tc

-+ const.

Comment your results.

Project 10.3: Potts Model

The Potts model has been, in addition to the Ising model, lwidsed in studies of phase transitions in
statistical physics. The so-called two-dimensiopatate Potts model has an energy given by

N
E=—-J> bgs,

<kl>

where the spirs;, at lattice positiont can take the valuek 2, ..., g. The Kroneckr delta function;, ,,
equals unity if the spins are equal and is zero otherwiéds the total number of spins. Fgr= 2 the
Potts model corresponds to the Ising model. To see that weeeaite the last equation as

J 1 J
E=-3 > 265, — 5) > oL

Now, 2(J,,,s, — &) is +1 whens; = s;, and—1 when they are different. This model is thus equivalent to
the Ising model except a trivial difference in the energyimumm given by a an additional constant and
afactorJ — J/2. One of the many applications of the Potts model is to helibsoebed on the surface
of graphite.

The Potts model exhibits a second order phase transitioloiorvalues ofq and a first order tran-
sition for larger values ofi. Using Eherenfest’s definition of a phase transition, a séarder phase
transition has second derivatives of the free energy tletiscontinuous or diverge (the heat capacity
and susceptibility in our case) while a first order transiti@as first derivatives like the mean energy that
are discontinuous or diverge. Since the calculations ane ddth a finite lattice it is always difficult
to find the order of the phase transitions. In this project vilelimit ourselves to find the temperature
region where a phase transition occurs and see if the nusrai@mvs us to extract enough information
about the order of the transition.
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a) Write a program which simulates the= 2 Potts model for two-dimensional lattices with x 10,
40 x 40 and80 x 80 spins and compute the average energy and specific heatliststt appro-
priate temperature range for where you see a sudden chatigeheat capacity and susceptibility.
Make the analysis first for few Monte Carlo cycles and sma#éices in order to narrow down
the region of interest. To get appropriate statistics afieds you should allow for at leas®
Monte Carlo cycles. In setting up this code you need to findfarient way to simulate the energy
differences between different microstates. In doing tois geed also to find all possible values of
AE.

b) Compare these results with those obtained with the twaedsional Ising model. The exact critical
temperature for the Ising model 73 = 2.269. Here you can eventually use the abovementioned
program from the lectures or write your own code for the Ismadel. Tip when comparing results
with the Ising model: remove the constant term. The first &djpus to check that your algorithm
for the Potts model gives the same results as the ising md&d that critical temperature for the
q = 2 Potts model is half of that for the Ising model.

c) Extend the calculations to the Potts model witl 3,6 andg = 10. Make a table of the possible
values of AE for each value of;. Establish first the location of the peak in the specific heat
and study the behavior of the mean energy and magnetizasidanations ofg. Do you see a
noteworthy change in behavior from the= 2 case? For larger values you may need lattices of
at least0 x 50 in size.

For ¢ = 3 and higher you can then proceed as follows:

— Do a calculation with a small lattice first over a large tenapeare region. Use typical tem-
perature steps d@f.1.

— Establish a small region where you see the heat capacityhendusceptibility start to in-
crease.

— Decrease the temperature step in this region and perforonlatibns for larger lattices as
well.

Forq = 6 andq = 10 we have a first order phase transition, the energy shows ardisaity at
the critical temperature.

To compute the magnetisation in this case can lead to sonienprary conceptual problems. For
theg = 2 case we can always assign the values-dfand+1 to the spins. We would then get the same
magnetisation as we had with the two-dimensional Ising maddi@wvever, we could also assign the value
of 0 and1 to the spins. A simulation could then start with all spinsaduat low temperatures. This
is then the ordered state. Increasing the temperature asdiicg the region where we have the phase
transition, both spins value should be equally possiblés firteans half of the spins take the value 0 and
the other half take the value 1, yielding a final magnetisaper spin ofl /2. The important point is
that we see the change in magnetisation when we cross tlealkctéimperature. For highervalues, for
exampleg = 3 we could choose something similar to the Ising model. Thasspould take the values
—1,0,1. We would again start with an ordered state and let temperatecrease. Abové&, all values
are equally possible resulting again in a magnetisatioralergro. For the valueg, 1,2 the situation
would be different. Abové -, one third has value 0, another third takes the value 1 anthgihé¢hird is
2, resulting in a net magnetisation per spinedual1/3 +1x 1/3+2x 1/3 =1.
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Chapter 11

Quantum Monte Carlo methods

If, in some cataclysm, all scientific knowledge were to bemged, and only one sen-
tence passed on to the next generation of creatures, wiatnstiat would contain the most
information in the fewest words? | believe it is the atomigpabthesis (or atomic fact, or
whatever you wish to call it) that all things are made of atpiitde particles that move
around in perpetual motion, attracting each other whendhe little distance apart, but re-
pelling upon being squeezed into one another. In that ortersemyou will see an enormous
amount of information about the world, if just a little imagtion and thinking are applied.
Richard Feynman, The Laws of Thermodynamics.

11.1 Introduction
— Is physically intuitive.
— Allows one to study systems with many degrees of freedomfuidn Monte Carlo (DMC) and

Green’s function Monte Carlo (GFMC) yield in principle theaet solution to Schrddinger’s equa-
tion.

— Variational Monte Carlo (VMC) is easy to implement but neadgliable trial wave function, can
be difficult to obtain. This is where we will use Hartree-Fahbkory to construct an optimal basis.

— DMC/GFMC for fermions (spin with half-integer values, dlems, baryons, neutrinos, quarks)
has a sign problem. Nature prefers an anti-symmetric wawmetitn. PDF in this case given
distribution of random walkers(> 0).

— The solution has a statistical error, which can be large.

— There is a limit for how large systems one can study, DMC neadudsgye number of random walkers
in order to achieve stable results.

— Obtain only the lowest-lying states with a given symmetriffi€ult to get excited states.

— Quantum systems with many particles at finite temperatuagh Pitegral Monte Carlo with ap-
plications to dense matter and quantum liquids (phaseiti@ms from normal fluid to superfluid).
Strong correlations.
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Bose-Einstein condensation of dilute gases, method tramdgrom non-linear PDE to Diffusion
Monte Carlo as density increases.

Light atoms, molecules, solids and nuclei.

Lattice Quantum-Chromo Dynamics. Impossible to solve aitHVIC calculations.

Simulations of systems in solid state physics, from sentdaotors to spin systems. Many electrons
active and possibly strong correlations.

The aim of this chapter is to present examples of applicata@rMonte Carlo methods in studies of
simple quantum mechanical systems. We study systems suble aarmonic oscillator, the hydrogen
atom, the hydrogen molecule, the helium atom and more coaiplli atoms. Systems with man inter-
acting fermions and bosons such as ligtiite and Bose Einstein condensation of atoms ae discussed in
chapteIl7. Most quantum mechanical problems of interekiriexample atomic, molecular, nuclear
and solid state physics consist of a large number of inteigeiectrons and ions or nucleons. The total
number of particlesV is usually sufficiently large that an exact solution canr@tfdund. In quantum
mechanics we can express the expectation value for a gA)veperator for a system d¥ particles as

_ JdRidR;...dRNU*(R1,Ra,...,Ry)0(R1,Ra,...,Ry)¥(R1, Ry, ..., Ry)

0) = 11.1
(0) [dR1dR; ... dRNU*(Ry, Ry, ..., Ry)¥(Ry, Ry, ..., Ry) » (11.0)

where (R4, Ra,...,Ry) is the wave function describing a many-body system. Altfoug have
omitted the time dependence in this equation, it is an in gdiractable problem. As an example from
the nuclear many-body problem, we can write Schrodingeytsagon as a differential equation with the
energy operatoH (the so-called energy Hamiltonian) acting on the wave foncas

~

HU(ry,..,ra,01,..,004) = E¥(ry,..,r 4,00, ..,004)

where

are the coordinates and
aq, .., 04,

are sets of relevant quantum numbers such as spin and iospilsystem ofd nucleons 4 = N + Z,
N being the number of neutrons a#@the number of protons). There are

()

coupled second-order differential equations3itt dimensions. For a nucleus liK€Be this number is
215040. This is a truely challenging many-body problem.

Eq. (IT1) is a multidimensional integral. As such, Montel@€anethods are ideal for obtaining
expectation values of quantum mechanical operators. Qabigm is that we do not know the exact
wavefunction® (ry, ..,r 4, a1, .., an). We can circumvent this problem by introducing a functionialih
depends on selected variational parameters. This funstionld capture essential features of the sys-
tem under consideration. With such a trial wave function ae then attempt to perform a variational
calculation of various observables, using Monte Carlo wastor solving Eq.[(TT]1).

The present chapter aims therefore at giving you an overgfaiae variational Monte Carlo approach
to quantum mechanics. We limit the attention to the simplérmlis algorithm, without the inclusion of
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importance sampling. Importance sampling and diffusiomiédd&arlo methods are discussed in chapters
4 andIb.

However, before we proceed we need to recapitulate somee gidstulates of quantum mechanics.
This is done in the next section. The remaining sections déthl mathematical and computational
aspects of the variational Monte Carlo methods, with appibois from atomic and molecular physis.

11.2 Postulates of Quantum Mechanics

11.2.1 Mathematical Properties of the Wave Functions

Schrédinger’s equation for a one-dimensional onebodylprolbeads

OV (z,t)
ot

whereV (x, t) is a potential acting on the particle. The first term is theekimenergy. The solution to this
partial differential equation is the wave functidrn(z,¢). The wave function itself is not an observable
(or physical quantity) but it serves to define the quantumhaeical probability, which in turn can be
used to compute expectation values of selected operatars,as the kinetic energy or the total energy
itself. The quantum mechanical probabiliB(z, t)dz is defined )

2
- 2H—V2\I'(ac,t) V()W (x, ) = 1k (11.2)
m

P(x,t)dr = V(x,t)" ¥ (x,t)dz, (11.3)

representing the probability of finding the system in a redietween: andx + dx. It is, as opposed
to the wave function, always real, which can be seen fromdhewing definition of the wave function,
which has real and imaginary parts,

U(x,t) = R(x,t) +ol(x,t), (11.4)
yielding
U(x, t)*U(x,t) = (R —oI)(R+I) = R* + I°. (11.5)

The variational Monte Carlo approach uses actually thisidiefih of the probability, allowing us thereby
to deal with real quantities only. As a small digression, & perform a rotation of time into the complex
plane, using- = it/h, the time-dependent Schrddinger equation becomes

ov(x,7) h_282\1'(w,7')
or  2m 02

With V' = 0 we have a diffusion equation in complex time with diffusiamstant

—V(z,7)¥(x, 7). (11.6)

2
p=""
2m
This is the starting point for the Diffusion Monte Carlo methdiscussed in chapter]1l7. In that case
it is the wave function itself, given by the distribution @ndom walkers, that defines the probability.
The latter leads to conceptual problems when we have amirvstric wave functions, as is the case for
particles with the spin being a multiplum ©f2. Examples of such particles are various leptons such as

This is Max Born’s postulate on how to interpret the wave fiorcresulting from the solution of Schrédinger’s equation
Itis also the commonly accepted and operational interfioeta
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electrons, muons and various neutrinos, baryons like psodmd neutrons and quarks such as the up and
down quarks.

The Born interpretation constrains the wave function tobeglto the class of functions ih?>. Some
of the selected conditions which has to satisfy are

1. Normalization

/ P(z,t)dx = / U(z,t)" U(z,t)de =1 (11.7)
meaning that
/ U(z,t)" VU (z,t)dr < 0o (11.8)

2. ¥(z,t) ando¥(z,t)/Ox must be finite

3. ¥(z,t) ando¥(x,t)/0x must be continuous.

4. ¥(z,t) ando¥(x,t)/0x must be single valued
11.2.2 Important Postulates
We list here some of the postulates that we will use in ourudision.
Postulate |

Any physical quantityA(7, p) which depends on positiahand momentuny has a corresponding quan-
tum mechanical operator by replacipg-ifivy, yielding the quantum mechanical operator

A = A(F,—ihvy).

Quantity Classical definition QM operator

Position i r=r

Momentum 7 p=—ihv

Orbital momentum| L = 7 x § L =7x (—ihy)

Kinetic energy T = (5)2/2m T = —(R2/2m)(v)?

Total energy H = (p?/2m) + V(F) | H=—(h%/2m)(v)%+ V(7

Postulate I

The only possible outcome of an ideal measurement of theigadyguantity A are the eigenvalues of the
corresponding quantum mechanical operafor

:&7/)1/ = ayy,

resulting in the eigenvalues;, as, as, - - - as the only outcomes of a measurement. The corresponding
eigenstates, ¢, 13 - - - contain all relevant information about the system.
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Postulate I

Assume? is a linear combination of the eigenfunctions for A,

O =1y +cap =Y iy
1%
The eigenfunctions are orthogonal and we get

cy = /(<I>)*1/)l,d7'.
From this we can formulate the third postulate:

When the eigenfunction i®, the probability of obtaining the value, as the outcome of a mea-
surement of the physical quantity is given by|c,|?> and+, is an eigenfunction oA with eigenvalue
ay,.

As a consequence one can show that:
when a quantal system is in the stétethe mean value or expectation value of a physical quadtity p)
is given by

(A) = / (@) A(F, —ih) Ddr.
We have assumed th@thas been normalized, viz[(®)*®dr = 1. Else

[(®)*Addr

W= Terear

Postulate IV

The time development of a quantal system is given by

h— — HU
ot ’

with H the guantal Hamiltonian operator for the system.

11.3 First Encounter with the Variational Monte Carlo Methd

The required Monte Carlo techniques for variational Mongégl@€are conceptually simple, but the prac-
tical application may turn out to be rather tedious and cemplelying on a good starting point for the
variational wave functions. These wave functions shoutduitle as much as possible of the inherent
physics to the problem, since they form the starting pointafovariational calculation of the expecta-
tion value of the hamiltoniadf. Given a hamiltoniand and a trial wave function,, the variational
principle states that the expectation valu€ Bf), defined through Postulate Il1

J ARV (R)H (R)¥7(R)
H) = , 11.9
= TR (R (R) (11.9)
is an upper bound to the ground state endigyf the hamiltonianH, that is
Ey < (H). (11.10)
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To show this, we note first that the trial wave function can kpaaded in the eigenstates of the
hamiltonian since they form a complete set, see again Rostiil,

Ur(R) =Y a;¥(R), (11.11)

and assuming the set of eigenfunctions to be normalizedytios of the latter equation in Eq.{11.9)
results in

5 Ot [ ARV (RVH(R) W (R) 3, alan [ ARV, (R)E, (R)V,,(R)

H) = n = 11.12
W =5 anan [ AR, (R)T, (R) O » (1112)
which can be rewritten as )
E,
% > Ep. (11.13)

In general, the integrals involved in the calculation ofi®as expectation values are multi-dimensional
ones. Traditional integration methods such as the Gaugsrldee will not be adequate for say the com-
putation of the energy of a many-body system. The fact thateesl to sample over a multi-dimensional
density and that the probability density is to be normalibgdthe division of the norm of the wave
function, suggests that e.g., the Metropolis algorithm imaappropriate.

We could briefly summarize the above variational proceduitbe following three steps.

1. Construct first a trial wave functionr (R; «), for say a many-body system consisting/éfpar-
ticles located at positionR = (R4, ...,Rn). The trial wave function depends envariational
parametersy = (aq,...,aN).

2. Then we evaluate the expectation value of the hamiltofian

(H) = [ dR¥%L(R; ) HR) Y7 (R; @)
 [dRUL(R; )7 (R; )

3. Thereafter we varg according to some minimization algorithm and return to th& tep.

The above loop stops when we reach the minimum of the eneyr@diog to some specified criterion.
In most cases, a wave function has only small values in laagis pf configuration space, and a straight-
forward procedure which uses homogenously distributedaamnpoints in configuration space will most
likely lead to poor results. This may suggest that some kirichportance sampling combined with e.g.,
the Metropolis algorithm may be a more efficient way of olitairthe ground state energy. The hope is
then that those regions of configurations space where the fuaction assumes appreciable values are
sampled more efficiently.

The tedious part in a variational Monte Carlo calculatiothis search for the variational minimum.
A good knowledge of the system is required in order to caryreasonable variational Monte Carlo
calculations. This is not always the case, and often vanatiMonte Carlo calculations serve rather as
the starting point for so-called diffusion Monte Carlo cadd#tions. Diffusion Monte Carlo is a way of
solving exactly the many-body Schrodinger equation by media stochastic procedure. A good guess
on the binding energy and its wave function is however necgssA carefully performed variational
Monte Carlo calculation can aid in this context. DiffusioroMe Carlo is discussed in depth in chapter

4.
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11.4 Variational Monte Carlo for quantum mechanical system

The variational quantum Monte Carlo has been widely apghestudies of quantal systems. Here we
expose its philosophy and present applications and dridisaussions.

The recipe, as discussed in chapler 8 as well, consists osgiwa trial wave functionyr(R) which
we assume to be as realistic as possible. The varBbdtands for the spatial coordinates, in ta3al
if we haveN particles present. The trial wave function serves thetgviahg closely the discussion on
importance sampling in sectién 8.4, as a mean to define thetajuzobability distribution

Wr(R; )|

P(R;a) = . (11.14)
J1¥r(R; 0)* dR;
This is our new probability distribution function (PDF).
The expectation value of the energy Hamiltonian is given by
N U*(R)H(R)VY
(fy = LRV R HR)VR) (11.15)

[dRU*(R)U(R)

whereV is the exact eigenfunction. Using our trial wave functiondeéine a new operator, the so-called
local energy,
~ 1 .
E;(R;a) = ——Huyr(R; a), (11.16)
(R; ) vr(R; @) (R;0)

which, together with our trial PDF allows us to compute thpeetation value of the local energy
(Ep(a)) = / P(R;a)E,(R;a)dR. (11.17)

This equation expresses the variational Monte Carlo appro&Ve compute this integral for a set of
values ofa and possible trial wave functions and search for the mininséithe functionEy(«). If the
trial wave function is close to the exact wave function, t&n(«)) should approackH). Eq. [TIIF) is
solved using techniques from Monte Carlo integration, beeadtscussion below. For most hamiltonians,
H is a sum of kinetic energy, involving a second derivatival armomentum independent and spatial
dependent potential. The contribution from the potengaitis hence just the numerical value of the
potential. A typical Hamiltonian reads thus

N X N N
_ _%Zv%Zvombody(ri)+Zvim(\ ri—r;|). (11.18)
=1 i=1 i<j

where the sum runs over all particlds We have included both a onebody potentiglchody (r;) Which
acts on one particle at the time and a twobody interactigp(| r; — r; |) which acts between two
particles at the time. We can obviously extend this to moraplizated three-body and/or many-body
forces as well. The main contributions to the energy of ptalssystems is largely dominated by one-
and two-body forces. We will therefore limit our attentianduch interactions only.

Our local energy operator becomes then

R 1 w2 N , N N
BulRi) = iy |~ 2 ¥ X Vo) 4 Vil =5y ) | wr i),

(11.19)
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resulting in

9 N N N

EL(R;a) = m (-;—m Z V?) Yr(R;a) + Z Vonebody (Ti) + Z Vint(| ri — 15 [), (11.20)
i=1 i=1 i<j

The numerically time-consuming part in the variational Mo@arlo calculation is the evaluation of the

kinetic energy term. The potential energy, as long as it haisngle r-dependence adds only a simple

term to the local energy operator.

In our discussion below, we base our numerical Monte Cailiatisa on the Metropolis algorithm.
The implementation is rather similar to the one discussezbimection with the Ising model, the main
difference residing in the form of the PDF. The main test topbeformed is a ratio of probabilities.
Suppose we are attempting to move from posifivto R’. Then we perform the following two tests.

1. 1If

PR/;

PRsa) > 1,

P(R;a)
whereR’ is the new position, the new step is accepted, or

2.
P(R/;a)
< ——,
- P(R;a)

wherer is random number generated with uniform PDF such that [0, 1], the step is also
accepted.

In the Ising model we were flipping one spin at the time. Herechange the position of say a given
particle to a trial positioR’, and then evaluate the ratio between two probabilities. @e again that
we do not need to evaluate the n&rﬁWJT(R; a)|2 dR (an in general impossible task), since we are
only computing ratios.

When writing a variational Monte Carlo program, one shollbgs prepare in advance the required
formulae for the local energy;, in Eq. (I1.I¥) and the wave function needed in order to comthé
ratios of probabilities in the Metropolis algorithm. The®se functions are almost called as often as a
random number generator, and care should therefore beissein order to prepare an efficient code.

If we now focus on the Metropolis algorithm and the Monte Gavaluation of EqI{IT.17), a more
detailed algorithm is as follows

— Initialisation: Fix the number of Monte Carlo steps and thalization steps. Choose an initigal
and variational parametersand calculatéyr(R; «)|*. Define also the value of the stepsize to be
used when moving from one value Bfto a new one.

— Initialise the energy and the variance.
— Start the Monte Carlo calculation with a loop over a given banof Monte Carlo cycles

1. Calculate a trial positioRR, = R + r * step wherer is a random variable € [0, 1].
2. Use then the Metropolis algorithm to accept or rejectims/e by calculating the ratio

w=P(R,)/P(R).

If w > s, wheres is a random numbeyt € [0, 1], the new position is accepted, else we stay
at the same place.

2This corresponds to the partition functighin statistical physics.
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3. Ifthe step is accepted, then we et= R,,.
4. Update the local energy and the variance.

— When the Monte Carlo sampling is finished, we calculate theam@mergy and the standard devia-
tion. Finally, we may print our results to a specified file.

Note well that the way we choose the next sp = R + r * step is not determined by the wave
function. The wave function enters only the determinatibthe ratio of probabilities, similar to the way
we simulated systems in statistical physics. This meansrimthat our sampling of points may not be
very efficient. We will return to an efficient sampling of igtation points in our discussion of diffusion
Monte Carlo in chaptdr17. This leads to the concept of ingmme sampling. As such, we limit ourselves
in this chapter to the simplest possible form of the Metrigpalgorithm, and relegate both importance
sampling and advanced optimization techniques to chbgter 1

The best way however to understand the above algorithm apddfis method is to study selected
examples.

11.4.1 Firstillustration of variational Monte Carlo mette

The harmonic oscillator in one dimension lends itself nidel illustrative purposes. The hamiltonian is

n?od* 1
—%@ + isz, (1121)

wherem is the mass of the particle aridis the force constant, e.g., the spring tension for a clabksic
oscillator. In this example we will make life simple and ceean = & = k = 1. We can rewrite the

above equation as
2

d
H=-—s+ z?, (11.22)

The energy of the ground state is thep = 1. The exact wave function for the ground state is

1 —x
() = —jze °2 (11.23)

but since we wish to illustrate the use of Monte Carlo methwodschoose the trial function

\/a e—m2a2/2

\PT(QJ') = m

(11.24)

Inserting this function in the expression for the local gyein Eq. [T1.16), we obtain the following
expression for the local energy
Ep(z) = o® +2%(1 — o), (11.25)

with the expectation value for the hamiltonian of Hq. (1} .diven by

)= [ @) B, (11.26)

which reads with the above trial wave function

® dre=?a’q?2 +22(1—at
(Er) = f_oo ( ) (12.27)

£ 2202
oo dze
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Using the fact that

o
2.2 i
dre™ " =4/ =,
oo a

we obtain
a? 1
(Er) = - + a2 (11.28)
and the variance . )
-1
o2 = % (11.29)

In solving this problem we can choose whether we wish to usdviétropolis algorithm and sample
over relevant configurations, or just use random numbersgrgéd from a normal distribution, since
the harmonic oscillator wave functions follow closely sucHistribution. The latter approach is easily
implemented in few lines, namely

initialisations , declarations of variables
... mcs = number of Monte Carlo samplings
/1 loop over Monte Carlo samples

for ( i=0; i < mcs; i++) {

/1l generate random variables from gaussian distribution
X = normal_random(&idum)/sqrt2/alpha;
local_energy = alphaalpha + xxx(1—pow(alpha ,4));
energy += local_energy;
energy2 += local_energylocal_energy;

/1 end of sampling

}

/1l write out the mean energy and the standard deviation

cout << energy/mcs << sqrt((energy2/megxenergy/mcskx*2)/mcs));

This variational Monte Carlo calculation is rather simple just generate a large numhb¥€rof random
numbers corresponding to the gaussian RDRr|? and for each random number we compute the local
energy according to the approximation

N
= - 1
(BEL) = / PR)EL(R)IR ~ — ;EL(SL'Z')a (11.30)
and the energy squared through
N
(E2) = [ PR)EZ(R)dR ~ 1 > Ef(w:). (11.31)
L L N < L\4&%

In a certain sense, this is nothing but the importance MoaroGampling discussed in chagdfér 8 Before
we proceed however, there is an important aside which ishal@éping in mind when computing the
local energy. We could think of splitting the computatiorttué expectation value of the local energy into
a kinetic energy part and a potential energy part. If we asdimg with a three-dimensional system, the
expectation value of the kinetic energy is

[ dRYL(R)V?Ur(R)
JdRVL(R)¥r(R)

(11.32)

and we could be tempted to compute, if the wave function okpherical symmetry, just the second
derivative with respect to one coordinate axis and thenipiulby three. This will most likely increase
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the variance, and should be avoided, even if the final expectaalues are similar. Recall that one of
the subgoals of a Monte Carlo computation is to decreasedttience.
Another shortcut we could think of is to transform the nuntarén the latter equation to

/ dRUH(R)V?TU7(R) = — / dR(VI5(R)) (VI (R)), (11.33)
using integration by parts and the relation
/dRV(\I/i}(R)V\IIT(R)) =0, (11.34)

where we have used the fact that the wave function is zeR at +oco. This relation can in turn be
rewritten through integration by parts to

/ dR(VUH(R)) (VI (R)) + / dRVH(R)V?T7(R)) = 0. (11.35)

The rhs of Eq.[[(T1.33) is easier and quicker to compute. Hewem case the wave function is the
exact one, or rather close to the exact one, the Ihs yieltdls jognstant times the wave function squared,
implying zero variance. The rhs does not and may therefarease the variance.

If we use integration by part for the harmonic oscillatoregabe new local energy is

FEr(z) = 2*(1 + at), (11.36)
and the variance A )
0% = w, (11.37)
204

which is larger than the variance of EQ.(11.29).

11.5 \Variational Monte Carlo for atoms
The Hamiltonian for anV-electron atomic system consists of two terms

H(x) = T(x) + V(x); (11.38)

the kinetic and the potential energy operator. Here {x;,x2,...xy} is the spatial and spin degrees
of freedom associated with the different particles. Thesitzl kinetic energy

P2 X p
T=_— —L
2m + Z 2m
7j=1
is transformed to the quantum mechanical kinetic energyadpeby operator substitution of the momen-
tum (pp — —ihd/0xy)
N

T ——h—2v2— h—2v2 11.39
(x) = 62 5-Vi (11.39)

=1
Here the first term is the kinetic energy operator of the rug;l¢he second term is the kinetic energy
operator of the electrong/ is the mass of the nucleus andis the electron mass. The potential energy

operator is given by
N

A Ze? e?
V(x) :—; e+ > ey (11.40)

i=1,i<j
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where ther;'s are the electron-nucleus distances andrthie are the inter-electronic distances.

We seek to find controlled and well understood approximationorder to reduce the complexity
of the above equations. THorn-Oppenheimer approximatida a commonly used approximation, in
which the motion of the nucleus is disregarded.

11.5.1 The Born-Oppenheimer Approximation

In a system of interacting electrons and a nucleus thereusilélly be little momentum transfer between
the two types of particles due to their differing masses. fOnees between the particles are of similar
magnitude due to their similar charge. If one assumes tleatnibmenta of the particles are also similar,
the nucleus must have a much smaller velocity than the elestdue to its far greater mass. On the
time-scale of nuclear motion, one can therefore consideelictrons to relax to a ground-state given by
the Hamiltonian of Eqs[TII.B8], (11139) afd (11.40) with tlucleus at a fixed location. This separation
of the electronic and nuclear degrees of freedom is knowheBdbrn-Oppenheimer approximation.

In the center of mass system the kinetic energy operatosread

X

. h2 )
L) = =300 1 Wy VoM ZV TP (11.41)

while the potential energy operator remains unchangede bhatt the Laplace operato¥s’ now are in
the center of mass reference system.

The first term of Eq.[{TT.41) represents the kinetic energyratpr of the center of mass. The second
term represents the sum of the kinetic energy operatorseoivtielectrons, each of them having their
massm replaced by the reduced magss= mM/(m + M) because of the motion of the nucleus. The
nuclear motion is also responsible for the third term, omfass polarizatiorterm.

The nucleus consists of protons and neutrons. The pro&mtreh mass ratio is abou1836 and
the neutron-electron mass ratio is ab®yit839, so regarding the nucleus as stationary is a natural ap-
proximation. Taking the limit\/ — oo in Eq. (I1.41), the kinetic energy operator reduces to

N2
Z 2 Vi (11.42)

The Born-Oppenheimer approximation thus disregards thatkinetic energy of the center of mass
as well as the mass polarization term. The effects of the Bygpenheimer approximation are quite
small and they are also well accounted for. However, thipbfied electronic Hamiltonian remains very
difficult to solve, and analytical solutions do not exist fmneral systems with more than one electron.
We use the Born-Oppenheimer approximation in our discassi@tomic and molecular systems.

The first term of Eq.[{I1.40) is the nucleus-electron po#trathd the second term is the electron-
electron potential. The inter-electronic potentials e main problem in atomic physics. Because of
these terms, the Hamiltonian cannot be separated into antielp parts, and the problem must be solved
as awhole. A common approximation is to regard the effecte@glectron-electron interactions either
as averaged over the domain or by means of introducing atgdosictional, such as by Hartree-Fock
(HF) or Density Functional Theory (DFT). These approachresaatually very efficient, and abo99%
or more of the electronic energies are obtained for most Hfulzions. Other observables are usually
obtained to an accuracy of abaiit — 95% (ref. [64]).
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11.5.2 The hydrogen Atom

The spatial Schrédinger equation for the three-dimensibpdrogen atom can be solved analytically,
see for example Ref. [65] for details. To achieve this, weritewthe equation in terms of spherical
coordinates using

T = rsinbcose, (11.43)
y = rsinfsing, (11.44)

and
z = rcost. (11.45)

The reason we introduce spherical coordinates is the siheymmetry of the Coulomb potential

e? e?

dmeor dmegr/22 + 32 + 22
where we have used= /22 + y2 + 22. Itis not possible to find a separable solution of the type
V(z,y, 2) = (@)Y(y)(z). (11.47)

as we can with the harmonic oscillator in three dimensiorswvéver, with spherical coordinates we can
find a solution of the form

(11.46)

¥(r,0,8) = R(r)P(0)F(¢) = RPF. (11.48)

These three coordinates yield in turn three quantum numvideich determine the enegy of the systems.
We obtain three sets of ordinary second-order differemtplations which can be solved analytically,
resulting in

1 9?F
F o= —c2, (11.49)
C,sin*(0)P + sm(@)%(sm(@)%—g) = C;P, (11.50)

and
10, ,0R 2mrke®  2mr?

Ror" o) Tt
whereC, andC,, are constants. The angle-dependent differential equeatiesult in the spherical har-
monic functions as solutions, with quantum numbesadm,;. These functions are given by

E=0C, (11.51)

QL4+ 1)1 —my)!
A (1 +my)!

Yiun, (0. 6) = P(O)F(¢) = ¢ P"(cos(6)) exp (imi¢),  (11.52)

with P/ being the associated Legendre polynomials They can betteweis

Yim, (0, ¢) = sinI™(0) x (polynom(cos)) exp (im¢), (11.53)

/1
Yoo = P (11.54)
Yio = \/%003(9), (11.55)
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foril=10gm; =0,
Yier =4/ gsin(ﬂ)ewp(iigb), (11.56)
™

Yoo =14/ 12 (3cos?(9) — 1) (11.57)

for I = 2 ogm; = 0. The quantum numbeisandm; represent the orbital momentum and projection of
the orbital momentum, respectively and take the values

forl =1o0gm; = £+1, and

1.
1>0
2.
1=0,1,2,...
3.

mp=—l,—l+1,...,01—1,1

The spherical harmonics fér< 3 are listed in Tabl&ZTTl1.

Spherical Harmonics

m\l 0 1 2 3

'3 —L(88)1/25i3pe+5i0

+2 %(1—2 )/25in20et?i® %(2&)1/2003932712%“@

+1 —%(%)1/28in96+i¢ %(%)1/260893in96+i¢ —%(%) 2(5¢c05%0 — 1)sinfet™®
0 g MOt NGt -1) - s
1 +1(2) Y 2sin0e®  +1(22)12c0s0sin0e®  +L(ZL)V2(5c05%0 — 1)sinfe”
) i(%)l/zsm fe—21 %(?)1/260893in296_2i¢

-3 +1(8)25in3ge 3¢

Table 11.1: Spherical harmonig$,,, for the lowest andm; values.

We concentrate on the radial equation, which can be rewritse

22 e 2
- h2—m (;( 261;: ))> - kTR( )+ %R(T) = ER(r). (11.58)

Introducing the function(r) = rR(r), we can rewrite the last equation as
The radial Schrodinger equation for the hydrogen atom camrlieen as

B2 924 (r) B <k_€2 B h2l(l + 1)> u(r) = Eu(r), (11.59)

C2m Or? r 2mr?
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wherem is the mass of the electrohjts orbital momentum taking valués= 0,1, 2, ..., and the term
ke? /r is the Coulomb potential. The first terms is the kinetic epeffhe full wave function will also
depend on the other variablésand ¢ as well. The energy, with no external magnetic field is howeve
determined by the above equation . We can then think of thalr&dhrodinger equation to be equivalent
to a one-dimensional movement conditioned by an effectteryial
2 2
Van(r) = 2 B L) (11.60)
r 2mr?

The radial equation can also be solved analytically remyith the quantum numbersin addition to
Imy. The solutionR,,; to the radial equation is given by the Laguerre polynomiaélee analytic solutions
are given by

T;Z)nlml (Ta 97 ¢) = ¢nlml = Rnl (T)Yiml (97 ¢) = Rnlelml (1161)
The ground state is defined bby= 1 og/ = m; = 0 and reads
1
Y100 = ——e /%, (11.62)
ag VT

where we have defined the Bohr raditgs= 0.05 nm

h2
ap = e (11.63)
The first excited state with= 0 is
1 T
= (2 —)e /20, 11.64
= i ) 169
For states with witi = 1 andn = 2, we can have the following combinations withy = 0
1 T
— o —7r/2a0
210 74&3/2\/% <a0> e cos (), (11.65)
andm; = +1
1 r )
= — R —7‘/2(10 N :l:Zd)
o141 8ag/2\/7_r <a0> e sin(6)e™"?. (11.66)

The exact energy is independent@ndm;, since the potential is spherically symmetric.

The first few non-normalized radial solutions of equatiomlasted in Tabl€IT]2. A problem with the
spherical harmonics of table_Tl.1 is that they are complére iitroduction ofsolid harmonicsallows
the use of real orbital wave-functions for a wide range ofliapfions. The complex solid harmonics
Yim, (r) are related to the spherical harmonigs,, (r) through

ylml (I') = leiml (I')
By factoring out the leading-dependency of the radial-function
Ru(r) =r 'Ry (r),

we obtain
\I’nlml (7“, 97 ¢) = Rnl(r) . ylml (I‘)
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Hydrogen-Like Atomic Radial Functions

N1 2 3

0 e 4T (2—r)e 272 (27 — 181 + 2r2)e—27/3
1 re=4r/2 r(6 — T)€_ZT/3

2 r2e—21/3

Table 11.2: The first few radial functions of the hydrogelatoms.

For the theoretical development of theal solid harmonicssee Ref. [66]. Here Helgakest al first
express the complex solid harmonics,,,, by (complex) Cartesian coordinates, and arrive at the real
solid harmonics,5;,,,, , through the unitary transformation

Slml o L (_l)lm 1 Clml
Si—m ) 2\ (=D i) \Ci_m )’

This transformation will not alter any physical quantitibat are degenerate in the subspace consisting of
opposite magnetic quantum numbers (the angular momehigiagual for both these cases). This means
for example that the above transformation does not altegrleggies, unless an external magnetic field is
applied to the system. Henceforth, we will use the solid twanias, and note that changing the spherical
potential beyond the Coulomb potential will not alter théidsbarmonics. The lowest-order real solid
harmonics are listed in table~TIL.3.

Real Solid Harmonics

m\ 0 1 2 3

+3 L3 -3y
+2 3V3(@? —y?)  3V15(a? —y?)z
+1 X V3xz /3052 — )z
0 1 y $(32% —r?) $(522 = 3r%)z
-1 z V3yz %\/g(ﬁ')zz —7?)y
-2 V3xy V15zyz

3 L3322 — )y

Table 11.3: The first-order real solid harmonigs,, .
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When solving equations numerically, it is often convenierrewrite the equation in terms of dimen-
sionless variables. One reason is the fact that severakofdhstants may differ largely in value, and
hence result in potential losses of numerical precisiore dther main reason for doing this is that the
equation in dimensionless form is easier to code, sparirgfaneventual typographic errors. In order

to do so, we introduce first the dimensionless variable /3, where is a constant we can choose.
Schrédinger’s equation is then rewritten as

10%u(p) mke?3 (t+1) m3?
— = — =—F . 11.67
50,2 7 u(p) 2 u(p) = =5~ Bulp) ( )
We can determing by simply requirinE
mke?3
= 1 (11.68)

With this choice, the constamtbecomes the famous Bohr radiug= 0.05 nmag = 8 = h?/mke?.
As a petit digression, we list here the standard units usedamic physics and molecular physics
calculations. Itis common to scale atomic units by setting- ¢ = 7 = 4weg = 1, see tabl€1T14.

Atomic Units
Quantity Sl Atomic unit
Electron massy 9.109 - 103! kg 1
Chargee 1.602-10719 C 1
Planck’s reduced constarit, 1.055-1073* Js 1
Permittivity, 47eq 1.113-1079c2 3! m! 1
Energy, 47;‘;2&0 27211 eV 1
Length,ay = mal” 0.529 - 10710 m 1
Table 11.4: Scaling from Sl to atomic units
We introduce thereafter the variable
mB?
and inserting? and the exact energy = Fy/n?, with Ey = 13.6 eV, we have that
1
A=—— 11.70
el (11.70)

n being the principal quantum number. The equation we aredbary to solve numerically is now

2
- %aaz;gp) - U(pp) + l(lz;l)U(p) — Au(p) =0, (11.71)

with the hamiltonian 52
1 1 +21). (11.72)

2002 p 2

3Remember that we are free to chogse
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The ground state of the hydrogen atom has the enkrgy—1/2, or E = —13.6 eV. The exact wave
function obtained from EqC{IIY1) is
u(p) = pe?, (11.73)

which yields the energp = —1/2. Sticking to our variational philosophy, we could now irtuze a
variational parametex resulting in a trial wave function

ut(p) = ape™ . (11.74)
Inserting this wave function into the expression for thealenergyE;, of Eq. (ITI6) yields (check
it!)
1 2
Erlp)=— -2 <a - —> . (11.75)
p 2 p

For the hydrogen atom, we could perform the variationaludation along the same lines as we did
for the harmonic oscillator. The only difference is that EdLIT) now reads

(1) = [ PRBLRIR = [ o e By (o) (11.76)

sincep € [0, 00]. In this case we would use the exponential distributioneiadtof the normal distrubu-
tion, and our code would contain the following elements

initialisations , declarations of variables
mcs = number of Monte Carlo samplings

/1 loop over Monte Carlo samples
for ( i=0; i < mcs; i++) {

/1 generate random variables from the exponential
/1 distribution using ranl and transforming to
/1 to an exponential mapping y =In(1-x)
x=ranl(&idum);
y=—log(1.—x);
/1 in our case y = rhocalphax2
rho = y/alpha/2;
local_energy =-1/rho —0.5xalphax(alpha—2/rho);
energy += (local_energy);
energy2 += local_energylocal_energy;
/1 end of sampling
}
/1 write out the mean energy and the standard deviation
cout << energy/mcs << sqrt((energy2/megenergy/mcs¥«2)/mcs));

As for the harmonic oscillator case we just need to generdégge numberN of random numbers
corresponding to the exponential PRFEp?e 227 and for each random number we compute the local
energy and variance.

11.5.3 Metropolis sampling for the hydrogen atom and thertaanic oscillator

We present in this subsection results for the ground stditdediydrogen atom and harmonic oscillator
using a variational Monte Carlo procedure. For the hydragem, the trial wave function

ug(p) = ape” ",
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depends only on the dimensionless ragiufi is the solution of a one-dimensional differential edomat
as is the case for the harmonic oscillator as well. The latsrthe trial wave function

\IJT(J}) _ \/ae—m2a2/2.

T ogl/4

However, for the hydrogen atom we hawec [0, o], while for the harmonic oscillator we have €
[—00, 0]

This has important consequences for the way we generatemapdsitions. For the hydrogen atom
we have a random position given by e.g.,

r_old = step_length*(ranl(&idum))/alpha;
which ensures that > 0, while for the harmonic oscillator we have
r_old = step_length*(ranl(&idum)-0.5)/alpha;

in order to haver € [—oo, oo]. This is however not implemented in the program below. Thiengor-
tance sampling is not included. We simulate points inithg and z directions using random numbers
generated by the uniform distribution and multiplied by #tep length. Note that we have to define a
step length in our calculations. Here one has to play arouitid different values for the step and as a
rule of thumb (one of the golden Monte Carlo rules), the seegih should be chosen so that roughly
50% of all new moves are accepted. In the program at the erliisoféction we have also scaled the
random position with the variational parameter The reason for this particular choice is that we have
an external loop over the variational parameter. Diffexamtational parameters will obviously yield dif-
ferent acceptance rates if we use the same step length. énatit’e to the code below is to perform the
Monte Carlo sampling with just one variational parametad play around with different step lengths
in order to achieve a reasonable acceptance ratio. Anotissilylity is to include a more advanced test
which restarts the Monte Carlo sampling with a new step leifghe specific variational parameter and
chosen step length lead to a too low acceptance ratio.

In Figs.[IT1 an@I1l2 we plot the ground state energies éootie-dimensional harmonic oscillator
and the hydrogen atom, respectively, as functions of thiatianal parametet.. These results are also
displayed in Tables—T1.5 ahd1l1.6. In these tables we listahiance and the standard deviation as well.
We note that atv we obtain the exact result, and the variance is zero, asuldh®he reason is that we
then have the exact wave function, and the action of the hiamain on the wave function

H1 = constant x 1,
yields just a constant. The integral which defines varioygeetation values involving moments of the
hamiltonian becomes then

my = LBV ROV R) _ e S BRI (R)

J AR5 (R)¥7 (R) [ dRU;(R) ¥ (R)

= constant. (22.77)

This explains why the variance is zero far= 1. However, the hydrogen atom and the harmonic
oscillator are some of the few cases where we can use a tnal fwaction proportional to the exact one.
These two systems are also some of the few examples of casee wk can find an exact solution to
the problem. In most cases of interest, we do not know a pheriexact wave function, or how to make
a good trial wave function. In essentially all real problemsrge amount of CPU time and numerical
experimenting is needed in order to ascertain the validity onte Carlo estimate. The next examples
deal with such problems.
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Ey

I | : |
MC simulation with N=100000 ——
Exact result - -

Figure 11.1. Result for ground state energy of the harmordallator as function of the variational
parametery. The exact result is fair = 1 with an energyE’ = 1. See text for further details

Table 11.5: Result for ground state energy of the harmonidlat®r as function of the variational pa-
rametero. The exact result is far = 1 with an energyFl = 1. The energy variance? and the standard
deviationo /v/N are also listed. The variabl¥ is the number of Monte Carlo samples. In this calcu-
lation we setN = 100000 and a step length of 2 was used in order to obtain an acceptdnees0%.
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a (H) o? o/vVN
5.00000E-01 2.06479E+00 5.78739E+00 7.60749E-03
6.00000E-01 1.50495E+00 2.32782E+00 4.82475E-03
7.00000E-01 1.23264E+00 9.82479E-01 3.13445E-03
8.00000E-01 1.08007E+00 3.44857E-01 1.85703E-03
9.00000E-01 1.01111E+00 7.24827E-02 8.51368E-04
1.00000E-00 1.00000E+00 0.00000E+00 0.00000E+00
1.10000E+00 1.02621E+00 5.95716E-02 7.71826E-04
1.20000E+00 1.08667E+00 2.23389E-01 1.49462E-03
1.30000E+00 1.17168E+00 4.78446E-01 2.18734E-03
1.40000E+00 1.26374E+00 8.55524E-01 2.92493E-03
1.50000E+00 1.38897E+00 1.30720E+00 3.61553E-03
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-0.8

I | |
MC simulation with N=100000 ——
Exact result - - -

0.2 0.4

0.6 0.8

1.2 1.4

Figure 11.2: Result for ground state energy of the hydrogem as function of the variational parameter
a. The exact result is for = 1 with an energyF = —1/2. See text for further details

Table 11.6: Result for ground state energy of the hydrogem ais function of the variational parameter
a. The exact result is forr = 1 with an energyE = —1/2. The energy variance? and the standard
deviationo /+/N are also listed. The variabl¥ is the number of Monte Carlo samples. In this calculation
we fixed N = 100000 and a step length of 4 Bohr radii was used in order to obtaincasmance of

~ 50%.

a (H) o? o/VN
5.00000E-01 -3.76740E-01 6.10503E-02 7.81347E-04
6.00000E-01 -4.21744E-01 5.22322E-02 7.22718E-04
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03
1.40000E+00 -4.13220E-01 3.14113E-01 1.77232E-03
1.50000E+00 -3.72241E-01 5.45568E-01 2.33574E-03
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11.5.4 The helium atom

Most physical problems of interest in atomic, molecular antid state physics consist of a number of
interacting electrons and ions. The total number of pasidl is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation vdlrea chosen hamiltonian for a system &f
particles is

_ JdRidR, .. dRNV*(R1, Ry, ..., Ry)H(R1,Rs, ... ,RN)¥(Rq,Rs, ..., Ry)
[dR1dR;...dRyU*(R1,Ra,...,Ry)¥(Ry,Ry,...,Ry)

(H) , (11.78)

an in general intractable problem. Controlled and well usi®d approximations are sought to reduce
the complexity to a tractable level. Once the equations @iked, a large number of properties may be
calculated from the wave function. Errors or approximatiomade in obtaining the wave function will be
manifest in any property derived from the wave function. Véht@gh accuracy is required, considerable
attention must be paid to the derivation of the wave funciind any approximations made.

The helium atom consists of two electrons and a nucleus witige Z = 2. In setting up the
hamiltonian of this system, we need to account for the répulsetween the two electrons as well.

A common and very reasonable approximation used in theisolof equation of the Schrodinger
equation for systems of interacting electrons and ionsa8ibrn-Oppenheimer approximation discussed
above. In a system of interacting electrons and nuclei thalteusually be little momentum transfer
between the two types of particles due to their greatly diffemasses. The forces between the particles
are of similar magnitude due to their similar charge. If dmtassumes that the momenta of the particles
are also similar, then the nuclei must have much smallercitede than the electrons due to their far
greater mass. On the time-scale of nuclear motion, one @agftre consider the electrons to relax to
a ground-state with the nuclei at fixed locations. This saf@am of the electronic and nuclear degrees
of freedom is the the Born-Oppenheimer approximation weudised previously in this chapter. But
even this simplified electronic Hamiltonian remains veffficlilt to solve. No analytic solutions exist for
general systems with more than one electron.

If we label the distance between electron 1 and the nucleus. &imilarly we haver, for electron
2. The contribution to the potential energy due to the aiwadrom the nucleus is

2ke?  2ke?
1 T2

, (11.79)

and if we add the repulsion arising from the two interactifeg®ons, we obtain the potential energy

2ke2  2ke? ke
—_ _l’_ -

V(r,re) = — , (11.80)
1 r2 12
with the electrons separated at a distange= |r; — r3|. The hamiltonian becomes then
R 2\72 2\72 2 2 2
H:—h Vi W'V 2ke”  2ke —I—ki, (11.81)
2m 2m 71 T2 712
and Schrédingers equation reads R
Hvy = Ev. (11.82)

Note that this equation has been written in atomic uaits which are more convenient for quantum
mechanical problems. This means that the final energy hasnuitiplied by & x Ey, whereE; = 13.6
eV, the binding energy of the hydrogen atom.
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A very simple first approximation to this system is to omit tepulsion between the two electrons.
The potential energy becomes then
Zke*  Zke?
V(r,r) ~ — 28 20 (11.83)

™ 2

The advantage of this approximation is that each electronbeatreated as being independent of each
other, implying that each electron sees just a centrallymsgtric potential, or central field.

To see whether this gives a meaningful result, weZet 2 and neglect totally the repulsion between
the two electrons. Electron 1 has the following hamiltonian

~ WV 2ke?

h; = , (11.84)
2m 1
with pertinent wave function and eigenvalue
11, = Eqtla, (11.85)
wherea = {n,l,m;,}, are its quantum numbers. The enefgyis
2
E, = Z ;EO, (11.86)
na

medEy = 13.6 eV, being the ground state energy of the hydrogen atom. Im#asiway, we obatin for

electron 2
~ h2V§ 2ke?

hy = —= , (11.87)
m 2
with wave function R
hot)y, = Eyiy, (11.88)
andb = {nylymy, }, and energy
Z2E
By = "3 (11.89)
ny,

Since the electrons do not interact, we can assume thatdbedstate wave function of the helium atom
is given by

Y = Yoy, (11.90)
resulting in the following approximation to Schrédingegguation
(ﬂl + Ez) = (El + 1A12> Va(r1)Yp(r2) = Eaptha(r1)p(ra). (11.91)
The energy becomes then
(Buva(r))) va(ra) + (Bawn(r2)) wulr1) = (Ba+ By walr)t(ra),  (11.92)
yielding
Eu = Z%E, (iz + %) . (11.93)
ng Ny

If we insertZ = 2 and assume that the ground state is determined by two eleattdhe lowest-lying
hydrogen orbit withn, = n;, = 1, the energy becomes

Equ = 8Ey = —108.8 eV, (11.94)

while the experimental value is78.8 eV. Clearly, this discrepancy is essentially due to our eiais of
the repulsion arising from the interaction of two electrons

283



Quantum Monte Carlo methods

Choice of trial wave function

The choice of trial wave function is critical in variation®lonte Carlo calculations. How to choose
it is however a highly non-trivial task. All observables aealuated with respect to the probability
distribution

)P
P = T mPar

generated by the trial wave function. The trial wave funttioust approximate an exact eigenstate in
order that accurate results are to be obtained. Improvaldatave functions also improve the importance
sampling, reducing the cost of obtaining a certain stadstccuracy.

Quantum Monte Carlo methods are able to exploit trial wawetions of arbitrary forms. Any wave
function that is physical and for which the value, gradiemtl gaplacian of the wave function may be
efficiently computed can be used. The power of Quantum MoatoC@nethods lies in the flexibility of
the form of the trial wave function.

It is important that the trial wave function satisfies as méngwn properties of the exact wave
function as possible. A good trial wave function should bikhinuch of the same features as does the
exact wave function. Especially, it should be well-definetha origin, that ist(|R| = 0) # 0, and its
derivative at the origin should also be well-defined . Onesjtids guideline in choosing the trial wave
function is the use of constraints about the behavior of theesfunction when the distance between
one electron and the nucleus or two electrons approaches Heese constraints are the so-called “cusp
conditions” and are related to the derivatives of the wawetion.

To see this, let us single out one of the electrons in the mefitom and assume that this electron is
close to the nucleus, i.e;; — 0. We assume also that the two electrons are far from each atitethat
r9 # 0. The local energy can then be written as

(11.95)

ErL(R) = ﬁH@ZJT(R) = ﬁ (—%V% - %) Y7 (R) + finite terms. (11.96)

Writing out the kinetic energy term in the spherical cooad@s of electror, we arrive at the following
expression for the local energy

1 1 d? 1d Z
o N\ T e9 a2 T T T finite t 11.97
( Sdr?  ridr 7“1) Rr(r1) + finite terms, ( )

whereRr(r) is the radial part of the wave function for electrbn We have also used that the orbital
momentum of electron 1 is= 0. For small values of;, the terms which dominate are

lim Fr(R) =

1 < 1 d Z
r1—0 RT(Tl)

——— —— R , 11.98
1 dry 7“1) 7(r1) ( )
since the second derivative does not diverge due to therfesteofl at the origin. The latter implies
that in order for the kinetic energy term to balance the djgace in the potential term, we must have

1 dRT(Tl)
=7, 11.99
RT(Tl) d?”l ( )
implying that
Ry(r) oc e 2. (11.100)
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A similar condition applies to electron 2 as well. For orbiteomental > 0 we have (show this!)

1 dRe(r) 2
Rr(r) dr 1+ 1°

(11.101)

Another constraint on the wave function is found for two #&leas approaching each other. In this
case it is the dependence on the separatjgietween the two electrons which has to reflect the correct
behavior in the limitr1; — 0. The resulting radial equation for thg, dependence is the same for the
electron-nucleus case, except that the attractive Couintataction between the nucleus and the electron
is replaced by a repulsive interaction and the kinetic gntggn is twice as large. We obtain then

1 4 d 2
lim E;(R)=—— [ ———+ = | R , 11.102
rlégo L( ) RT(Tlg) < r12 d7“12 + 7“12) T(T12) ( )

with still I = 0. This yields the so-called 'cusp’-condition

1 dRT(Tlg) 1
—_— 11.103
RT(Tlg) d?”lg 2 ( )

while for [ > 0 we have L dRp(r) .
T(T12
= ) 11.104
RT(Tlg) d?”lg 2(l + 1) ( )
For general systems containing more than two electrons awe this condition for each electron pajr
Based on these consideration, a possible trial wave fumgtitich ignores the 'cusp’-condition be-

tween the two electrons is

Yr(R) = e ) (11.105)

wherer; o are dimensionless radii and is a variational parameter which is to be interpreted as an
effective charge.
A possible trial wave function which also reflects the 'cusphdition between the two electrons is

Yp(R) = e"@mtr2)erz/2, (11.106)

The last equation can be generalized to

Ur(R) = ¢(r1)d(r2) ... d(en) [] £(riy), (11.107)

1<j

for a system withV electrons or particles. The wave functigfr;) is the single-particle wave function
for particlei, while f(r;;) account for more complicated two-body correlations. Fertikelium atom,
we placed both electrons in the hydrogenic otiit We know that the ground state for the helium atom
has a symmetric spatial part, while the spin wave functioanis-symmetric in order to obey the Pauli
principle. In the present case we need not to deal with sgreds of freedom, since we are mainly trying
to reproduce the ground state of the system. However, adpptich a single-particle representation for
the individual electrons means that for atoms beyond heluencannot continue to place electrons in the
lowest hydrogenic orbit. This is a consenquence of the Rawlciple, which states that the total wave
function for a system of identical particles such as fermjdmas to be anti-symmetric. The program
we include below can use either EG.{IT1105) or Eq.(11.166)He trial wave function. One or two
electrons can be placed in the lowest hydrogen orbit, imglyhat the program can only be used for
studies of the ground state of hydrogen or helium.
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11.5.5 Program example for atomic systems

The variational Monte Carlo algorithm consists of two distiphases. In the first a walker, a single
electron in our case, consisting of an initially random deglectron positions is propagated according
to the Metropolis algorithm, in order to equilibrate it anegn sampling . In the second phase, the
walker continues to be moved, but energies and other olidlessare also accumulated for later averaging
and statistical analysis. In the program below, the elestiere moved individually and not as a whole
configuration. This improves the efficiency of the algorittmiarger systems, where configuration moves
require increasingly small steps to maintain the acceptaaiio.

The main part of the code contains calls to various functieetup and declarations of arrays etc.
Note that we have defined a fixed step lenggtfor the numerical computation of the second derivative
of the kinetic energy. Furthermore, we perform the Metrptast when we have moved all electrons.
This should be compared to the case where we move one elettiiomtime and perform the Metropolis
test. The latter is similar to the algorithm for the Ising rebdiscussed in the previous chapter. A more
detailed discussion and better statistical treatmentsaaatyses are discussed in chapfels 171ahd 16.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapterll/cpp/programl.cpp

/!l Variational Monte Carlo for atoms with up to two electrons
#include <iostream>

#include <fstream >

#include <iomanip>

#include "1ib.h"

using namespace std;

/!l output file as global variable

ofstream ofile;

/I the step length and its squared inverse for the second dative
#define h 0.001

#define h2 1000000

/! declaraton of functions

/!l Function to read in data from screen, note call by referenc
void initialise (int&, int&, int&, int&, int&, int&, double&)

[/l The Mc sampling for the variational Monte Carlo
void mc_sampling(nt, int, int, int, int, int, double, double %, double x);

/I The variational wave function
double wave_function@ouble xx, double, int, int);

[/l The local energy
double local_energyf@ouble *xx, double, double, int, int, int);

/I prints to screen the results of the calculations
void output(int, int, int, double x, double x);
/! Begin of main program

[l'int main()
int main(int argc, charx argv[])

286


http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter11/cpp/program1.cpp

11.5 — Variational Monte Carlo for atoms

char xoutfilename;

int number_cycles, max_variations, thermalization, charge;
int dimension, number_particles;

double step_length;

double xcumulative_e,xcumulative_e2;

/I Read in output file, abort if there are too few commaithe arguments
if ( argc <= 1 ){

Cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
elseg{
outfilename=argv[1];
}

ofile .open(outfilename);

/1 Read in data

initialise (dimension, number_particles, charge,
max_variations, number_cycles,
thermalization, step_length) ;

cumulative_e =new double[max_variations +1];

cumulative_e2 =new double[max_variations +1];

/I Do the mc sampling
mc_sampling (dimension, number_particles, charge,
max_variations, thermalization,
number_cycles, step_length, cumulative_e, cumulativ®) e
/I Print out results
output(max_variations, number_cycles, charge, cumulatie, cumulative_e?2

delete [] cumulative_e; delete [] cumulative_e;
ofile .close (); // close output file
return O;

The implementation of the brute force Metropolis algoritlnshown in the next function. Here we
have a loop over the variational variableslt calls two functions, one to compute the wave function and
one to update the local energy.

/!l Monte Carlo sampling with the Metropolis algorithm

void mc_sampling (nt dimension, int number_particles ,int charge,
int max_variations,
int thermalization, int number_cycles,double step_length,
double xcumulative_e , double xcumulative_e2)
{
int cycles, variate, accept, dim, i, j;
long idum;
double wfnew, wfold, alpha, energy, energy2, delta_e;
double *xr_old, xxr_new;
alpha = 0.%charge;
idum=—1;
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/Il allocate matrices which contain the position of the pactes
r_old = (double xx) matrix( number_particles, dimensionsizeof(double));
r_ new = (double xx) matrix( number_particles, dimensionsizeof(double));
for (i = 0; i < number_particles; i++) {

for ( j=0; j < dimension; j++) {

r_old[il[j] = r_new[i][j] = O;

}

}

/I loop over variational parameters
for (variate=1; variate <= max_variations; variate++){
/1 initialisations of variational parameters and energies
alpha += 0.1;
energy = energy2 = 0; accept =0; delta_e=0;
/1l initial trial position, note calling with alpha
/I and in three dimensions
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
r old[i][j] = step_lengthx(ranl(&idum)—-0.5);
}

wfold = wave_function(r_old, alpha, dimension, numberrpiales);
/l loop over monte carlo cycles
for (cycles = 1; cycles <= number_cycles+thermalization; cgst+){
/l new position
for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
rnewl[i][j] = r_old[i][j]+step_length«(ranl(&idum)—0.5);

}

wfnew = wave_function(r_new, alpha, dimension, numberrteales);
/I Metropolis test

if (ranl(&idum) <= wfnewwfnew/wfold/wfold ) {

for (i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
rold[i][jl=r_new[i][j];
wfold = wfnew;
accept = accept+1;

}

/I compute local energy
if ( cycles > thermalization ) {
delta_e = local_energy(r_old, alpha, wfold, dimension,
number_particles , charge);
Il update energies
energy += delta_e;
energy2 += delta_edelta_e;
}
} /!l end of loop over MC trials
cout << "variational parameter= " << alpha
<< " accepted steps= " << accept << endl;
/Il update the energy average and its squared
cumulative_e[variate] = energy/number_cycles;
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cumulative_e2[variate] = energy2/number_cycles;

} /I end of loop over variational steps

free_matrix ((void %) r_old); // free memory

free_matrix ((void %) r_new); // free memory
} /I end mc_sampling function

The wave function is in turn defined in the next function. Heselimit ourselves to a function which
consists only of the product of single-particle wave fuoies.

/!l Function to compute the squared wave function, simpleetmf
double wave_function@ouble xxr, double alpha ,int dimension, int
number_particles)
{
int i, j, k;
double wf, argument, r_single_ particle , r_12;
argument = wf = 0;
for (i = 0; i < number_particles; i++) {
r single_particle = 0;
for (j = 0; J < dimension; j++) {
r_single_particle += r[il[jkr[i][j];
}
argument += sqrt(r_single_particle);
}
wf = exp(—argumentalpha) ;
return wf;
}

Finally, the local energy is computed using a numericalvagion for the kinetic energy. We use the
familiar expression derived in Eq.(3.4), that is

" __ fh_2f0+f—h
0=

in order to compute
1

- 2¢r(R)
The variableh is a chosen step length. For helium, since it is rather eagydtuate the local energy,
the above is an unnecessary complication. However, for méaotron or other many-particle systems,

the derivation of an analytic expression for the kineticrggecan be quite involved, and the numerical
evaluation of the kinetic energy using EGQ.{3.4) may resu# simpler code and/or even a faster one.

V2)r(R). (11.108)

/!l Function to calculate the local energy with num derivativ

double local_energyf@ouble xxr, double alpha, double wfold, int dimension,
int number_particles ,int charge)
{

int i, j , k;

double e_local, wfminus, wfplus, e_kinetic, e_potential, r_12,
r_single_particle;

double sxr_plus , xxr_minus;
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/Il allocate matrices which contain the position of the pactes

/I the function matrix is defined in the progam library

r_plus = (double xx) matrix( number_particles, dimension sizeof(double));
r_minus = (double xx) matrix( number_particles, dimensionsizeof(double))

for ,(i = 0; i < number_particles; i++) {
for ( j=0; j < dimension; j++) {
} rplus[i][j] = r_minus[i][j] = r[i][j];
}

/I compute the kinetic energy
e_kinetic = 0;
for (i = 0; i < number_particles; i++) {
for (j = 0; j < dimension; j++) {
rplus[i][j] = r[i][j]+h;
r_minus[i][j] = r[i][j] =h;
wfminus = wave_function(r_minus, alpha, dimension, numbparticles);
wfplus = wave_ function(r_plus, alpha, dimension, numbparticles);
e_kinetic —= (wfminus+wfplus—2«wfold) ;
rplus[i][jl = r[il[jl;
r_minus[i][j] = r[i]1[]];
}
}

/1 include electron mass and hbar squared and divide by wauecftion
e _kinetic = 0.%h2«xe_kinetic/wfold;
/I compute the potential energy

e_potential = 0;

[/l contribution from electronrproton potential

for (i = 0; i < number_particles; i++) {
r_single_particle = 0;

for (j = 0; j < dimension; j++) {
r single_particle += r[i][jkr[illi];

}
e_potential—= charge/sqrt(r_single_particle);
}
/Il contribution from electronelectron potential
for (i = 0; i < number_particles-1; i++) {
for (j = i+1; ] < number_particles; j++) {
r 12 = 0;
for (k = 0; k < dimension; k++) {
} r_12 4= (r[i][K]=r[j1[k]) «(r[i]10K] —=r[j]1[k]);
e_potential += 1/sqrt(r_12);
}
}

free_matrix ((void %) r_plus); // free memory
free_matrix ((void %) r_minus);

e _local = e_potential+e_Kkinetic;

return e_local;

}

The remaining part of the program consists of the output aitidlize functions and is not listed here.
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Figure 11.3: Result for ground state energy of the heliunmatsing Eq. [[T1.105) for the trial wave
function. The variance is also plotted. A total of 100000 Mo@arlo moves were used with a step
length of 2 Bohr radii.

The way we have rewritten Schrddinger’'s equation resulenirgies given in atomic units. If we
wish to convert these energies into more familiar units ékectronvolt (eV), we have to multiply our
reults with2E, where Ey = 13.6 eV, the binding energy of the hydrogen atom. Using Eq. (1) f6r
the trial wave function, we obtain an energy minimumat: 1.75. The ground state i& = —2.85
in atomic units orE = —77.5 eV. The experimental value is78.8 eV. Obviously, improvements to
the wave function such as including the 'cusp’-conditiontfte two electrons as well, see EQ. {11]106),
could improve our agreement with experiment. Such an imefeation is the topic for the next project.

We note that the effective charge is less than the chargeafittbleus. We can interpret this reduction
as an effective way of incorporating the repulsive electtactron interaction. Finally, since we do not
have the exact wave function, we see from Eig.111.3 that thien@e is not zero at the energy mini-
mum. Techniques such as importance sampling, to be coedrésthe brute force Metropolis sampling
used here, and various optimization techniques of the vegiand the energy, will be discussed under
advanced topics, see chafier 17.

11.5.6 Helium and beyond

We need to establish some rules regarding the construcfigiysically reliable wave-functions for
systems with more than one electron. Ralli principle after Wolfgang Pauli states th@he total wave
function must be antisymmetric under the interchange ofgily of identical fermions and symmetric
under the interchange of any pair of identical bosons.

A result of the Pauli principle is the so-called Pauli ex@uasprinciple which thano two electrons
can occupy the same state.

Overall wave functions that satisfy the Pauli principle aften written asSlater Determinants
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The Slater Determinant

For the helium atom we assumed that the two electrons weleibdhe 1s state. This fulfills the Pauli
exclusion principle as the two electrons in the ground dtatee different intrinsic spin. However, the
wave function we discussed above was not antisymmetric i@ghect to an interchange of the different
electrons. This is not totally true as we only included thatisp part of the wave function. For the
helium ground state the spatial part of the wave functioymsraetric and the spin part is antisymmetric.
The product is therefore antisymmetric as well. The Sld&erminant consists of single-partidpin-
orbitals; joint spin-space states of the electrons

Wl (1) = W,(1) 1 (1),
and similarly

W (2) = 91.(2) | (2).
Here the two spin functions are given by

1 ifme(I) =1
T(I)_{o if my(1) =3’
and
{0 HmD=3 11.109)
D=1 if my(I) =—1 (.

with I = 1, 2. The ground state can then be expressed by the followingrdietant
L [T )1 @)
\/Z2) \I’ls(l) l (1) \1’13(2) l (2)
This is an example of 8later determinantThis determinant is antisymmetric since particle intaraye

is identical to an interchange of the two columns. For theugdostate the spatial wave-function is
symmetric. Therefore we simply get

U(1,2) = Wi(1)P1(2) [T (1) | (2)= 1 (2) L (V)]
The spin part of the wave-function is here antisymmetricisas no effect when calculating physical

observables because the sign of the wave function is squagdicexpectation values.
The general form of a Slater determinant composed @fthonormal orbitald ¢; } is

p1(1)  ¢1(2) ... #1(N)

o 1| ¢2(1) ¢2(2) ... ¢2(N) (11.110)
:W : : : ) '

on(1) on(2) ... oOn(NV)

The introduction of the Slater determinant is very imparfanthe treatment of many-body systems,
and is the principal building block for various variationeve functions. As long as we express the wave-
function in terms of either one Slater determinant or a lirceenbination of several Slater determinants,
the Pauli principle is satisfied. When constructing mamectebn wave functions this picture provides
an easy way to include many of the physical features. One@molwith the Slater matrix is that it is
computationally demanding. Limiting the number of caltiolias will be one of the most important issues
concerning the implementation of the Slater determinahts Will be discussed in detail in chapfed 17.
Chaptel1l7 is dedicated to the discussion of advanced maahy-methods for solving Schrédinger’s
equation.

W(1,2)
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11.6 The H molecule

The H} molecule consists of two protons and one electron, withibjénergyEs = —2.8 eV and an
equilibrium positionry = 0.106 nm between the two protons.

We define our system through the following variables. Thetaba is at a distance from a chosen
origo, one of the protons is at the distane® /2 while the other one is placed &/2 from origo,
resulting in a distance to the electronrof R/2 andr + R/2, respectively.

In our solution of Schrédinger’s equation for this systemase going to neglect the kinetic energies
of the protons, since they are 2000 times heavier than tlotrete We assume thus that their velocities
are negligible compared to the velocity of the electron. ddion we omit contributions from nuclear
forces, since they act at distances of several orders of iln@grsmaller than the equilibrium position.

We can then write Schrodinger’s equation as follows

_hQV% _ ke? _ ke? i k_e2
2me |r—R/2] |r+R/2] R

}w<r, R)= Ey(r,R),  (11111)

where the first term is the kinetic energy of the electron, dbeond term is the potential energy the
electron feels from the proton atR /2 while the third term arises from the potential energy cwiion
from the proton aR /2. The last term arises due to the repulsion between the twonsoln FigITH
we show a plot of the potential energy

_ ke? _ ke? i k_e2
r—R/2| [|r+R/2| R

V(r,R) = (11.112)
Here we have fixedlR| = 2a¢ 0g |R| = 8ay, being 2 and 8 Bohr radii, respectively. Note that in the
region betweenr| = —|R|/2 (units arer/ay in this figure, withay = 0.0529) and|r| = |R|/2 the
electron can tunnel through the potential barrier. Retall + R/2 og R/2 correspond to the positions
of the two protons. We note also thatAfis increased, the potential becomes less attractive. Hsis h
consequences for the binding energy of the molecule. Thadigrenergy decreases as the distaRce
increases. Since the potential is symmetric with respetttdanterchange dR — —R andr — —r it
means that the probability for the electron to move from orwgnm to the other must be equal in both
directions. We can say that the electron shares it's timedwmt both protons.

With this caveat, we can now construct a model for simulatimgmolecule. Since we have only one
elctron, we could assume that in the linkit — oo, i.e., when the distance between the two protons is
large, the electron is essentially bound to only one of tliégms. This should correspond to a hydrogen
atom. As a trial wave function, we could therefore use thetedaic wave function for the ground state
of hydrogen, namely

1 1/2
Yro0(r) = <—3> e~/ (11.113)

Since we do not know exactly where the electron is, we havédw or the possibility that the electron

can be coupled to one of the two protons. This form includes’thisp’-condition discussed in the
previous section. We define thence two hydrogen wave fumetio

1\ /2
1(r,R) = (—3> e~ Ir=R/2l/a0 (11.114)
and
1\ /2
o(r,R) = <—3> e~ Ir+R/2|/a0 (11.115)
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Figure 11.4: Plot of/(r, R) for |R|=0.1 and 0.4 nm. Units along theaxis arer/aq . The straight line
is the binding energy of the hydrogen atams= —13.6 eV.

Based on these two wave functions, which represent whemddtron can be, we attempt at the follow-
ing linear combination

Y+(r,R) = Cx (Y1(r, R) £¢2(r, R)), (11.116)

with C4 a constant. Based on this discussion, we add a second eléstayder to simulate the {
molecule. That is the topic for project 11.3.

11.7 Exercises and projects

Project 11.1: Studies of light Atoms

The aim of this project is to test the variational Monte Capppled to light atoms. We will test different
trial wave function¥r. The systems we study are atoms consisting of two electrolys such as the
helium atom, Lj; and Bg;;. The atom Lj; has two electrons and = 3 while Be;;; hasZ = 4 but
still two electrons only. A general ansatz for the trial wéanaction is

Yr(R) = @(r1)p(r2) f(r12). (11.117)

For all systems we assume that the one-electron wave fusctia;) are described by the an elecron in
the lowest hydrogen orbitals.
The specific trial functions we study are

Yri1(r1,re,r12) = exp (—a(r; +r2)), (11.118)

whereq is the variational parameter,
Yro(r1,re,r12) = exp (—a(ry + r2))(1 + Bria), (11.119)
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with 5 as a new variational parameter and

Urs(r1,r2,T12) = exp (—a(r +12)) exp (ﬁ) . (11.120)

a) Find the analytic expressions for the local energy foratheve trial wave function for the helium
atom. Study the behavior of the local energy with these fanstin the limitsry — 0, ro — 0 and
12 — 0.

b) Compute

(fy — LRV (RHER) V7 (R)
[dRY;(R)Ur(R)
for the helium atom using the variational Monte Carlo metbotploying the Metropolis algorithm
to sample the different states using the trial wave functign(rq, r2, r12). Compare your results
with the analytic expression

(11.121)

~ h? 27 €2
(H) = m—a2 - Bred (11.122)

c) Use the optimal value a@f from the previous point to compute the ground state of thizifmeatom
using the other two trial wave functiongr,(ry,r2,r12) andyrs(ry,ra,r12). In this case you
have to vary botly and 3. Explain briefly which function)r; (r1, r2,r12), ¥r2(r1,re,r12) and
1/JT3 (1‘1, ro, 1‘12) is the best.

d) Use the optimal value for all parameters and all wave fonstto compute the expectation value
of the mean distancgé-2) between the two electrons. Comment your results.

e) We will now repeat point 1c), but we replace the helium atdth the ions Li; and Be ;. Perform
first a variational calculation using the first ansatz for tifiel wave functionyr;(rq, rz,r12) in
order to find an optimal value far. Use then this value to start the variational calculatiothef
energy for the wave functiongrs(r, ra, r12) andyrs(ry, ra, r12). Comment your results.

Project 11.2: Ground state of He, Be and Ne

The task here is to perform a variational Monte Carlo catoutaof the ground state energy of the atoms
He, Be and Ne.

a) Here we limit the attention to He and employ the followinigliwave function

Yp(r1,re,r12) = exp (—a(ry + r2)) exp (ﬁ), (11.123)

with « and as variational parameters. The interaction is

2 2 1
V(r,r) =——— —+ — (11.124)

1 T2 7‘12’
yielding the following hamiltonian for the helium atom

go_Yi_Va_ 2 _ 2L (11.125)
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Your task is to perform a Variational Monte Carlo calculatiesing the Metropolis algorithm to
compute the integral

J ARy} (R)H (R)¢r(R)
H) = . 11.126
=TT R ®)er(®) (11126
b) We turn the attention to the ground state energy for thet@m .aln this case the trial wave function

is given by

4
rlra,ra.ra,m0) = Det (61(s2), 62(r2), 6a(r2), 61(r2)) [ Texw (5 25— ). (2.420)
i<j Y

where theDet is a Slater determinant and the single-particle wave fanstare the hydrogen wave
functions for thels and2s orbitals. Their form within the variational ansatz is givean

P15(ry) = e, (11.128)

and
has(ri) = (2 — ary) e Ti/2, (11.129)

Set up the expression for the Slater determinant and pedoraniational calculation with and 3
as variational parameters.

c) Now we compute the ground state energy for the Neon atdowinlg the same steps as in a) and
b) but with the trial wave function

10
Yr(r1,Ta,... r10) = Det (¢1(r1), éa(ra), ..., dro(r10)) [ [ exp (W) (11.130)
i<j 4

Set up the expression for the Slater determinant and repegag a) and b) including the Slater
determinant. The variational parameters are stdind g only. In this case you need to include the
2p wave function as well. It is given as

bop(ri) = arje omi/2, (11.131)
Observe that; = | /r? +r? +r?.
Project 11.3: the H molecule
The H, molecule consists of two protons and two electrons with aiggostate energyy = —1.17460

a.u. and equilibrium distance between the two hydrogen simim, = 1.40 Bohr radii. We define our
systems using the following variables. Origo is chosen tdhééwvay between the two protons. The
distance from proton 1 is defined asR/2 whereas proton 2 has a distanBg'2. Calculations are
performed for fixed distanceR between the two protons.

Electron 1 has a distaneg from the chose origo, while electrdhhas a distance,. The kinetic
energy operator becomes then

_Vi_ V3 (11.132)

The distance between the two electronsis = |r; — ry|. The repulsion between the two electrons
results in a potential energy term given by

1
+—. (11.133)
12
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11.7 — Exercises and projects

In a similar way we obtain a repulsive contribution from théeraction between the two protons given

by
1

R|’
whereR is the distance between the two protons. To obtain the firtalial energy we need to include
the attraction the electrons feel from the protons. To mtus] we need to define the distance between
the electrons and the two protons. If we model this along aehe-akse with electron 1 placed at a
distancer; from a chose origo, one proton-aR /2 and the other aR /2, the distance from proton 1 to
electron 1 becomes

+ (11.134)

riypr =r;+ R/2, (11.135)

and
Tip2 =11 — R/2, (11136)

from proton 2. Similarly, for electron 2 we obtain

ropy =Tra+ R/2, (11.137)
and
op2 = T2 — R/2. (11138)
These four distances define the attractive contributioriseotential energy
1 1 1 1
— — — — . (11.139)
T1p1 T1p2 T2p1 T2p2
We can then write the total Hamiltonian as
. 2 2 1 1 1 1 1 1
Ao_Yi_ V2 - - - + — + =, (11.140)
2 2 T T2 Topr T T2 R
and if we choos@®. = 0 we obtain the helium atom.
In this project we will use a trial wave function of the form
12
R) = R R —_— 11.141
rrara R) = (e R, R) e (55— ). (11.141)
with the following trial wave function
P(ri,R) = (exp (—arip1) + exp (—arip)), (11.142)
for electron 1 and
P(ra2, R) = (exp (—argp1) + exp (—argy)) . (11.143)
The variational parameters areand .
One can show that in the limit where all distances approact that
a=1+exp(—R/a), (11.144)

resulting ing kas the only variational parameter. The last equation isalimear equation which we can
solve with for example Newton’s method discussed in chdfter

a) Find the local energy as function Bf
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b) Set up and algorithm and write a program which computegtpectation value o¢ﬁ> using the
variational Monte Carlo method with a brute force Metropaampling. For each inter-proton
distanceR you must find the parameter which minimizes the energy. Plot the corresponding
energy as function of the distané&between the protons.

c) Use thereafter the optimal parameter sets to computevédrage distancér,,) between the elec-
trons where the energy as function®fexhibits its minimum. Comment your results.

d) We modify now the approximation for the wave functions lgicerons 1 and 2 by subtracting the
two terms instead of adding up, viz

P(ri,R) = (exp (—arip1) — exp (—arip)), (11.145)

for electron 1
ZZ)(F% R) = (eXp (_0”'2;01) — €Xp (_Oﬂ'2p2)) ) (11146)

for electron 2. Mathematically, this approach is equallgble as the previous one. Repeat your
calculations from point b) and see if you can obtain an enerigygmum as function oR. Comment

your results.
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Chapter 12

Eigensystems

12.1 Introduction

Together with linear equations and least squares, the thd@jdr problem in matrix computations deals
with the algebraic eigenvalue problem. Here we limit ouemtibn to the symmetric case. We focus in
particular on two similarity transformations, the Jacokéthod, the famous QR algoritm with House-
holder's method for obtaining a triangular matrix and Fighalgorithm for the final eigenvalues. Our
presentation follows closely that of Golub and Van Loan,Reég [27].

12.2 Eigenvalue problems
Let us consider the matri& of dimension n. The eigenvaluesAfis defined through the matrix equation
AxW) = \Wx¥), (12.1)

whereA®) are the eigenvalues and”) the corresponding eigenvectors. Unless otherwise stafeeh
we use the wording eigenvector we mean the right eigenvethar left eigenvector is defined as

XA = \Vx0),

The above right eigenvector problem is equivalent to a setarfuations witm unknownse;

a1121 + a2 + - + a1py =  Ax1
9171 + AgoT9 + -+ + AopTy =  ATo
Ap1%1 + Qp2T2 + - + AppTy = ATy,

We can rewrite Eq[{I211) as

(A — )\(”)I) x =,

with I being the unity matrix. This equation provides a solutiothi® problem if and only if the deter-
minant is zero, namely

‘A . M”)I( —0,
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which in turn means that the determinant is a polynomial giréern in A and in general we will have
distinct zeros. The eigenvalues of a mathixe C™*"™ are thus the: roots of its characteristic polynomial

P(\) = det(A\I — A), (12.2)

or

P =T]i—N. (12.3)
1=1
The set of these roots is called the spectrum and is denoteas If A(A) = {1, \2,..., A, } then
we have
det(A) = MAa... Ay,

and if we define the trace o as

TT’(A) = Zn: Aiq
i=1

thenTr(A) = A\ + Ao+ -+ A\

Procedures based on these ideas can be used if only a srotidiriraf all eigenvalues and eigenvec-
tors are required or if the matrix is on a tridiagonal formt the standard approach to solve Hq. (12.1)
is to perform a given number of similarity transformatiosas to render the original matriX in either
a diagonal form or as a tridiagonal matrix which then can beliagonalized by computational very
effective procedures.

The first method leads us to Jacobi’'s method whereas the demun is given by Householder’s
algorithm for tridiagonal transformations. We will dissusoth methods below.

12.3 Similarity transformations
In the present discussion we assume that our matrix is readymmetric, that is\ € R™*". The matrix

A hasn eigenvalues\; ... A, (distinct or not). LefD be the diagonal matrix with the eigenvalues on the
diagonal

A0 0 0 ... 0 0

0 X 0 0 ... 0 0
D — 0O 0 X3 0O 0 ... 0

0 ... ... . 0 A

0 ... ... L 0 A

If A isreal and symmetric then there exists a real orthogonaixr@such that
STAS = diag(A1, A2, ..., An),

and forj = 1: n we haveAS(:,j) = A;S(:,j). See chapter 8 of Ref. [27] for proof.

To obtain the eigenvalues & € R"*", the strategy is to perform a series of similarity transfor-
mations on the original matriXA, in order to reduce it either into a diagonal form as abovento &
tridiagonal form.

We say that a matriB is a similarity transform ofA if

B = STAS, where s’s=s"'s=1.
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12.4 — Jacobi’'s method

The importance of a similarity transformation lies in thetféghat the resulting matrix has the same
eigenvalues, but the eigenvectors are in general differ@otprove this we start with the eigenvalue
problem and a similarity transformed matisk

Ax = \x and B = STAS.
We multiply the first equation on the left I8/ and inserS”'S = I betweenA andx. Then we get
(STAS)(STx) = ASTx, (12.4)

which is the same as
B (STx) = A (STx).
The variable) is an eigenvalue dB as well, but with eigenvectds Tx.
The basic philosophy is to

— either apply subsequent similarity transformations sb tha

S%...STAS,...Sx =D, (12.5)

— or apply subsequent similarity transformations so thdiecomes tridiagonal. Thereafter, tech-
niques for obtaining eigenvalues from tridiagonal masican be used.

Let us look at the first method, better known as Jacobi’'s ntketin@Given’s rotations.

12.4 Jacobi’s method

Consider ans x n) orthogonal transformation matrix

1 0 0 0 0 O
0 1 0 0 0 O
S _ 0 0 ... cosf 0 ... 0 sinf
0 O 0 1 0 0
o 0 ... 0 0 1 0
0 0 ... —sind 0 cosb

with propertyST = S—1. It performs a plane rotation around an argla the Euclideam—dimensional
space. It means that its matrix elements that differ frono z2ee given by

Sk = Sy = €080, s = —sp, = —sinb, sy = —su =1 iF£k i #£I,

A similarity transformation
B = STAS,

results in

bir. = a;pcosl —aysing i #£k,i#l

by = agcost + a;psind i £ ki #£1
b, = aprcos?0 — 2axcoslsind + aysin’6

by = aycos?d + 2aycoslsind + aysin’0

by = (agk — ay)cosfsind + akl(00329 — sin29)
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The angled is arbitrary. The recipe is to choo$eso that all non-diagonal matrix elemerig become
zero.

The algorithm is then quite simple. We perform a number ofttens untill the sum over the squared
non-diagonal matrix elements are less than a prefixed testlly equal zero). The algorithm is more or
less foolproof for all real symmetric matrices, but becommegh slower than methods based on tridiag-
onalization for large matrices.

The main idea is thus to reduce systematically the norm obftfhdiagonal matrix elements of a

matrix A
n n
2
Z Z -
i=1 j=1,j#i
To demonstrate the algorithm, we consider the simple2 similarity transformation of the full matrix.
The matrix is symmetric, we single olt< k& < | < n and use the abbreviatiors= cos § ands = sin 6

to obtain
b, O [ c —s Ape Qg c s
0 b” - S C aip  anq —S C ’

We require that the non-diagonal matrix eleménis= b;, = 0, implying that

ar(c® — %) + (apk — ay)es = by = 0.

If ax; = 0 one sees immediately thats # = 1 andsin 6 = 0.
The Frobenius norm of an orthogonal transformation is admargserved. The Frobenius norm is

defined as
DD layl

i=1 j=1

|AllF =

This means that for oWy x 2 case we have
2aj, + ayy, + ajy = by, + bjp,

which leads to .
off(B)? = ||B|[% — > b} = off(A)? — 243,
i=1

since . N
1Bl =Y b5 = |Al[F =Y afi + (afy + af; — by, — bi)-
i=1 =1
This results means that the matéxmoves closer to diagonal form for each transformation.
Defining the quantitiesan § = ¢t = s/c and

Ak — ay
QCLM

we obtain the quadratic equation
t2+21t—1=0,

resulting in

t=—7+V1+72
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andc ands are easily obtained via
1

VIt
ands = tc. Choosingt to be the smaller of the roots ensures tftat< =/4 and has the effect of
minimizing the difference between the matrid@@sandA since

n 2
2a
IB—A|F =4(1-0) Z (ajy +apy) + C—gkk
i=1,i#k,l

To implement the Jacobi algorithm we can proceed as follows

— Choose a tolerance making it a small number, typically0—2 or smaller.

— Setup avhile-test where one compares the norm of the newly computedagiedal
matrix elements

— Now choose the matrix elemenig; so that we have those with largest value, thatfls
lag| = max;+j|a;).

— Compute thereafter = (a;; — axi)/2ax;, tan 0, cos § andsin 6.

— Compute thereafter the similarity transformation for s of valuesk, (), obtaining
the new matrixB = S(k,1,0)" AS(k,1,0).

— Compute the new norm of the off-diagonal matrix elementscamtinue till you have
satisfiedoff(B) < €

The convergence rate of the Jacobi method is however poemeeds typicallyn? — 5n? rotations
and each rotation requirds operations, resulting in a total ®2n> —20n> operations in order to zero out
non-diagonal matrix elements. Although the classical Baatgorithm performs badly compared with
methods based on tridiagonalization, it is easy to pairadieM/e discuss how to parallelize this method
in the next subsection.

12.4.1 Parallel Jacobi algorithm

In preparation for end fall 2008.

12.5 Diagonalization through the Householder’'s method fordiagonalization

In this case the diagonalization is performed in two stefist,Rhe matrix is transformed into tridiagonal
form by the Householder similarity transformation. Sedgnithe tridiagonal matrix is then diagonalized.
The reason for this two-step process is that diagonalisitigdimgonal matrix is computational much
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faster then the corresponding diagonalization of a gersgrametric matrix. Let us discuss the two steps
in more detail.

12.5.1 The Householder’'s method for tridiagonalization

The first step consists in finding an orthogonal masgixvhich is the product ofn — 2) orthogonal
matrices
S=S5:S,...S,-9,

each of which successively transforms one row and one cobfrdninto the required tridiagonal form.
Only n — 2 transformations are required, since the last two elemestaleeady in tridiagonal form. In
order to determine ead®y let us see what happens after the first multiplication, ngmel

ail €1 0 0 . 0 0
/ / /
- €1 Qoo Qo3 ... . ce Ao,
— ! / /
0
! ! !
0 ap ay -0 . . G,

where the primed quantities represent a mafixof dimensionn — 1 which will subsequentely be
transformed byS». The factore; is a possibly non-vanishing element. The next transfolngtroduced
by S, has the same effect & but now on the submatirA” only

ailr €1 0 0 0 0

ep ayy e 0 ... ... 0
(S182)7AS1So=| 0 e af ... ... ... di

0

0 0 aly ... ... ... a

Note that the effective size of the matrix on which we apply transformation reduces for every new
step. In the previous Jacobi method each similarity transition is in principle performed on the full
size of the original matrix.

After a series of such transformations, we end with a setagahal matrix elements

/ " -1
aii, 99,033 . . . CLZn N
and off-diagonal matrix elements
617 627 637 A 7677/_1'
The resulting matrix reads
an e1 0 0 0 0
€1 Gy ez 0 0 0
"
ez a3z ez 0 0
STAS =
n—1
0 agl_g ) €n—1
n—1
0 en—1 agl_l )

It remains to find a recipe for determining the transformatp,. We illustrate the method fd8,
which we assume takes the form
g (1 0T
1— 0 P )

304



12.5 — Diagonalization through the Householder's method fmidiagonalization

with 0T being a zero row vectof™ = {0,0,---} of dimension(n — 1). The matrixP is symmetric
with dimension (n — 1) x (n — 1)) satisfyingP? = T andP” = P. A possible choice which fullfils the
latter two requirements is

P=1I- 2uuT,

wherel is the(n — 1) unity matrix andu is ann — 1 column vector with normu” u(inner product. Note
thatuu” is an outer product giving a dimensiofm(— 1) x (n — 1)). Each matrix element dP then
reads

Pij = 5ij — 2uiuj,

wherei andj range froml to n — 1. Applying the transformatiot$; results in

STAS, = ( an (Pv)t >

Pv A’
wherevT = {as1,a31,- - - ,a,1} andP must satisfy Pv)” = {£,0,0,--- }. Then
Pv =v —2u(ulv) = ke, (12.6)

with eT = {1,0,0,...0}. Solving the latter equation gives usand thus the needed transformatiBn
We do first however need to compute the scéléy taking the scalar product of the last equation with
its transpose and using the fact tit = I. We get then

Pv)TPv =k =viv=|? = Zall,

which determines the constaint= +v. Now we can rewrite Eq[{12.6) as

T

v — ke =2u(u'v),

and taking the scalar product of this equation with itself abtain
2ulv)? = (v? £ agv), (12.7)

which finally determines

_ v—ke

~ 2(ulv)’
In solving Eq. [I2J7) great care has to be exercised so asowsetthose values which make the right-
hand largest in order to avoid loss of numerical precisiohe @bove steps are then repeated for every

transformations till we have a tridiagonal matrix suitafdeobtaining the eigenvalues.

12.5.2 Diagonalization of a tridiagonal matrix

The matrix is now transformed into tridiagonal form and thstIstep is to transform it into a diagonal
matrix giving the eigenvalues on the diagonal.

Before we discuss the algorithms, we note that the eigeesaitia tridiagonal matrix can be obtained
using the characteristic polynomial

P(\) = det(\L — A) = f[ (A — A),
=1
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which rewritten in matrix form reads

d1 - A €1 0 0 0 0
€1 d2 - €9 0 0 0
P()\): 0 €2 d3—>\ €3 0 0
0 stth_g - A € Natep—1
0 € Nstep—1 sttcp_l -A

We can solve this equation in a recursive manner. W&jJéh) be the value ok subdeterminant of the
above matrix of dimension x n. The polynomialP;()) is clearly a polynomial of degrele. Starting
with P;()\) we haveP;(\) = d; — A. The next polynomial readB,()\) = (dz — A\)Pi()\) — e3. By
expanding the determinant fé#, () in terms of the minors of theth column we arrive at the recursion
relation

P(\) = (dg — \)Pr_1(\) — €51 Pr_a(N).

Together with the starting values; (\) and P»(\) and good root searching methods we arrive at an
efficient computational scheme for finding the rootdh{\). However, for large matrices this algorithm
is rather inefficient and time-consuming.

The programs which performs these transformations areibmatk — tridiagonal matrix —
diagonal matrix

C: void trd2(doublexxa, int n, double d[], double e[])
void tgli(double d[], double[], int n, doublexz)
Fortran: CALL tred2(a, n, d, e)
CALL tqli(d, e, n, 2)

The last step through the functidqli() involves several technical details. Let us describe thehdsa
in terms of a four-dimensional example. For more detailg,Ref. [27], in particular chapters seven and
eight.

The current tridiagonal matrix takes the form

d1 €1 0 0
€1 d2 €92 0
0 €9 dg €3
0 0 €3 d4

A=

As a first observation, if any of the elementsare zero the matrix can be separated into smaller pieces
before diagonalization. Specifically,df = 0 thend; is an eigenvalue. Thus, let us introduce a transfor-
mationS,

cosf 0 0 sinf
0 00 O
S1= 0 00 0
—sinfd 0 0 cosé
Then the similarity transformation
"¢l 0 0
T . . 6/1 d2 €2 0
Sl ASl = A= 0 €2 d3 6,3
0 0 e d)
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produces a matrix where the primed elementdirhave been changed by the transformation whereas
the unprimed elements are unchanged. If we now chédsegive the element,, = ¢ = 0 then we
have the first eigenvalue a\, = d;.

This procedure can be continued on the remaining threerdiimeal submatrix for the next eigen-
value. Thus after four transformations we have the wantagatial form.

12.6 The QR algorithm for finding eigenvalues

In preparation

12.7 Schrddinger’s equation through diagonalization

Instead of solving the Schrddinger equation as a diffesbmijuation, we will solve it through diago-
nalization of a large matrix. However, in both cases we needetal with a problem with boundary
conditions, viz., the wave function goes to zero at the emmdpo

To solve the Schrodinger equation as a matrix diagonadiagiroblem, let us study the radial part of
the Schrodinger equation. The radial part of the wave fon¢t(r), is a solution to

h? (1 d od 1(1+1)

23" 7 2 > R(r)+ V(r)R(r) = ER(r).

“2m

Then we substitutd&(r) = (1/r)u(r) and obtain

R I(1+1) 72
_%ﬁu(r) + (V(r) + T o

) u(r) = Bu(r).

We introduce a dimensionless variable= (1/a)r wherea is a constant with dimension length and get

h? d?

(1+1) R
2ma? dp?

p?  2ma?

)+ (Vo + ) ulo) = Bulo)

In the example below, we will replace the latter equatiorhwitat for the one-dimensional harmonic
oscillator. Note however that the procedure which we giMeveepplies equally well to the case of e.g.,
the hydrogen atom. We replapgevith x, take away the centrifugal barrier term and set the potesqjiaal

to

Vix) = %k’ajz,

with & being a constant. In our solution we will use units so that # = m = o = 1 and the
Schrddinger equation for the one-dimensional harmoniglasr becomes
L u(w) + 2%u(x) = 2Bu(x)
——= U\ rul\r) = ul\x).
dz?
Let us now see how we can rewrite this equation as a matrixiegdee problem. First we need to compute
the second derivative. We use here the following expredsiothe second derivative of a functigh

flx+h)=2f(x)+ flx —h) o), (12.8)

fl/ — h2
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whereh is our step. Next we define minimum and maximum values for th@blex, R, and Ry ax,
respectively. With a given number of stepé,.,,, we then define the stepas

Rmax - Rmin

h =
Nstop

If we now define an arbitrary value afas
2; = Rpyin + 1h i:1,2,...,NStOp—1

we can rewrite the Schrodinger equation fgras

_UWk+h)—m%?J+”@k_h)+xﬁmw)=2Euww»

or in a more compact way

R e |
72

U — 2up + ug_
+ ziup = — bt hzk L4 Vi = 2By,

whereuy, = u(zy), up+1 = u(xg £ h) andVy = xi the given potential. Let us see how this recipe may
lead to a matrix reformulation of the Schrodinger equatidafine first the diagonal matrix element

2
di = 2 + Vi,
and the non-diagonal matrix element
1
(7 ——h2 .

In this case the non-diagonal matrix elements are given by roonstant.All non-diagonal matrix
elements are equalVith these definitions the Schrédinger equation takesahening form

dpug + eg_1ug—1 + epp1upy1 = 2Buy,

whereu;, is unknown. Since we hawl¥.,, — 1 values ofk we can write the latter equation as a matrix
eigenvalue problem

d1 €1 0 0 PN 0 0 Ui Ul

€1 d2 €9 0 N 0 0 (%) (%)

0 €2 dg €3 0 0 —9F (129)
0 ... ... ... ... dNSmp_Q €Natop—1

0 eNstep_l sttep_l uNstep_l uNstep_l

or if we wish to be more detailed, we can write the tridiaganalrix as

A — 0 0 ... 0 0
h 1 2 h 1
-& A _|_1V2 . 01 ... 0 0
0 otV 0 0 (12.10)
0 % + Vieep—2 o
0 —% %—i_sttep—l
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This is a matrix problem with a tridiagonal matrix of dimemsiNgi, — 1 x Ngiep — 1 and will
thus yield Ny, — 1 eigenvalues. It is important to notice that we do not set upagrimnof dimension
Nitep X Nitep Since we can fix the value of the wave functiorkat N, Similarly, we know the wave
function at the other end point, that is fey.

The above equation represents an alternative to the nuathsdlution of the differential equation for
the Schradinger equation discussed in chdpikr 14.

The eigenvalues of the harmonic oscillator in one dimensi@nwell known. In our case, with all
constants set equal 1o we have

1
En =n-+ 5,
with the ground state beingj, = 1/2. Note however that we have rewritten the Schrédinger eguai
that a constant 2 stands in front of the energy. Our progrdhthen yield twice the value, that is we will
obtain the eigenvaluek 3,5,7.... ..

In the next subsection we will try to delineate how to solve délbove equation. A program listing is

also included.

12.7.1 Numerical solution of the Schrédinger equation lagdnalization

The algorithm for solving Eq[TI2.9) may take the followiragrh

— Define values folNiep, Rmin aNdRyax. These values define in turn the step gizdypical values
for Ry.x and R, could bel0 and —10 respectively for the lowest-lying states. The number of
mesh pointsV., could be in the range 100 to some thousands. You can checlathibtg of the
results as functions aVsep, — 1 and Ry,ax and Ryin against the exact solutions.

— Construct then two one-dimensional arrays which contdinadlies ofz; and the potential/;.
For the latter it can be convenient to write a small functidmol sets up the potential as function
of x. For the three-dimensional case you may also need to inthedeentrifugal potential. The
dimension of these two arrays should go fromp to Ngiep.

— Construct thereafter the one-dimensional vectbemde, whered stands for the diagonal matrix
elements and the non-diagonal ones. Note that the dimension of these tragsaruns froml up
to Ngep — 1, SiNnce we know the wave functianat both ends of the chosen grid.

— We are now ready to obtain the eigenvalues by calling thetioméqgli which can be found on the
web page of the course. Callinigli, you have to transfer the matricdsande, their dimension
n = Ngep — 1 @and a matrixe of dimensionNgep, — 1 X Nytep — 1 Which returns the eigenfunctions.
On return, the array contains the eigenvalues. 4fis given as the unity matrix on input, it returns
the eigenvectors. For a given eigenvalyghe eigenvector is given by the colurrin z, that is
Z[][K] in C, or z(:,k) in Fortran.

— TQLI does however not return an ordered sequence of eigeggwalYou may then need to sort
them as e.g., an ascending series of numbers. The programowdepincludes a sorting function
as well.

— Finally, you may perhaps need to plot the eigenfunctions el or calculate some other expec-
tation values. Or, you would like to compare the eigenfuordiwith the analytical answers for
the harmonic oscillator or the hydrogen atom. We providergtion plot which has as input one
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eigenvalue chosen from the outputtgfi. This function gives you a normalized wave function
where the norm is calculated as

Rmax NSth
/ u(z)Pde —h > ul =1,
Rmin =0

and we have used the trapezoidal rule for integration dészlig chaptdd?.
12.7.2 Program example and results for the one-dimensioaahonic oscillator
We present here a program example which encodes the abavréhaly

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapterl2/cpp/programl . cpp
/%

Solves the oneparticle Schrodinger equation
for a potential specified in function
potential (). This example is for the harmonic oscillator

*/

#include <cmath>

#include <iostream>

#include <fstream >

#include <iomanip>

#include "1ib.h"

using namespace std;

/!l output file as global variable

ofstream ofile;

/1 function declarations

void initialise (double&, double&, int&, int&) ;
double potential (double);

int comp(const double x, const double x);

void output(double, double, int, double x);

int main(int argc, charx argv[])

{
int i, j, max_step, orb_lI;
double r_min, r_max, step, const_1, const_2, orb_factor,
xe, xd, *W, *xI, **Z;

char xoutfilename;
/I Read in output file, abort if there are too few commatthe arguments
if ( argec <=1 ){

cout << "Bad Usage: " << argv[0] <<

" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1l];
}

ofile .open(outfilename);
/1 Read in data
initialise (r_min, r_max, orb_I|, max_step);
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/!l initialise constants

step = (r_max— r_min) / max_step;
const_2 =-1.0 / (step « step);
const_1 = — 2.0 x const_2;
orb_factor = orb_Ix (orb_I + 1);

I/l local memory for r and the potential w[r]

r = new double[max_step + 1];
w = new double[max_step + 1];
for(i = 0; i <= max_step; i++) {

r(i] = r_min + i % step;

w[i] = potential(r[i]) + orb_factor [/ (r[i] = r[i]);
}
/1l local memory for the diagonalization process
d = new double[max_step]; /I diagonal elements
e = new double[max_step]; /I tridiagonal off-diagonal elements
z = (double xx) matrix(max_step, max_step sizeof(double));
for(i = 0; i < max_step; i++) {

dfi] = const_1 + w[i + 1];

el[i] = const_2;

z[i][i] = 1.0;

for(j = i1 + 1; j < max_step; j++) {

z[i][j] = 0.0;

}

}

/! diagonalize and obtain eigenvalues
tqli(d, e, max_step— 1, z);
I/l Sort eigenvalues as an ascending series
gsort(d,(UL) max_step- 1,sizeof(double),
(int (x)(const void *,const void x))comp);
/Il send results to ouput file
output(r_min , r_max, max_step, d);
delete [] r; delete [] w; delete [] e; delete [] d;
free_matrix ((void =x) z); // free memory
ofile.close(); // close output file
return O;
} // End: function main()

K

The function potential ()

calculates and return the value of the

potential for a given argument Xx.

The potential here is for the -Adim harmonic oscillator
x/

double potential (double x)
{
return XxXx;

} /1 End: function potential ()

[ %
The function int comp()
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is a utility function for the
to sort double numbers after

library function qgsort()
increasing values.

*/

int comp(const double xval_1, const double xval_2)

{
if ((xval_1) <= (xval_2)) return —1;
else if((xval_1) > (xval_2)) return +1;
else return O;
} // End: function comp()
// read in min and max radius, number of mesh points and |
void initialise (double& r_min, double& r_max, int& orb_I, int& max_step)
{

cout << "Min vakues of R
cin >> r_min;
cout << "Max value of R = ";
cin >> r_max;
cout << "Orbital momentum = ";
cin >> orb_|I;
cout << "Number of steps
cin >> max_step;
} // end of function
/! output of results
void output(double r_min

initialise

, double r_max, int max_step, double xd)

{ . .
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile <<"R_min = " << setw(15) << setprecision(8) << r_min << endl;
ofile <<"R_max = " << setw(15) << setprecision(8) << r_max << endl;
ofile <<"Number of steps = " << setw(15) << max_step << endl;
ofile << "Five lowest eigenvalues:" << endl;
for(i = 0; i < 5; i++) {
ofile << setw(15) << setprecision (8) << d[i] << endl;
}
} // end of function output

There are several features to be noted in this program.

The main program calls the functiamitialise, which reads in the minimum and maximum values of
r, the number of steps and the orbital angular momerituiimereafter we allocate place for the vectors
containingr and the potential, given by the variablejg] and w[i], respectively. We also set up the

vectorsd[i| ande[i| containing the diagonal and non-diagonal matrix elemedédling the functiontql:
we obtain in turn the unsorted eigenvalues. The latter atedby the intrinsic C-functiogsort.

The calculaton of the wave function for the lowest eigenwatidone in the functioplot, while all
output of the calculations is directed to the fuctianput.

The included table exhibits the precision achieved as fongif the number of mesh poinfg. The
exact values aré, 3,5, 7, 9.

The agreement with the exact solution improves with indnggsumbers of mesh points. However,
the agreement for the excited states is by no means impeesBdoreover, as the dimensionality in-

creases, the time consumption increases dramaticallytiMtiagonalization scales typically as N3.
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Table 12.1: Five lowest eigenvalues as functions of the rmrrobmesh pointsV with r.,;;, = —10 and
Tmax = 10.

N EO E1 E2 E3 E4

50 9.898985E-01 2.949052E+00 4.866223E+00 6.739916E+0868842E+00

100 9.974893E-01 2.987442E+00 4.967277E+00 6.936913E-8)896282E+00
200 9.993715E-01 2.996864E+00 4.991877E+00 6.984335E-80974301E+00
400 9.998464E-01 2.999219E+00 4.997976E+00 6.996094E-8)993599E+00
1000 1.000053E+00 2.999917E+00 4.999723E+00 6.99933BE-H)999016E+00

In addition, there is a maximum size of a matrix which can lbeest in RAM.

The obvious question which then arises is whether this sehemothing but a mere example of
matrix diagonalization, with few practical applicationsioterest. In chaptekl6, where we deal with
interpolation and extrapolation, we discussed also aatd®tiehardson’s deferred extrapolation scheme.
Applied to this particualr case, the philosophy of this suhevould be to diagonalize the above matrix
for a set of values ofV and thereby the step length Thereafter, an extrapolation is madefto— 0.

The obtained eigenvalues agree then with a remarkablespyravith the exact solution. The algorithm
is then as follows

— Perform a series of diagonalizations of the matrix in HQ.I@2) for different
values of the step sizk. We obtain then a series of eigenvaluBgh/2*) with
k = 0,1,2,.... That will give us an array of 'x-valuesh, h/2,h/4,... and an

array of 'y-values'E(h), E(h/2), E(h/4),.... Note that you will have such a se|
for each eigenvalue.

— Use these values to perform an extrapolation calling éhg.function POLINT with
the point where we wish to extrapolate to giventy- 0.

— End the iteration ovek when the error returned by POLINT is smaller than a fixgd
test.

The results for the 10 lowest-lying eigenstates for the dingensional harmonic oscillator are listed
below after just 3 iterations, i.e., the step size has bedncetl toh/8 only. The exact results are
1,3,5,...,19 and we see that the agreement is just excellent for the ek#imol results. The results
after diagonalization differ already at the fourth-fifthyidi

Parts of a Fortran program which includes Richardson’sapxiation scheme is included here. It

performs five diagonalizations and establishes resultgdnous step lengths and interpolates using the
function POLINT.

I start loop over interpolations,
DO interpol=1, 5
IF ( interpol == 1) THEN
max_step=start_step
ELSE

max_step=(interpok1)x2«xstart_step
ENDIF

here we set max interpoilabhs to 5
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Table 12.2: Result for numerically calculated eigenvalokthe one-dimensional harmonic oscillator
after three iterations starting with a matrix of sit@0 x 100 and ending with a matrix of dimension
800 x 800. These four values are then used to extrapolate the 10 ldywegteigenvalues té = 0.. The
values ofz span from—10 to 10, that means that the starting step viias: 20/100 = 0.2. We list here
only the results after three iterations. The error test easguall0~°.

Extrapolation

Diagonalization

Error

0.100000D+01
0.300000D+01
0.500000D+01
0.700000D+01
0.900000D+01
0.110000D+02
0.130000D+02
0.150000D+02
0.170000D+02
0.190000D+02

0.999931D+00
0.299965D+01
0.499910D+01
0.699826D+01
0.899715D+01
0.109958D+02
0.129941D+02
0.149921D+02
0.169899D+02
0.189874D+02

0.206825D-10
0.312617D-09
0.174602D-08
0.605671D-08
0.159170D-07
0.349902D-07
0.679884D-07
0.120735D-06
0.200229D-06
0.314718D-06

n=max_step-1
ALLOCATE ( e(n) , d(n) )
ALLOCATE ( w(0O:max_step), r(0:max_step))
d=0. ; e =0.
I define the step size
step=(rmaxrmin) /FLOAT(max_step)
hh(interpol)=stepstep
I define constants for the matrix to be diagonalized
constl=2./(stepstep)
const2=1./(step«step)
! set up r, the distance from the nucleus and the function w femergy
=0
! w corresponds then to the potential
! values at
DO i=0, max_step
r(i) = rmint+ixstep
w(i) = potential (r(i))
ENDDO
! setup the diagonal d and the nemliagonal part e of
! the tridiagonal matrix matrix to be diagonalized
d(l:n)=constl+w(1:n) e(1l:n)=const2
I allocate space for eigenvector info
ALLOCATE ( z(n,n) )
I obtain the eigenvalues
CALL tqli(d,e,n,z)
I sort eigenvalues as an ascending series
CALL eigenvalue_sort(d,n)
DEALLOCATE (z)
errl=0.
I the interpolation part starts here
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DO 1=1,20

err2=0.

value (interpol ,1)=d(I)

inp=d(l)

IF ( interpol > 1 ) THEN
CALL polint(hh,value(:,Il),interpol ,0.d0 ,inp,err2)
errl=MAX(errl ,err2)
WRITE (6 ,'(D12.6 ,2X,D12.6 ,2X,D12.6) ") inp, d(l), errl

ELSE
WRITE (6,'(D12.6 ,2X,D12.6,2X,D12.6) ') d(l), d(l), errl
ENDIF
ENDDO
DEALLOCATE (w, r, d, e)

ENDDO

12.8 Discussion of BLAS and LAPACK functionalities

In preparation for fall 2008.

12.9 Exercises and projects

Project 12.1: Bound states in momentum space

In this problem we will solve the Schrodinger equation in nemtum space for the deuteron. The
deuteron has only one bound state at an energy2dt23 MeV. The ground state is given by the quantum
numbersl = 0, S = 1 andJ = 1, with /, S, andJ the relative orbital momentum, the total spin and
the total angular momentum, respectively. These quantumbets are the sum of the single-particle
guantum numbers. The deuteron consists of a proton andonewuiith mass (average) 688 MeV. The
electron is not included in the solution of the Schrodingguagion since its mass is much smaller than
those of the proton and the neutron. We can neglect it heris. iibans that e.g., the total sphhis the
sum of the spin of the neutron and the proton. The above thwaatgm numbers can be summarized
in the spectroscopic notatiotf+17; =2 S;, whereS represents = 0 here. It is a spin triplet state.
The spin wave function is thus symmetric. This also applethé spatial part, since= 0. To obtain
a totally anti-symmetric wave function we need to introdacether quantum number, namely isospin.
The deuteron has isospin = 0, which gives a final wave function which is anti-symmetric.

We are going to use a simplified model for the interaction eetwthe neutron and the proton. We
will assume that it goes like

V() = 1SR, (1211)

where ., has units m! and serves to screen the potential for large values dfhe variabler is the
distance between the proton and the neutron. It is thevelatiordinate, the centre of mass is not needed
in this problem. The nucleon-nucleon interaction has agfiaitd small range, typically of some fewfim
We will in this exercise set = 0.7 fm~!. It is then proportional to the mass of the pion. The pion & th
lightest meson, and sets therefore the range of the nucledeon interaction. For low-energy problems

11fm=10"%m.
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we can describe the nucleon-nucleon interaction througbomexchange models, and the pion is the
lightest known meson, with mass of approximately 138 MeV.

Since we are going to solve the Schrodinger equation in mamerwe need the Fourier transform
of V(r). In a partial wave basis fdr= 0 it becomes

VK k) = 22 (W R+ “2> , (12.12)

T Wk N\ — k)2 2

wherek’ andk are the relative momenta for the proton and neutron system.
For relative coordinates, the Schrédinger equation in nmiome space becomes

2 o)
)+ 2 [ PV G)ete) = Eoh), (12.13)

Here we have used units= ¢ = 1. This means that has dimension energy. This is the equation we
are going to solve, with eigenvalue and eigenfunction)(k). The approach to solve this equations goes
then as follows.

First we need to evaluate the integral oyeusing e.g., gaussian quadrature. This means that we
rewrite an integral like

b N
/ f@)de =" wif (w:),
e i=1

where we have fixedV lattice points through the corresponding weightsand pointse;. The integral
in Eq. (TZ.IB) is rewritten as

2 [ 2L,
2 [ v o) = 2 3wV (12.14)

0 i=1

We can then rewrite the Schrédinger equation as
k2 2 &
— (k) + = > wipV (k0 (p;) = B (k). (12.15)
j=1

Using the same mesh points fbas we did forp in the integral evaluation, we get

2 N
b; 2 2
Ew(p,-) T Z:lepjv(pi,pj)l/’@j) = Evy(pi), (12.16)
‘]:
withi,7 = 1,2,..., N. This is a matrix eigenvalue equation and if we definé\as N matrix H to be
P} 2
Hij =" 8ij + —w;ip5V (pi, 1), (12.17)

whered;; is the Kronecker delta, and av x 1 vector

Y(p1)

Y(p2)
: (12.18)

Y(ow)
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we have the eigenvalue problem
HVY = EV. (12.19)

The algorithm for solving the last equation may take theofeihg form

— Fix the number of mesh point¥.

— Use the functioryauleg in the program library to set up the weightsand the pointg;. Before
you go on you need to recall thatuleg uses the Legendre polynomials to fix the mesh points
and weights. This means that the integral is for the intgrial]. Your integral is for the interval
[0,00]. You will need to map the weights froguuleg to your interval. To do this, call firgtauleg,
with a = —1, b = 1. It returns the mesh points and weights. You then map thes¢spaver to the
limits in your integral. You can then use the following mampi

p; = const X tan {%(1 + xl)} ,

and

tﬂ' w;
w; = const— .
! 4 cos? (Z(1+ ;)

const is a constant which we discuss below.

— Construct thereafter the matH with

%
(2}

(p; +pi)* + M2>
(pj — pi)? + p?

— We are now ready to obtain the eigenvalues. We need first toteethie matrixH in tridiagonal
form. Do this by calling the library functiotred2 This function returns the vectat with the
diagonal matrix elements of the tridiagonal matrix whilee the non-diagonal ones. To obtain the
eigenvalues we call the functigglii. On return, the array contains the eigenvalues. 4fis given
as the unity matrix on input, it returns the eigenvectors. &given eigenvalué, the eigenvector
is given by the columtk in z, that is z[][K] in C, or z(:,k) in Fortran.

The problem to solve

1. Before you write the main program for the above algorithakena dimensional analysis of Eq.
(@IZI3)! You can choose units so thatandw; are in fm-1. This is the standard unit for the
wave vector. Recall then to inseit in the appropriate places. For this case you can set the
value ofconst = 1. You could also choose units so that the unitp,aindw; are in MeV. (we have
previously used so-called natural urfits= ¢ = 1). You will then need to multiply: with ic = 197
MeVfm to obtain the same units in the expression for the g@tenwWhy? Show thal/ (p;, p;)
must have units MeV?2. What is the unit of/;? If you choose these units you should also multiply
the mesh points and the weights with = 197. That means, set the constantst = 197.

2. Write your own program so that you can solve the Schrodiegaation in momentum space.

3. Adjust the value of/, so that you get close to the experimental value of the bindimgrgy of the
deuteron,—2.223 MeV. Which sign should/ have?

4. Try increasing the number of mesh points in steps of 8, fample 16, 24, etc and see how the
energy changes. Your program returns equally many eigeesas mesh point§. Only the true
ground state will be at negative energy.
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Chapter 13

Differential equations

If God has made the world a perfect mechanism, he has at leastded so much to our
imperfect intellect that in order to predict little parts iofwe need not solve innumerable
differential equations, but can use dice with fair succé&sx Born, quoted in H. R. Pagels,
The Cosmic Code [67]

13.1 Introduction

We may trace the origin of differential equations back to kewn 168H and his treatise on the gravita-
tional force and what is known to us as Newton’s second lawyimachics.

Needless to say, differential equations pervade the seseand are to us the tools by which we
attempt to express in a concise mathematical languagewsedamotion of nature. We uncover these
laws via the dialectics between theories, simulations apeér@ments, and we use them on a daily basis
which spans from applications in engineering or financigirgering to basic research in for example
biology, chemistry, mechanics, physics, ecological m®deimedicine.

We have already met the differential equation for radieaatiecay in nuclear physics. Other famous
differential equations are Newton’s law of cooling in theagnamics. the wave equation, Maxwell's
equations in electromagnetism, the heat equation in theégynemic, Laplace’s equation and Poisson’s
equation, Einstein’s field equation in general relativiBghrdodinger equation in guantum mechanics,
the Navier-Stokes equations in fluid dynamics, the Lotkdeva equation in population dynamics, the
Cauchy-Riemann equations in complex analysis and the Bbatioles equation in finance, just to men-
tion a few. Excellent texts on differential equations andpatations are the texts of Eriksson, Estep,
Hansbo and Johnson [68], Butcher [69] and Hairer, NgrsetVdganner [70].

There are five main types of differential equations,

— ordinary differential equations (ODESs), discussed in thiapter for initial value problems only.
They contain functions of one independent variable, anivatdres in that variable. The next
chapter deals with ODEs and boundary value problems.

— Partial differential equations with functions of multipledependent variables and their partial
derivatives, covered in chapfer 15.

INewton had most of the relations for his laws ready 22 yeati®eavhen according to legend he was contemplating fgllin
apples. However, it took more than two decades before hashelol his theories, chiefly because he was lacking an eakenti
mathematical tool, differential calculus.
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— So-called delay differential equations that involve fumes of one dependent variable, derivatives
in that variable, and depend on previous states of the depéndriables.

— Stochastic differential equations (SDESs) are differdrgiguations in which one or more of the
terms is a stochastic process, thus resulting in a soluttiohws itself a stochastic process.

— Finally we have so-called differential algebraic equati¢DAES). These are differential equation
comprising differential and algebraic terms, given in imapform.

In this chapter we restrict the attention to ordinary défetial equations. We focus on initial value
problems and present some of the more commonly used methiosisl¥ing such problems numerically.
The physical systems which are discussed range from thsicépendulum with non-linear terms to
the physics of a neutron star or a white dwarf.

13.2 Ordinary differential equations

In this section we will mainly deal with ordinary differeatiequations and numerical methods suitable
for dealing with them. However, before we proceed, a briefamder on differential equations may be
appropriate.

— The order of the ODE refers to the order of the derivative enéfi-hand side in the equation
dy

=2 — f(t.y). 13.1
o = [ty (13.1)
This equation is of first order anlis an arbitrary function. A second-order equation goeslpyi
like
d*y dy
— = f(t, ==, ). 13.2
A well-known second-order equation is Newton’s second law
d’x

wherek is the force constant. ODE depend only on one variable, valsere
— partial differential equations like the time-dependentr®dinger equation
Q(xt) _ B (P(et) | Pulrt) | O*U(r.t)

ot 2m Ox? Oy 022

may depend on several variables. In certain cases, likebtheeaquation, the wave function can be
factorized in functions of the separate variables, so tteSchrédinger equation can be rewritten
in terms of sets of ordinary differential equations.

ih

) + V(x)9(x,1), (13.4)

— We distinguish also between linear and non-linear diffeagequation where e.g.,

W~ o), (13.5)

is an example of a linear equation, while

Y= PO~ g0 ) (136)
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is a non-linear ODE. Another concept which dictates the migakemethod chosen for solving an
ODE, is that of initial and boundary conditions. To give amample, in our study of neutron stars
below, we will need to solve two coupled first-order diffei@hequations, one for the total mass
m and one for the pressure as functions op

dm

am _ 2 2
g = dmrtp(r)/ e,
and dP Gm(r)
at- mir 9
i p(r)/c.

wherep is the mass-energy density. The initial conditions areatiet by the mass being zero at the
center of the star, i.e., when= 0, yieldingm(r = 0) = 0. The other condition is that the pressure
vanishes at the surface of the star. This means that at thevgogre we havé® = 0 in the solution

of the integral equations, we have the total radiusf the star and the total mass(r = R). These

two conditions dictate the solution of the equations. Stheedifferential equations are solved by
stepping the radius from = 0 to r = R, so-called one-step methods (see the next section) or
Runge-Kutta methods may yield stable solutions.

In the solution of the Schrodinger equation for a particleaipotential, we may need to apply
boundary conditions as well, such as demanding continditiyeowave function and its derivative.

— In many cases it is possible to rewrite a second-order éifteal equation in terms of two first-
order differential equations. Consider again the case oftbigs second law in Eq[{13.3). If we
define the position:(t) = y()(¢) and the velocity(t) = 3? (t) as its derivative

dy™M(t) _ dx(t)

=3Pt 13.7
pn i AN OF (13.7)

we can rewrite Newton’s second law as two coupled first-odifégrential equations

dy (1)
7

= —ka(t) = —kyM (1), (13.8)

and
=3P (@). (13.9)

13.3 Finite difference methods

These methods fall under the general class of one-step dwethibe algoritm is rather simple. Suppose
we have an initial value for the functiay(t) given by

Yo = y(t = to). (13.10)

We are interested in solving a differential equation in aaedn space [a,b]. We define a stépby
splitting the interval inV sub intervals, so that we have
b—a

h = . 13.11
= (13.11)
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With this step and the derivative gfwe can construct the next value of the functipat
y1 = y(t1 =to + h), (13.12)

and so forth. If the function is rather well-behaved in thendin [a,b], we can use a fixed step size. If not,
adaptive steps may be needed. Here we concentrate on feqedasthods only. Let us try to generalize
the above procedure by writing the stgp in terms of the previous stap

yir1 = y(t = ti + h) = y(t:) + hA(ti, 3i(t:)) + O(RP), (13.13)

whereO(hP*1) represents the truncation error. To determinave Taylor expand our function

pp—1
yis1 = y(t = t; + h) = y(t:) + h(y (t) + - +y P (&) o) O, (13.14)
where we will associate the derivatives in the parentheils w
/ hp~!
A(ti, yi(t) = (' (t:) + -+ +y P (8) ol )- (13.15)
We define
v () = f(ti,vi) (13.16)
and if we truncate\ at the first derivative, we have
Yir1 = y(t;) + hf(ti,yi) + O(h?), (13.17)

which when complemented witty,; = ¢; + h forms the algorithm for the well-known Euler method.
Note that at every step we make an approximation error of ttierafO(h?), however the total error is
the sum over all stepd’ = (b — a)/h, yielding thus a global error which goes likéO(h?) ~ O(h).
To make Euler's method more precise we can obviously deeredmcreaseN). However, if we are
computing the derivativg numerically by e.g., the two-steps formula

Fhla) = LEE =IO o)

we can enter into roundoff error problems when we subtragtimost equal numbey§z+h) — f(z) ~
0. Euler's method is not recommended for precision calauatalthough it is handy to use in order to
get a first view on how a solution may look like. As an examptmsider Newton'’s equation rewritten
in Egs. [T3B) and(13.9). We defing = y1)(t = 0) anvy = y? (¢ = 0). The first steps in Newton’s
equations are then
v = yo + hvy + O(h?) (13.18)

and

o = vy — hyok/m + O(h). (1319)
The Euler method is asymmetric in time, since it uses infoignaabout the derivative at the beginning

of the time interval. This means that we evaluate the pms'mikygl) using the velocity afy(()z) = vgp. A

simple variation is to determin;@flﬂzl using the velocity ay,(fll, that is (in a slightly more generalized
form)

)y =y + hylly + o) (13.20)
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and
v =y 1 hay, + O(h2). (13.21)

n

The acceleration,, is a function ofan(y,(f),y,(f),t) and needs to be evaluated as well. This is the Euler-
Cromer method.
Let us then include the second derivative in our Taylor exfman We have then

hodf (ti, yi)

54l + O(h3). (13.22)

A(ti, yi(ti) = f(ti) +
The second derivative can be rewritten as

_df 9f ofoy of  of

"o / o _Z4 —J _ 4
Vel m T Tagar o oy (13.23)
and we can rewrite EC{I3114) as
W2 (of o
W =t =t h) =)+ hf ) + g (G0 + Gf ) HOWY, (1329

which has a local approximation erréx(h?) and a global errof)(h?). These approximations can be
generalized by using the derivatiyeto arbitrary order so that we have

-1
Yir1 =yt =ti + h) = y(t:) + h(f (i vi) + ... f(p_l)(tuyi)%) +O(hP). (13.25)

These methods, based on higher-order derivatives, aren@rglenot used in numerical computation,
since they rely on evaluating derivatives several timesle&one has analytical expressions for these,
the risk of roundoff errors is large.

13.3.1 Improvements to Euler’s algorithm, higher-ordeitimoels

The most obvious improvements to Euler’s and Euler-Crosredgorithms, avoiding in addition the need
for computing a second derivative, is the so-called midpwiathod. We have then

h
v = v+ 5 (w2 + o) + o) (13.26)
and
v, =y + ha, + O(h?), (13.27)
yielding
2
y) =y + hy? + %an +O(h?) (13.28)

implying that the local truncation error in the position ®nO(h?), whereas Euler’s or Euler-Cromer’s
methods have a local error 6f(h?). Thus, the midpoint method yields a global error with seeorder
accuracy for the position and first-order accuracy for tHear. However, although these methods yield
exact results for constant accelerations, the error iseean general with each time step.

One method that avoids this is the so-called half-step ndetHere we define

Uy = Uy han £ OR?), (13.29)
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and
ol = o0 + by, +0(h?). (13.30)

Note that this method needs the calculatiory@. This is done using e.g., Euler’s method

h
y% =P 4 30+ O(h?). (13.31)
As this method is numerically stable, it is often used indteBEuler's method. Another method which

one may encounter is the Euler-Richardson method with

v =yt hay e + O, (13.32)
and
=+ ), o). (13.33)

13.3.2 Predictor-Corrector methods

Consider again the first-order differential equation

dy
E - f(t,y),

which solved with Euler’s algorithm results in the followimlgorithm
Yit1 = y(ti) + hf(ti, vi)

with ¢,.1 = t; + h. This means geometrically that we compute the slopg ahd use it to predicy; 1
at a later timef; 1. We introducek; = f(¢;, y;) and rewrite our prediction foy;.1 as

Yir1 ~ y(t;) + hky.

We can then use the predictigf,; to compute a new slope &t ; by definingks = f(ti+1, yi+1). We
define the new value af;.; by taking the average of the two slopes, resulting in

Yiv1 = y(ti) + g(/ﬂ + k).
The algorithm is very simple,namely
1. Compute the slope &, that is define the quantityy = f(¢;, vs).
2. Make a predicition for the solution by computipg1 =~ y(t;) + hk; by Euler’s method.
3. Use the predicitiony; +; to compute a new slope 8t,; defining the quantitye = f(ti+1, Yi+1)-
4. Correctthe value af;,1 by taking the average of the two slopes yielding, ~ y(ti)+%(k1 +k3).

It can be shown [30] that this procedure results in a mathiealatuncation which goes lik&(h?),
to be contrasted with Euler’s method which runsCa$). One additional function evaluation yields a
better error estimate.
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This simple algorithm conveys the philosophy of a large<latsmethods called predictor-corrector
methods, see chapter 15 of Ref. [36] for additional algorith A simple extension is obviously to use
Simpson’s method to approximate the integral

tit1
Yi+1 = Yi + / f(ta y)dt7
t;

when we solve the differential equation by successive mt@ms. The next section deals with a partic-
ular class of efficient methods for solving ordinary diffietial equations, namely various Runge-Kutta
methods.

13.4 More on finite difference methods, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansionuiaen but yield in general better algo-
rithms for solutions of an ODE. The basic philosophy is thighirovides an intermediate step in the
computation ofy;4 1.

To see this, consider first the following definitions

Z—?Z = f(t,y), (13.34)
and
y(t) = / f(t,y)dt, (13.35)
and -
Yoo =i + /t Ft.y)dt. (13.36)

To demonstrate the philosophy behind RK methods, let usidenthe second-order RK method, RK2.
The first approximation consists in Taylor expandjf{@, y) around the center of the integration interval
t; to t;y1, i.e., att; + h/2, h being the step. Using the midpoint formula for an integradfirdng
y(ti + h/2) = yip1/0 andt; + h/2 = t;,, /5, we obtain

tit1
/ St 9t~ hf (tigs 2, i) + O(RY). (13.37)
t;
This means in turn that we have

Yis1 = Yi + hf (tigr /2, Yiv1/2) + O(h?). (13.38)

However, we do not know the value gf, ; ,. Here comes thus the next approximation, namely, we use
Euler's method to approximatg ;. We have then

hd h
Y(itr1/2) = Yi + §d_z =y(t;) + §f(tiayi)- (13.39)

This means that we can define the following algorithm for #seosd-order Runge-Kutta method, RK2.
ki = hf(ti, i), (13.40)
ko = hf(tiy1/2,9i +k1/2), (13.41)
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with the final value
Yivi = yi + ko + O(h3). (13.42)

The difference between the previous one-step methodstisvihaow need an intermediate step in
our evaluation, namely; + h/2 = t;1/2) where we evaluate the derivatiye This involves more
operations, but the gain is a better stability in the sotutidhe fourth-order Runge-Kutta, RK4, which
we will employ in the solution of various differential eqigais below, is easily derived. The steps are as
follows. We start again with the equation

tit1
Yi+1 = Yi + / f(ta y)dt7
t

but instead of approximating the integral with the midpoirie, we use now Simpsons’ ruleiat- h/2,
h being the step. Using Simpson’s formula for an integral,iediy (t; + h/2) = y;1.1/2 andt; +h/2 =
tiy1/2, We obtain

tit1 h
/ f(t,y)dt = 5 [f(ti i) + 4f (tirj2s Yir12) + f(tivr yis1)] + O(R%). (13.43)
t
This means in turn that we have

h
vir1=vyit g [f(tiyi) + 4f (tigrj2: Yir1y2) + [ (i1, yir1)] + O(R°). (13.44)

However, we do not know the values®f, ; ,, andy;.;. The fourth-order Runge-Kutta method splits the
midpoint evaluations in two steps, that is we have

h
Vit Ryt Lt yi) + 2f (tiga 20 Vi1 y2) + 28 (tigay2s Yigray2) + Ftivr, vir1)]

since we want to approximate the slopeyat; /, in two steps. The first two function evaluations are as
for the second order Runge-Kutta method. The algorithm felbsvs

1. We compute first
ki = hf(ti,yi), (13.45)

which is nothing but the slope &tlf we stop here we have Euler's method.

2. Then we compute the slope at the midpoint using Euler'tiateto predicy; -, as in the second-
order Runge-Kutta method. This leads to the computation of

ky = hf(ti + h/2,y; + k1/2). (13.46)
3. The improved slope at the midpoint is used to further im@rhe slope of; /> by computing
ks =hf(t;+h/2,y; + ka/2). (13.47)
4. With the latter slope we can in turn predict the valueg.gf, via the computation of
kg = hf(t; + h,y; + k3). (13.48)
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5. The final algorithm becomes then

1
yier = vi+ g (b + 2k + 2hs + ko). (13.49)

Thus, the algorithm consists in first calculatihg with ¢;, y; and f as inputs. Thereafter, we increase
the step size by./2 and calculaté:,, thenks and finally k4. With this caveat, we can then obtain the
new value for the variablg. It results in four function evaluations, but the accurasynicreased by

two orders compared with the second-order Runge-Kuttaedethihe fourth order Runge-Kutta method

has a global truncation error which goes li¢h*). Fig.[I31 gives a geometrical interpretation of the
fourth-order Runge-Kutta method.

" Yigr1/2 andk;

Yi andk1

Y

t; ti+h/2 ti+h t

Figure 13.1: Geometrical interpretation of the fourtherdRunge-Kutta method. The derivative is
evaluated at four points, once at the intial point, twiceha trial midpoint and once at the trial end-
point. These four derivatives constitute one Runge-Kuiep sesulting in the final value fay; 11 =

yi + 1/6(k1 + 2ko + 2ks + ky).

13.5 Adaptive Runge-Kutta and multistep methods

In preparation.
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Figure 13.2: Block tied to a wall with a spring tension actomwjit.

13.6 Physics examples

13.6.1 Ideal harmonic oscillations

Our first example is the classical case of simple harmonidlatsens, namely a block sliding on a
horizontal frictionless surface. The block is tied to a waillh a spring, portrayed in e.g., Fig_IB.2. If
the spring is not compressed or stretched too far, the fardbeblock at a given positian is

F = —kxz. (13.50)

The negative sign means that the force acts to restore teetdbjan equilibrium position. Newton’s
equation of motion for this idealized system is then

2
m%gz—m, (13.51)
or we could rephrase it as
d*z k 2

with the angular frequenay? = k/m.

The above differential equation has the advantage thahibeasolved analytically with solutions on
the form

x(t) = Acos(wpt + 1),

where A is the amplitude and the phase constant. This provides in turn an important testhie
numerical solution and the development of a program for moneplicated cases which cannot be solved
analytically.

As mentioned earlier, in certain cases it is possible toitevarsecond-order differential equation as
two coupled first-order differential equations. With thespion x(¢) and the velocityy(t) = dx/dt we
can reformulate Newton’s equation in the following way

dx(t)
dt
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and
W) _ 2. (13.54)
dt

We are now going to solve these equations using the RungexkKéthod to fourth order discussed
previously. Before proceeding however, it is important adenthat in addition to the exact solution, we
have at least two further tests which can be used to checlobutias.

Since functions like-os are periodic with a periodr, then the solution:(¢) has also to be periodic.
This means that

z(t+T)=z(t), (13.55)

with T the period defined as

poim_ (13.56)

wo +/k/m
Observe thaf” depends only o /m and not on the amplitude of the solution or the constant
In addition to the periodicity test, the total energy has afsbe conserved.
Suppose we choose the initial conditions

z(t=0)=1m v(t=0)=0m/s, (13.57)

meaning that block is at rest &t= 0 but with a potential energy

1 1
Ey = Sha(t = 0)% = k- (13.58)

The total energy at any timehas however to be conserved, meaning that our solution Hasfitdhe
condition

1 1
Ey = §kx(t)2 + §mv(t)2. (13.59)

An algorithm which implements these equations is includeldv.

1. Choose the initial position and speed, with the most comaicev (¢ = 0) = 0 and some fixed
value for the position. Since we are going to test our resgtanst the periodicity requirement, it
is convenient to set the final time equal = 27, where we choosg/m = 1. The initial time is
set equal td; = 0. You could alternatively read in the ratig'm.

2. Choose the method you wish to employ in solving the problenthe enclosed program we have
chosen the fourth-order Runge-Kutta method. Subdivideithe interval(t;, ¢ ;] into a grid with
step size

tr—t;
h=-+*—
N )
whereN is the number of mesh points.

3. Calculate now the total energy given by
1 1
Ey = ~kx(t = 0)2 = Zk.
0 2]{73}( 0) 2]{7

and use this when checking the numerically calculated grfeogn the Runge-Kutta iterations.

4. The Runge-Kutta method is used to obtajn; andwv;, starting from the previous valuas and
Vi
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5. When we have computedv);, we upgrade,; 1 = t; + h.
6. This iterative process continues till we reach the maxrmtimet ; = 2.

7. The results are checked against the exact solution. érantire, one has to check the stability of
the numerical solution against the chosen number of mestgyi.

Program to solve the differential equations for a sliding bbck
The program which implements the above algorithm is presehere, with a corresponding

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapterl3/cpp/programl.cpp

/% This program solves Newton's equation for a@lock
sliding on a horizontal frictionless surface. Thelock
is tied to a wall with a spring, and Newton’'s equation
takes theform
m d"2x/dt”r2 =kx
with k the spring tension and m the mass of thdock.
The angular frequency is omega”2 = k/m and we set it equal
1 in this exampleprogram.

Newton’'s equation is rewritten as two coupled differential
equations, one for theposition x and one for the velocity v
dx/dt = v and
dv/dt = —x when we set k/m=1

We use therefore a twedimensional arrayto represent x and v
as functions of t

y[0] == X
y[l] ==v
dy[0]/dt = v

dy[1l]/dt = —x

The derivatives are calculated by the user definéunction
derivatives.

The user hasto specify the initial velocity (usually v_0=0)
the number of steps and the initialposition. In the programme
below we fix the time interval [a,b]to [0,2xpi].

x/

#include <cmath>

#include <iostream>

#include <fstream >

#include <iomanip>

#include "lib.n"

using namespace std;

/1l output file as global variable
ofstream ofile;

/!l function declarations

void derivatives ouble, double x, double x);
void initialise ( double&, double&, int&);
void output( double, double *, double);
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void runge_kutta_4double x, double %, int, double, double,
double %, void (x)(double, double x, double x));

int main(int argc, chaf argv][])
{
/I declarations of variables
double xy, xdydt, xyout, t, h, tmax, EO;
double initial_x , initial_v;
int i, number_of_steps, n;
char xoutfilename;
/!l Read in output file , abort if there are too few commanrdine

arguments
if ( argec <= 1 ){
cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;
exit(1);
}
elsef

outfilename=argv[1];

ofile .open(outfilename);

/Il this is the number of differential equations
n = 2;

/Il allocate spacein memory for the arrays containing the derivatives
dydt = new double[n];

y = new double[n];

yout = new double[n];

/l read in the initial position, velocity and number of steps
initialise (initial_x, initial_v , number_of_steps);

/Il setting initial values, stepsize and max time tmax

h = 4xacos(—1.)/( (double) number_of_steps); /Il the stepize
tmax = hknumber_of_steps; /!l the final time

y[0] = initial_x; [/l initial position

y[1l] = initial_v; /I initial velocity

t=0.; [/ initial time

EO = 0.5«y[0]xy[0]+0.5xy[1]xy[1]; /1 the initial total energy

/I now we start solving the differential equations using tiR&4 method
while (t <= tmax){

derivatives (t, y, dydt); /I initial derivatives
runge_kutta_4(y, dydt, n, t, h, yout, derivatives);
for (i = 0; i < n; i++) {
yli] = yout[i];
}
t += h;
output(t, y, EO); /1 write to file
}
delete [] y; delete [] dydt; delete [] yout;
ofile .close(); // close output file
return O;

} /!l End of main function

/1 Read in from screen thenumber of steps,
/1 initial position and initial speed
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void initialise (double& initial_x , double& initial_ v, int&
number_of_steps)
{

cout << "Initial position = ";
cin >> initial_x;

cout << "Initial speed = ";

cin >> initial_v;

cout << "Number of steps = ";
cin >> number_of_steps;

} /! end of function initialise

/1 this function sets up the derivatives for this speciaase
void derivatives @ouble t, double xy, double xdydt)
{
dydt[0]=y[1]; /I derivative of x
dydt[1l]=—y[O0]; // derivative of v
} // end of function derivatives

/1! function to write out the final results
void output(double t, double xy, double EO)
{
ofile << setiosflags(ios::showpoint | ios::uppercase);

ofile << setw(15) << setprecision (8) << t;
ofile << setw(15) << setprecision(8) << y[0];
ofile << setw(15) << setprecision(8) << y[1];
ofile << setw(15) << setprecision(8) << cos(t);
ofile << setw(15) << setprecision(8) <<
0.5xy[0]*y[0]+0.5xy[1]*y[1] —EO << endl;
} [/l end of function output

[ This function upgrades afunction y (input as apointer)
and returns theresult yout, also as apointer. Note that
these variables are declared as arrays. It also receives as
input the starting value for the derivativesn the pointer
dydx. It receives also the variable n which represents the
number of differential equations, the stepize h and
the initial value of x. It receives also theame of the
function xderivs where the given derivative is computed

*/

void runge_kutta_4double xy, double xdydx, int n, double x, double h,

double xyout, void (xderivs)(double, double %, double

*))

int i;

double xh,hh,h6;

double xdym, xdyt, xyt;

/1 allocate space for local vectors

dym = new double [n];
dyt = new double [n];
yt = new double [n];
hh = hx0.5;
hé = h/6.;
xh = x+hh;
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for (i = 0; i < n; i++) {
yt[i] = y[i]+hh xdydx[i];

(xderivs) (xh,yt,dyt); // computation of k2, eq. 3.60
for (i = 0; i < n; i++) {

yt[i] = y[i]+hhsdyt[i];
}
(xderivs)(xh,yt,dym); // computation of k3, eq. 3.61
for (i=0; i < n; i++) {

yt[i] = y[i]+hxdym[i];
dym[i] += dyt[i];

}
(xderivs) (x+h,yt,dyt); // computation of k4, eq. 3.62
/1 now we upgrade yin the array yout
for (i = 0; i < n; i++){
yout[i] = y[i]+h6x(dydx[i]+dyt[i]+2.0xdym[i]);
}

delete []dym;
delete [] dyt;
delete [] vyt;
} /I end of function Runge-kutta 4

In Fig.[I33 we exhibit the development of the differencenssn the calculated energy and the exact
energy att = 0 after two periods and witllv = 1000 and N = 10000 mesh points. This figure
demonstrates clearly the need of developing tests for amgdke algorithm used. We see that even for
N = 1000 there is an increasing difference between the computedgned the exact energy after only
two periods.

13.6.2 Damping of harmonic oscillations and external ferce

Most oscillatory motion in nature does decrease until tlpldcement becomes zero. We call such a
motion for damped and the system is said to be dissipatifeerdihan conservative. Considering again
the simple block sliding on a plane, we could try to implem&nth a dissipative behavior through a drag
force which is proportional to the first derivative ©fi.e., the velocity. We can then expand Hq. (1B.52)

to
A’z dx
wherev is the damping coefficient, being a measure of the magnitéitteealrag term.

We could however counteract the dissipative mechanism plyimg e.g., a periodic external force

F(t) = Bceos(wt), (13.61)
and we rewrite Eq[{13.60) as
d*x 9 dx

Although we have specialized to a block sliding on a surféloe above equations are rather general
for quite many physical systems.

If we replacer by the chargé), v with the resistanc®, the velocity with the current, the inductance
L with the massn, the spring constant with the inverse capacitaficend the force” with the voltage
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Figure 13.3: Plot oAE(t) = Ey — Ecomputed fOr N = 1000 and N = 10000 time steps up to two
periods. The initial position:; = 1 m and initial velocityvy = 0 m/s. The mass and spring tension are
settok =m = 1.
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Figure 13.4: Simple RLC circuit with a voltage sourice

dropV, we rewrite Eq.[[13.82) as

?’Q  Q dQ
Ly + G+ R =V(1). (13.63)

The circuit is shown in Fid_T13 4.

How did we get there? We have defined an electric circuit whimhsists of a resistanck with
voltage dropl R, a capacitor with voltage dro /C' and an inductod. with voltage dropLdI/dt. The
circuit is powered by an alternating voltage source andgukinchhoff’s law, which is a consequence of
energy conservation, we have

V(t)=IR+ LdI/dt + Q/C, (13.64)
and using
dQ
1= e (13.65)
we arrive at Eq.[{13.83).

This section was meant to give you a feeling of the wide rafig@plicability of the methods we have
discussed. However, before leaving this topic entirely]lwlevelve into the problems of the pendulum,
from almost harmonic oscillations to chaotic motion!

13.6.3 The pendulum, a nonlinear differential equation

Consider a pendulum with massat the end of a rigid rod of lengthattached to say a fixed frictionless
pivot which allows the pendulum to move freely under gravitythe vertical plane as illustrated in
Fig.[135.

The angular equation of motion of the pendulum is again giwehNewton’s equation, but now as a
nonlinear differential equation

d*0 ,
ml@ + mgsin(0) =0, (13.66)
with an angular velocity and acceleration given by
de
=]— 13.67
v=1—, (13.67)
and 2
d
a = ZW' (13.68)
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pivot

length |

mass

mg

Figure 13.5: A simple pendulum.

For small angles, we can use the approximation
sin(f) ~ 6.
and rewrite the above differential equation as

d*0 g
— =—=0 13.69
2 70, ( )
which is exactly of the same form as EQ.{13.52). We can theslcbur solutions for small values 6f
against an analytical solution. The period is now

2

T="T_ (13.70)
l/g
We do however expect that the motion will gradually come teiash due a viscous drag torque acting

on the pendulum. In the presence of the drag, the above equstcomes

d*0 de
p7e) + o + mgsin(0) = 0, (213.71)
wherer is now a positive constant parameterizing the viscosityhef medium in question. In order

to maintain the motion against viscosity, it is necessargdd some external driving force. We choose
here, in analogy with the discussion about the electriadira periodic driving force. The last equation

becomes then

ml

2
mlili—tg + 1/2—? + mgsin(0) = Acos(wt), (13.72)
with A andw two constants representing the amplitude and the angelquéncy respectively. The latter

is called the driving frequency.
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If we now define the natural frequency
wo =Vg/l, (13.73)

the so-called natural frequency and the new dimensionkesstigies

t = wot, (13.74)
with the dimensionless driving frequency
o= (13.75)
wo

and introducing the quantit§, called thequality factor,

mg

= (13.76)
wolV
and the dimensionless amplitude
A=A (13.77)
mg
we can rewrite Eq[{I3.72) as
20 1 . .
Z? + éfl_z + sin(f) = Acos(wt). (13.78)

This equation can in turn be recast in terms of two coupletdirder differential equations as follows

db
- = A, 13.79
ikl ( )
and
% = —% — sin(0) + Acos(@t). (13.80)

These are the equations to be solved. The faGtaepresents the number of oscillations of the
undriven system that must occur before its energy is sigmiflg reduced due to the viscous drag. The
amplitude A is measured in units of the maximum possible gravitatiooajue whilew is the angular
frequency of the external torque measured in units of thelgem’s natural frequency.

13.6.4 Spinning magnet

Another simple example is that of e.g., a compass needléstfrate to rotate in a periodically reversing
magnetic field perpendicular to the axis of the needle. Theton is then

d%6 " .
el —YBocos(wt)sm(G), (13.81)

whereé is the angle of the needle with respect to a fixed axis alondield 1. is the magnetic moment
of the needle] its moment of inertia and®; andw the amplitude and angular frequency of the magnetic
field respectively.
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13.7 Physics Project: the pendulum

13.7.1 Analytic results for the pendulum

Although the solution to the equations for the pendulum a@y be obtained through numerical efforts,
it is always useful to check our numerical code against dicadplutions. For small angles we have
sinf ~ @ and our equations become

de

@, 13.82
= =0 (13.82)

and
do 0

= —% — 0+ Acos(&i). (13.83)
These equations are linear in the angjkend are similar to those of the sliding block or the RLC citcui
With given initial conditionsy, andé, they can be solved analytically to yield

I B
0(1) - [90 = %] e /%cos( 1 — 15y (13.84)

. A(1—302 _r . / A(1=0?)cos(@T)+2 sin(&T)
+ |:UO + 20_& - %] (& /2QS'LTL( 1 - 462%7—) + (1_02)2+®2/QQ2 5

io2 .
@(t) = |:’[10 - %} € /2QCOS(1 / 1-— ﬁT) (1385)
P Al(1—02)—o2 /02 _r . GA[-(1—02)sin(@T)+2 cos(@7)]
- [90 +a36— %] e T/ sin(\ /1 = 12 7) + =P )

with @ > 1/2. The first two terms depend on the initial conditions and gepgonentially in time. If
we wait long enough for these terms to vanish, the soluti@eeine independent of the initial conditions
and the motion of the pendulum settles down to the followingpge orbit in phase space

A1 — &) cos(wT) + %sz’n(dn’)
(1—-a2)2+a2/Q? ’

0(t) = (13.86)

and ) R
WA[—(1 — &?)sin(@7) + Ecos(wT)]
i(t) = <
(1 _@2)2 +@2/Q2 ?
tracing the closed phase-space curve

0 2 ) 2
<Z> N <w[1> 1 (13.88)

A~

A
VI -2+ 222
This curve forms an ellipse whose principal axestendv. This curve is closed, as we will see from
the examples below, implying that the motion is periodicinng, the solution repeats itself exactly after
each period’ = 27 /. Before we discuss results for various frequencies, quiadtors and amplitudes,

it is instructive to compare different numerical methods.Fig.[T3:6 we show the angleas function
of time 7 for the case with) = 2, © = 2/3 and A = 0.5. The length is set equal tbom and mass of

(13.87)

with
A=

(13.89)

338



13.7 — Physics Project: the pendulum

the pendulum is set equal 1okg. The inital velocity isvg = 0 andfy = 0.01. Four different methods
have been used to solve the equations, Euler's method franflfBdT), Euler-Richardson’s method in
Egs. (I133R)I3:33) and finally the fourth-order Rungdt&scheme RK4. We note that after few time
steps, we obtain the classical harmonic motion. We would lndotained a similar picture if we were
to switch off the external forced = 0 and set the frictional damping to zero, i.€),= 0. Then, the
qualitative picture is that of an idealized harmonic oatitin without damping. However, we see that
Euler's method performs poorly and after a few steps itsrétyoic simplicity leads to results which
deviate considerably from the other methods. In the disondsereafter we will thus limit ourselves to

3 T
RK4 ——
: - Euler ......
2 o o Halfstep. —— |

i EUler-Ri_Chal_'"dson'-_- e

-3 | | | | | |
0 5 10 15 20 25 30 35

t/2m

Figure 13.6: Plot of) as function of timer with Q = 2, ® = 2/3 andA = 0.5. The mass and length
of the pendulum are set equaltoThe initial velocity isoy = 0 andfy = 0.01. Four different methods
have been used to solve the equations, Euler’s method franIBdLT), the half-step method, Euler-
Richardson’s method in Eq§.(1313£)-(13.33) and finallyftlueth-order Runge-Kutta scheme RK4. Only
N = 100 integration points have been used for a time intetval]0, 107].

present results obtained with the fourth-order Runge&uiéthod.

The corresponding phase space plot is shown iHEIgl 13.thémame parameters as in Fig.13.6. We
observe here that the plot moves towards an ellipse witlogiermotion. This stable phase-space curve is
called a periodic attractor. Itis called attractor becairsespective of the initial conditions, the trajectory
in phase-space tends asymptotically to such a curve inttie4i — oo. It is called periodic, since it
exhibits periodic motion in time, as seen from Hig._13.6. didiion, we should note that this periodic
motion shows what we call resonant behavior since the thindrfrequency of the force approaches the
natural frequency of oscillation of the pendulum. This isesdially due to the fact that we are studying
a linear system, yielding the well-known periodic motiorheThon-linear system exhibits a much richer
set of solutions and these can only be studied numerically.

In order to go beyond the well-known linear approximation e@nge the initial conditions to say
6o = 0.3 but keep the other parameters equal to the previous caseufeford is shown in Fig[I318.
The corresponding phase-space curve is shown ifLE1d. 18i9.clirve demonstrates that with the above
given sets of parameters, after a certain number of pertbdghase-space curve stabilizes to the same
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0.5

Figure 13.7: Phase-space curve of a linear damped penduitmiw= 2, © = 2/3 andA = 0.5. The
inital velocity isty = 0 andfy = 0.01.

-0.5F .

>

Figure 13.8: Plot of) as function of timer with Q@ = 2, © = 2/3 and A = 0.5. The mass of the
pendulum is set equal tbkg and its length to 1 m. The inital velocity ig = 0 andé, = 0.3.
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0.5+

-1 -0.5 0 0.5 1

Figure 13.9: Phase-space curve with= 2, & = 2/3 andA = 0.5. The mass of the pendulum is set
equal tol kg and its lengthh = 1 m.. The inital velocity isiy = 0 andfy = 0.3.

curve as in the previous case, irrespective of initial cbhoials. However, it takes more time for the
pendulum to establish a periodic motion and when a stableiorphase-space is reached the pendulum
moves in accordance with the driving frequency of the foildee qualitative picture is much the same as
previously. The phase-space curve displays again a finaldieattractor.

If we now change the strength of the amplitudedo= 1.35 we see in FigiI3.10 th#tas function
of time exhibits a rather different behavior from Hig.1328en though the initial conditions and all other
parameters except are the same. The phase-space curve is shown ifFIg] 13.11.

We will explore these topics in more detail in Section 13 8Here we extend our discussion to the
phenomena of period doubling and its link to chaotic motion.

13.7.2 The pendulum code

The program used to obtain the results discussed abovessntesl here. The enclosed code solves the
pendulum equations for any andlenith an external forcedcos(wt). It employes several methods for
solving the two coupled differential equations, from Eiglanethod to adaptive size methods coupled
with fourth-order Runge-Kutta. It is straightforward topdypthis program to other systems which exhibit
harmonic oscillations or change the functional form of tkiemal force.

We have also introduced the class concept, where we defifmugamnethods for solving ordinary
and coupled first order differential equations via thelass pendulum This methods access variables
which belong only to this particular class via thevate declaration. As such, the methods we list here
can easily be reused by other types of ordinary differeetiiations. In the code below, we list only the
fourth order Runge Kutta method, which was used to genehatalbove figures. For the full code see
programs/chapter13/program2.cpp.

http://www.fys.uio.no/compphys/cp/programs/FYS3150/chapter13/cpp/program?.cpp

#include <stdio.h>
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0 20 40 60 80 100

Figure 13.10: Plot of) as function of timer with Q@ = 2, @ = 2/3 andA = 1.35. The mass of the
pendulum is set equal tiokg and its length to 1 m. The inital velocityig = 0 andfy = 0.3. Every time
6 passes the valugm we reset its value to swing betweere [, pi]. This gives the vertical jumps in
amplitude.

15

Figure 13.11: Phase-space curve after 10 periods@ith 2, © = 2/3 and A = 1.35. The mass of the
pendulum is set equal tbkg and its lengthi = 1 m. The inital velocity isip = 0 andfy = 0.3.
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#include <iostream.h>

#include <math.h>

#include <fstream.h>

/%

Different methods for solving ODEs are presented
We are solving the following egation:

m«| «(phi)’’ + viscosity«(phi)’ + mxg«sin(phi) = Axcos(omegat)

If you want to solve similar equations with other values you have

rewrite the methods ’'derivatives’ and ’'initialise ' and chge the
variables in the private

part of the class Pendulum

At first we rewrite the equation using the following definidns:
omega_0 = sqrt(gl)

t roof = omega_@t

omega_roof = omega/omega_0

Q = (mkg)/(omega_@reib)

A_roof = A/(mxQg)

and we get a dimensionless equation

(phi)’" + 1/Qx(phi)’ + sin(phi) = A_roofrcos(omega_roodft_roof)

This equation can be written as two equations of first order:

(phi)" =v
(v)’ = —v/Q — sin(phi) +A_roofrcos(omega_roodft_roof)

All numerical methods are appliedo the last two equations.
The algorithms are taken from the bookin introduction to computer
simulation methods"

x/
class pendelum
{ .
private :
double Q, A_roof, omega 0, omega_roof,g; //
double y[2]; // for the initial—-values of phi and v

int n; /!l how many steps
double delta_t,delta_t _roof;
I/l Definition of methodsto solve ODEs
public:
void derivatives double,doublex,doublex);
void initialise ();
void euler();
void euler_cromer();
void midpoint();
void euler_richardson ();
void half_step ();
void rk2(); //runge-kutta—second-order
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void

rk4 _step@ouble,doublex,doublex,double);

function

void

rkd () ;

I/l we need itin
rk4 () and asc ()

/I runge-kutta—fourth—order

void asc(); //rungekutta—fourth—order with adaptive stepsize contro

h

/!l This function defines the particular coupled first order ODEs
void pendelum::derivativesdouble t, doublex in, doublex out)

{ /'« Here we are calculating the derivatives at (dimensionledshe t

"in’ are the values of phi and v, which are used for the calculat
The results are givento 'out’ x/
out[0]=in[1]; [/ out[0] = (phi)" =V
it (Q)
out[l]==in[1]/((double)Q)—sin (in[0])+A_roofxcos(omega_roodt); //out
(1] = (phi)™
else

out[l]=—sin(in[0])+A_roofxcos(omega_roodft); [//out[l] = (phi)"”’

}

I/l Here we define all
void pendelum::
{

double m,|,omega,A, viscosity ,phi_0,v_0,t end;

cout<<'Solving the differential eqation of the pendulum!\n",

cout<<'We have a pendulum with mass m, length 1. Then we have a
periodic force with amplitude A and omega\n",;

Cout<<'Furthermore there is a viscous drag coefficient.\n";

cout<<'The initial conditions at t=0 are phi_O and v_O0\n";

cout<<'Mass m: ";

cin>>m;

cout<<'length 1: ";

cin>>1;

cout<<'omega of the force: ",

cin>>omega;

cout<<'amplitude of the force: ";

cin>>A;

cout<<'The value of the viscous drag constant (viscosity): ";

cin>>viscosity;

cout<<'phi_0: ";

cin>>y[0];

cout<<'v_0: ",

cin>>y[1];

cout<<'Number of time steps or integration steps:";

cin>>n;

COUut<<"Final time steps as multiplum of pi:";

cin>>t_end;

t_end x= acos(-1.);

g=9.81;

/I We need the following values:

omega_0O=sqrt(g/(double)l)); I/l omega of the pendulum

if (viscosity) Q= mg/((double)omega_@viscosity);

else Q=0; //calculating Q

A_roof=A/((double)m«g) ;

input parameters.
initialise ()
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omega_roof=omega/(double)omega_0);
delta_t roof=omega «&_end/((double)n); /ldelta_t without dimension
delta_t=t_end/(@ouble)n);
}
[/l fourth order Run
void pendelum::rk4 _stepdouble t,double xyin,double xyout,double delta_t)

{
/%
The function calculates one step of fourthorder-runge-kutta—method
We will need it for the normal fourthorder—Runge-Kutta—method and
for RK—method with adaptive stepsize control
The function calculates the value of y(t + delta_t) using fourth
order—RK—method
Input: time t and the stepsize delta_t, yin (values of phi awndat
time t)
Output: yout (values of phi and v at time t+delta_t)
x/

double k1[2],k2[2],k3[2],k4[2],y_k[2];

/Il Calculation of k1

derivatives (t,yin,yout);

kl[l]=yout[l]xdelta_t;

k1[O]=yout[O]xdelta_t;

y_k[0]=yin[0]+k1[0]*0.5;

y_k[1]=yin[1]+k1[1]*0.5;

[/« Calculation of k2 x/

derivatives (t+delta_£0.5,y k,yout);

k2[1]=yout[1l]xdelta_t;

k2[0]=yout[O]xdelta_t;

y_k[0]=yin[0]+k2[0]*0.5;

y_k[1]=yin[1]+k2[1]*0.5;

[/« Calculation of k3 x/

derivatives (t+delta_£0.5,y k,yout);

k3[1]=yout[1l]xdelta_t;

k3[0]=yout[O]xdelta_t;

y_k[0]=yin[0]+k3[0];

y_k[1]=yin[1]+k3[1];

[/« Calculation of k4 x/

derivatives (t+delta_t ,y k,yout);

k4[1l]=yout[l]xdelta_t;

k4[0]=yout[O]xdelta_t;

[/« Calculation of new values of phi and w«/

yout[0]=yin[0]+1.0/6.0«(k1[0]+2xk2[0]+2+xk3[0]+k4[0]);

yout[1l]=yin[1]+1.0/6.0«(k1[1]+2xk2[1]+2«xk3[1]+k4[1]);
}

void pendelum::rk4 ()
{
/«*We are using the fourthorder—Runge-Kutta—algorithm
We haveto calculate the parameters k1, k2, k3, k4 for v and phi,
so we use to arrays kl1l[2] and k2[2] for this
k1[0], k2[0] are the parameters for phi,
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k1[1], k2[1] are the parameters for v
*/

int i;
double t_h;
double yout[2],y_h[2]; //k1l[2],k2[2],k3[2],k4[2],y_k[2];

t _h=0;
y_h[0]=y[0]; //phi
y_h[1l]=y[1]; [lv
ofstream fout(rk4.out");
fout.setf(ios:: scientific);
fout.precision(20);
for(i=1; i<=n; i++){
rk4_step(t_h,y h,yout,delta_t_roof);
fout<<ixdelta_t<<\t\t"<<yout[0]<<"\t\t"<<yout[l]<<"\n";
t h+=delta_t_roof;
y_h[0]=yout[0];
y_h[1l]=yout[1];
}

fout.close;

}

int main ()

{
pendelum testcase;
testcase.initialise ();
testcase .rk4();
return O;

} // end of main function

13.8 Exercises and projects

Project 13.1: studies of neutron stars

In the pendulum example we rewrote the equations as tworgiffel equations in terms of so-called
dimensionless variables. One should always do that. Thieratdeast two good reasons for doing this.

— By rewriting the equations as dimensionless ones, the anogrill most likely be easier to read,
with hopefully a better possibility of spotting eventuatags. In addtion, the various constants
which are pulled out of the equations in the process of réngehe equations dimensionless, are
reintroduced at the end of the calculation. If one of thesestamts is not correctly defined, it is
easier to spot an eventual error.

— In many physics applications, variables which enter a difidal equation, may differ by orders of
magnitude. If we were to insist on not using dimensionlesmtjties, such differences can cause
serious problems with respect to loss of numerical pregisio

An example which demonstrates these features is the setuatiegs for gravitational equilibrium
of a neutron star. We will not solve these equations numigribare, rather, we will limit ourselves to
merely rewriting these equations in a dimensionless form.
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The equations for a neutron star

The discovery of the neutron by Chadwick in 1932 prompteddaarto predict the existence of neutron
stars. The birth of such stars in supernovae explosions wggested by Baade and Zwicky 1934. First
theoretical neutron star calculations were performed dyndo, Oppenheimer and Volkoff in 1939 and
Wheeler around 1960. Bell and Hewish were the first to discavesutron star in 1967 agadio pulsar.
The discovery of the rapidly rotating Crab pulsar ( rapidiyating neutron star) in the remnant of the
Crab supernova observed by the chinese in 1054 A.D. confitheetink to supernovae. Radio pulsars
are rapidly rotating with periods in the rang#33 s < P < 4.0 s. They are believed to be powered by
rotational energy loss and are rapidly spinning down witliquederivatives of ordeP ~ 1012 —1016,
Their high magnetic field leads to dipole magnetic braking radiation proportionahtomagnetic field
squared. One estimates magnetic fields of the ordét ef 10! — 10'® G. The total number of pulsars
discovered so far has just exceeded 1000 before the turre shilflenium and the number is increasing
rapidly.

The physics of compact objects like neutron stars offersnamguing interplay between nuclear
processes and astrophysical observables, see Refs. [fif&ther information and references on the
physics of neutron stars. Neutron stars exhibit conditfan$rom those encountered on earth; typically,
expected densitigsof a neutron star interior are of the ordernéf or more times the densify; ~ 4-10'*
glen? at 'neutron drip’, the density at which nuclei begin to dissoand merge together. Thus, the
determination of an equation of state (EoS) for dense migttessential to calculations of neutron star
properties. The EoS determines properties such as the arags, the mass-radius relationship, the crust
thickness and the cooling rate. The same EOS is also crutiedltulating the energy released in a
supernova explosion.

Clearly, the relevant degrees of freedom will not be the samthe crust region of a neutron star,
where the density is much smaller than the saturation deatiuclear matter, and in the center of the
star, where density is so high that models based solely ersicting nucleons are questionable. Neutron
star models including various so-called realistic equmstiof state result in the following general picture
of the interior of a neutron star. The surface region, wiiidgl densities < 10° g/cn?, is a region in
which temperatures and magnetic fields may affect the emjuafistate. The outer crust fan® g/cm?
< p < 4-10"g/en? is a solid region where a Coulomb lattice of heavy nuclei &igr 3-equilibrium
with a relativistic degenerate electron gas. The innertdars4 - 10 g/cm® < p < 2 - 10*g/em?
consists of a lattice of neutron-rich nuclei together wigugerfluid neutron gas and an electron gas. The
neutron liquid for2 - 104 g/cn?® < p < -10'g/cm? contains mainly superfluid neutrons with a smaller
concentration of superconducting protons and normalrelest At higher densities, typicall/— 3 times
nuclear matter saturation density, interesting phaseitians from a phase with just nucleonic degrees
of freedom to quark matter may take place. Furthermore, oag mave a mixed phase of quark and
nuclear matter, kaon or pion condensates, hyperonic mstteng magnetic fields in young stars etc.

Equilibrium equations

If the star is in thermal equilibrium, the gravitational deron every element of volume will be balanced
by a force due to the spacial variation of the presdar& he pressure is defined by the equation of state
(E0S), recall e.g., the ideal g&s= NkpT. The gravitational force which acts on an element of volume
at a distance is given by

Gm
Feraw = —T—zp/cz, (13.90)
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whereG is the gravitational constang(r) is the mass density and(r) is the total mass inside a radius
r. The latter is given by

4 T
m(r) = —7; / p(r)r"?dr’! (13.91)
¢ Jo
which gives rise to a differential equation for mass and ifgns
dm 9 9
— =Admrep(r)/c. (13.92)
dr
When the star is in equilibrium we have
dpP Gm(r) 9
o= 2 P/ (13.93)

The last equations give us two coupled first-order difféedieguations which determine the structure
of a neutron star when the EoS is known.

The initial conditions are dictated by the mass being zetbeatenter of the star, i.e., when= 0,
we havemn(r = 0) = 0. The other condition is that the pressure vanishes at tliacguof the star. This
means that at the point where we have= 0 in the solution of the differential equations, we get thaltot
radius R of the star and the total mass(r = R). The mass-energy density when= 0 is called the
central density,. Since both the final masi and total radiug? will depend onp;, a variation of this
quantity will allow us to study stars with different massesl aadii.

Dimensionless equations

When we now attempt the numerical solution, we need howevegdcale the equations so that we deal
with dimensionless quantities only. To understand whysiter the value of the gravitational constant
G and the possible final mass(r = R) = Mp. The latter is normally of the order of some solar masses
Mo, with M, = 1.989 x 103° Kg. If we wish to translate the latter into units of MeV/ave will have
that My ~ 105 MeV/c2. The gravitational constant is in units 6f= 6.67 x 10=% x he (MeV/c?)~2.
It is then easy to see that including the relevant valuestesd quantities in our equations will most
likely yield large numerical roundoff errors when we add @@mumberﬁl—f to a smaller numbeP in
order to obtain the new pressure. We list here the units ofdhieus quantities and in case of physical
constants, also their values. A bracketed symbol [Restands for the unit of the quantity inside the
brackets.

We introduce therefore dimensionless quantities for theus® = /Ry, mass-energy densify =
p/ps, pressure? = P/p, and massn = m/M.

The constantd/, and R, can be determined from the requirements that the equatiof fand -
should be dimensionless. This gives

dMorn .
—4 v 13.94
T = AnEi (13.94)
yielding
CZ? = AnR3i2p,p/ Mo (13.95)
T

If these equations should be dimensionless we must demand th
AT R3ps /My = 1. (13.96)
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Quantity  Units

[P] MeVfm—3

[p] MeVfm—3

[n] fm=3

[m] MeVc—2

Mg 1.989 x 103 Kg=1.1157467 x 10%° MeVc—2
1Kg =10%0/1.78266270D0 MeVc 2

[r] m

G hic6.67259 x 10~4° MeV—2¢~4

hc 197.327 MeVfim

Correspondingly, we have for the pressure equation

dps P mpsp
= —-GM, 13.97
dRgr ~ Mo R272 (13.97)
and since this equation should also be dimensionless, Wwéavi
GMy/Ry = 1. (13.98)

This means that the constaritg and M which will render the equations dimensionless are given by

1
Ry = ——= 13.99
0 /7PSG47T’ ( )

and

My = —2TPs (13.100)

(Vp G
However, since we would like to have the radius expressedits of 10 km, we should multiplyz, by
10719, since 1 fm =10~'> m. Similarly, M, will come in units of MeV/c?, and it is convenient therefore
to divide it by the mass of the sun and express the total massrirs of solar masse¥.
The differential equations read then

dP wmp  din .
—_— = . 13.101
a2 a0 P ( )

In the solution of our problem, we will assume that the massgy density is given by a simple
parametrization from Bethe and Johnson [74]. This paranagimn givesp as a function of the number
densityn = N/V, with N the total number of baryons in a voluriie It reads

n)= X NTTT 4 nmy, .
p(n) = 236 x n?> (13.102)

wherem,, = 938.926MeV/c?, the mass of the neutron (averaged). This means that Biheefm—3, we
have that the dimension gfis [p] =MeV/c>fm~3. Through the thermodynamic relation

OF
P=—a (13.103)
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whereF is the energy in units of MeVfcwe have

P(n) = nag? — p(n) = 363.44 x n>%, (13.104)
We see that the dimension of pressure is the same as thatroéseenergy density, i.¢F] =MeV/c2fm 3.
Here comes an important point you should observe when gpthia two coupled first-order differ-
ential equations. When you obtain the new pressure given by
P
Paew = L 5 Py, (13.105)
dr
this comes as a function ef However, having obtained the new pressure, you will needsto Eq.
([@3103) in order to find the number density This will in turn allow you to find the new value of the
mass-energy densip(n) at the relevant value of.
In solving the differential equations for neutron star éigtium, you should proceed as follows

1. Make first a dimensional analysis in order to be sure thatlations are really dimensionless.

2. Define the constant®, and M in units of 10 km and solar madd,. Find their values. Explain
why it is convenient to insert these constants in the finalltesnd not at each intermediate step.

3. Set up the algorithm for solving these equations and veiteain program where the various
variables are defined.

4. Write thereafter a small function which uses the exposssfor pressure and mass-energy density

from Eqgs. [(I3.104) and{13.7102).
5. Write then a function which sets up the derivatives

iip
e

2p. (13.106)

7
6. Employ now the fourth order Runge-Kutta algorithm to abteew values for the pressure and the

mass. Play around with different values for the step sizecamdpare the results for mass and
radius.

7. Replace the fourth order Runge-Kutta method with the kniuler method and compare the
results.

8. Replace the non-relativistic expression for the derieadf the pressure with that from General
Relativity (GR), the so-called Tolman-Oppenheimer-Vellayuation
dP (P +p)(FP +m)

dr - 72 _ omp (13107)

and solve again the two differential equations.

9. Compare the non-relatistic and the GR results by plottirags and radius as functions of the
central density.
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Project 13.2: studies of white dwarf stars

This project contains a long description of the physics @fipact objects such as white dwarfs. It serves
as a background for understanding the final differentiabéiqns you need to solve. This project is taken
from the text of Koonin and Meredith [4].

White dwarfs are cold objects which consist mainly of heauglei such asFe, with 26 protons,
30 neutrons and their respective electrons, see for exaRgdlg71]. Charge equilibrium results in an
equal quantity of electrons and protons. You can read mavatakhite dwarfs, neutron stars and black
holes at the website of the Joint Institute for Nuclear Agtrgsics www.jinaweb.org or NASA's website
www.nasa.org. These stars are the endpoints of stars witlsesaof the size or smaller than our sun.
They are the outcome of standard nuclear processes andeantiviks as cold objects like white dwarfs
when they have used up all their nuclear fuel.

Where a star ends up at the end of its life depends on the maasjaunt of matter, it was born
with. Stars that have a lot of mass may end their lives as Hiatds or neutron stars. Low and medium
mass stars will become something called a white dwarf. Actlpivhite dwarf is half as massive as the
Sun, yet only slightly bigger than the Earth. This makes gtiwvarfs one of the densest forms of matter,
surpassed only by neutron stars.

Medium mass stars, like our Sun, live by burning the hydragahdwells within their cores, turning
it into helium. This is what our Sun is doing now. The heat tlhw §enerates by its nuclear fusion of
hydrogen into helium creates an outward pressure. In anbth#lion years, the Sun will have used up
all the hydrogen in its core.

This situation in a star is similar to a pressure cooker. idgatomething in a sealed container causes
a build up in pressure. The same thing happens in the SunouUgththe Sun may not strictly be a sealed
container, gravity causes it to act like one, pulling the stevard, while the pressure created by the hot
gas in the core pushes to get out. The balance between messligravity is very delicate.

Because a white dwarf is no longer able to create internaspre, gravity unopposedly crushes it
down until even the very electrons that make up a white dwatfbms are mashed together. In normal
circumstances, identical electrons (those with the sapia™)sare not allowed to occupy the same energy
level. Since there are only two ways an electron can spily, two electrons can occupy a single energy
level. This is what's know in physics as the Pauli Exclusiomé&ple. And in a normal gas, this isn’t
a problem; there aren’t enough electrons floating arounanepdetely fill up all the energy levels. But
in a white dwarf, all of its electrons are forced close togettsoon all the energy levels in its atoms
are filled up with electrons. If all the energy levels are fil]land it is impossible to put more than two
electrons in each level, then our white dwarf has becomerdegte. For gravity to compress the white
dwarf anymore, it must force electrons where they cannot@uce a star is degenerate, gravity cannot
compress it any more because quantum mechanics tells @sisheo more available space to be taken
up. So our white dwarf survives, not by internal combustimut, by quantum mechanical principles that
prevent its complete collapse.

With a surface gravity of 100,000 times that of the earth,dtreosphere of a white dwarf is very
strange. The heavier atoms in its atmosphere sink and thtetignes remain at the surface. Some white
dwarfs have almost pure hydrogen or helium atmosphere$igtitest of elements. Also, the very strong
gravity pulls the atmosphere close around it in a very thiedathat, if were it on earth, would be lower
than the tops of our skyscrapers!
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13.8.1 Equilibrium equations

We assume that the star is in thermal equilibrium. It exhibiso charge equilibrium, meaning the number
of electrons has to balance the number of protons. The gtirial pull on every element of volume is
balanced by the pressure set up by a degenerate gas of eeatrf = 0, since the temperature of
the star is well below the so-called Fermi temperature ofdleetrons. The electrons are assumed to
be relativistic and since the protons and neutrons have nowedr kinetic energy, we assume that the
pressure which balances the gravitational force is maigfyp by the relativistic electrons. The kinetic
energy of the electrons is also much larger than the elegtiextron repulsion or the attraction from the
nuclei. This means that we can treat the system as a gas aidgamerate electrons’Bt= 0 moving in
between a lattice of nuclei like iron. This is our ansatz. d&ghsn this we can derive the pressure which
counterbalances the gravitational force given by (for gveement of volume in a distaneefrom the

center of the star)
Gm(r
FGrav = _#p(’r)»
with G being the gravitational constant(r) the mass density (mass per volume) of a volume element a
distancer from the center of the star, amd(r) is the integrated mass within a radiusThe latter reads

m(r) = 477/ p(r ) dr’!
0

which yields a differential equation between the total meas$the mass density

dm

o = 4mr2p(r).
In equilibrium, the pressur® balances the gravitational force
dP  Gm(r)
E - 72 p(’l"),

and usinglP/dp = (dp/dr)(dP/dp) we obtain

dp__(4P\ Gm
dr dp r2 P

Together Withcil—T = 4712 p(r) we have now two coupled first-order ordinary differentialiatipns which
determine the structure of the white dwarf given an equatiostate P(p). The total radius is given by
the conditionp(R) = 0. Similarly, the mass for = 0 is m = 0. The density at = 0 is given by the
central density,, a parameter you will have to play with as input parameter.

By integrating the last equation, we find the density proffithe star. The radiug is determined
by the point where the density distributiongs= 0. The mass is then given by = m(R). Since both
the total mass and the radidswill depend on the central densipy, a variation of this parameter will
allow us to study stars with different masses. However, leefe can proceed, we need the pressure for
a relativistic gas of electrons.

Equation of state for a white dwarf

We will treat the electrons as a relativistic gas of fermiati& = 0. From statistical physics we can then
obtain the particle density as

L k2dk ki
" / 7'('2/0 3m2’
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where kr is the Fermi momentum, here represented by the wave nukherThe wave number is
connected to the momentum Vig = pr/A. The energy density is given by

1 [kr
e=FE/V = —2/ k2dk+/ (ick)? + m2ct.
™ Jo

This expression is of the fornfiy?/y? + a2. Performing the integration we obtain
E/V = ngmec?aie(x),
where we have defined

e(x) = 3 <x(1 +222)V/1 4 22 — In(z + /1 + x2)> ,

8z3

with the variabler defined as
hkp

MeC
We can rewriter in terms of the particle density as well
]{73
=NV =_L&,
" / 32

so that

hkp  (nh3r2\'?
mec  \ m3c3 ’

where we defing,y = 3("“3)63 with m,, the electron mass. Using the constagtresults finally in

3n2(h)°
hkp ( n )1/ 3
T = =(— .
mecC nQ

Since the mass of the protons and neutrons are larger byax f@cétthan the mass of the electrons,,
we can approximate the total mass of the star by the masgylehgtie nucleons (protons and neutrons).
This mass density is given by

p= Mpnpa

with M,, being the mass of the proton anglthe particle density of the nucleons. The mass of the proton
and the neutron are almost equal and we have set them eqaallter particle density,, can be related
to the electron density, which is the quantity we can calculate. The relation is $mp

ny, =n/Ye,

whereY, is the number of electrons per nucleon. PtfFe we gety, = % = 0.464, since we need to
have as many electrons as protons in order to obtain a t@aelof zero. Inserting numerical values for
the electron mass we get

no = 5.89 x 10*%cm 3.

The mass density is now
p=Mmn/Ye,
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and with

< n >1/3 < p >1/3

xr = _ = o s
no Po

and inserting the numerical value for the proton mass wdrbta
. Mpno

e

Using the parametéer, we can then study stars with different compositions. Thg orput parameters
to your code are thep. andY..

Now we want the equation for the pressure, based on the edergpjty. Using the thermodynamical
relation

=9.79 x 10°Y, g cm 3.

Po

p_ 0B _ 0EOx
oV Oz OV’

we can find the pressure as a function of the mass densithereafter we can fin%‘;, which allows us

to determine the mass and the radius of the star.

The term
ox

v’
can be found using the fact thatx n'/3 « V=3, This results in

ox T

v 3V
Taking the derivative with respect towe obtain
9 4 de

P = gnomec x e

I : . . 1/3 ,
We want the derivative aP in terms of the mass density Usingx = (,%) , we obtain

dP  dPdx
dp  dxdp’
With
dP 1 dw4g—;
%:§n0m8< dz )’
and
dr 1/)3/3 1
dp  3pop?3  3poa?’
we find up )
MeC
d_p =Y. M, v(z),

where we defined

= e

This is the equation for the derivative of the pressure todsaluo find

do_ (4PY"Gm
dr dp 2 P

Note thatr and~(z) are dimensionless quantities.
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Dimensionless form of the differential equations

In the numerical treatment of the two differential equasiove need to rescale our equations in terms of
dimensionless guantities, since several of the involvetstzmts are either extremely large or very small.
Furthermore, the total mass is of the order of the mass ofuttheapproximatel\2 x 103°kg while the
mass of the electron &x 1073! kg.

We introduce therefore a dimensionless radius /Ry, a dimensionless densigy= p/po (recall
thatz® = p/po) and a dimensionless mass= m/M.

We determine below the constarnit) and Ry by requiring that the equations fdcgl and% have to

be dimensionless. We get then
dMym

TR~ AmRaT pop.
resulting in
dm 9 _
= 4m R pop /M.

If we want this equation to be dimensionless, we must require
47TR8/)0/M0 =1.

Correspondingly, we have

dpop B GMyM, m _
dRyT Yemec? ) R Pop

with Ry

Yomec? 1/2
= 76 € = . 2 1 8Ye .
Ry ( 1mp0G Mp> 7.72 x 10°Y.cm

in order to yield a dimensionless equation. This results in
My = 47 R3py = 5.67 x 1033Y%g.

The radius of the sun iR = 6.95 x 10'° cm and the mass of the sunig, = 1.99 x 1033 g.
Our final differential equationg and7m read

These are the equations you need to code.

a) Verify the steps in the above derivations. Write a progwdrith solves the two coupled differential

equations
dp ~ m7p
ar 72
and
dm o
—_— =7
d? p?

using the fourth order Runge-Kutta method by integratingvard from7 = 0. ChooseY, = 1
and calculate the mass and radius of the star by varying thteateensityp,. ranging from10~!
to 10%. Check the stability of your solutions by varying the raditdph. Discuss your results.
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b) Compute also the density profiles for the above input patara and calculate the total kinetic
energy and rest energy of the electrons given by

R
U= /0 47 <§> r2dr,

E/V = ngmec?z3e(z),

where we have defined

with
e(z) = 8—33 (m(l + 222 V1 + 22 —In(z + V1 + w2)> :
T

and the variable: defined as
hkp
Xr = .
MeC

Compute also the gravitational energy

_[feme), .
W = /0 4dmradr.

r

You need to make these equations dimensionless.

Try to discuss your results and trends through simple phi/sgasoning.

c) Scale the mass-radius relation you found in a) to the cam@esponding t8°Fe and'?C. Three
white dwarf stars, Sirius B, 40 Eri B and Stein 2051, have emsnd radii in units of solar
values determined from observations to €053 + 0.028M,0.0074 £+ 0.0006RRs), (0.48 +
0.02M,0.0124 £ 0.0005R ), and(0.72 £+ 0.08 M, 0.0115 + 0.0012R), respectively. Verify
that these values are consistent with the model you havdapemae Can you say something about
the compositions of these stars?

Project 13.3: Period doubling and chaos

The angular equation of motion of the pendulum is given by téeig equation and with no external
force it reads

ml@ + mgsin(f) =0 (13.108)
dtz g - bl .
with an angular velocity and acceleration given by
de
=[— 13.109
v=1—, (13.109)
and ,
d-0

We do however expect that the motion will gradually come temh due a viscous drag torque acting
on the pendulum. In the presence of the drag, the above equstcomes

d*0 de .
¥} + o + mgsin(0) = 0, (13.111)

ml
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wherev is now a positive constant parameterizing the viscosityhefrhedium in question. In order to
maintain the motion against viscosity, it is necessary tbsaine external driving force. We choose here
a periodic driving force. The last equation becomes then

d?0 do , .
el + v + mgsin(0) = Asin(wt), (13.112)

with A andw two constants representing the amplitude and the angelguéncy respectively. The latter
is called the driving frequency.

ml

a) Rewrite Eqs[[I3.111) and (13.112) as dimensionlessiegsa

b) Write then a code which solves EQ.{I31111) using the fearder Runge Kutta method. Perform
calculations for at least ten periods with = 100, N = 1000 and N = 10000 mesh points and
values ofy = 1, v = 5andv = 10. Setl = 1.0 m, g = 1 m/s andm = 1 kg. Choose as initial
conditionsf(0) = 0.2 (radians) and(0) = 0 (radians/s). Make plots df (in radians) as function
of time and phase space plots bfsersus the velocity. Check the stability of your results as
functions of time and number of mesh points. Which case spomeds to damped, underdamped
and overdamped oscillatory motion? Comment your results.

c) Now we switch to Eq.[{I3.112) for the rest of the project.dAeh external driving force and set
l=g=1,m=1,v=1/2andw = 2/3. Choose as initial condition®0) = 0.2 andv(0) = 0
andA = 0.5 andA = 1.2. Make plots ofd (in radians) as function of time for at least 300 periods
and phase space plots @¥ersus the velocity. Choose an appropriate time step. Comment and
explain the results for the different values.4f

d) Keep now the constants from the previous exercise fixedd&uhowA = 1.35, A = 1.44 and
A = 1.465. Plot# (in radians) as function of time for at least 300 periods liese values afl and
comment your results.

e) We want to analyse further these results by making phassegpots off versus the velocity
using only the points where we haveé = 2n7 wheren is an integer. These are normally called
the drive periods. This is an example of what is called a Romesection and is a very useful way
to plot and analyze the behavior of a dynamical system. Camygaair results.
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Chapter 14

Two point boundary value problems

14.1 Introduction

When diffential equations are required to satisfy boundaogditions at more than one value of the
independent variable, the resulting problem is callédandary value problenThe most common case
by far is when boundary conditions are supposed to be satiafiBvo points - usually the starting and
ending values of the integration. The Schroédinger equésiam important example of such a case. Here
the eigenfunctions are typically restricted to be finitergwdere (in particular at = 0) and for bound
states the functions must go to zero at infinity.

In the previous chapter we discussed the solution of difféseequations determined by conditions
imposed at one point only, the so-called initial conditiblere we move on to differential equations where
the solution is required to satisfy conditions at more thaa point. Typically these are the endpoints
of the interval under consideration. When discussing difidal equations with boundary conditions,
there are three main groups of numerical methods, shootethads, finite difference and finite element
methods. In this chapter we focus on the so-called shootithaad, whereas chaptérd 12 15 focus on
finite difference methods. Chapfer 12 solves the finite difiee problem as an eigenvalue problem for
a one variable differential equation while in chajifgr 15 waspnt the simplest finite difference methods
for solving partial differential equations with more thameovariable. The finite element method is not
discussed in this text, see for example Ref. [75] for a comatparial presentation of the finite element
method.

In the discussion here we will limit ourselves to the simplesssible case, that of a linear second-
order differential equation whose solution is specifiedaat distinct points, for more complicated sys-
tems and equations see for example Refs. [76, 77]. The redabedd also note that the techniques
discussed in this chapter are restricted to ordinary diffeal equations only, while finite difference and
finite element methods can also be applied to boundary vahldgms for partial differential equations.
The discussion in this chapter and chapfdr 12 serves tmerafoan intermediate step and model to the
chapter on partial differential equations. Partial défetial equations involve both boundary conditions
and differential equations with functions depending onertban one variable.

In this chapter we will discuss in particular the solutionttud one-particle Schédinger equation and
apply the method to hydrogen-atom like problems. We stantelver with a familiar problem from me-
chanics, namely that of a tightly stretched and flexiblengtar rope, fixed at the endpoints. This problem
has an analytic solution which allows us to define our nurakgtgorithms based on the shooting meth-
ods.
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14.2 Shooting methods

In many physics applications we encounter differentialagigus like

d?y

) +k(x)y = F(z); a <z <D, (14.1)

with boundary conditions
y(a) = a, y(b) = B. (14.2)

We can interpref'(x) as an inhomogenous driving force whilér) is a real function. If it is positive the
solutionsy(z) will be oscillatory functions, and if negative they are empaotionally growing or decaying
functions.

To solve this equation we could start with for example the gguKutta method or various improve-
ments to Euler's method, as discussed in the previous ahapken we would need to transform this
equation to a set of coupled first equations. We could howstaet with the discretized version for the
second derivative. We discretise our equation and intedustep lengtth = (b — a)/N, with N being
the number of equally spaced mesh points. Our discretisszhdalerivative reads at a step= a + ih
withi =0,1,...

X R T
yl{/ _ Yi+1 + %2 1 Yi + O(hz),
h
leading to a discretised differential equation
. 4 — 2 .
Yi+1 + Yi—1 Yi + O(hz) + kzyz _ E (143)

h2

Recall that the fourth-order Runge-Kutta method has a lewal of O(h?).
Since we want to integrate our equation frem= a to x = b, we rewrite it as

Yir1 & —Yio1 +yi (2 — Bk + hPF) . (14.4)
Starting ati = 1 we have after one step
yo & —yo + y1 (2 — hPky + h2FY) .

Irrespective of method to approximate the second deriwathvis equation uncovers our first problem.
While yo = y(a) = 0, our function valuey; is unknown, unless we have an analytic expression (o)
atz = 0. Knowingy; is equivalent to knowing’ atxz = 0 since the first derivative is given by

%z%%fﬁ. (14.5)

This means that we havg ~ yo + hy.

14.2.1 Improved approximation to the second derivativanBhov's method

Before we proceed, we mention how to improve the local trtionarror fromO(h?) to O(h°) without
too many additional function evaluations.

Our equation is a second order differential equation witlaoy first order derivatives. Let us also for
the sake of simplicity assume thB{x) = 0. Numerov’'s method is designed to solve such an equation
numerically, achieving a local truncation er@th®).
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We start with the Taylor expansion of the desired solution

h? B3 Bt
y(w+h) = y(@) + by (@) + 579 (@) + 579 (@) + o)+

We have thay™ (z) is a shorthand notation for the nth derivatiffay/d=". Because the correspond-
ing Taylor expansion af(x—h) has odd powers df appearing with negative signs, all odd powers cancel
when we add)(x + h) andy(x — h)

4

y(z +h) +y(z — h) = 2y(z) + 2y () + —y@(z) + O(RS).

Ey
We obtain ) o 2
Y (2) = y(z + )er(hw? ) —2y(z) ﬁy(4)($) + oY),
To eliminate the fourth-derivative term we apply the operat + %dd—;) on the differential equation
h? h? d?
¥ (@) + 5y V@) + F@)y(a) + G (K@)y() ~ 0.

In this expression the(*) terms cancel. To treat the generaflependence df(x) we approximate
the second derivative ¢k?(z)y(x) by

P (ky(@) (K@ +hy(e+h) + B @)y(@) + (@ = by = h) + k2 (2)y(x))
dx? h2 ’

We replace theg(x + h) with the shorthand;; (and similarly for the other variables) and obtain a
final discretised algorithm for obtaining.

2(1— 2h%k}) yi — (1+ 5h%K2 ) yia
Yirl = ( 12 ) h2( 5 12 1) + O(h6),
1+ ﬁk’ﬂl

wherex; = ih, k; = k(x; = ih) andy; = y(z; = ih) etc.
It is easy to add the termi; since we need only to take the second derivative. The finakighgn
reads then

2(1— 3h?ky) yi — (1L+ 15h°ke) yior b2

Yi+1 = 12 19
1+ 5k, 12

(Fip1+ Fi1 — 2F;) + O(h6).

Starting ati = 1 results in, using the boundary conditign = 0,

2(1 — 3h2kiy1) — (1 + LR%k h? ‘
(1= 5h°kiy) _ (1 + 51 koyo) + — (Fy + Fy — 2Fy) + O(h®).
1+ ke 12

Y2 =

This equation carries a local truncation error proportidoa®. This is an order better than the fourth-
order Runge-Kutta method which has a local error propoation 2°. The global for the fourth-order
Runge-Kutta is proportional th* while Numerov’s method has an error proportionahto With few
additional function evulations, we have achieved an irsgdaccuracy.

But even with an improved accuracy we end up with one unknawihe right hand side, namely .
The value ofy; can again be determined from the derivativgigtor by a good guess on its value. We
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need therefore an additional constraint on our set of egustefore we start. We could then add to the
boundary conditions

y(a) = o, y(b) = B,
the requirement/(a) = ¢, whered could be an arbitrary constant. In quantum mechanical egipdins

with homogenous differential equations the normalizatibrthe solution is normally not known. The
choice of the constardt can therefore reflect specific symmetry requirements ofdhsien.

14.2.2 Wave equation with constant acceleration

We start with a well-known problem from mechanics, that oftariing string or rope fixed at both ends.
We could think of this as an idealization of a jumping rope ask questions about its shape as it spins.
Obviously, in deriving the equations we will make severauasptions in order to obtain an analytic
solution. However, the general differential equationétde to, with added complications not allowing an
analytic solution, can be solved numerically. We discussstiboting methods as one possible numerical
approach in the next section.

Our aim is to arrive at a differential equation which takes fibllowing form

y" + My =0; y(0) =0, y(L) =0,

wherelL is the length of the string antla constant or function of the variahieto be defined below.

We derive an equation fgy(x) using Newton’s second law = ma acting on a piece of the string
with masspAz, wherep is the mass density per unit length afdd is small displacement in the interval
x,x + Ax. The changeé\z is our step length.

We assume that the only force acting on this string elemeatasnstant tensiofi’ acting on both
ends. The net vertical force in the positiyalirection is

F =Tsin(0 + AQ) — Tsin(0) = T'sin(0;41) — T'sin(6;).
For the angles we employ a finite difference approximation

sin(fi+1) = yl%;yl +O(A2?).
Using Newton’s second law' = ma, with m = pAx = ph and a constant angular velocitywhich
relates to the acceleration as= —w?y we arrive at
Yir1 + Yi—1 — 2y;
Ax?
and taking the limitAxz — 0 we can rewrite the last equation as

T ~ —pwy,

Ty + pw’y = 0,

and defining\ = pw?/T and imposing the condition that the ends of the string arel fixe arrive at our
final second-order differential equation with boundaryditans

y" 4+ Xy =0; y(0) =0, y(L) =0. (14.6)

The reader should note that we have assumed a constantratioeleReplacing the constant acceleration
with the second derivative af as function of both position and time, we arrive at the welbkn wave
equation fory(x,t) in 1 + 1 dimension, namely

0%y B 0%y

o2 T ox?’
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We discuss the solution of this equation in chapfér 15.
If A > 0 this equation has a solution of the form

y(x) = Acos(ax) + Bsin(ax), (14.7)

and imposing the boundary conditions results in an infiregugnce of solutions of the form

yn(x) = sin(n—zm), n=123,... (14.8)
with eigenvalues
’I’L27'1'2
)\n:?,n:1,2,3,... (149)
For A = 0 we have
y(z) = Az + B, (14.10)

and due to the boundary conditions we hgye) = 0, the trivial solution, which is not an eigenvalue of
the problem. The classical problem has no negative eigessaliz we cannot find a solution far< 0.
The trivial solution means that the string remains in itsiepium position with no deflection.

If we relate the constant angular speetb the eigenvalues,, we have

AT T
Wy, = ML =123, (14.11)
p L\ p

resulting in a series of discretised critical speeds of lrgotation. Only at these critical speeds can the
string change from its equilibrium position.

There is one important observation to made here, sincedaavill discuss Schrédinger’s equation.
We observe that the eigenvalues and solutions exist onlgdrgin discretised values,, y,,(z). This
is a consequence of the fact that we have imposed boundagytioois. Thus, the boundary conditions,
which are a consequence of the physical case we wish to explie@ld only a set of possible solutions.
In quantum physics, we would say that the eigenvalygare quantized, which is just another word for
discretised eigenvalues.

We have then an analytic solution

yn(x) = sin(%),

from
2,2

n-m
727y =0 9(0) =0, y(1) =0.

Choosingn = 4 andL = 1, we havey(z) = sin(4wx) as our solution. The derivative is obviously
4mcos(mx). We can start to integrate our equation using the exact ssjore for the derivative aj;.
This yields

y// +

Y2 = —Yo + Y1 (2 — h%ky + h) = 4hmcos(4mxg) (2 — 16h27r2) =4r (2 — 16h27r2) .

If we split our intervalz € [0, 1] into 10 equally spaced points we arrive at the results displan Table
[IZ7. We note that the error at the endpoint is much larger tiva chosen mathematical approximation
O(h?), resulting in an error of approximately01. We would have expected a smaller error. We can
obviously get better precision by increasing the numbentdgration points, but it would not cure the
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Table 14.1: Integrated and exact solution of the diffeemquationy” + \y = 0 with boundary condi-

tionsy(0) = 0 andy(1) = 0.

x; = ith  sin(mx;) y(x;)
0.000000E+00 0.000000E+00 0.000000E+00
0.100000E+00 0.951057E+00 0.125664E+01
0.200000E+00 0.587785E+00 0.528872E+00
0.300000E+00 -.587785E+00 -.103405E+01
0.400000E+00 -.951056E+00 -.964068E+00

0.500000E+00
0.600000E+0Q0
0.700000E+00
0.800000E+Q0
0.900000E+00
0.100000E+01

0.268472E-06
0.951057E+00
0.587785E+00
-.587786E+00
-.951056E+00
0.000000E+00

0.628314E+00
0.122850E+01
-.111283E+00
-.127534E+01
-.425460E+00
0.109628E+01

increasing discrepancy we see towards the endpoints. With: 100, we have0.829944F — 02 at
x = 1.0, while the error is~ 10~4 with 100 integration points.

It is also important to notice that in general we do not knoe ¢figenvalue and the eigenfunctions,
except some of their limiting behaviors close to the bouiledar One method for searching for these
eigenvalues is to set up an iterative process. We guessl @igenvalue and generate a solution by
integrating the differential equation as an initial valuelgem, as we did above except that we have
here the exact solution. If the resulting solution does atsfy the boundary conditions, we change the
trial eigenvalue and integrate again. We repeat this psogesl a trial eigenvalue satisfies the boundary
conditions to within a chosen numerical error. This appnogovhat constitutes the so-called shooting
method.

Upon integrating to our other boundary, = 1 in the above example, we obtain normally a non-
vanishing value fog(1), since the trial eigenvalue is normally not the correct dive.can then readjust
the guess for the eigenvalue and integrate and repeat thieg® till we obtain a value fay(1) which
agrees to within the precision we have chosen. As we will shiothe next section, this results in a
root-finding problem, which can be solved with for example tiisection or Newton methods discussed
in chapteb.

The example we studied here hides however an importantgroblOur two solutions are rather
similar, they are either represented by:ia(x) form or acos(z) solution. This means that the solutions
do not differ dramatically in behavior at the boundariesrtik@rmore, the wave function is zero beyond
the boundaries. For a quantum mechanical system, we wotldeggame solutions if a particle is trapped
in an infinitely high potential well. Then the wave functioanmot exist outside the potential. However,
for a finite potential well, there is always a quantum mecterprobability that the particle can be found
outside the classical region. The classical region defihest-called turning points, viz points from
where a classical solution cannot exist. These turningtpaire useful when we want to solve quantum
mechanical problems.

Let us however perform our brute force integration for apottiifferential equation as well, namely
that of the quantum mechanical harmonic oscillator.

The situation worsens dramatically now. We have then a amettsional differential equation of the
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Table 14.2: Integrated and exact solution of the diffeadrafuation—y” + z%y = 2ey with boundary

conditionsy(—oo) = 0 andy(co) = 0.

exp (—2°/2)

y(z:)

-.100000E+02
-.800000E+01
-.600000E+01
-.400000E+01
-.200000E+01
0.000000E-00
0.200000E+01
0.400000E+01
0.600000E+01
0.800000E+01
0.900000E+01

0.192875E-21
0.126642E-13
0.152300E-07
0.335462E-03
0.135335E+00
0.100000E+01
0.135335E+00
0.335463E-03
0.152300E-07
0.126642E-13
0.257677E-17

0.192875E-21
0.137620E-13
0.157352E-07
0.331824E-03
0.128549E+00
0.912665E+00
0.118573E+00
-.165045E-01
-.250865E+03
-.231385E+09
-.101904E+13

type, see Eq[{II.21), (all physical costants are set equald, thatisn = c=h =k = 1)

e L1 <z<
———try=¢cy; —0o<xr <0
2dz2 " 2 Yy=ey; )
with boundary conditiong(—oc) = y(c0) = 0. For the lowest lying state, the eigenvalue is 1/2 and

the eigenfunction is

(14.12)

y(z) = <%> Y o (—a2/2).

The reader should observe that this solution is imposed é¥ypdundary conditions, which again follow
from the quantum mechanical properties we require for thetisa. We repeat the integration exer-
cise which we did for the previous example, starting fromrgdanegative number:( = —10, which
gives a value for the eigenfunction close to zero) and chtlosdowest energy and its corresponding
eigenfunction. We obtain fay,

yo = —yo +y1 (2 + h%2? — h?),

and using the exact eigenfunction we can replgcwith the derivative atry. We use nowN = 1000
and integrate our equation from = —10 to zy = 10. The results are shown in Talj)le"14.2 for selected
values ofz;. In the beginning of our integrational interval, we obtaim iategrated quantity which
resembles the analytic solution, but then our integratdatiea simply explodes and diverges. What is
happening? We started with the exact solution for both thergialue and the eigenfunction!

The problem is due to the fact that our differential equatiaa two possible solution for eigenvalues
which are very close{1/2 and+1/2), either

y(z) ~ exp (~2%/2),
or

y(x) ~ exp (z%/2).
The boundary conditions, imposed by our physics requirgsnenle out the last possibility. However,
our algorithm, which is nothing but an approximation to tlféedential equation we have chosen, picks

up democratically both solutions. Thus, although we stitti the correct solution, when integrating we
pick up the undesired solution. In the next subsections weuds how to cure this problem.
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14.2.3 Schrodinger equation for spherical potentials

We discuss the numerical solution of the Schrodinger egudtir the case of a particle with mass
moving in a spherical symmetric potential.
The initial eigenvalue equation reads

Hy(7) = (T + V)(F) = Ey(7). (14.13)
In detall this gives
(—%W + vm) U(F) = Ey(F). (14.14)
The eigenfunction in spherical coordinates takes the form
¥(7) = R(r)Y;"(0, ¢), (14.15)

and the radial parR(r) is a solution to

——r
r2dr  dr r2

R (1d ,d I(l+1)
2m

> R(r)+V(r)R(r) = ER(r). (14.16)

Then we substitutd&?(r) = (1/r)u(r) and obtain

2 72 2
= g gezutr) 4 (Vo) + L i) = ute) (14.17)

We introduce a dimensionless variable= (1/a)r wherea is a constant with dimension length and get

W d (1+1) B2
~omaz (V(p) LU > )2ma2> u(p) = Eulp). (14.18)

In our case we are interested in attractive potentials
Vi(r)=-Vof(r), (14.19)

wherel;, > 0 and analyze bound states whéfe< 0. The final equation can be written as

2
Tulp) + K(p)u(p) =0, (14.20)
where
B 1 z<z+1)_6>
k(p) = v(f(p) o
2ma?Vy
/y = h2
e = |V£| (14.21)
0
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Schrédinger equation for a spherical box potential

Let us now specify the spherical symmetric potential to

1 r<a
flr)= { 0 for . ; u (14.22)
and chooser = a. Then
1—€—ll(ltl) r<a
k(p) =~ { o _Z@ for ' q (14.23)
)

The eigenfunctions in Eq.{I4114) are subject to conditiwh&h limit the possible solutions. Of impor-
tance for the present example is th@f) must be finite everywhere anfd|u(7)|?dr must be finite. The

last condition means thatR(r) — 0 for r — oo. These conditions imply that(r) must be finite at

r = 0andu(r) — 0 for r — oc.

Analysis of u(p) atp =0

For smallp Eq. (I4.20) reduces to

d? I(1+1)
—u J—

u(p) =0, (14.24)

with solutionsu(p) = p'*! oru(p) = p~!. Since the final solution must be finite everywhere we get the
condition for our numerical solution

u(p) = p!tt  for smallp (14.25)

Analysis of u(p) for p — oo
For largep Eq. (IZ2D) reduces to

d2

d—pgu(p) —yeu(p) =0 >0, (14.26)

with solutionsu(p) = exp(+vep) and the condition for large means that our numerical solution must
satisfy
u(p) = e 7" forlargep (14.27)

As for the harmonic oscillator, we have two solutions at thariaries which are very different and
can easily lead to totally worng and even diverging solgibnve just integrate from one endpoint to the
other. In the next section we discuss how to solve such pmohle

14.3 Numerical procedure, shooting and matching

The eigenvalue problem in Eq._{14120) can be solved by thealied shooting methods. In order to
find a bound state we start integrating, with a trial negatateie for the energy, from small values of
the variablep, usually zero, and up to some large valuepofAs long as the potential is significantly
different from zero the function oscillates. Outside thegea of the potential the function will approach
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an exponential form. If we have chosen a correct eigenvdlaefunction decreases exponentially as
u(p) = e~ 7?. However, due to numerical inaccuracy the solution willtegm small admixtures of the
undesireable exponential growing functiofp) = e*t7“*. The final solution will then become unstable.
Therefore, it is better to generate two solutions, with caeting from small values of and integrate
outwards to some matching point= p,,,. We call that function:<(p). The next solution.” (p) is then
obtained by integrating from some large vajuehere the potential is of no importance, and inwards to
the same matching poipt,. Due to the quantum mechanical requirements the logartiderivative at
the matching poinp,,, should be well defined. We obtain the following condition

wHus(p)  qbu”(p)
u<(p) — uw(p)

We can modify this expression by normalizing the function.<(p,,) = Cu”u~(p.,). Then Eq.[TZ28)
becomes

at p=pm- (14.28)

d < _ d > —

2" (p) = " (p) at p=pnm (14.29)
For an arbitary value of the eigenvalue Hq. (1#.28) will netsatisfied. Thus the numerical procedure
will be to iterate for different eigenvalues until EG.{19)2s satisfied.

We can calculate the first order derivatives by

d - u=(pm) — u=(pm — h)
—u~(pm) ~

dp h

d - ~ u” (pm) — u” (pm + h)

Thus the criterium for a proper eigenfunction will be
f=u (Pm +h) — u<(pm —h) (14.31)

14.3.1 Algorithm for solving Schrédinger’s equation

Here we outline the solution of Schrédinger’s equation asmarnon differential equation but with bound-
ary conditions. The method combines shooting and matcfiihg.shooting part involves a guess on the
exact eigenvalue. This trial value is then combined withaadard method for root searching, e.g., the
secant or bisection methods discussed in chépter 5.

The algorithm could then take the following form

— Initialise the problem by choosing minimum and maximum ealéor the energyl,,in and Eyax,
the maximum number of iterationsax_iter and the desired numerical precision.

— Search then for the roots of the functiprwhere the root(s) is(are) in the intenvale [Ein, Frax|
using for example the bisection method. Newton’s methas discussed in chapf@r 5 requires an
analytic expression fof. A possible approach is to use the standard bisection métindacaliz-
ing the eigenvalue and then use the secant method to obtaittes bstimate.

The pseudocode for such an approach can be written as
do {
i ++;
e = (e_min+e_max)/2.; s bisection x/
if ( f(e)xf(e_max) > 0 ) {
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14.3 — Numerical procedure, shooting and matching

e _max = e; k change search intervak/
}
else {

e _min = e;

} while ( (fabs(f(e) > convergence_test)! (i <= max_iterations))

The use of a root-searching method forms the shooting péneadlgorithm. We have however not
yet specified the matching part.

— The matching part is given by the functigiie) which receives as argument the present valug.of
This function forms the core of the method and is based ontagriation of Schrdodinger’s equation
from p = 0 andp = oo. If our choice ofE satisfies Eq[{14.31) we have a solution. The matching
code is given below. To choose the matching point it is colrério start integrating inwards, that
is from the large--values. When the wave function turns, we use that point tmel¢he matching
point. The reason for this is that we start integrating fromgion which corresponds normally to
classically forbidden ones, and integrating into sucharegjiieads normally to inaccurate solutions
and the pick up of the undesired solutions. The consequeribati the solution diverges. We can
therefore define as a matching point the classical turnirigt @md start to integrate from large
r-values. In the absence of such a point, we can use the poarewte wave function turns.

The functionf (E) above receives as input a guess for the energy. In the vemsamented below,
we use the standard three-point formula for the secondate®y namely

"o Jn—2fo+ f-n
0T Ry

We leave it as an exercise to the reader to implement Nurmreabyorithm.

/1
/!l The function
/1 f()

/Il calculates the wavefunction at fixed energy eigenvalue.
/1

void f(double step, int max_step ,double energy, double xw, double xwf)
{
int loop, loop_1,match;
double const sqrt_pi = 1.77245385091;
double fac, wwf, norm;
// adding the energy guess$o the array containing the potential
for(loop = 0; loop <= max_step; loop ++) {
w[loop] = (w[loop] — energy) x step x step + 2;
}
/I integrating from large fvalues
wf[max_step] = 0.0;
wf[max_step— 1] = 0.5 x step x step;
I/l search for matching point
for(loop = max_step— 2; loop > 0; loop——) {
wf[loop] = wf[loop + 1] % w[loop + 1] — wf[loop + 2];
if (wf[loop] <= wf[loop + 1]) break;

369



Two point boundary value problems

match = loop + 1;
wwf = wf[match];
/Il start integrating upto matching point from r =0
wf[0] = 0.0;
wf[1l] = 0.5 % step x step;

for(loop = 2; loop <= match; loop++) {
wf[loop] = wf[loop —1] x w[loop — 1] — wf[loop — 2];
if (fabs(wf[loop]) > INFINITY) {
for(loop_1 = 0; loop_1 <= loop; loop_1++) {
wf[loop_1] /= INFINITY;
}
}
}
/I now implement the test of Eq. (10.25)

return fabs (wf[match-1]—-wf[match+1]);
} // End: funtion plot()

The approach we have described here suffers from the facthanatching point is not properly
defined. Using a Green'’s function approach we can easilyrdéte the matching point as the midpoint
of the integration interval and compute safely the solutibhis is the topic of the next section.

14.4 Green’s function approach

A slightly different approach, which however still keep® ttnatching procedure discussed above, is
based on the computation of the Green’s function and ittioel#o the solution of a differential equation
with boundary values.

Consider the differential equation

—u(@) = f(z),  we(0,1),  w(0)=u(l)=0, (14.32)
and using the fundamental theorem of calculus, there is staotz; such that
u@) e+ [ @y
0

and a constant,
Yy

U (y) = o +/0 u”(2)dz.

This is true for any twice continuously differentiable ftioo «
If u satisfies the above differential equation we have then

ww:@—fkmw.

which inserted into the equation forgives
x Yy
u(x) = ¢ + cow — / </ f(z)dz> dy,
0 0

ﬂw:AW@w,

and defining
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and performing an integration by parts we obtain
x x Yy x
/ F(y)dy = / (/ f(Z)dz> dy = / (z —y)f(y)dy.
0 0 0 0

u(e) = &1 + ey — /0 (@~ y)f(y)dy.

This gives us

The boundary condition(0) = 0 yieldsc; = 0 andu(1) = 0, resulting in

1
¢ = /0 (1— ) f(y)dy,

meaning that we can write the solution as

1 x
u(z) = w/o (1-y)f(y)dy — /O (z —y)f(y)dy

The solution to our differential equation can be repregkiniea compact way using the so-called
Green'’s functions, which are also solutions to our difféisdrequation withf (z) = 0. If we then define
the Green'’s function as

_[y(l—2) ifO0<y<uz
G(a:,y)—{ x(l—y) if z<y<1

we can write the solution as .
ua) = [ Glen s
The Green’s function, see for example Refs. [77, 78] is

1. continuous

n

it is symmetric in the sense th@{(x, y) = G(y, x)

it has the propertie§(0,y) = G(1,y) = G(z,0) = G(z,1) =0

w0

it is a piecewise linear function affor fixed y and vice versaG’ is discontinuos af = .
5. G(z,y) > 0forall z,y € [0,1]

6. itis the solution of the differential equation

d2

@G(J«",y) = —0(z —y).

The Green’s function can now be used to define the soluticoréeind after a specific matching point in
the domain.
The Green'’s function satisfies the homogeneous equatign-fox: and its derivative is discontinuous
atz = y. We can see this if we integrate the differential equation
d2
@G(%y) = —6(z —y)
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fromz =y — etox = y + ¢, with € as an infinitesmally small number. We obtain then

e aGa

@ lemve T g e = 1

The problem is obvioulsy to find'.

We can obtain this by considering two solutions of the homoge equation. We choose a general
domainz € [a, b] with a boundary condition on the general solutigia) = u(b) = 0.

One solution is obtained by integrating franio b (calledu.) and one by integrating inward from
to a, labelledu-..

Using the continuity requirement on the function and itSvddive we can compute the Wronskian
[77, 78]

du~ du<

W=pi< g

and using

G, _dG
d$ r=y-+e€ d$ r=y—€ — -

and one can then show that the Green’s function reads

G(z,y) = uc(rv<)us (o), (14.33)

wherex . is defined forr = y — e andxz~ = y + e. Using the definition of the Green'’s function in
Eqg. (I4338) we can now solve Eq.(14.32) foe [a, b] using

b

u(x) = u”(x) / us(z')f(z')dz' + u=(z) / w” (') f (') dr! (14.34)

a T

The algorithm for solving EqI{IZ4.B82) proceed now as followsur task is to choose a matching
point, say the midpoint, and then compute the Greens’ fandifter you have used Numerov’s algo to
find u (inward and outward integration for all points). Findntegrating with the Green'’s function.

— Compute the solution of the homogeneous part of Eq.{14.8RjguNumerov’s method. You
should then have both the inward and the outward solutions.

— Compute the Wronskian at the matching point using

du _u(x+h)—u(z+h)
dx ~ 2h ’

for the first derivative and choose the matching point as tltpaint. You should try the stability
of the solution by choosing other matching points as well.

— Compute then the outward integral of the Green’s functigaragch, including the inhomogeneous
term. For the integration one can employ for example Simpgoife discussed in chapter 7.

— Compute thereafter the inward integral of the Green’s foncapproach. Adding these two inte-
grals gives the resulting wave function of Hq. (14.34).

An example of a code which performs all these steps is lisézd h
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void wfn(Array<double,2> &k, Array<double,2> &ubasis, Array<ouble,1> &r,
Array<double,2> &F, Array<double,1> &uin, Array<double,1> &uout)
{

int loop, loop_1, midpoint, j;
double norm, wronskian, sum, term;

ubasis=0;uin=0;uout=0;

/I Compute inwards homogenous solution
for(j=0;j<mat_size ;j++){

uin (max_step) = 0.0;
uin (max_step-1) = 1.0E-10;

for(loop = max_step-2; loop >= 0; loop——) {
uin(loop) = (2.0«(1.0-5.0«k(loop+1,j)/12.0} uin(loop+1) (1.0+k(loop+2,
j)/12.0)*x uin(loop+2))/(1.0+k(loop,j)/12.0);
}

/I Compute outwards homogenous solution

uout (0) 0.0;
uout (1) 1.0E-10;

for(loop = 2; loop <= max_step; loop++) {
uout(loop) = (2.&(1.0-5.0«xk(loop—1,j)/12.0)x uout(loop—1)> (1.0+k(loop
—2,j)/112.0)xuout(loop—2))/(1.0+k(loop,j)/12.0);
}

/I Compute Wronskian at matching migoint

midpoint = (max_step)/2;

/I first part of Wronskian

wronskian = (uin(midpoint+13uin(midpoint—1))x uout(midpoint) /(2 step);
/Il second part

wronskian —= (uout(midpoint+1}uout(midpoint—-1))x uin(midpoint)/(2«step);

/Il Outward integral of Greensfunction

sum = 0.0;

for(loop = 0; loop <= max_step; loop++) {
term = uout(loop¥F(loop,j);
sum += term;
ubasis (loop,j) = uin(loopjsumkstep;

}
/I Inward integral of Greensfunction
sum = 0.0;

for(loop = max_step; loop >= 0; loop-) {
term = uin(loop kxF(loop,j);
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sum += term;
ubasis (loop,j) = (ubasis(loop,j)+uout(loopgum«step)/wronskian;

}

/I Compute the norm

for(loop = 0, norm = 0.0; loop <= max_step; loop++) {
norm += ubasis(loop,jjubasis(loop,j)* step;//wf[loop] x step ;//fabs (wf
[loop] * step);//wf[loop}k wf[loop] x step;

}

if (fabs(norm) < 1.0e15) {
printf ("\n\nError in norm in function wfn(): ");
[lexit(1);

}

norm = 1./sqrt(norm); //
for(loop = 0; loop <= max_step; loop++) {

ubasis (loop,j)*= norm;

}

} // End: funtion wfn()

14.5 Projects and exercises

Exercise 14.1: Solution of Poisson’s equation with the Gi®&unction method

In this project we will solve the one-dimensional Poisssquation

—u"(x) = f(x), 2€(0,1), u(0)=u(l)=0.

with the inhomogeneous given byz) = 100e~19%. This equation hag(z) = 1 — (1 — e~ %)z — =107

as analytic solution.

Write a code which solves the above differential equationguslumerov’s algorithm and the Green'’s
function method. Can you find an analytic expression for thee@'s function?

Compare these results with those obtained by solving theeatliferential equation as a set of linear
equations, as done in chapiér 4. Which method would you rrefe

Project 14.1: Solution of Schro dinger’s equation

We are going to study the solution of the Schrédinger eqndtioa system with a neutron and a proton
(the deuteron) for a simple box potential. This potentidl later be replaced with a realistic one fitted
to experimental phase shifts.
We begin our discussion of the Schroédinger equation witmtheron-proton (deuteron) system with
a box potentialV’(r). We define the radial part of the wave functi®{r) and introduce the definition
u(r) = rR(R) The radial part of the SE for two particles in their centertdss system and with orbital
momentum = 0 is then
n? d*u(r)
C2m dr?

+ V(r)u(r) = Eu(r), (14.35)
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with
MpMy,

bl
mp"‘mn

wherem,, andm,, are the masses of the proton and neutron, respectively. @/barem = 938 MeV.
Our potential is defined as

0 r>a
Vir)=¢ -V 0<r<a , (14.37)
00 r<0
displayed in FidTZ]1.
V(x)
0 a

W

Figure 14.1: Example of a finite box potential with vala&j in 0 < = < a, infinitely large forz < 0
and zero else.

Bound states correspond to negative endrggnd scattering states are given by positive energies.
The SE takes the form (without specifying the signkf

d*u(r)  m

52 + ) Vo+E)u(r)=0 r<a, (14.38)
and )
d“u(r m
72 + ﬁEu(T) =0 r>a. (14.39)
a) We are now going to search for eventual bound states,H.e<, 0. The deuteron has only one
bound state at energy = —2.223 MeV. Discuss the boundary conditions on the wave function

and use these to show that the solution to the SE is
u(r) = Asin(kr) r<a, (14.40)
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b)

d)

376

and
u(r) = Bexp (—0r) r > a, (14.41)

whereA and B are constants. We have also defined

k= /m(Vo — |E|)/h, (14.42)

and
B =+/m|E|/h. (14.43)

Show then, using the continuity requirement on the wavetfandhat atr = a you obtain the
transcendental equation

kcot(ka) = —p3. (14.44)

Insert values of, = 60 MeV anda = 1.45 fm (1 fm = 10~ m) and make a plot of Eq{14}4)
as function of energy in order to find eventual eigenvalues. See if these valuesdt iasa bound
state forE.

When you have localized on your plot the point(s) where E€42) is satisfied, obtain a numerical
value for E using for example Newton-Raphson’s method or similar nethsee chaptél 5. To
use these functions you need to provide the functient(ka) + 3 and its derivative as function of
E.

What is smallest possible value Bf which gives one bound state only?

Write a program which implements the Green’s functionhmdtusing Numerov's method for this
potential and find the lowest eigenvalue for the caseWthaupports only one bound state. Use the
results from b) to guide your choice of trial eigenvaluesot Bhe wave function and discuss your
results.

We turn now to a fitted interaction which reproduces the-lgwg phase shifts for scattering be-
tween a proton and neutron. The parametrized version optiential fits the experimental phase-
shifts. Itis given by

e—ox —bx —cx

e e
+V + Ve

T T

with z = pr, p = 0.7 fm~! (the inverse of the pion mass), = —10.463 MeV anda = 1,
V, = —1650.6 MeV andb = 4 andV,. = 6484.3 MeV andc = 7. Replace the box potential from
point ¢) and find the wave function and possible eigenvaloethis potential as well. Discuss your
results.

Vir)=1V,

(14.45)
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al differential equations, finite difference
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Chapter 15

Partial differential equations

15.1 Introduction

In the Natural Sciences we often encounter problems withynaariables constrained by boundary con-
ditions and initial values. Many of these problems can beetied as partial differential equations. One
case which arises in many situations is the so-called wawatem whose one-dimensional form reads

P
ox2 T o2’

whereA is a constant. The solutiandepends on both spatial and temporal variablesuviz.u(x, t). In

two dimension we have = u(z,y,t). We will, unless otherwise stated, simply usé our discussion
below. Familiar situations which this equation can modelwwaves on a string, pressure waves, waves
on the surface of a fjord or a lake, electromagnetic wavessandd waves to mention a few. For e.g.,
electromagnetic waves we have the consthart ¢?, with ¢ the speed of light. It is rather straightforward
to extend this equation to two or three dimension. In two disiens we have

(15.1)

Pu d%u 0%u
—+—=A— 15.2
022 To2 " Yo (152)

In ChapteEP we saw another case of a partial differentiahtiogn widely used in the Natural Sciences,
namely the diffusion equation whose one-dimensional garsie derived from a Markovian random
walk. It reads 52 5

u u
— =A— 15.3
Ox? ot’ ( )
and A is in this case called the diffusion constant. It can be usedddel a wide selection of diffusion
processes, from molecules to the diffusion of heat in a gmaterial.

Another familiar equation from electrostatics is Laplacequation, which looks similar to the wave
equation in Eq.[{I5]1) except that we have 4et 0

Pu  d%u
—+=—==0 154

or if we have a finite electric charge represented by a chaggsity p(x) we have the familiar Poisson
eguation
0?u  0%u

w + a—yz = —47Tp(x). (155)
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Other famous patrtial differential equations are the Helizh@r eigenvalue) equation, here special-
ized to two dimensions only
u  0%u
——— == =2A 15.6

the linear transport equation (I 1 dimensions) familiar from Brownian motion as well

ou Ou Ou
%Jr%Jra—y—O, (15.7)
and Schrédinger’s equation
?u  0%*u

ou
T2 97 + f(z,y)u =V

Important systems of linear partial differential equati@re the famous Maxwell equations

E
%—t = curlB; —curlE = B; divE = divB = 0.
Similarly, famous systems of non-linear partial diffeiahequations are for example Euler’s equations
for incompressible, inviscid flow

P
a—‘; +uVu=—Dp; divu = 0,

with p being the pressure and
v 0 n 0
=_—e€ ——e
or * oy
in the two dimensions. The unit vectors argande,. Another example is the set of Navier-Stokes
eguations for incompressible, viscous flow

(2_1; +uVu — Au = —Dp; diva = 0.
Ref. [79] contains a long list of interesting partial diff@tial equations.

In this chapter we focus on so-called finite difference sa®m@nd explicit and implicit methods.
The more advanced topic of finite element methods are ndetida this text. For texts with several
numerical examples, see for example Refs. [75, 80].

As in the previous chapters we will focus mainly on widely disggorithms for solutions of partial
differential equations. A text like Evans’ [79] is highlyaemmended if one wishes to study the mathe-
matical foundations for partial differential equations particular how to determine the uniqueness and
existence of a solution. We assume namely here that ourgimabare well-posed, strictly meaning that
the problem has a solution, this solution is unique and thdisa depends continuously on the data given
by the problem. While Evans’ text provides a rigorous matatral exposition, the texts of Langtangen,
Ramdas-Mohan, Winther and Tveito and Evahsal. contain a more practical algorithmic approach see
Refs. [75, 77, 80, 81].

A general partial differential equation int 1-dimensions (witt2 standing for the spatial coordinates
x andy and1 for time) reads

0%u 0%u 0%u ou Ou
W + B(Z’,y)axay + C(x7y)a—y2 - F(x7y7u7 (9_957 a_y)a

Az, y) (15.8)
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15.2 — Diffusion equation

and if we set
B=C=0, (15.9)

we recover thd + 1-dimensional diffusion equation which is an example of a&alted parabolic partial
differential equation. With
B =0, AC <0 (15.10)

we get the2 +1-dim wave equation which is an example of a so-called efliBDE, where more generally
we haveB? > AC. For B?> < AC we obtain a so-called hyperbolic PDE, with the Laplace eqoat
in Eq. (I5.%) as one of the classical examples. These egsatan all be easily extended to non-linear
partial differential equations argl+ 1 dimensional cases.

The aim of this chapter is to present some of the more fandlffarence methods and their eventual
implementations.

15.2 Diffusion equation

The diffusion equation describes in typical applicatidmsvolution in time of the density of a quantity
like the particle density, energy density, temperatureligret, chemical concentrations etc.
The basis is the assumption that the flux dengitpeys the Gauss-Green theorem

/ divpdr = / pndS,
1% v

wheren is the unit outer normal field and is a smooth region with the space where we seek a solution.
The Gauss-Green theorem leads to
divp = 0.

Assuming that the flux is proportional to the gradi&nt but pointing in the opposite direction since the
flow is from regions of high concetration to lower concerntnas, we obtain

p=—DVu,

resulting in
divVu = DAu =0,

which is Laplace’s equation, an equation whose one-dimeaasiversion we met in chaptél 4. The
constantD can be coupled with various physical constants, such adffasidn constant or the specific
heat and thermal conductivity discussed below. We willukscthe solution of the Laplace equation later
in this chapter.

If we let « denote the concetration of a particle species, this resulsck’s law of diffusion, see
Ref. [52]. If it denotes the temperature gradient, we haweriedslaw of heat conduction and if it refers
to the electrostatic potential we have Ohm’s law of eleatraonduction.

Coupling the rate of change (temporal dependence)with the flux density we have

% = —divp,
which results in
ou .
— = DdivVu = DAu,
ot
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the diffusion equation, or heat equation.

If we specialize to the heat equation, we assume that thesifi of heat through some material
is proportional with the temperature gradidntx, ¢) and using conservation of energy we arrive at the
diffusion equation

i 2 _ aT(X>t)
va T(x,t) = Y

where(' is the specific heat andthe density of the material. Here we let the density be reprtes by
a constant, but there is no problem introducing an explj@tial dependence, viz.,

(15.11)

K

_9T(x.1)

2T(x,t 15.12
T 1) VT(x,1) 5 ( )
Setting all constants equal to the diffusion constant.e.,
D = @, (15.13)
K
we arrive at T (x. ¢
V2T (x,t) = D é’t‘ ). (15.14)
Specializing to thd + 1-dimensional case we have
0T (x,t) oT (z,t)
"~ =D -, 15.15
Ox? ot ( )

We note that the dimension @ is time/lengtR. Introducing the dimensional variables: = = we get

0T (x,t) DaT(x,t)
a?03? ot

(15.16)

and sincey is just a constant we could definé D = 1 or use the last expression to define a dimensionless
time-variablet. This yields a simplified diffusion equation

T (,t)  0T(2,1)

522 o (15.17)

It is now a partial differential equation in terms of dimemdess variables. In the discussion below, we
will however, for the sake of notational simplicity replage— = and¢ — ¢. Moreover, the solution to
the1 + 1-dimensional partial differential equation is replacedt, t) — u(z,t).

15.2.1 Explicit scheme

In one dimension we have the following equation

t
V2u(z,t) = du(,t) (15.18)
ot
or
Ugr = Ut, (15.19)
with initial conditions, i.e., the conditions at= 0,
u(z,0) =g(zr) O0<zxz<L (15.20)
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15.2 — Diffusion equation

with L = 1 the length of thec-region of interest. The boundary conditions are
u(0,t) = a(t) t>0, (15.21)

and
u(L,t) =b(t) t>0, (15.22)

wherea(t) andb(t) are two functions which depend on time only, whjle:) depends only on the position
x. Our next step is to find a numerical algorithm for solvingstbguation. Here we recur to our familiar
equal-step methods discussed in Chagter 3 and introdueeedif step lengths for the space-variable

and timet through the step length far

1
Az = 15.23
T= (15.23)

and the time step length¢t. The position aftef steps and time at time-stgmre now given by

tj = jAt i>0
{xi:iAw 0<i<n+1 (15.24)
If we then use standard approximations for the derivative®kitain
_u(mt+ A —u(w,t)  ulwg, ty + At) —u(wg, b))
Uy A N = ~ (15.25)
with a local approximation errad(At) and
s u(x + Ax,t) — 2u(z,t) + u(z — Az, t)’ (15.26)
Az?
o A 2 A
s w(z; + Az, tj) — 2u(x;, tj) + u(z; — Az, t;) (15.27)

Ax? ’

with a local approximation errad(Az?). Our approximation is to higher order in coordinate spades T
can be justified since in most cases it is the spatial deperdehich causes numerical problems. These
equations can be further simplified as

Uij+1 — Uij
O A 15.28
Ut At 9 ( )
and S
Upy R A2 . (15.29)
The one-dimensional diffusion equation can then be resvrii its discretized version as
Uij1 = Wij _ Uitl,j — 2Wij + Ui,
= ) 15.30
At Ax? ( )
Defininga = At/Ax? results in the explicit scheme
wijy1 = aui—1j + (1 = 20)u;; + Quigy ;. (15.31)
Since all the discretized initial values
ui0 = g(z;), (15.32)
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are known, then after one time-step the only unknown quaistit; ; which is given by
w1 = aui10 + (1 = 2a)u;0 + auip10 = ag(ri—1) + (1 - 2a)g(x;) + ag(zip1)- (15.33)

We can then obtain; ; using the previously calculated values; and the boundary conditionst) and
b(t). This algorithm results in a so-called explicit schemegsithe next functions; ;. are explicitely
given by Eq.[(I5.31). The procedure is depicted in Eig.]15.1.

We specialize to the casgt) = b(t) = 0 which results inug; = u,4+1; = 0. We can then
reformulate our partial differential equation through tleetorV; at the timet; = jAt

ulJ
vi=| "% |. (15.34)
Un,j
This results in a matrix-vector multiplication
Vi = AV (15.35)

with the matrixA given by

1 -2« o 0 0...
« l1—-2a0 « 0...

s
Il

(15.36)
0... 0... a 1-2«
which means we can rewrite the original partial differdrgiguation as a set of matrix-vector multiplica-
tions '
Via=AVj=-.. = Ay, (15.37)
whereV} is the initial vector at time = 0 defined by the initial valug(z). In the numerical implementa-
tion one should avoid to treat this problem as a matrix vectoitiplication since the matrix is triangular

and at most three elements in each row are different from zero
It is rather easy to implement this matrix-vector multiption as seen in the following piece of code

[/l  First we set initialise the new and old vectors
/l Here we have chosen the boundary conditions be zero.
/I n+l1l is the number of mesh pointsin x

u[0] = unew[0] = u[n] = unew = 0.0;

for (int i = 1; i < n; i++) {
X = ixstep;
[/l initial condition
uli] = func(x);

[/l intitialise the new vector
unew[i] = O0;
}
[/l Time iteration
for (int t = 1; t <= tsteps; t++) {
for (int i = 1; i < n; i++) {
/I Discretized diff eq
unew[i] = alphax* u[i—-1] + (1 — 2«alpha) x u[i] + alpha x u[i+1];
}

/I note that the boundaries are not changed.
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15.2 — Diffusion equation

However, although the explicit scheme is easy to implemiehgs a very weak stability condition,
given by
At/Az? < 1/2. (15.38)
This means that if\z? = 0.01, thenA = 5 x 10~°. This has obviously bad consequences if our time
interval is large. In order to derive this relation we neetheaesults from studies of iterative schemes.
If we require that our solution approaches a definite valter afcertain amount of time steps we need to
require that the so-called spectral radjifsl) of our matrix A satisfies the condition

p(A) < 1, (15.39)
see for example chapter 10 of Ref. [27] or chapter 4 of [24pfoofs. The spectral radius is defined as
p(A) = maX{|/\| - det(A — Af)} , (15.40)

which is interpreted as the smallest number such that aaivith radius centered at zero in the complex
plane contains all eigenvalues df If the matrix is positive definite, the condition in Eq._{29) is
always satisfied.
We can obtain analytic expressions for the eigenvaluek b achieve this it is convenient to rewrite
the matrix as
A=T1-aB,
with

0... 0... -1 2
The eigenvalues ofl are)\; = 1 — ap;, with ; being the eigenvalues @. To find ;; we note that the
matrix elements o3 are
bij = 2045 — dit1j — 0i—15;
meaning that we have the following set of eigenequationsdanponent
(Bi); = piz;, (15.41)

resulting in

n

(Bi)i =Y (205 — Gis1j — 0im1j) @) = 205 — Tif1 — Timy = [li;. (15.42)

7j=1
If we assume that can be expanded in a basisiof= (sin(6), sin(26),. .., sin(nf)) with 0 = I7/n+1,
where we have the endpoints givendy= 0 andzx,,+; = 0, we can rewrite the last equation as

2sin(i0) — sin((i + 1)0) — sin((i — 1)0) = p;sin(if),
or
2(1 — cos(8)) sin(if) = p;sin(ih),
which is nothing but
2(1 —cos(9)) x; = pxi,

with eigenvalueg; = 2 — 2cos(6).
Our requirement in Eq[{I5.B9) results in

—1<1—0a2(1-cos(f)) <1,
which is satisfied only ify < (1 — cos(#)) " resulting ine < 1/2 or A/Az? < 1/2.
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15.2.2 Implicit scheme

In deriving the equations for the explicit scheme we stavttl the so-called forward formula for the
first derivative, i.e., we used the discrete approximation

u(aci, tj + At) — u(aci, tj)

up A A (15.43)
However, there is nothing which hinders us from using thécacd formula
N w(x;, ty) — u(z;, t; At) (15.44)

= At
still with a truncation error which goes like(At). We could also have used a midpoint approximation
for the first derivative, resulting in

_ulwy, by + At) —u(w, t; — At)
wp ~ N , (15.45)

with a truncation erroO(At?). Here we will stick to the backward formula and come back tolétter
below. For the second derivative we use however

w(z; + Az, tj) — 2u(x;, tj) + u(z; — Az, t;)

Ugy = s , (15.46)
and define again = At/Ax?. We obtain now
Ui j—1 = —aui—1j+ (1 — 2a)u; ; — auiy ;. (15.47)
Hereu; ;1 is the only unknown quantity. Defining the matrix
14 2« —a 0 0...
A —-a 14+2a —a O0... ’ (15.48)
0... 0. -a 1+2
we can reformulate again the problem as a matrix-vectoriptigktion
AV, =V (15.49)
meaning that we can rewrite the problem as
V=AW = AT (A7) = = AT, (15.50)

This is an implicit scheme since it relies on determining teetoru; ;_; instead ofu; ;1. If o does
not depend on time, we need to invert a matrix only once. Alternatively we catvadhis system
of equations using our methods from linear algebra discugsehaptef 4. These are however very
cumbersome ways of solving since they involveO(N3) operations for @V x N matrix. It is much
faster to solve these linear equations using methods fdiaggonal matrices, since these involve only
~ O(N) operations. The functiofridag of Ref. [36] is suitbale for these tasks.

The implicit scheme is always stable since the spectraUaaslatisfieso(A) < 1. We could have
inferred this by notmg that the matrix is positive definite, all eigenvalues are larger than zero. We see
this from the fact thatl = 7 + aB has eigenvalues; = 1+ (2 — 2cos()) which satisfy\; > 1. Since
it is the inverse which stands to the right of our iterativeaepn, we havea([l‘l) < 1 and the method
is stable for all combinations @kt andAz. The calculational molecule for the implicit scheme is show

in Fig.[I5:2.
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15.2 — Diffusion equation

Ui j+1

g(z) T

Figure 15.1: Discretization of the integration area usethénsolution of the + 1-dimensional diffusion
equation. This discretization is often called calculagiomolecule.

t
Ui—1 54 Wi j+1] Wit1,j+1
a(t b(t
0 » 0
g() T

Figure 15.2: Calculational molecule for the implicit scheem
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Program example for implicit equation

We show here parts of a simple example of how to solve the anersional diffusion equation using
the implicit scheme discussed above. The program uses tiofido to solve linear equations with a
tridiagonal matrix discussed in chapiér 4.

/I parts of the function for backward Euler
void backward_euler(int xsteps, int tstepsdouble delta_x, double alpha)

{

double xv, xr, a, b, c;

\'
r

new double[xsteps+1]; // This is u
new double[xsteps+1]; // Right side of matrix equation Av=r

/I Initialize vectors

for (int i = 0; i < xsteps; i++) {
r[i] = v[i] = func(delta_xxi);

}

r[xsteps] = v[xsteps] = O0;

/' Matrix A, only constants

a = c =— alpha;
b =1+ 2«alpha;
/!l Time iteration

for (int t = 1; t <= tsteps; t++) {
/I here we solve the tridiagonal linear set of equations
tridag(a, b, ¢, r, v, x_steps+1);
/!l boundary conditions
v[0] = O;
v[xsteps] = 0;
for (int i = 0; i <= x_steps; i++) {
rfi] = v[il;

}

}

/1l Function used to solve systems of equations for tridiagonal matrices
void tridag (double a, double b, double c, double *r, double xu, int n)
{
double bet, xgam;
gam = newdouble[n];
bet = b;
// forward substitution
ul[0]=r[0]/bet;
for (int j=1;j<n;j++) {
gam[j] = c/bet;
bet = b—- axgam[j];
if (bet == 0.0) {cout <<"Error 2 in tridag" << endl;}
ufjl = (r[jl — axu[j—1])/bet;

}
/!l backward substitution
for (int j=n-2; j>=0; j—=) {u[j] —= gam[j+1]xu[j+1];}

delete [] gam;
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15.2 — Diffusion equation

15.2.3 Crank-Nicolson scheme

It is possible to combine the implicit and explicit methodsislightly more general approach. Introduc-
ing a parametef (the so-called-rule) we can set up an equation

AixQ (wi-1,j — 2uij + tit1,5) + 1A—x20 (Uit1j-1 = 2ui -1 + Uj1,5-1) = Ait (Wi — Wij—1),
(15.51)

which for § = 0 yields the forward formula for the first derivative and theleit scheme, while = 1
yields the backward formula and the implicit scheme. Thesedchemes are called the backward and
forward Euler schemes, respectively. Por 1/2 we obtain a new scheme after its inventors, Crank and
Nicolson. This scheme yields a truncation in time which diesO(At?) and it is stable for all possible
combinations ofAt andAz.

Using our previous definition of = At/Ax? we can rewrite the latter equation as

—aui—1j + (24 20) uij — ouipr; = iy -1 + (2 — 200) ui j1 + Quig -1, (15.52)

or in matrix-vector form as
(21 +aB) Vs = (21 = aB) V;y, (15.53)

where the vectoV; is the same as defined in the implicit case while the mariz
B= o (15.54)

We can rewrite the Crank-Nicolson scheme as follows

vy = (20 + aB>_1 (2~ aB) ;1. (15.55)

We have already obtained the eigenvalues for the two mat(izé+ aB) and (2f — aB) . This means
that the spectral function has to satisfy

~ N\ —1 ~ o
p(<2l n aB) (2] - aB>) <1,

meaning that
<1,

(2 + )™ 2 - apw)

and sinceu; = 2 — 2cos(0) we haved < u; < 4. Alittle algebra shows that the algorithm is stable for
all possible values oAt andAx.
The calculational molecule for the Crank-Nicolson sches&hiown in FiglZI5]3.

Parts of code for the Crank-Nicolson scheme

We can code in an efficient way the Crank-Nicolson algortitytiitst multplying the matrix
‘73'_1 = <2f - OéB) ij_l,
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with our previous vectol;_; using the matrix-vector multiplication algorithm for adiagonal matrix,
as done in the forward-Euler scheme. Thereafter we can Huvequation
<2j + aB) Vj = ‘7]'_1

using our method for systems of linear equations with adgdnal matrix, as done for the backward
Euler scheme.
We illustrate this in the following part of our program.

void crank_nicolson(int xsteps, int tstepsdouble delta_x, double alpha)

{

double xv, a, b, c, *r;

\'
r

new double[xsteps+1]; // This is u
new double[xsteps+1]; // Right side of matrix equation Av=r

/Il setting up the matrix
a ¢ =— alpha;
b 2 + 2«alpha;

/l Time iteration
for (int t = 1; t <= tsteps; t++) {

/Il Calculate r for use in tridag, right hand side of the Crank
Nicolson method

for (int i = 1; i < xsteps; i++) {
r[i] = alphaxv[i—1] + (2 — 2«alpha)v[i] + alphaxv[i+1];
}
r[o] =
r[xsteps] =

/I Then solve the tridiagonal matrix
tridag(a, b, ¢, r, v, xsteps+1);
v[0] = O;

v[xsteps] = 0;

15.2.4 Numerical truncation
We start with the forward Euler scheme and Taylor expafd ¢ + At), u(x + Ax,t) andu(x — Az, t)

u(@ + Az t) = u(e,t) + 242D Ng 4 TUED A2 | O(AL?), (15.56)
u(z — Az,t) = u(x,t) — 2480 Az + THED N2 1 O(Aa?),
w(z, t + At) = u(z, t) + ZAEDNE 4 O(AF2).

With these Taylor expansions the approximations for thevaeves takes the form

58] =20 o), (15.57)
92u(x,t) &u(x,t)
{ Oz }approx o T O(az?).
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Itis easy to convince oneself that the backward Euler methast have the same truncation errors as the
forward Euler scheme.

For the Crank-Nicolson scheme we also need to Taylor expand Az, ¢t + At) andu(x — Ax, t+
At) aroundt’ =t + At/2.

2 /
u(z + Az, t + At) =u(z,t’)+ au(“)A + Bu(m oy 5 Ly a;éizt)ﬁx2 -l ;Lc’(?fét)ATﬁ +
S ) S+ ot
o ,t’ o ,t' A 82 ,t' 82 ,t’ A 2
w(x — Azt + At) = u(z,t') — %Aw—k ugﬂt )Tt + 2"5; JAa? + ;Léfz )Tt -

D2u(z,t') %Am + O(A)

ozxot
u(z + Az, t) =u(z,t’)+ —aug;’t,)Aw — augﬂt’t/) % + aQ;giét/)AxQ + ngét,) ATtQ —
2
T 3 Ar+ O(AH)
o= B0,8) = (e, ¥) — B g - BEO 4 P gt PN
A2u(xz,t
gm(?)t )%Aw + O(At?)
(e, t + At) — u(z, t) + 2o A | Pulet) N2 4 O(AR)
u(z,t) — u(a, ') — 2D A | Pulat) A2 L o (AL)
We now insert these expansions in the approximations fodéhieatives to find
du(z,t’ du(z,t/
245, =5 oo s
pprox
82u(:v,t’):| _ O%u(z,t') A2
[ 92 | approx or7 ~ +O(Az%).
The following table summarizes the three methods.
| Scheme: | Truncation Error: | Stability requirements: |

Crank-Nicolson| O(Axz?) andO(At?) | Stable for allAt andAz.
Backward Euler] O(Axz?) andO(At) | Stable for allAt andAz.
Forward Euler | O(Axz?) aandO(At) At < 2 Az?

Table 15.1: Comparison of the different schemes.

15.2.5 Analytic solution for the one-dimensional diffusgmuation

It cannot be repeated enough, it is always useful to find cakese one can compare the numerics and
the developed algorithms and codes with analytic solutibime above case is also particularly simple.
We have the following partial differential equation with

ou(zx,t)
ot

Viu(z,t) =

with initial conditions
u(z,0) =¢g(xr) O0<az<L.
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The boundary conditions are
u(0,t) =0 t>0, u(L,t) =0 t>0,
We assume that we have solutions of the form (separationriathia)
u(z,t) = F(z)G(t). (15.59)
which inserted in the partial differential equation resutt

F// G/

= (15.60)

where the derivative is with respect toon the left hand side and with respecttton right hand side.
This equation should hold for all and¢. We must require the rhs and Ihs to be equal to a constant. We
call this constant-\2. This gives us the two differential equations,

F" 4+ \2F =0, G = -\G, (15.61)
with general solutions
F(z) = Asin(A\z) 4+ B cos(Az); G(t) = Ce 1. (15.62)

To satisfy the boundary conditions we requise= 0 and A = n7/L. One solution is therefore found to
be

u(z,t) = Ay sin(mrw/L)e_"%Qt/LQ. (15.63)

But there are an infinitely many possibtevalues (infinite number of solutions). Moreover, the diftus
equation is linear and because of this we know that a supéigposf solutions will also be a solution of
the equation. We may therefore write

u(z,t) = Z A, sin(mrw/L)e_”QWQt/LQ. (15.64)

n=1

The coefficient4,, is in turn determined from the initial condition. We require
u(z,0) = g(z) = Z A, sin(nmz/L). (15.65)
n=1

The coefficientd,, is the Fourier coefficients for the functigiiz). Because of this4,, is given by (from
the theory on Fourier series)

L
A, = z/o g(x)sin(nmx/L)dz. (15.66)

Different g(x) functions will obviously result in different results fot,,. A good discussion on Fourier
series and their links with partial differential equatia®s be found in Ref. [77].
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15.3 Laplace’s and Poisson’s equations

Laplace’s equation reads

V2U(X) = gy + Uyy = 0. (15.67)
with possible boundary conditiongx,y) = g(z,y) on the bordev(2. There is no time-dependence.
We seek a solution in the regidn and we choose a quadratic mesh with equally many steps in both
directions. We could choose the grid tobe rectangular dovidhg polar coordinates, § as well. Here
we choose equal steps lengths in thend they directions. We set

L

R

whereL is the length of the sides and we have- 1 points in both directions.
The discretized version reads

Ax = Ay

’LL(QZ‘ + hvy) — 2U(3§‘,y) + U(CL' - h7y)

e - ’ (15.68)
and
gy o LBV TN Z20y) bty ) (15.69)
which we rewrite as
gy ro it~ ZZ;’j + Uizl (15.70)
and
uyy Ui 41 — 22;4 + Uil (15.71)
which gives when inserted in Laplace’s equation
= 1 [W5.j1 + s j—1 + Uisrj + Ui ] - (15.72)

4
This is our final numerical scheme for solving Laplace’s digua Poisson’s equation adds only a minor
complication to the above equation since in this case we have

Ugy + Uyy = —p(x,y),

and we need only to add a discretized versiop(sf) resulting in
1 h?
Ujj = Z[uaj+14‘uLj—1‘F1H+1J'+TM—1J]+‘7fpaj- (15.73)
The boundary condtions read

Ui 0 = 9i,0 0<i:<n+1,

uiL,=gi0 0<i<n+l1,
up; =go; 0<j<n+l,
and
ur;=9r; 0<j7<n+1
The calculational molecule for the Laplace operator of E§.42) is shown in Fid. 15.4.
With n + 1 mesh points the equations farresult in a system ofn + 1)? linear equations in the
(n + 1)? unknownu; ;. One can show that there exist unique solutions for the lcapénd Poisson
problems, see for example Ref. [77] for proofs. Howeveligaglthese equations using for example the

LU decomposition techniques discussed in chdgter 4 becaméicient since the matrices are sparse.
The relaxation techniques discussed below are more efficien
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Ui —1 50 Wi 5+1) Uit+1,541

Ui-1,5¢ Wi,j Wit1,j

g9(z) z

Figure 15.3: Calculational molecule for the Crank-Nicolszheme.

g(z,y) S P g(x,y)

9(x,y) z

Figure 15.4: Five-point calculational molecule for the leage operator of EqQLTISEV2). The bordde
defines the boundary conditiar{z, y) = g(z,y).
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15.3.1 Jacobi Algorithm for solving Laplace’s equation

It is fairly straightforward to extend this equation to theee-dimensional case. Whether we solve
Eq. I5.72) or EqI{I5.T3), the solution strategy remairssdme. We know the values ofat: = 0 or
i=n-+1landatj = 0orj =n+ 1butwe cannot start at one of the boundaries and work our vtay in
and across the system since EQ. (Ib.72) requires the kngeviefd, at all of the neighbouring points in
order to calculate; at any given point.

The way we solve these equations is based on an iterativengctaled the Jacobi method or relax-
ation method. See for example Refs. [77, 79] for a discussidhe relaxation method and its pertinent
proofs. Its steps are rather simple. We start with an injfisdss forugg.) where all values are known. To
obtain a new solution we solve Eq.{15.72) or Hq. (1b.73) okeoto obtain a new solutiongb?. Most
likely this solution will not be a solution to EJ_{I5172). iSlsolution is in turn used to obtain a new and
improveduz(.zj). We continue this process till we obtain a result which fiasssome specific convergence

criterion. Summarized, this algorithm reads
1. Make an initial guess fa; ; at all interior points(i, j) foralli =1:nandj =1:n

2. Use Eq.[[I5142) to computé” at all interior pointgs, j). The indexmn stands for iteration number
m.

3. Stop if prescribed convergence threshold is reachedrwibe continue on next step.
4. Update the new value affor the given iteration
5. Gotostep 2

A simple example may help in visualizing this method. We ad@sa condensator with parallel
plates separated at a distariceesulting in e.g., the voltage differencegr, 0) = 100sin(2w2/L) and
u(z,1) = —100sin(27z/L). These are our boundary conditions and we ask what is thageoit
between the plates? To solve this problem numerically weigedoelow a Fortran program which solves
iteratively Eq. [(I5.7R). Only the part which computes E&.73) is included here.

I define the step size
h = (xmax-xmin) /FLOAT(ndim+1)
length = xmaxxmin
I allocate space for the vector u and the temporary vector to
I be upgraded in every iteration
ALLOCATE ( u( ndim, ndim) )
ALLOCATE ( u_temp( ndim, ndim) )
pi = ACOS(—1.)
I set up of initial conditions at t = 0 and boundary conditions
u = 0.
DO i=1, ndim
X = ixhxpi/length
u(i,1) = func(x)
u(i,ndim) = —func (x)
ENDDO
I iteration algorithm starts here
iterations =0
DO WHILE ( (iterations <= 20) .OR. ( diff > 0.00001) )
u_temp = u; diff = 0.
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DO j = 2, ndim—- 1
DO | = 2, ndim -1
u(j,l) = 0.25«(u_temp(j+1,1)+u_temp(+1,1)+ &
u_temp(j,l+1)+u_temp(j,+1))
diff = diff + ABS(u_temp(i,j)-u(i,j))

ENDDO
ENDDO
iterations = iterations + 1
diff = diff/(ndim+1)x%2
ENDDO

The important part of the algorithm is applied in the funetighich sets up the two-dimensional Laplace
equation. There we have a do-while statement which testditfeeence between the temporary vector
and the solution:; ;. Moreover, we have fixed the number of iterations to be at rR@sfThis is suffi-
cient for the above problem, but for more general applicatipou need to test the convergence of the
algorithm.

While the Jacobi iteration scheme is very simple and pdizdlele, its slow convergence rate renders
it impractical for any "real world" applications. One waygpeed up the convergent rate would be to
"over predict" the new solution by linear extrapolation. isTleads to the Successive Over Relaxation
scheme, see chapter 19.5 on relaxation methods for bouwdary problems of Ref. [36].

15.3.2 Laplace’s equation and the parallel Jacobi algamith
Ready end fall 2008.

15.3.3 Relaxation methods for boundary value problemspathallel implementation
Ready end fall 2008.

15.4 Wave equation in two dimensions

The1l + 1-dimensional wave equation reads

Pu  %u

92 92 (15.74)
with v = u(z,t) and we have assumed that we operate with dimensionlesblesridgossible boundary
and initial conditions withL = 1 are

Ugpy = Ut z € (0,1),t>0
U(.Z',O) = g(m) T € (07 1)
w(0,8) = u(1,£) = 0 £>0 (15.75)
Ou/ot|1—o =0 xz € (0,1)
We discretize again time and position,
s u(z + Az, t) — 2u(x,t) + u(x — Az, t)’ (15.76)
Azx?
and t+ At 2 t t— At
gy A ’U,(.Z'7 + ) B U((L', ) + U((L', - ) (1577)

At? ’
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which we rewrite as
Uit1,j — 2Uij + Ui,

s N 7 (15.78)
and
R VO i
gy o LI Auzzg + Ui L (15.79)
resulting in
At?
Ui 41 = 2Uj 5 — Ujj—1 + Az? (Uit1,j — 2uij + ui—15) - (15.80)

If we assume that all values at times- j andt = j — 1 are known, the only unknown variableus ;|
and the last equation yields thus an explicit scheme for tipgl#his quantity. We have thus an explicit
finite difference scheme for computing the wave functionThe only additional complication in our
case is the initial condition given by the first derivativetime, namelyou/dt|;—o = 0. The discretized
version of this first derivative is given by

w(xs, t; + At) — u(x;, t; — At)
U+ ~
t 2At ’

(15.81)

and att = 0 it reduces to

Uj+1 — Uj—1
2At

implying thatu; .1 = u; _;. If we insert this condition in Eq[TI5B0) we arrive at a speformula for

the first time step

Ut ~

=0, (15.82)

At?
U1 = U0 + YN (Uit1,0 — 2ui0 + ui—1,0) - (15.83)
We need seemingly two different equations, one for the fims¢ tstep given by Eq{I5.B3) and one for
all other time-steps given by EQ.{I5180). However, it sefitco use EqL{I5.80) for all times as long as
we provideu(i, —1) using
t2
Uj,—1 = U0 + A2 (Uit1,0 — 2ui0 + Ui—1,0) (15.84)

in our setup of the initial conditions.

The situation is rather similar for the+ 1-dimensional case, except that we now need to discretize
the spatialy-coordinate as well. Our equations will now depend on thragables whose discretized
versions are now

t; = IAt >0
r,=1Azx 0<i<mn, |, (15.85)
yj =JjAy 0<j<ny

and we will letAz = Ay = h andn, = n, for the sake of simplicity. The equation with initial and
boundary conditions reads now

Ugy + Uyy = Uy z,y € (0,1),t >0
u(z,y,0) = g(z,y) z,y €(0,1)
w(0,0,) = u(1,1,¢) = 0 £>0 (15.86)
Ou/dt|;—g = 0 z,y € (0,1)
We have now the following discretized partial derivatives
Lo ol Lo
gy A L Mt (15.87)

h? ’
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and l l l
u4’ 1 2u4’. + u4’ 1
Uyy R — S E— (15.88)
and I+1 ! -1
U — 2uij + uZ;
Uy A —2 ’ g 15.89
tt At2 ( )
which we merge into the discretiz€d+ 1-dimensional wave equation as
I+1 ! -1 APy ! ! ! !
Uij =2Wij — Ui + oo <ui+1,j =+t Ut ”z‘,j—l) ) (15.90)

where again we have an explicit scheme Wiﬂjl as the only unknown quantity. It is easy to account
for different step lengths far andy. The partial derivative is treated in much the same way athior
one-dimensional case, except that we now have an additiodex due to the extra spatial dimension,
viz., we need to compute; ' through

10 At

0 0 0 0 0
Uiy = oy + oy (W — dug; + g+ ud i), (15.91)

in our setup of the initial conditions.

15.4.1 Analytic solution

We develop here the analytic solution for the 1 dimensional wave equation with the following bound-
ary and initial conditions

(U + Uyy) = Upy z,y € (0,L),t >0

u(z,y,0) = f(z,y) z,y € (0,L)
u(0,0,t) = u(L,L,t) =0 t>0
Ou/0t|=0 = g(,y) z,y € (0,L)

Our first step is to make the ansatz
u(z,y,t) = F(z,y)G(t),
resulting in the equation
FGy = (FpG + F,,G),

or
Gu 1
G F
The Ihs and rhs are independent of each other and we obtaidiffiecential equations

(Fpw + Fyy) = V2.

Fypw + Fyy + Fv? =0,

and
Gtt + GCZV2 = Gtt + G)\Q = 0,

with A = cv. We can in turn make the following ansatz for thandy dependent part
F(z,y) = H(z)Q(y),
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which results in

1 1
ﬁHmm — _é

Since the lhs and rhs are again independent of each otheranveeparate the latter equation into two
independent equations, one foand one fory, namely

(ny + QV2) = —r".

H,, + k*H =0,

and
ny + PzQ =0,
with p? = 12 — k2.
The second step is to solve these differential equationg;hwdil have trigonometric functions as
solutions, viz.

H(xz) = Acos(kz) + Bsin(kz),
and
Q(y) = C cos(py) + Dsin(py).

The boundary conditions require thA{(z,y) = H(z)Q(y) are zero at the boundaries, meaning that
H(0) = H(L) = Q(0) = Q(L) = 0. This yields the solutions

Hp(w) =sin("7=)  Quly) = sin(~12),
or
Fon(x,y) = sin(@) sin(%).

With p? = 12 — k2 and\ = cv we have an eigenspectrum= c\/x2 + p2 Of Ay, = et/ LvV'm? + n2.
The solution forG is
Grn(t) = Bpn cos(Apmnt) + B, sin(Apnt),

with the general solution of the form

U(Ucay,t) - Z Umn(%%ﬂ = Z an(x7y)Gmn(t)
mn=1 mn=1

The final step is to determine the coefficiets,, and its complex conjugatB;,,, from the Fourier
coefficients. The equations for these are determined bynitialiconditionsu(x,y,0) = f(z,y) and
Ou/0t|—o = g(z,y). The final expressions are

mnx nmy

2) L L
Bun=7 [ ] doduf @) sin ) sin( "),

and
mnx nmy

) L L
Br =Z i in(—2).
i L/o /0 dxdyg(z,y) sin( T ) sin( 7 )

Inserting the particular functional forms ¢fz, y) andg(x, y) one obtains the final analytic expressions.
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15.5 Exercises and projects

Project 15.1: two-dimensional wave equation

Consider the two-dimensional wave equation for a vibratimambrane given by the following initial and
boundary conditions

Ugg + Uyy = Ugy z,y € (0,1),t >0
u(z,y,0) = sin(z)cos(y)  z,y € (0,1)
w(0,0,t) = u(1,1,¢) = 0 t>0

Ou/0t|i—o =0 x,y € (0,1)

a) Find the analytic solution for this equation using théntegue of separation of variables.

b) Write down the algorithm for solving this equation and @ggeta program to solve the discretized
wave equation. Compare your results with the analytic swlutUse a quadratic grid.

c) Consider thereaftera+ 1 dimensional wave equation with variable velocity, given by

0%u

o2
If A is constant, we obtain the standard wave equation disclisdhd two previous points. The
solutionu(z, y, t) could represent a model for water waves. It represents Heesurface elevation
from still water. The function\ simulates the water depth using for example measuremestil of
water depths in say a fjord or the north sea. The boundaryitomsl are then determined by the
coast lines. You can discretize

= V(A(z,y)Vu).

V0T = 5 (Ao ) + 5 (e Ge).

as follows using again a quadratic domain foandy:

0 ou 1 -U§'+17j - “igj_ “ij - u'li_lvj_

%(A(”C’y@)%rx(&“m T | A TR )
and

OO A B NN [ FPee ) D L e Py
oy \" Yy ) T Ay WAy L Ay '

Convince yourself that this equation has the same trurncetimr as the expressions used in a) and
b) and that they result in the same equations whéna constant.

d) Develop an algorithm for solving the new wave equation arite a program which implements
it.
Project 15.2, one- and two-dimensional diffusion equation

We are looking at a one-dimensional problem

O*u(x,t)  Ou(w,t)
G = > 0w € [0, ] (15.92)
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or
Ugy = U, (15.93)

with initial conditions, i.e., the conditions &t= 0,
u(z,0)=0 0<zx<L (15.94)
with L = 1 the length of thec-region of interest. The boundary conditions are
u(0,t) =0 >0, (15.95)

and
u(L,t)=1 t>0. (15.96)

The functionu(x,t) can be the temperature gradient of a the rod or representutidevilocity in a
direction parallel to the plates, that is normal to thaxis. In the latter case, for smaill only the part
of the fluid close to the moving plate is set in significant motiresulting in a thin boundary layer at
x = L. As time increases, the velocity approaches a linear vamiatith z. In this case, which can
be derived from the incompressible Navier-Stokes, the aleouations constitute a model for studying
friction between moving surfaces separated by a thin fluml. fil

In this project we want to study the numerical stability afetl methods for partial differential equa-
tions (PDEs). These methods are

1. The explicit forward Euler algorithm with discretizedrsmns of time given by a forward formula
and a centered difference in space resulting in

u(z,t+ At) —u(x,t)  ul(x;,t; + At) —u(wx;, t))

. _ 15.97
b At At 1o
and A A
uyy e WE AT ~ 2u(z,1) +ule — Az, t) (15.98)
Ax?
or
s~ u(@; + Az, tj) — 2u(wi, tj) + u(@; — Az, t;) (15.99)
Az?
2. The implicit Backward Euler with
u(x, t) —ul(x,t — At)  ulzg,ty) —u(z, t; — At)
. _ 15.100
b At At ( )
and
gy e WET B2, Y) — 20 1) Fule — Az 1) (15.101)
Ax?
or A A
o o Wi AT 1) = 2u(i 1) + u(w = Az t;) (15.102)

Az? ’
3. Finally we use the implicit Crank-Nicolson scheme witlinaet-centered scheme @t, ¢t + At/2)

w(z,t + At) —u(z,t)  w(x;,t; + At) — u(x;, t))
~ = . 15.103
b At At ( )
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The corresponding spatial second-order derivative reads

+ (15.104)

Upy ~

1 (u(w; + Az, tj) — 2u(zi, b)) + u(z; — Az, t))
Ax?

Ax?

Note well that we are using a time-centered schemetwil\¢/2 as center.

uw(x; + Awx, tj + At) — 2u(z;, t; + At) + u(z; — Az, t; + At))

a) Write down the algorithms for these three methods anddbat®ns you need to implement. For
the implicit schemes show that the equations lead to a ¢pisfial matrix system for the new values.

b) Find the truncation errors of these three schemes andtigage their stability properties. Find
also the analytic solution to the continuous problem. A wiskint here is to solve fop(z,t) =
u(z,t) — x instead. The boundary conditions fafz, t) are simplerp(0,¢) = v(1,¢) = 0 and the
initial conditions arev(z,0) = —x.

c) Implement the three algorithms in the same code and perfests of the solution for these three
approaches foAx = 1/10, Az = 1/100 using At as dictated by the stability limit of the ex-
plicit scheme. Study the solutions at two time poititandt, wherew(z,t;) is smooth but still
significantly curved and(x, t2) is almost linear, close to the stationary state.

d) Compare the solutions &t andt, with the analytic result for the continuous problem. Which o
the schemes would you classify as the best?

e) Generalize this problem to two dimensions and write ddweralgorithm for the forward and back-
ward Euler approaches. Write a program which solves thasidh equation ir2 4+ 1 dimensions.
The program should allow for general boundary and initisdditbons.
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Chapter 16

Many-body approaches to studies of atoms
and molecules

16.1 Introduction

A theoretical understanding of the behavior of quantum raewal systems with many interacting par-
ticles, normally called many-body systems, is a great ehgk and provides fundamental insights into
systems governed by quantum mechanics, as well as offeatanil areas of industrial applications,
from semi-conductor physics to the construction of quangates. The capability to simulate quantum
mechanical systems with many interacting particles isiatdor advances in such rapidly developing
fields like materials science.

However, most quantum mechanical systems of interest iniphigonsist of a large number of inter-
acting particles. The total number of particl®¥sis usually sufficiently large that an exact solution (viz.,
in closed form) cannot be found. One needs therefore reliabmerical methods for studying quantum
mechanical systems with many particles.

Studies of many-body systems span from our understandirtjeostrong force with quarks and
gluons as degrees of freedom, the spectacular macroscepigestations of quantal phenomena such
as Bose-Einstein condensation with millions of atoms fogna coherent state, to properties of new
materials, with electrons as effective degrees of freedbime.length scales range from few micrometers
and nanometers, typical scales met in materials sciencH)t® — 10~'® m, a relevant length scale
for the strong interaction. Energies can span from few me\G&¥ or even TeV. In some cases the
basic interaction between the interacting particles id-wmdwn. A good example is the Coulomb force,
familiar from studies of atoms, molecules and condensedemphysics. In other cases, such as for
the strong interaction between neutrons and protons (coryngmbbed as nucleons) or dense quantum
liquids one has to resort to parameterizations of the upideriinterparticle interactions. But the system
can also span over much larger dimensions as well, with mestars as one of the classical objects. This
star is the endpoint of massive stars which have used upftieirA neutron star, as its name suggests, is
composed mainly of neutrons, with a small fraction of pretand probably quarks in its inner parts. The
star is extremely dense and compact, with a radius of appiely 10 km and a mass which is roughly
1.5 times that of our sun. The quantum mechanical pressure vid®ét up by the interacting particles
counteracts the gravitational forces, hindering thus aigtional collapse. To describe a neutron star
one needs to solve Schridinger’s equation for approximatel interacting particles!

With a given interparticle potential and the kinetic eneaf\the system, one can in turn define the
so-called many-particle HamiltoniaH which enters the solution of Schrédinger’s equation or &éra
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equation in case relativistic effects need to be includeat. irany particles, Schroédinger’s equation is
an integro-differential equation whose complexity inses exponentially with increasing numbers of
particles and states that the system can access. Unfatyregart from some few analytically solvable
problems and one and two-particle systems that can be dreatmerically exactly via the solution of
sets of partial differential equations, the typical abseoican exactly solvable contribution to the many-
particle Hamiltonian means that we need reliable numenaly-body methods. These methods should
allow for controlled approximations and provide a comgotsl scheme which accounts for successive
many-body corrections in a systematic way.

Typical examples of popular many-body methods are cougllester methods [66, 82—85], vari-
ous types of Monte Carlo methods [86—88], perturbative rtaogy methods [89-91], Green’s function
methods [92, 93], the density-matrix renormalization gr¢@4, 95], density functional theory [96] and
ab initio density functional theory [97—99], and largelscdiagonalization methods [100-102], just to
mention a few. The physics of the system hints at which mardybmethods to use. For systems with
strong correlations among the constituents methods basedean-field theory such as Hartree-Fock
theory and density functional theory are normally ruled othis applies also to perturbative methods,
unless one can renormalize the parts of the interactionhwtdaase problems.

The aim of this and the next two chapters is to present to yawrbady methods which can be used
to study properties of atoms, molecules, systems in thd stdie and nuclear physics.

In this chapter we limit ourselves to studies of atoms andemdes, as discussed in chafier 11 as
well. Using the Born-Oppenheimer approximation we rewfxtarédinger’s equation fa¥ electrons as

1 Yz X1
> 5V Zrﬁzw (R) (R),
i=1 i=1 1<J
where we lefR represent the positions which tié electrons can take, that B = {ry,rs,...,ry}.

With more than one electron present we cannot find an analygaution and must resort to numerical
efforts. In this chapter we will examine the theory of sel/aranerical methods, commonly applied to
the atomic problem.

We will solve this equation in two steps,and combine theretny of the many-body methods dis-
cussed above. Since the electron-electron interactioather weak compared with the attraction from
the nucleus, an independent particle picture is a viablediep towards the solution of Schrédinger’s
equation. We assume therefore that each electrons seeteeativeffield set up by the other electrons.
This leads to an integro-differential equation and methiddHartree-Fock theory and density functional
theory. Hartree-Fock theory and density functional theodre discussed in the next section.

In practical terms, for the Hartree-Fock method we end upirsgla one-particle equation, as is the
case for the hydrogen atom but modified due to the screenimy fne other electrons. This modified
single-particle equation reads (see EQ. (111.59 for thedgedr case) in atomic units

1 d? (l+1) ZzZ
—imunl(r) ( (2r2 ) _ - + O(r) + Fnl> Uni (1) = enrun(r).

The functionu,,; is the solution of the radial part of the Schrédinger equedind the function® () and
F,,; are the corrections due to the screening from the otherrefext We will derive these equations in
the next section.

The total one-particle wave function, see chapiér 11 is

wnlmlsms = ¢nlml (r)fms (3)
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with s is the spin {/2 for electrons)m is the spin projectiomn, = +1/2, and the spatial part is

Pnim; (¥) = Bt (1) Yim, (F)

with Y the spherical harmonics discussed in chapiér 11wepd= rR,,;. The other quantum numbers
are the orbital momenturhand its projectionn; = —I, -1+ 1,...,l — 1,1 and the principal qguantum
numbern = n, + [+ 1, with n,. the number of nodes of a given single-particle wave functidhresults
are in atomic units, meaning that the energy is giver,py= —Z2/2n? and the radius is dimensionless.

We obtain then a modified single-particle eigenfunctionchiin turn can be used as an input in a
variational Monte Carlo calculation of the ground state spacific atom. This is the aim of this chapter.
Since Hartree-Fock theory does not treat correctly the eblmany-body correlations, the hope is that
performing a Monte Carlo calculation we may improve our lissoy obtaining a better agreement with
experiment.

We focus here on the variational Monte Carlo method as a waypoove upon the Hartree-Fock
results. The method was discussed in chdpier 11. In cHafiteoviever, we limited ourselves to the im-
plementation of a bruce force Metropolis algorithm. Herepnesent the concept of importance sampling
and improved statistical data analysis methods such adhtatking and the Jack-Knife method [56].

Although the variational Monte Carlo approach will imprower agreement with experiment com-
pared with the Hartree-Fock results, there are still furguessibilities for improvement. This is provided
by Green’s function Monte Carlo methods, which allow for arprinciple exact calculation. The dif-
fusion Monte Carlo method is discussed in chapiér 17, withplication to studies of Bose-Einstein
condensation.

Other many-body methods such as large-scale diagonalizatid coupled-cluster theories are dis-
cussed in Ref. [103]. Finally, chap{er] 19 demonstrates Hgarighms from quantum information theory
can be used to solve Schrodinger’s equation for many irtiagaparticles.

16.2 Hartree-Fock theory

Hartree-Fock theory [66, 104] is one of the simplest appnate theories for solving the many-body
Hamiltonian. It is based on a simple approximation to the many-body wave-function; that the wave-
function is given by a single Slater determinantfrthonormal single-particle wave functions

wnlmlsms = ¢nlml (r)gms (3)

We use hereatfter the shorthang,, s, (r) = Y. (r), wherea now contains all the quantum numbers
needed to specify a particular single-particle orbital.
The Slater determinant can then be written as

Va(r1) Yalr2) ... alrn)

1| ¥s(r1) p(re) ... Pp(ry)
(I)(I‘l,rg,...,I'N,Oé,ﬂ,...,V):W : : . : . (16.1)

Yu(r1) vp(re) ... Pp(rn)

Here the variables; include the coordinates of spin and space of particl&fhe quantum numbers
a, B, ...,vencompass all possible quantum numbers needed to spedciffi@ufar system. As an exam-
ple, consider the Neon atom, with ten electrons which cathiils, 2s and2p single-particle orbitals.
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Figure 16.1: The electronic configurations for the ten filstreents. We let an arrow which points upward
to represent a state with; = 1/2 while an arrow which points downwards hag = —1/2.

Due to the spin projections:,; and orbital momentum projectioms;, thels and2s states have a degen-
eracy of2(2] + 1) = 2 while the2p orbital has a degeneracy 22/ + 1)2(2 -1+ 1) = 6. This leads
to ten possible values far, 3, . .., v. Fig.[I61 shows the possible quantum numbers which therin fi
elements can have.

If we consider the helium atom with two electrons in the state, we can write the total Slater
determinant as

1 wa(rl) 1/1a(l'2)
P(ri,ro,,3) = — , 16.2

( 1,12 5) \/5 7/)6(1'1) T,Z)ﬁ(r2) ( )
with a = nlmysms = 1001/21/2 and 8 = nlm;sms = 1001/2 — 1/2 or usingms = 1/2 =1 and
ms = —1/2 =| asa = nlmysmg = 1001/2 T andf = nlm;smgs = 1001/2 |. Writing out the Slater

determinant we obtain
1
V2

and we see that the Slater determinant is antisymmetricradtpect to the permutation of two particles,
that is

P(r1,ro, , 8) = —= [Ya(r1)Yp(rz) — vs(r1)y,(ra)], (16.3)

<I>(I'1, I'Q,Oé,ﬁ) - <I>(I'2, I'l»a»ﬁ)v

For three electrons we have the general expression

™)
~—
S
Q
—~
=
w
~

" s =L | o wete
ry,ro,r3,a,p0,v) = —F— e} ry 15 r
VB (1)t (ra) ty(rs)

(16.4)

[N}
~
<
=
—~
L]

w
N

Computing the determinant gives

O(ry,re, 13,0, 3,7) = \% [Va(r1)1s(r2)1y (r3) + Y(r1)1y (r2)Ya(rs) + 1Py (r1)Ya(re)s(rs)—

3!

Yy (r1)Pp(r2)ta(rs) — Yp(r1)valra)y (r3) — Yalri), (r2)ys(rs)] . (16.5)
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We note again that the wave-function is antisymmetric wagpect to an interchange of any two electrons,
as required by the Pauli principle. For Aibody Slater determinant we have thus (omitting the quantum
numbersy, 3,...,v)

®(ri,ro,...,14,...,15,...r5) = —P(ry,r9,...,1j,..., T4, TN).

We rewrite our Hamiltonian

) N Z 1
H==D qVi-2 42

as
R R R N Ny
H=H = ; — .
1+ Ho th-i-_z o (16.6)
=1 1<j=1
where ) P
hi=—-V?-=. (16.7)
2 T

The first term of eq[[IBI6)H;, is the sum of theV identicalone-bodyHamiltoniansh;. Each individual
Hamiltonian/; contains the kinetic energy operator of an electron anddtsrial energy due to the
attraction of the nucleus. The second tet, is the sum of theV (/N — 1)/2 two-body interactions
between each pair of electrons. Let us denote the grouralestargy byF,. According to the variational
principle we have

Ey < E[®] = / d*Hddr (16.8)
where® is a trial function which we assume to be normalized
/<I>*<I)d7' =1, (16.9)

where we have used the shorthafid= dridrs> ... dry. In the Hartree-Fock method the trial function
is the Slater determinant of Eq._(16.1) which can be rewrige

\Il(rlar%' e ,I'N,Oé,ﬁ,. e ’V) = \/% Z(_)Ppwa(rl)wﬁ(rQ) . -ﬂ’u(l"N) = \/ﬁA(I)H, (1610)
P

where we have introduced the anti-symmetrization opetdtdefined by the summation over all possible
permutations of two eletrons. It is defined as

A= % > (=P, (16.11)
P

with the the Hartree-function given by the simple producalbpossible single-particle function (two for
helium, four for beryllium and ten for neon)

(I)H(rla rg,...,rn,Q, ﬁa ey V) = ?/Ja(l"l)lbﬁ(rz) s wl/(rN)' (1612)
Both H; and H, are invariant under electron permutations, and hence caenwith .4
[H, A = [Ha, A] = 0. (16.13)
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Furthermore A satisfies
A% = A, (16.14)

since every permutation of the Slater determinant represlitc The expectation value éf;
/ &*H ®dr = N! / s AH|A®D dr

is readily reduced to
/ " Hy®dr = N / « H) A ydr,

where we have used eqs.{18.13) dnd (16.14). The next stepeplace the anti-symmetry operator by
its definition eq.[(I6.110) and to replaég with the sum of one-body operators

N
/cb*ﬁlcde = ZZ(—)P/ * hi P® gdr. (16.15)

i=1 P

The integral vanishes if two or more electrons are permutexhly one of the Hartree-functiony
because the individual orbitals are orthogonal. We obtaem t

N
/ O*H ®dr = / % h;® prdr. (16.16)
i=1

Orthogonality allows us to further simplify the integrahcawe arrive at the following expression for the
expectation values of the sum of one-body Hamiltonians

N
/ O H ®dr = / W (1) Rty (v dr;. (16.17)
pn=1
The expectation value of the two-body Hamiltonian is olgdiin a similar manner. We have
/ ®*Hy®dr = N / &% AHy AD prdr, (16.18)
which reduces to N
N 1
O* Hyddr = - | o5, —Pdgd 16.19
/ zriq221;<>/Hrij i, (16.19)

by following the same arguments as for the one-body HamétonBecause of the dependence on the
inter-electronic distancé/r;;, permutations of two electrons no longer vanish, and we get

N
/@*ﬁg@d? = Z

i<j=1

1

/@*H—(1 —_ P)dydr. (16.20)
Tij

where P;; is the permutation operator that interchanges electi@msl j. Again we use the assumption

that the orbitals are orthogonal, and obtain

N N
/ ¥ Hyddr = 233 { / w:<ri>w:<rj>%wwri)wu(rj)dxixj - / ()0 ()t () () s |

pn=1v=1 TZJ
(16.21)
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16.2 — Hartree-Fock theory

The first term is the so-called direct term or Hartree termiJerine second is due to the Pauli principle
and is called exchange term or Fock term. The fatf@ris introduced because we now run over all pairs
twice.

Combining Eqs.[{16.17) anf(16121) we obtain the functional

N N N
CURD DY R ST S 90 Bl R e LS R S
p=1 ij ij

p=1v=1
(16.22)

16.2.1 Derivation of the Hartree-Fock equations

Having obtained the functiondl'|®], we now proceed to the second step of the calculation. Befere
proceed we need however to repeat some aspects of the satfulariations. For more details see for
example the text of Arfken [78].

We have already met the variational principle in chalpiériathe so-called Rayleigh-Ritz variational
technique. We give here a brief reminder on the calculus atians.

Small digression on the calculus of variations

The calculus of variations involves problems where the tityato be minimized or maximized is an
integral.
In the general case we have an integral of the type

b
Blo] = [ f(@@), 5 )iz,

whereE is the quantity which is sought minimized or maximized. Tiebtem is that althougtf is a
function of the variable®, 0®/0z andz, the exact dependence ©fon z is not known. This means
again that even though the integral has fixed limisndb, the path of integration is not known. In our
case the unknown quantities are the single-particle wavetifons and we wish to choose an integration
path which makes the functional[®] stationary. This means that we want to find minima, or maxima o
saddle points. In physics we search normally for minima. task is therefore to find the minimum of
E[®] so that its variatio@ E is zero subject to specific constraints. In our case the @intt appear as
the integral which expresses the orthogonality of the sipgirticle wave functions. The constraints can
be treated via the technique of Lagrangian multipliers

We assume the existence of an optimum path, that is a pathHichu[®] is stationary. There are
infinitely many such paths. The difference between two p&dhis called the variation ob.

We call the variatiom(x) and it is scaled by a factar. The function,(x) is arbitrary except for

n(a) =n(b) =0,
and we assume that we can model the changeas
®(x,a) = ®(x,0) + ar(x),

and
0P = &(x, ) — ®(2,0) = an(x).
We chooseb(z, « = 0) as the unkonwn path that will minimiz&. The value?(z, o # 0) describes
a neighbouring path.
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We have ) 59(z,0)
Ef@(a)] :/a F@(,a), T yas.
We introduce the shorthand 9(z, )
Oy(z,0) = (;;’O‘ .

In our caser = 0 andb = oo and we know the value of the wave function.
The condition for an extreme of

b
E[®(a)] :/ f(@(z, ), P, (x, ), x)dx,

[OE[;E(Q)] } o

The o dependence is containeddr{z, «) and®,(z, ) meaning that

OE[®()]] [ [0f 00  Of 0P,
[ da ]_/a (a_q>a_a+ac1>xaa>dm'

We have defined

and thereby

Using
0®(r,a)
80[ - 77(33)7
and

0P, (z, ) _ d(n(z))

Oa dr

OB[®()]] _ [*(0f of d(n(x))
[ oo | / 26" go —ar )
Integrate the second term by parts

b of din(x)) , of w [* . d Of
[ e = nfa) -l / ) 7,

and since the first term dissappears dug(to = n(b) = 0, we obtain

] [ (54 Yo

[Lg}y)q = /ab (g—é - %g) n(w)ds =0,

in the integral gives
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16.2 — Hartree-Fock theory

can also be written as

N 2 R R T2 P

The condition for a stationary value is thus a partial défdgral equation

of d Of
00 dx 0P,

=0,

known as Euler’s equation. Can easily be generalized to nauiables.
Consider a function of three independent varialjiés, y, z) . For the functionf to be an extreme
we have

df = 0.
A necessary and sufficient condition is
of _of _of _
or Oy 0Oz ’
due to
df = fd + 8—fd + a—f

In physical problems the variablesy, z are often subject to constraints (in our cdsand the orthogo-
nality constraint) so that they are no longer all independiiis possible at least in principle to use each
constraint to eliminate one variable and to proceed withvaared smaller set of independent varables.
The use of so-called Lagrangian multipliers is an alteweatechnique when the elimination of of
variables is incovenient or undesirable. Assume that we havequation of constraint on the variables

x7y7z

¢(z,y,2) =0,
resulting in
0¢ 0¢ 0¢
do = o —dz + 8_d Y+ E?_d
Now we cannot set anymore
of _9of _0of _
or oy 0z

if df = 0 is wanted because there are now only two independent vestalfAssumer andy are the
independent variables. Thdh is no longer arbitrary.
However, we can add to
Of 1o 0F 4, OF

df—>—— 5@ Yy ézd%
a multiplum ofde, viz. Ad¢, resulting in
df + \d¢ = (gwg‘ﬁ)d +(?+/\?)d +(?+A%) =0.
Our multiplier is chosen so that
Z?f =0.
82 82
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However, we tookix anddy as to be arbitrary and thus we must have

of 09
7 +>\a—w =0,
and of 96

When all these equations are satisfigtl= 0. We have four unknowns;, y, z and . Actually we want
only z, v, z, A need not to be determined, it is therefore often called Laggs undetermined multiplier.
If we have a set of constrainty, we have the equations

0 0
f' + E Ak Ok 0.
! k

ox ox; -

Let us specialize to the expectation value of the energy fier marticle in three-dimensions. This
expectation value reads

E = /dmdydzqﬁ*(éﬁ,yvz)g?ﬁ(ﬂ%y» Z)v

with the constraint

[ dzdyde @ 20w 2) = 1

and a Hamiltonian )
H= —§V2 + Vi(z,y, 2).

| will skip the variablest, y, z below, and write for exampl& (z, y, z) = V.
The integral involving the kinetic energy can be writtenifiawe assume periodic boundary conditions
or that the function) vanishes strongly for large valuesafy, z,

/dwdydzz/)* <—%V2> Ydxdydz = V| + /dwdydzévw*vw.

Inserting this expression into the expectation value ferghergy and taking the variational minimum we
obtain

1
0FE =46 {/d:ﬂdydz <§V1/)*V¢ + V?/)*q/)) } = 0.
The constraint appears in integral form as

/ dxdydz1y ™) = constant,

and multiplying with a Lagrangian multipliex and taking the variational minimum we obtain the final
variational equation

5 {/ dxdydz (%w*w + VY — w*w) } —0.
Introducing the functiory
F= VT4 VI~ M = (i + U, + ) + VU~ M,
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where we have skipped the dependenceron z and introduced the shorthang,, », and+, for the
various derivatives.
For«* the Euler equation results in

of 0 of 0 of o of

oY Ox oy Oy oy 0z 0P; =9

which yields
1
_5(1/}1’1: + wyy + ¢zz) + VI/} = )‘1/}

We can then identify the Lagrangian multiplier as the enexfyjthe system. Then the last equation is
nothing but the standard Schrédinger equation and thetiaré approach discussed here provides a
powerful method for obtaining approximate solutions ofwae function.

Obtaining the Hartree-Fock equations

The calculus of variations involves problems where the tityato be minimized or maximized is an
integral. In our case the functional of EG._(18.22) is staiy with respect to variations of the single-
particle wave functions, subject to t&? conditions imposed by the orthogonality requirements,

/wu(r)wu(r)dr =duv

In the general case we have an integral of the type

b
B= [ fota). 5 )i,

where E/ is the quantity which is sought minimized or maximized. Thelgem is that althouglf is
a function of the variableg, dy/0x andzx, the exact dependence gfon x is not known. This means
again that even though the integral has fixed limi@ndb, the path of integration is not known. In our
case the unknown quantities are the single-particle wavetiions and we wish to choose an integration
path which makes the functional[®] stationary. This means that we want to find minima, or maxima o
saddle points. In physics we search normally for minima. task is therefore to find the minimum of
E[®] so that its variatio@ E is zero subject to specific constraints. In our case the @intt appear as
the integral which expresses the orthogonality of the sipgirticle wave functions. The constraints can
be treated via the technique of Lagrangian multipliers

Let us specialize to the expectation value of the energy fer marticle in three-dimensions. This
expectation value reads

E:/dwdydzw*(w,y,z)]ffw(x,y,z),
with the constraint
/ drdydzp* (z,y, 2y, 2) = 1,

and a Hamiltonian )
H= —§V2 + Vi(x,y, 2).

The integral involving the kinetic energy can be writteniwie assume periodic boundary conditions or
that the function) vanishes strongly for large valuesofy, z,

/dwdydzw*(x,y, 2) <—%V2> U(x,y, z)drdydz = /dmdydzévw*vw.
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Inserting this expression into the expectation value ferghergy and taking the variational minimum we
obtain

5B = § { [ dzdya: (%w*w V(e 2 @,y 2, z)) } —0.

The constraint appears in integral form as

/dwdydzz/)* (z,y,2)Y(x,y, z) = constant,

and multiplying with a Lagrangian multipliex and taking the variational minimum we obtain the final
variational equation

5 {/dwdydz <%v¢*v¢ + V(l‘,y, Z)¢*(ﬂj‘,y, Z)?ﬂ(l‘,y, Z) - /\T,Z)*(ZL',y, z)w(mvyv Z)> } =0.

(16.23)
Introducing the functiory

f = GV VA (@, 5,20 (@5, 2L, 3, 2) - (0, 200, 2) = 5 (U5t ) VX7,

where we have skipped the dependenceropn z and introduced the shorthangd,, , and+, for the
various derivatives. The Euler-Lagrange equations, seexample Ref. [78], result in

of 0 of 0 of o of

oY Ox Yy Oy oy 0z 0P; -

which yields
1
= 5 (W + Yy +122) + VI = A, (16.24)

We can then identify the Lagrangian multiplier as the enexfjthe system. Then the last equation is
nothing but the standard Schrédinger equation and thetiearé approach discussed here provides a
powerful method for obtaining approximate solutions ofwaee function.

If we generalize the Euler-Lagrange equations to more biasaand introducéV? Lagrange multi-
pliers which we denote by,,, we can write the variational equation for the functionalbef. (I6.2P)
as

N N
SE—=> ) ewd / Py, = 0. (16.25)

p=1v=1

For the orthogonal wave functions, this reduces to
N
0E = e.d / Wby, = 0. (16.26)
pn=1

Variation with respect to the single-particle wave funetie,, yields then
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16.2 — Hartree-Fock theory

N » A . .
;/5¢uhi¢pdxi t3 ZZ [/ 5¢u¢y;j¢u%d(xi><j) - /5¢uwyﬁ'jwywudridrj]

p=1v=1

N . 1 N N 1 1
+>° / U hidpdr; + 522 { / U — Sy dridr; — / w;wl’i;wuéwudridrj]
u=1 v ]

pn=1v=1
N N
-> E, / SYtpudxi — Y B, / Py dr; = 0
p=1 p=1
(16.27)

Although the variationgt andj* are not independent, they may in fact be treated as suchaso th
the terms dependent on eithief andd* individually may be set equal to zero. To see this, simply re-
place the arbitrary variatiodx) by id1, so thatyy* is replaced by-id)*, and combine the two equations.
We thus arrive at the Hartree-Fock equations

1 z 1
—§Vz2 s + Z:l/@(rj);j%(rj)drj] Py (xi)
v= (16.28)

N
- [Z / w:m%wj)drj] blri) = ().
v=1 kY

Notice that the integratiorf dr; implies an integration over the spatial coordinateand a summa-
tion over the spin-coordinate of electrgn

The two first terms are the one-body kinetic energy and trarele-nucleus potential. The third direct
term is the averaged electronic repulsion of the other mlast This term is identical to the Coulomb
integral introduced in the simple perturbative approaciéohelium atom. As written, the term includes
the ’'self-interaction’ of electrons when= j. The self-interaction is cancelled in the fourth term, @& th
exchangderm. The exchange term results from our inclusion of thdiainciple and the assumed de-
terminantal form of the wave-function. The effect of excparis for electrons of like-spin to avoid each
other. A theoretically convenient form of the Hartree-Feckiation is to regard the direct and exchange
operator defined through

Vi(r;) = / w;(rj)%j%(rj)drj (16.29)
and
Ve () g(e:) ( / U3 (e5) g dr]> Du(ry), (16.30)
respectively. The functiop(r;) is an arbitrary functlon, and by the substitutigfr;) = ¢, (r;) we get
Ve ey (1) = ( [ vt w,,(rj)drj) (). (16.31)
We may then rewrite the Hartree-Fock equations as
HIF 4, (r;) = e, (r3), (16.32)
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with
N N
HIF = hi +> Vi) = > Ver(r), (16.33)
pn=1 pn=1

and wheréy; is defined by equatioh (18.7).

16.2.2 Solving the Hartree-Fock Equations
Planned finished spring 2009.

16.3 Density functional theory

Hohenberg and Kohn proved that the total energy of a systelmdimg that of the many-body effects of
electrons (exchange and correlation) in the presence tif stdernal potential (for example, the atomic
nuclei) is a unique functional of the charge density. Theimimnm value of the total energy functional is
the ground state energy of the system. The electronic cluEggty which yields this minimum is then
the exact single particle ground state energy.

It was then shown by Kohn and Sham that it is possible to replae many electron problem by an
exactly equivalent set of self consistent one electrontmug The total energy functional can be written
as a sum of several terms:

for a fixed set of atomic nuclei. The first two terms are thegitad Coulomb interaction between
the electrons and ions and between electrons and otheragiggespectively, both of which are simply
functions of the electronic charge density. This equaticemnialogous to the Hartree method, but the term
contains the effects of exchange and correlation and aéssitigle particle kinetic energy:

In the different HF methods one works with large basis sdt$s poses a problem for large systems.
An alternative to the HF methodsdensity functional theor¢DFT) [105]. DFT takes into account elec-
tron correlations but is less demanding computationabyntor example Cl and MP2.

The electronic energy is said to be dunctionalof the electronic densityi[p], in the sense that for a
given functionp(r), there is a single corresponding energy. Hehenberg-Kohn theorefi06] con-
firms that such a functional exists, but does not tell us thm fof the functional. As shown by Kohn and
Sham, the exact ground-state enefypf an /NV-electron system can be written as

N
E[p] = —%Z/\I/f(rl)V%\I/i(rl)drl—/%p(rl)drl—i—%/%drldrz—i—Exc[p] (1634)
i=1

with ¥; the Kohn-Sham(KS) orbitals. The ground-state charge density is given by

plr) = D _%i(x)P, (16.35)

where the sum is over the occupied Kohn-Sham orbitals. Tétetdam, £z x[p], is theexchange-
correlation energywhich in theory takes into account all non-classical etattelectron interaction.
However, we do not know how to obtain this term exactly, arelfarced to approximate it. The KS
orbitals are found by solving thkohn-Sham equationsvhich can be found by applying a variational
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principle to the electronic energl|p]. This approach is similar to the one used for obtaining the HF
equation in the previous section. The KS equations read

{—%V% _Z + / p(rz)dfz + VXC(I'I)} Ui(ry) = W;(ry) (16.36)
1 12

wheree; are the KS orbital energies, and where ¢ixehange-correlation potentig given by

Vel = 22Xl (16.37)

op
The KS equations are solved in a self-consistent fashionarfety of basis set functions can be used,
and the experience gained in HF calculations are often LiSgfie computational time needed for a DFT
calculation formally scales as the third power of the nunadfdrasis functions.
The main source of error in DFT usually arises from the appnaie nature offx <. In thelocal
density approximatiofLDA) it is approximated as

Exc = [ plv)exclowldr (16.38)

wheree x ¢ [p(r)] is the exchange-correlation energy per electron in a homeames electron gas of con-
stant density. The LDA approach is clearly an approximati®the charge is not continuously distributed.
To account for the inhomogeneity of the electron densitypr@atal correction involving the gradient of
p is often added to the exchange-correlation energy.

16.4 \Variational Monte Carlo studies with importance sanmu

Finished Spring 2009.

16.5 Exercises and projects

Project 16.1: Hartree-Fock and variational Monte Carlo

The aim of this project is to use the Variational Monte CaN®IC) method and evaluate the ground
state energy of the atoms Helium, Beryllium and Neon.

We labelr; the distance from electron 1 to the nucleus and similarighe distance between electron
2 and the nucleus. The contribution to the potential enargm fthe interactions between the electrons
and the nucleus is

2 (16.39)

V(r,rm) =——— =4+ —, (16.40)

A__Y1_Va_ 2 _ L (16.41)
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and Schrédinger’s equation reads

Hy = Ev. (16.42)

All equations are in so-called atomic units. The distangesdr,, are dimensionless. To have energies
in electronvolt you need to multiply all results withx E,, whereEy = 13.6 eV. The experimental
binding energy for helium in atomic units a.u.fi%, = —2.9037 a.u..

la) Set up the Hartree-Fock equations for the ground statkeoHelium atom with two electrons

b)

d)

(e)

420

occupying the hydrogen-like orbitals with quantum numbers 1, s = 1/2 andl = 0. There
is no spin-orbit part in the two-body HamiltoniatMake sure to write these equations using
atomic units.

Write a program which solves the Hartree-Fock equationte Helium atom. Use as input for the
first iteration the hydrogen-like single-particle wavedtian, with analytical shape exp (—ar;)
wherer; represents the coordinates of electiormhe details of all equations which you need to
program will be discussed during the lectures. Comparedbeglts with those obtained using the
hydrogen-like wave functions only.

Our next step is to perform a Variational Monte Carlo cltian of the ground state of the helium
atom. In our first attempt we will use a brute force Metropshsnpling with a trial wave function
which has the following form

Yp(ry,ra,r12) = exp (—a(ry + o)) exp (ﬁ), (16.43)

with « andg as variational parameters.

Your task is to perform a Variational Monte Carlo calculatiosing the Metropolis algorithm to
compute the integral

~

_ [ dridraii(re,re,r12)H(r1,r2,r12)¢7(r1, 12, T12)
[ drydraii(ry,r2,r12)Yr(r1,r2,112)

(E) (16.44)

In performing the Monte Carlo analysis you should use blogkis a technique to make the sta-
tistical analysis of the numerical data. The code has tomyparallel. A code for doing a VMC
calculation for the Helium atom can be found on the webpagdghetourse, see under programs.

Repeat the last step but use now importance sampling.y $theddependence of the results as
function of the time stept.

Our final step is to replace the hydrogen-like orbits in @&.43) with those obtained from b)
by solving the Hartree-Fock equations. This leads us to onby variational parametefi. The
calculations should include parallelization, blockinglamportance sampling. There is no need to
do brute force Metropolis sampling.

Compare the results with those from c¢) and the Hartree-Fesldts from b). How important is the
correlation part?

Here we will focus on the Neon and Beryllium atoms. It is carigat to make modules or classes
of trial wave functions, both many-body wave functions aingle-particle wave functions and the
guantum numbers involved,such as spin, orbital momentuhpéancipal quantum numbers.
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9)

(h)

The new item you need to pay attention to is the calculatioth®fSlater Determinant. This is an
additional complication to your VMC calculations. If wedtito hydrogen-like wave functions,
the trial wave function for Beryllium can be written as

4
rea,ra.ra, ) = Det (00(r2), 6a(r2), 1 (r2). 61(ra)) [ Texw (52— ). (16.49)
i<j )

where theDet is a Slater determinant and the single-particle wave fanstare the hydrogen wave
functions for thel s and2s orbitals. Their form within the variational ansatz are givgy

P1s(ry) = e ", (16.46)

and
Pas(ry) = (1 — ari/2) e 7i/2, (16.47)

For Neon , the trial wave function can take the form

10
Q/JT(I'l, ra,... ,I‘l()) = Det (¢1(r1), ¢2(I‘2), e ,qbl(](rlo)) Hexp <W> 5 (1648)
i<j 4

In this case you need to include thg wave function as well. It is given as

pap(ri) = arje Ti/2, (16.49)

Observe that; = /17 + 17 +77.

Set up the Hartree-Fock equations for the ground statieeoBeryllium and Neon atoms with four

and ten electrons, respectively, occupying the respehtrdeogen-like orbitals. There is no spin-

orbit part in the two-body Hamiltonian. Find also the expental ground state energies using
atomic units.

Solve the Hartree-Fock equations for the Beryllium andiNatoms. Use again as input for the first
iteration the hydrogen-like single-particle wave funoti@€ompare the results with those obtained
using the hydrogen-like wave functions only (first iteraio

Write a function which sets up the Slater determinantHeryllium. Neon is optional. Use the
Hartree-Fock single-particle wave functions to set up tlade® determinant. You have only one
variational parameter;. Compute the ground state energies of Neon and Berylliunoasdid
for the Helium atom in e). The calculations should includeapalization, blocking and impor-
tance sampling. Compare the results with the Hartree-Fesklts from g). How important is the
correlation part? Is there a difference compared with HigfuComment your results.
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Chapter 17

Many-body methods for Bose-Einstein
condensation

17.1 Bose-Einstein condensation in atoms

The spectacular demonstration of Bose-Einstein condens@EC) in gases of alkali atoni$Rb, 2*Na,
"Li confined in magnetic traps [107-109] has led to an explosibinterest in confined Bose systems.
Of interest is the fraction of condensed atoms, the natuthetondensate, the excitations above the
condensate, the atomic density in the trap as a function wip€eature and the critical temperature of
BEC,T.. The extensive progress made up to early 1999 is reviewedalip\® et al. [110].

A key feature of the trapped alkali and atomic hydrogen systes that they are dilute. The char-

acteristic dimensions of a typical trap ffRb is aj, = (h/me)% =1 -2 x 10* A (Ref. [107]).
The interaction betweefl Rb atoms can be well represented by its s-wave scatterimghlgig;,. This
scattering length lies in the ran@gé < ar, < 140ao Whereay = 0.5292 A is the Bohr radius. The
definite valuear, = 100aq is usually selected and for calculations the definite rafiatom size to
trap sizeary/any = 4.33 x 1073 is usually chosen [110]. A typicdl'Rb atom density in the trap is
n ~ 102 —10'* atoms/cm giving an inter-atom spacing~ 10* A. Thus the effective atom size is small
compared to both the trap size and the inter-atom spaciege¢dhdition for diIuteneSSn@}% ~ 106
wheren = N/V is the number density). In this limit, although the interactis important, dilute gas
approximations such as the Bogoliubov theory [111], vadiddmallna® and large condensate fraction
no = No/N, describe the system well. Also, since most of the atomsretteei condensate (except near
T,), the Gross-Pitaevskii equation [112, 113] for the condemgdescribes the whole gas well. Effects of
atoms excited above the condensate have been incorpordkeol the Popov approximation [114].

Most theoretical studies of Bose-Einstein condensate<CJBE& gases of alkali atoms confined in
magnetic or optical traps have been conducted in the framkeafahe Gross-Pitaevskii (GP) equation
[112, 113]. The key point for the validity of this descrigiids the dilute condition of these systems,
i.e., the average distance between the atoms is much l&@ethe range of the inter-atomic interaction.
In this situation the physics is dominated by two-body s@is, well described in terms of thewave
scattering lengthu. The crucial parameter defining the condition for dilutenesthe gas parameter
z(r) = n(r)a®, wheren(r) is the local density of the system. For low values of the ayegas parameter
T4, < 1073, the mean field Gross-Pitaevskii equation does an excégtibrisee for example Ref. [110]
for a review). However, in recent experiments, the localgmameter may well exceed this value due to
the possibility of tuning the scattering length in the preseof a Feshbach resonance [115].

Under such circumstances it is unavoidable to test the acgwf the GP equation by performing
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microscopic calculations. If we consider cases where tiggeameter has been driven to a region were
one can still have a universal regime, i.e., that the spegtifipe of the potential is unimportant, we may
attempt to describe the system as dilute hard spheres wiaraetér coincides with the scattering length.
However, the value of: is such that the calculation of the energy of the uniform fspldere Bose gas
would require to take into account the second term in the dewsity expansion [116] of the energy

densit
y E_2miait || | 128 (na®)V* (17.1)
V. o om 15\« ’ '

wherem is the mass of the atoms treated as hard spheres. For thefeagéoon systems, the validity
of this expansion has been carefully studied using Diffusitonte Carlo [117] and Hyper-Netted-Chain
techniques [118].

The energy functional associated with the GP theory is nbthivithin the framework of the local-
density approximation (LDA) by keeping only the first ternthe low-density expansion of Eq_(1VV.1)

2nh2a

h2
Ecp[¥] = /dr {% | VU (r) 2 +Vigap(r) | U |2 = R (17.2)

where )
Virap(r) = im(wiaﬁ + Wil/Q + szQ) (17.3)

is the confining potential defined by the two angular freqies, andw,. The condensate wave
function ¥ is normalized to the total number of particles.

By performing a functional variation ofqp[¥] with respect to?* one finds the corresponding
Euler-Lagrange equation, known as the Gross-PitaevsR) gguation

2 Arh2a
|:—%V2 + ‘/trap(r) +

| ¥ 12] U =0, (17.4)
m
wherep is the chemical potential, which accounts for the consemaif the number of particles. Within
the LDA framework, the next step is to include into the endtgyctional of Eq.[[IZR) the next term of
the low density expansion of E._{1VV.1). The functionalaton gives then rise to the so-called modified
GP equation (MGP) [119]

K2 Amh? 32a3/2
—V? + Virap(r) + 7Tma|‘1’|2 (HLI‘PI

5 =y U= ul. (17.5)

The MGP corrections have been estimated in Ref. [119] iniadtal condensate in the range of the
scattering lengths and trap parameters from the first JilFeaments with Feshbach resonances. These
experiments took advantage of the presence of a Feshbawtares in the collision of tw&’Rb atoms
to tune their scattering length [115]. Fully microscopitcatations using a hard-spheres interaction have
also been performed in the framework of Variational andugifbn Monte Carlo methods [120-123].

17.2 Exercises and projects

Project 17.1: Bose-Einstein condensation of atoms

The aim of this project is to use the Variational Monte CaN®IC) method and evaluate the ground
state energy of a trapped, hard sphere Bose gas for diffatenbers of particles with a specific trial
wave function. See Ref. [64] for a discussion of VMC.
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This wave function is used to study the sensitivity of corsdd@ and non-condensate properties to
the hard sphere radius and the number of particles. The teapilvuse is a spherical (S) or an elliptical
(E) harmonic trap in three dimensions given by

_J) 3 r? (S)
Vear(r) = { ; [who(ac +y?) +wiz? (E) (17.6)

where (S) stands for symmetric and

H = Z <—VZ + ‘/ext rz > +Z‘/;nt I’Z,I'] (177)

1<j

as the two-body Hamiltonian of the system. Here defines the trap potential strength. In the case of
the elliptical trap,V..¢(x, y, 2), wr, = w is the trap frequency in the perpendiculargrplane ando,

the frequency in the direction. The mean square vibrational amplitude of a sitigison afl’ = 0K

in the trap [IZB) is< 22 >= (h/2mwy,) SO thatan, = (h/mwp,)? defines the characteristic length
of the trap. The ratio of the frequencies is denotee- w./w, leading to a ratio of the trap lengths
(a1/az) = (w:/wp)? = VA,

We represent the inter boson interaction by a pairwise, bairel potential

o rp—ri<a
Vins(lrs =) = { I 7.9

whereq is the hard core diameter of the bosons. Cleasly;(|r; —r;|) is zero if the bosons are separated
by a distancer; — r;| greater tham but infinite if they attempt to come within a distange — r;| < a.
Our trial wave function for the ground state with atoms is given by

Ur(R) = Ur(ry,ra,.. vy, 0, 8) = [ [ gl B,v0) [ [ £(a, s — x5)), (17.9)
i i<j
wherea and 3 are variational parameters. The single-particle wavetfonds proportional to the har-
monic oscillator function for the ground state, i.e.,

gla, B,v;) = exp [—a(z} + yi + 62])]. (17.10)

For spherical traps we haveé = 1 and for non-interacting bosons & 0) we havea = 1/2a%w. The
correlation wave function is

0 ri—r;| <a
f(%’l'i—l‘j‘):{ (- =) |ri_r;| . (17.11)
a) Find analytic expressions for the local energy
1
E ——HU 17.12

for the above trial wave function of EQ_{1¥.9). Compute dtsmanalytic expression for the drift
force to be used in importance sampling

2V

F—
U

(17.13)
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b)

c)

426

The tricky part is to find an analytic expressions for theddive of the trial wave function

Lt Nv2\11 R

for the above trial wave function of EQ.(17.9). We rewrite
\IIT(R) = \I/T(I'l,l'g, ... N, aaﬁ) = Hg(avﬁa I'i) Hf(av |ri - I'j|),
i i<j
as

= [Toter porgees e

where we have defineq; = |r; — r}] and
friy) = e2i<s Uria)
and in our case

gla, B,1;) = e @@V — ().

The first derivative becomes

ViUr(R) = Vio(ry) | ] o) | exi<i ™) + [] é(ri)eXi<s 0] >~ Tgu(ryj)
i#k i j#k
We leave it as an exercise for the reader to find the expre$sidhe sceond derivative. The final
expression is

1, _ Vis(rr) | Vio(ry) Tk
A e T T ;m (rig) | +

rp —r;)(rpy —r 2
Z (rx )(k: J) (rri)u rkj —I—Z< (7k5) - (Tk’])>

ik "kiTkj i#h
You need to get the analytic expression for this expressgnguthe harmonic oscillator wave
functions and the correlation term defined in the project.

Write a Variational Monte Carlo program which uses stadddetropolis sampling and compute
the ground state energy of a spherical harmonic oscillgtes () with no interaction. Use natural
units and make an analysis of your calculations using bahatralytic expression for the local
energy and a numerical calculation of the kinetic energggiaumerical derivation. Compare the
CPU time difference. You should also parallelize your cotiee only variational parameter is
Perform these calculations fof = 10, 100 and500 atoms. Compare your results with the exact
answer.

We turn now to the elliptic trap with a hard core interactidVe fix, as in Refs. [120, 124}/ a,, =
0.0043. Introduce lengths in units afy,,,  — 7/ap, and energy in units ofwy,. Show then that
the original Hamiltonian can be rewritten as

N
1
H=3 2 (=Vital+9; +7°2) + Y Viaellri —xj]). (17.14)
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What is the expression foy? Choose the initial value fg8 = v = 2.82843 and set up a VMC
program which computes the ground state energy using tidevave function of EqI{I7]19). using
only « as variational parameter. Use standard Metropolis samplimd vary the parameter in
order to find a minimum. Perform the calculations fgr= 10,50 and N = 100 and compare
your results to those from the ideal case in the previousceseerin actual calculations employing
e.g., the Metropolis algorithm, all moves are recast into¢hosen simulation cell with periodic
boundary conditions. To carry out consistently the Metfigpmoves, it has to be assumed that the
correlation function has a range shorter thiaf2. Then, to decide if a move of a single particle is
accepted or not, only the set of particles contained in arspifeadiusL /2 centered at the referred
particle have to be considered.

d) We repeat exercise c), but now we replace the brute fordeollais algorithm with importance
sampling based on the Fokker-Planck and the Langevin emsatDiscuss your results and com-
ment on eventual differences between importance samptiddpaute force sampling.

Your code should reproduce the results of Refs. [120, 124].

Project 17.2: Liquid*He

Liquid “He is an example of a so-called extended system, with an tafinimber of particles. The
density of the system varies from dilute to extremely derisis fairly obvious that we cannot attempt
a simulation with such degrees of freedom. There are howesags to circumvent this problem. The
usual way of dealing with such systems, using concepts ftatisical Physics, consists in representing
the system in a simulation cell with e.g., periodic boundasgditions, as we did for the Ising model. If
the cell has lengtli, the density of the system is determined by putting a givenber of particlesV in

a simulation cell with volumd.3. The density becomes then= N/L3.

In general, when dealing with such systems of many intergqiarticles, the interaction itself is not
known analytically. Rather, we will have to rely on pararizttions based on e.g., scattering experi-
ments in order to determine a parametrization of the p@kstiergy. The interaction between atoms
and/or molecules can be either repulsive or attractiveeddpg on the distanc& between two atoms
or molecules. One can approximate this interaction as

A B

R™ R™’
wherem,n are some integers andl, B constans with dimension energy and length, and with units in
e.g., evVnm. The constant$, B and the integers:, n are determined by the constraints that we wish to
reproduce both scattering data and the binding energy ch giyen molecule. It is thus an example of
a parametrized interaction, and does not enjoy the stathsinf a fundamental interaction such as the
Coulomb interaction does.

A well-known parametrization is the so-called Lennarde®potential

Vis(R) = de { (%)12 - (%)6} (17.16)

wheree = 8.79 x 10~* eV ando = 0.256 nm for helium atoms. Fig_I7.1 displays this interaction
model. The interaction is both attractive and repulsive extdbits a minimum at,. The reason why we
have repulsion at small distances is that the electrons andifferent helium atoms start repelling each
other. In addition, the Pauli exclusion principle forbidetelectrons to have the same set of quantum
numbers.

V(R) = (17.15)
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Figure 17.1: Plot for the Van der Waals interaction betweelium atoms. The equilibrium position is
ro = 0.287 nm.

Let us now assume that we have a simple trial wave functioheofdrm

N
Yr(R) =[] £0ry), (17.17)

i<j
where we assume that the correlation functfgn;;) can be written as
Frij) = e 2®/mi)" (17.18)

with b being the only variational parameter. Can we fix the value oking the 'cusp’-conditions dis-
cussed in connection with the helium atom? We see from tha furthe potential, that it diverges at
small interparticle distances. Since the energy is fintitgans that the kinetic energy term has to cancel
this divergence at smaill Let us assume that electrohand; are very close to each other. For the sake
of convenience, we replaeg; = r. At smallr we require then that

1
— WVQ f(ry+V(r)=0. (17.19)
In the limit» — 0 we have
n2pn o\ 12
— ot <;) —0, (17.20)
resulting inn = 5 and thus
Flrig) = e~ 2 /i)’ (17.21)
with
N 1 5
Yr(R) = [[e 2, (17.22)
1<j
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as trial wave function. We can rewrite the above equation as

vr(R) = e 2 3 ik, (0/ri)° _ om5 I ulris) (17.23)
with
u(rij) = (b/ri;)°.

For this variational wave function, the analytical expresdor the local energy is rather simple. The
tricky part comes again from the kinetic energy given by

_ 1
Yr(R)

It is possible to show, after some tedious algebra, that

V27 (R). (17.24)

Yr(R

Vipr(R) = —10b° Z - (17.25)

1 i<k Tik

B ¢T(R)
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Appendix A

Additional C++, Python and Fortran
programming features

A.1 Classes, templates and Blitz++

In Fortran a vector or matrix start with but it is easy to change a vector so that it starts with zero or

even a negative number. If we have a double precision Foveator which starts at-10 and ends at

10, we could declare it aREAL (KIND =8):: vector(-10:10) Similarly, if we want to start at zero and end

at 10 we could writeREAL (KIND =8):: vector(0:10) We have also seen that Fortran allows us to write a

matrix additionA = B + C asA =B + C. This means that we have overloaded the addition operator so
that it translates this operation into two loops and an amdf two matrix elements;; = b;; + ¢;;.

The way the matrix addition is written is very close to the weas express this relation mathemat-
ically. The benefit for the programmer is that our code iseras read. Furthermore, such a way of
coding makes it more likely to spot eventual errors as well.

In Ansi C and C++ arrays start by default fram= 0. Moreover, if we wish to add two matrices we
need to explicitely write out the two loops as

for (i=0 ; i < n ; i++) {
for(j=0 ; j < n ; j++) {
afi][jl=b[i][jl+c[i][]j]

}

However, the strength of C++ over programming languagesd@lkand Fortran 77 is the possibility
to define new data types, tailored to some particular probleia new data types and overloading of
operations such as addition and subtraction, we can eafilyedsets of operations and data types which
allow us to write a matrix addition in exactly the same way &weould do in Fortran. We could also
change the way we declare a C++ matrix elemesnfs from a[i][j] to saya(i, j), as we would do in
Fortran. Similarly, we could also change the default ramgm® : n — 1to 1 : n.

To achieve this we need to introduce two important entitie€++ programming, classes and tem-
plates.

The function and class declarations are fundamental cesmeafhin C++. Functions are abstractions
which encapsulate an algorithm or parts of it and perfornti§ipgasks in a program. We have already
met several examples on how to use functions. Classes cagfinedlas abstractions which encapsulate
data and operations on these data. The data can be very cotapdestructures and the class can contain
particular functions which operate on these data. Cladkms therefore for a higher level of abstrac-
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tion in computing. The elements (or components) of the dagia are the class data members, and the
procedures are the class member functions.

Classes are user-defined tools used to create multi-pugudseare which can be reused by other
classes or functions. These user-defined data types catdtan(variables) and functions operating on
the data.

A simple example is that of a point in two dimensions. The datald be ther andy coordinates
of a given point. The functions we define could be simple reathvarite functions or the possibility to
compute the distance between two points.

The two examples we elaborate on bdlatemonstrate most of the features of classes. We develop
first a class callecComplexwhich allows us to perform various operations on complexaides. In
appendiXA we extend our discussion of classes to define a ekgor_operationsvhich allows us to
perform various operations on a user-specified one-dimakiarray, from declarations of a vector to
mathematical operations such as additions of vectors.

The classes we define are easy to use in other codes and/oclagses and many of the details which
would be present in C (or Fortran 77) codes are hidden inkielelass. The reuse of a well-written and
functional class is normally rather simple. However, tatgva given class is often complicated, especially
if we deal with complicated matrix operations. In this texd will rely on ready-made classes in C++ for
dealing with matrix operations. We have chosen to use the-Blilibrary, discussed below. This library
hides for us many low-level operations with matrices andoms¢ such as matrix-vector multiplications
or allocation and deallocation of memory. Such librariekenithen easier to build our own high-level
classes out of well-tested lower-level classes.

The way we use classes in this text is close taM@DULE data type in Fortran and we provide some
simple demonstrations of the latter as well in appefdix A.

In this text we will mainly use classes to encapsulate speoffierations, but will not use the full
power such as inheritance and other object-oriented pmogiag concepts. For examples of the latter
see Refs. [19-21]

A.1.1 The Complex class

As remarked in chaptéll 2, C++ has a class complex in its stdrideplate library (STL). The standard
usage in a given function could then look like

/1 Program to calculate addition and multiplication of twoomplex numbers

using namespacestd;

#include <iostream >

#include <cmath>

#include <complex>

int main()

{
complex<double> x(6.1,8.2), y(0.5,1.3);
/] write out x+y
cout << x + y << %y << endl;
return O;

}

where we add and multiply two complex numbers= 6.1 + 8.2 andy = 0.5 + 21.3 with the obvious
resultsz = x +y =6.6+129.5andz =z - y = —7.61 +:12.03. In Fortran we would declare the above

These examples are taken from the course INF-VERK383(hws&e: //heim.ifi.uio.no/ hpl/INF- VERK4830/|for
more information.
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A.1 - Classes, templates and Blitz++

variables a€OMPLEX(DPC):: x(6.1,8.2), y (0.5,1.3)

The library Blitz++ includes an extension of the complexssldo operations on vectors, matrices
and higher-dimensional arrays. We recommend the use aftBlitvhen you develop your own codes.
However, writing a complex class yourself is a good pedarpdgixercise.

We proceed by splitting our task in three files.

— We define first a header file complex.h which contains the datobams of the class. The header
file contains the class declaration (data and function€)adation of stand-alone functions, and all
inlined functions, starting as follows

#ifndef Complex_H

#define Complex_H

/1l various include statements and definitions

#include <iostream > /!l Standard ANSIC++ include files
#include <new>

#include

class Complex

{...

definition of variablesand their character
}.

/1 declarations of various functions used by the class

#endif

— Next we provide a file complex.cpp where the code and algustbf different functions (except
inlined functions) declared within the class are writteteTiles complex.h and complex.cpp are
normally placed in a directory with other classes and liesawe have defined.

— Finally,we discuss here an example of a main program whieh tiss particular class. An example
of a program which uses our complex class is given below. itiqudar we would like our class
to perform tasks like declaring complex variables, writimgt the real and imaginary part and
performing algebraic operations such as adding or muitiglywo complex numbers.

#include "Complex.h"
other includeand declarations
int main ()
{
Complex a(0.1,1.3); I/l we declare a complex variable a
Complex b(3.0), ¢(5.0-2.3); // we declare complex variables b and
c
Complex d = b; I/l we declare a new complex variable d
cout << "d=" << d << ", a=" << a << ", b=" << b << endl;
d = axc + b/a; [/ we add, multiply and divide two complex numberp
cout << "Re(d)=" << d.Re() <<", Im(d)=" << d.Im() << endl; [/ write
out of the real and imaginary parts
}

We include the header file complex.h and define four diffecemplex variables. These asie=
0.1 +:1.3, b = 3.0 + 20 (note that if you don't define a value for the imaginary pais ik set to
zero),c = 5.0 — 2.3 andd = b. Thereafter we have defined standard algebraic operatiahthe
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member functions of the class which allows us to print outrdad and imaginary part of a given
variable.

To achieve these features, let us see how we could define thigleo class. In C++ we could define
a complex class as follows

class Complex
{ .
private :
double re, im; // real and imaginary part
public:
Complex (); /I Complex c;
Complex (double re, double im = 0.0); // Definition of a complex variable
Complex (const Complex& c¢); /!l Usage: Complex c(a); /1l
equate two complex variables
Complex& operator= (const Complex& c); // ¢ = a; /I equate two complekx
variables, same as previous
~Complex () {} [/l destructor
double Re () const; /!l double real_part = a.Re();
double Im () const; /! double imag_part = a.Ilm();
double abs () const; /I double m = a.abs(); // modulus
friend Complex operator+ (const Complex& a, const Complex& b);
friend Complex operator— (const Complex& a, const Complex& b);
friend Complex operatorx (const Complex& a, const Complex& b);
friend Complex operator/ (const Complex& a, const Complex& b);
b

The class is defined via the statemelatss Complex We must first use the key wordass, which in
turn is followed by the user-defined variable na@wnplex The body of the class, data and functions, is
encapsulated within the parentheges};.

Data and specific functions can be private, which means tiegt tcannot be accessed from outside
the class. This means also that access cannot be inheritethéy functions outside the class. If we
use protected instead ofprivate, then data and functions can be inherited outside the cl@ks. key
word public means that data and functions can be accessed from outsidiagis. Here we have defined
several functions which can be accessed by functions eutiselclass. The declaratidend means that
stand-alone functions can work on privately declared e of the typgre, im). Data members of a
class should be declared as private variables.

The first public function we encounter is a so-called corstn which tells how we declare a variable
of type Complexand how this variable is initialized. We have chose threesipddies in the example
above:

1. A declaration likeComplex c;calls the member functio@omplex()which can have the following
implementation

Complex:: Complex () {re =im=0.0; }

meaning that it sets the real and imaginary parts to zero.e N way a member function is
defined. The constructor is the first function that is calldwwan object is instantiated.

2. Another possibility is

Complex:: Complex () {t
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which means that there is no initialization of the real andgmary parts. The drawback is that a
given compiler can then assign random values to a givenhlaria

3. A call like Complex a(0.1,1.3) means that we could call the member functioomplex@ouble,
double)as

Complex:: Complex (louble re_a, double im_a)
{re =re_a; im=im_a; }

The simplest member function are those we defined to extraceal and imaginary part of a variable.
Here you have to recall that these are private data, thaejsitivisible for users of the class. We obtain
a copy of these variables by defining the functions

double Complex:: Re () const { return re; }} // getting the real part

double Complex:: Im () const { return im; } // and the imaginary part

\end{Istlistingline}

Note that we have introduced the declaration \lstinlinmfst}. What
does it mean?

This declaration means that a varibale cannot be changedhiit a called
function.

If we define a variable as

\Istinline{const double p = 3;} and then try to change its value, we will
get an error when we

compile our program. This means that constant arguments umctions cannot
be changed.

\begin{lIstlisting}

I/l const arguments (in functions) cannot be changed:

void myfunc (const Complex& c)

{ c.re = 0.2; /« ILLEGAL!! compiler error ... %/ }

If we declare the function and try to change the valué.fty the compiler will complain by sending an
error message. If we define a function to compute the absadilie of complex variable like

double Complex:: abs () {return sqrt(rexre + im«im);}

without the constant declaration and define thereafter etifummyabsas

double myabs (const Complex& c)
{ return c.abs(); } // Not ok because c.abs() is not a const func.

the compiler would not allow the c.abs() call in myabs sit@mmplex::absis not a constant member
function. Constant functions cannot change the objec®sfTo avoid this we declare the functiabs
as

double Complex:: abs ()const { return sqrt(rexre + im«xim); }

Overloading operators

C++ (and Fortran) allow for overloading of operators. Thatams we can define algebraic operations
on for example vectors or any arbitrary object. As an examlector addition of thetype=a + b
means that we need to write a small part of code with a for-loggr the dimension of the array. We
would rather like to write this statement@as= a+b;as this makes the code much more readable and close
to eventual equations we want to code. To achieve this we toeextend the definition of operators.
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Let us study the declarations in our complex class. In ounriiction we have a statement like

d = b;, which means that we call.operator= (b) and we have defined a so-called assignment operator as

a part of the class defined as

Complex& Complex:: operator= (const Complex& c)
{

re = c.re;

im = c.im;

return xthis;
}

With this function, statements likeomplex d = b;or Complex d(b);make a new objeaf, which becomes
a copy ofb. We can make simple implementations in terms of the assighme

Complex:: Complex €onst Complex& c)
{ xthis = ¢; }

which is a pointer to "this object®this is the present object, sahis = ¢; means setting the present
object equal te, that isthis —>operator= (c);.

The meaning of the addition operater for Complex objects is defined in the functi@omplex
operator+ (constComplex& a,constComplex& b);// a+b The compiler translatas = a + b;intoc = operator
+ (a, b); Since this implies the call to function, it brings in an aduhial overhead. If speed is crucial
and this function call is performed inside a loop, then it wrendifficult for a given compiler to perform
optimizations of a loop. The solution to this is to inline @tions. We discussed inlining in chapfér 2.
Inlining means that the function body is copied directlyoitiie calling code, thus avoiding calling the
function. Inlining is enabled by the inline keyword

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Inline functions, with complete bodies must be written ia tieader file complex.h. Consider the case
= a + b;that is,c.operator= (operator+ (a,b)); If operator+, operator= and the constructaComplex(r,i)
all are inline functions, this transforms to

re + b.re;
im + b.im;

c.re

= a.
c.im = a.

by the compiler, i.e., no function calls
The stand-alone functiosperator+ is a friend of the Complex class

class Complex

{

friend Complex operator+ (const Complex& a, const Complex& b);

1

so it can read (and manipulate) the private data partsdim via

inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.re + b.re, a.im + b.im); }

Since we do not need to alter the re and im variables, we cathgeflues by Re() and Im(), and there
is no need to be a friend function
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inline Complex operator+ (const Complex& a, const Complex& b)
{ return Complex (a.Re() + b.Re(), a.lIm() + b.Im()); }

The multiplication functionality can now be extended to gimary numbers by the following code

inline Complex operatorx (const Complex& a, const Complex& b)

{
}

return Complex(a.reb.re — a.im«b.im, a.imkb.re + a.reb.im);

It will be convenient to inline all functions used by this ogir. To inline the complete expressiatb;,
the constructors angperator= must also be inlined. This can be achieved via the followilegg of code

inline Complex:: Complex () { re = im = 0.0; }
inline Complex:: Complex @ouble re_, double im_)
{ ...}

inline Complex:: Complex ¢€onst Complex& c)

{ ...}

inline Complex:: operator= (const Complex& c)

{ ...}

/I e, ¢, d are complex

e = cxd;

[/l first compiler translation:

e.operator= (operatorx (c,d));

/!l result of nested inline functions

/Il operator=, operator, Complex(double,h double=0):
e.re = c.red.re — c.imxd.im;

e.im = c.imkd.re + c.rexd.im;

The definitionsoperator— andoperator/ follow the same set up.
Finally, if we wish to write to file or another device a compleMmber using the simple syntax
cout << c; we obtain this by defining the effect ef< for a Complex object as

ostream& operator<< (ostream& o, const Complex& c)
{o<<"(" << c.Re() <<"," << c.Im() << ") "; return o0;}

Templates

The reader may have noted that all variables and some of tletidas defined in our class are declared
as doubles. What if we wanted to make a class which takesargey floating point numbers with single
precision? A simple way to achieve this is copy and paste lags@nd replaceouble with for example
int.

C++ allows us to do this automatically via the usage of teteglawhich are the C++ constructs for
parameterizing parts of classes. Class templates is ad&mijor producing classes. The declaration
consists of the keywora:mplate followed by a list of template arguments enclosed in brackéfe can
therefore make a more general class by rewriting our origikample as

template<class T>
class Complex

{

private:
T re, im; // real and imaginary part
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public:
Complex (); /l Complex c;
Complex (T re, T im = 0);// Definition of a complex variable;
Complex (const Complex& c); /Il Usage: Complex c(a); /1
equate two complex variables
Complex& operator= (const Complex& c¢); // ¢ = a; /I equate two complex
variables, same as previous
~Complex () {} [/l destructor
T Re () const; /I T real_part = a.Re();
T Im () const; /I T imag_part = a.lm();
T abs () const; /I'' Tm=a.abs(); // modulus
friend Complex operator+ (const Complex& a, const Complex& b);
friend Complex operator— (const Complex& a, const Complex& b);
friend Complex operatorx (const Complex& a, const Complex& b);
friend Complex operator/ (const Complex& a, const Complex& b);
b

What it says is thaComplexis a parameterized type wiffi as a parameter arilhas to be a type such as
double or float. The class complex is how a class template &naauld define variables in a code as

Complex<double> a(10.0,5.1);
Complex<int> b(1,0);

Member functions of our class are defined by preceding theerafrthe function with theemplate
keyword. Consider the function we definedGsnplex:: Complexdoublere_a, doubleim_a). We would
rewrite this function as

template<class T>
Complex<T>:: Complex (T re_a, T im_a)
{re =re_a; im=im_a; }

The member functions are otherwise defined following ongimaember function definitions.

To write a class like the above is rather straightforward.e Thass for handling one-dimensional
arrays, presented in appenfik A shows some of the additrsaibilities which C++ offers. However,
it can be rather difficult to write good classes for handlingtmees or more complex objects. For such
applications we recommend therefore the usage of read fitadries like Blitz++

Blitz++ http://www.oonumerics.org/blitz/ is a C++ library whose two main goals are to im-
prove the numerical efficiency of C++ and to extend the cotiweal dense array model to incorporate
new and useful features. Some examples of such extensiefiiexible storage formats, tensor notation
and index placeholders. It allows you also to write sevepalrations involving vectors and matrices in
a simple and clear (from a mathematical point of view) waye Way you would code the addition of
two matrices looks very similar to the way it is done in Famtr@he C++ programming language offers
many features useful for tackling complex scientific conmmuiproblems: inheritance, polymorphism,
generic programming, and operator overloading are sombeofrtost important. Unfortunately, these
advanced features came with a hefty performance pricetad:recently, C++ lagged behind Fortran’s
performance by anywhere from 20% to a factor of ten. It wasumaommon to read in textbooks on
high-performance computing that if performance mattdrentone should resort to Fortran, preferen-
tially Fortran 77. As a result, untill very recently, the @tion of C++ for scientific computing has been
slow. This has changed quite a lot in the last years and mddetncompilers with numerical libraries
have improved the situation considerably. Recent bendtsreltow C++ encroaching steadily on For-
tran’s high-performance monopoly, and for some benchmaZks- is even faster than Fortran! These

444


http://www.oonumerics.org/blitz/

A.1 - Classes, templates and Blitz++

results are being obtained not through better optimizinguuters, preprocessors, or language exten-
sions, but through the use of template technigques. By usimgpliates cleverly, optimizations such as
loop fusion, unrolling, tiling, and algorithm specialimat can be performed automatically at compile
time.

The features of Blitz++ which are useful for our studies &edynamical allocation of vectors and
matrices and algebraic operations on these objects. licpart if you access the Blitz++ webpage at
http://www.oonumerics.org/blitz/, we recommend that you study chapters two and three.

In this section we discuss several applications of the Blitlibrary and demonstrate the benefits
when handling arrays and mathematical expressions imglatrays.

Athttp://folk.uio.no/mhjensen/fys3150/2005/programs/blitz you will find examples of
makefiles, simple examples like those discussed here archthdibrary which contains the algorithms
discussed in this text. You can choose whether you want tdagnigitz++ fully or just use the more
old-fashioned C++ codes.

The example included here shows some of the versatility tvz-Bt when handling matrices. Note
that you need to define the path where you have store Blitz4erradbmmend that you study the exam-
ples available at the Blitz++ web page and the examples whitdw this text.

As an example, a float matrix is defined simply a&rray<float,2> A(r,r);. As the example shows
we can even change the range of the matrix from the standadhstarts ab and ends at — 1 to one
which starts at and ends at. This can be useful if you deal with matrices from a Fortradecor if you
wish to code your matrix operation following the way you irdke matrix elements.

You can also easily initialise to zero your matrix by simplsitimg A=0.;. Note also the way you can
fill in matrix elements and print out elements using one srggatement, instead of for example two for
loops. The following example illustrates some of theseuiesst.

http://folk.uio.no/mhjensen/fys3150/2005/blitz/examples/examplel.cpp

/1 Simple test case of matrix operations
/1 using Blitz++

#include <blitz/array.h>

#include <iostream >

using namespacestd;

using namespaceblitz;

int main()

{
/Il Create two 4x4 arrays. We want them to look like matricesqg s
/1 we’'ll make the valid index range 1..4 (rather than 0..3 whiis
/Il the default).

Range r(1,4);
Array<float,2> A(r,r), B(r,r);

/!l The first will be a Hilbert matrix:
/1]

/Il a = 1

iy —

/1 i+j —1

/1

/I Blitz++ provides a set of types { firstindex , secondindex... }

/1 which act as placeholders for indices. These can be usededtly

/l in expressions. For example, we can fill out the A matrixkéi this:
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firstindex i;
secondindex j;

/! Placeholder for
/! Placeholder for

the first
the second

index

index

A=1.0/ (i+j-1);

cout << "A = " << A << endl;

/I Now the A matrix has each element equal to a_ij =
11

/I The matrix B will
/1
11
11
11
/1
/1
/I Here are two ways of filling out B:

1/(i+]).

be the permutation matrix

= O OO
O OO
[ecNel o)
[oNeNol

B = (i == (5—-j)); /I Using an equation— a bit cryptic
cout << "B = " << B << endl;
B=0, 0, 0, 1, /I Using an initializer list
0o, 0, 1, 0,
0o, 1, 0, O,
1, 0, 0, O;
cout << "B = " << B << endl;

}

More examples are discussed in appeidix A.

A.2 The vector class

Our next next example is a very simple class to handle onetlional arrays. It demonstrates again
many aspects of C++ programming. However, most likely yoll @id up using a ready-made array

class from a library like Blitz++ discussed above.

Our classvector_operationdhas as data a plain one-dimensional array. We define seusi@idns
which operate on these data, from subscripting, changeedetigth of the array, assignment to another
vector, inner product with another vector etc etc. To be nspexific, we define the following usage of

our class,that is the way the class is used in another paregirogram:

— Create vectors of a specified length defining a vectovexsor_operations v(n)Via this statement

we allocate space in memory for a vector witlelements.

— Create a vector with zero length by writing the statemestttor_operations v;

— Change the dimension of a vectotto a given lengthn by declaringv.redim(n); Note here the

way we use a function defined within a class. The function emsdimdefine in our class.

— Create a vector as a copy of another vector by simply writragtor_operations v(w);
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— To extract the length of the vector by writirgnst int n = v. size () ;

— To find particular value of the vectabublee = v(i);

— Or assign a number to an entry wig) = e;

— We would also like to set two vectors equal to each other bylsimriting w = v;

— or take the inner product of two vectors @sublea = w.inner(v);or alternatively Istinlinea = in-
ner(w,v);

— To write a vector to screen could be done by writingrint (cout);

This list can be made longer by adding features like vectelaia, operator overloading etc.
We present now the declaration of the class, with our comsmamthe various declarations.

class vector_operations
{ .
private :
doublex A; /I vector entries
int length; /I the length ofthe vector
void allocate (int n); /l allocate memory, length=n
void deallocate () ; /I free memory
public:
vector_operations (); /!l Constructor, use as
vector_operations v;
vector_operations int n); /l use as vector_operations v(n);
vector_operations ¢onst vector_operations& w); // us as
vector_operations v(w);
~vector_operations (); /!l destructor to clean up dynamic
memory
bool redim (int n); /1 change length , us as v.redim(m)
vector_operations&operator= (const vector_operations& w)// set two
vectors equal v = w;
double operator() (int i) const; Il a = v(i);
double& operator() (int i); Il v(i) = a;
void print (std::ostream& o)const; /[l v.print(cout);
double inner (const vector_operations& w)const; // a = v.inner(w);
int size () const { return length; } Il n=v.size();
b

The class is defined via the statemelhiss vector_operationsWe must first use the key wordass,
which in turn is followed by the user-defined variable namiee Hody of the class, data and functions, is
encapsulated within the parentheses

Data and specific functions can be private, which means tiegt tcannot be accessed from outside
the class. This means also that access cannot be inheritethéyfunctions outside the class. If we
useprotected instead ofprivate, then data and functions can be inherited outside the cldsskey word
public means that data and functions can be accessed from outsidas$is. Here we have defined several
functions which can be accessed by functions outside tlss.cla

The first public function we encounter is a so-called corstm) which tells how we declare a variable
of type vector_operation@nd how this variable is initialized
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vector_operations v; // declare a vector of length O
/1 this actually means calling the function

vector_operations::vector_operations ()
{ A = NULL; length = 0; }

The constructor is the first function that is called when ajecthis instantiated. The variabke is the
vector entry which defined as a private entity. Here the lengtset to zero. Note also the way we
define a method within the class by writingctor_operations :: vector_operations. The general form is
< return type> name ofclass :: name of method(<list of arguments>

To give our vectow a dimensionalityn we would write

vector_operations v(n); // declare a vector of length n
/I means calling the function

vector_operations::vector_operationsing n)
{ allocate(n); }

void vector_operations:: allocate ifit n)

{
length = n;
A = new double[n]; [// create n doubles in memory

}

Note that we defined a Fortran-like function for allocatingmory. This is one of nice features of C++
for Fortran programmers, one can always define a Fortranaibrld if one wishes. Moreover,the private
function allocate operates on the private variablesmgth andA. A vector_operationobject is created
(dynamically) at run time, but must also be destroyed whemb longer in use. The destructor specifies
how to destroy the object via the tilde symbol shown here

vector_operations::~vector_operations ()

deallocate ();

}

/Il free dynamic memory:
void vector_operations::deallocate ()

delete [] A;
}

Again we have define a deallocation statement which mimicksRortran way of removing an object
from memory. The observant reader may also have discoveatave have sneaked in the word 'object’.
What do we mean by that? A clarification is needed. We will gsveefer a class as user defined and
declared variable which encapsulates various data (of endiype) and operations on these data. An
object on the other hand is an instance of a variable of a gy We refer to every variable we create
and use as an object of a given type. The variabsbove is an object of typmt .

The function where we set two vectors to have the same lengthhave the same values can be
written as
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/l v and w are vector_operations objects

vV = w;

/I means calling

vector_operations& vector_operationsaperator= (const
vector_operations& w)

/I for setting v = w;

{ _redim (w.size()); // make v as long as w
;gt I(| = 0; i < length; i++) { // (C++ arrays start at 0)
Ali] = w.A[i]; /I fill in teh vector w
return xthis;
}// return of xthis, i.e. a vector_operationsé&, allows nested

operations
U=V = u_vec = V_vec;

where we have used thedimfunction

v.redim(n); // make a vector v of length n

bool vector_operations::redim ift n)
{
if (length == n)
return false; // no need to allocate anything
else {
if (A !'= NULL) {
/I "this" object has already allocated memory
deallocate ();
}
allocate (n);
return true ; /I the length was changed

}
}

and the copy action is defined as

vector_operations v(w); // take a copy of w
vector_operations::vector_operationscdnst vector_operations& w)

allocate (w.size()); // "this" object gets w’s length
xthis = w; /I call operator =

}

Here we have definethis to be a pointer to the current (“this”) object, in other wosdahis is the
object itself.

void vector_operations:: print (std::ostream& ojonst
{ . .
int i;
for (i = 1; i <= length; i++)
0 << "(" << | << ")=" << (xthis) (i) << ’\n’;
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|}

double a = v.inner(w);

double vector_operations::inner donst vector_operations& w)const
{
int i; double sum = O;
for (i = 0; i < length; i++)
sum += A[i]xw.A[i];
/!l alternative:
[l for (i = 1; i <= length; i++) sum += ( xthis) (i)sw(i);
return sum;

/Il vector_operations v
cout << v;

ostream& operator<< (ostream& o, const vector_operations& v)
{ v.print(o); return o; }

/I must return ostream& for nested output operators:
cout << "some text..." << w;

/1 this is realized by these calls:
operator<< (cout, "some text...");
operator<< (cout, w);

We can redefine the multiplication operator to mean the ipneduct of two vectors:

double a = vxw; [/ example on attractive syntax

class vector_operations

{

/I compute {this) x w
double operatorx (const vector_operations& w)const;

};...

double vector_operations:operatorx (const vector_operations& w)const

{
}

return inner (w);

/l have some vector_operations u, v, w; double a;
Uu = v + axw;
/1 global function operator+
vector_operationsoperator+ (const vector_operations& a,const
vector_operations& b)
{
vector_operations tmp(a.size());
for (int i=1; i<=a.size(); i++)
tmp(i) = a(i) + b(i);
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return tmp;

/1 global function operatox
vector_operationsoperatorx (const vector_operations& a,double r)
{

vector_operations tmp(a.size());

for (int i=1; i<=a.size(); i++)

tmp(i) = a(i)xr;

return tmp;
}
/I symmetric operator: ¥a
vector_operationsoperatorx (double r, const vector_operations& a)
{ return operatorx(a,r); }

Classes and templates in C++ Blitz++

We can again use templates to generalize our class to adbepttgpes than just doubles. To achieve
that we use templates, which are the native C++constructpdameterizing parts of classes, using
statements like

template<class T>
class vector_operations
{
T A;
int length;
public:
T& operator() (int i) { return A[i —1]; }
h

In a code which uses this class we could declare various ngeagoDeclarations in user code:

vector_operationsd&ouble> a(10);
vector_operationsit> i(5);

where the first variable is double vector with ten elementdenthe second is an integer vector with five
elements.

Summarizing, it is easy to use the clagsctor_operationsand we can hide in the class many details
which are visible in C and Fortran 77 codes. However, as youhmsae noted it is not easy to write class
vector_operations One ends often up with using ready-made classes in C++rikisrguch as Blitz++
unless you really need to develop your own code. Furthernmrevector class has served mainly a
pedagogical scope, since C++ has a Standard Template yi(Bai) with vector types, including a
vector for doing numerics that can be declared as

std :: valarray <double> x(n); // vector with n entries

However, there is no STL for a matrix type. We end therefortdh wécommending the use of ready-made
libraries like Blitz++.
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A.3 Modules in Fortran

In the previous section we discussed classes and temptafast. Classes offer several advantages, such
as

— Allows us to place classes into structures

Pass arguments to methods

Allocate storage for objects

Implement associations

Encapsulate internal details into classes

Implement inheritance in data structures

Classes contain a new data type and the procedures that panfbened by the class. The elements
(or components) of the data type are the class data memlimershe procedures are the class member
functions. In Fortran a class is defined asi@DULE which contains an abstract dat&PE definition.
The example we elaborate on here is a Fortran class for dgfoparations on single-particle quantum
numbers such as the total angular momentum, the orbital minmme the energy, spin etc.

We present th®1ODULE single_particle_orbithere and discuss several of its feature with links to C++
programming.

! Definition of single particle data

MODULE single_particle_orbits
TYPE, PUBLIC :: single_particle_descript
INTEGER :: total _orbits
INTEGER, DIMENSION(:), POINTER :: nn, Il , jj, spin
CHARACTER«10, DIMENSION (:) , POINTER :: orbit_status , &
model_space
REAL(KIND=8), DIMENSION (:) , POINTER :: e
END TYPE single_particle_descript

TYPE (single_particle_descript), PUBLIC :: all_orbit, &
neutron_data, proton_data
CONTAINS

I various member functions here

SUBROUTINE allocate_sp_array(this_array ,n)

TYPE (single_particle_descript), INTENT(INOUT) :: thisarray

INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%nn) ) &
DEALLOCATE(this_array%nn)

ALLOCATE(this_array%nn(n))

IF (ASSOCIATED (this_array%ll) ) &
DEALLOCATE(this_array%ll)

ALLOCATE(this_array%ll(n))

IF (ASSOCIATED (this_array%jj) ) &
DEALLOCATE(this_array%;jj)
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ALLOCATE(this_array%;jj(n))

IF (ASSOCIATED (this_array%spin) ) &
DEALLOCATE(this_array%spin)

ALLOCATE(this_array%spin(n))

IF (ASSOCIATED (this_array%e) ) &
DEALLOCATE(this_array%e)

ALLOCATE(this_array%e(n))

IF (ASSOCIATED (this_array%orbit_status) ) &
DEALLOCATE(this_array%orbit_status)
ALLOCATE(this_array%orbit_status(n))

IF (ASSOCIATED (this_array%model _space) ) &
DEALLOCATE(this_array%model _space)
ALLOCATE(this _array%model _space(n))

I blank all charactersand zero all other values

DO i= 1, n
this_array%model_space(i)=2 >
this_array%orbit_status (i)= >
this_array%e (i)=0.
this_array%nn(i)=0
this_array%ll (i)=0
this_array%;jj (i)=0
this_array%nshell (i)=0
this_array%itzp (i)=0

ENDDO

SUBROUTINE deallocate_sp_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT)
DEALLOCATE(this_array%nn)
DEALLOCATE(this_array%ll)
DEALLOCATE(this_array%;jj)
DEALLOCATE(this_array%spin)
DEALLOCATE(this_array%e)
DEALLOCATE(this_array%orbit_status); &
DEALLOCATE(this_array%model _space)

END SUBROUTINE deallocate_sp_array
Read in all relevant singleparticle data

SUBROUTINE single_particle_data
IMPLICIT NONE
CHARACTER«100 :: particle_species

READ(5 ,x) particle _species
WRITE(6 ,x) ’> Particle species: ?
WRITE(6 ,x) particle_species
SELECT CASE (particle_species)
CASE (’electron’)
CALL read_electron_sp_data
CASE (’proton&neutron?’)
CALL read_nuclear_sp_data
END SELECT

thiarray
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END SUBROUTINE single_ particle_data

END MODULE single_particle_orbits

The module ends with theND MODULE single_particle_orbitstatement. We have defined a public vari-
able TYPE, PUBLIC :: single_particle_descripwvhich plays the same role as theuct type in C++. In
addition we have defined several member functions whichad@em various arrays and variables.

An example of a function which uses this module is given bedmd the module is accessed via the
USE single_particle_orbitsstatement.

!
PROGRAM main

USE single_particle_orbits
IMPLICIT NONE
INTEGER :: i

READ(5 ,x) all_orbit%total_orbits
IF( all_orbit%total_orbits <= 0 ) THEN
WRITE(6 ,%) ’WARNING, NO ELECTRON ORBITALS’ ; STOP

ENDIF
! Setup all possible orbit information
! Allocate space in heapfor all single—particle data
CALL allocate_sp_array(all_orbit ,all_orbit®%total_oits)
! Read electron singleparticle data

DO i=1, all_orbit%total _orbits
READ(5 ,x) all_orbit¥%nn(i),all_orbit%ll , &
all_orbit%jj(i),all_orbit%spin(i), &
all_orbit%orbit_status (i), &
all_orbit%model _space(i), all_orbit%e (i)
ENDDO

I further instructions
I deallocate all arrays

CALL deallocate_sp_array(all_orbit)

END PROGRAM main

Inheritance allows one to create a hierarchy of classes iohathe base class contains the common
properties of the hierarchy and the derived classes canfynadd specialize these properties. Specif-
ically, a derived class contains all the class member fanstiof the base class and can add new ones.
Further, a derived class contains all the class memberifurscof the base class and can modify them or
add new ones. The value in using inheritance is to avoid dafntig code when creating classes which are
similar to one another. Fortran does not support inheriahat several features can be faked in Fortran!
Consider the following declarations:
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TYPE proton_sp_orbit
TYPE (single_particle _orbits), PUBLIC :: &
proton_particle_descript
INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp
END TYPE proton_sp_orbit

To initialize the proton_sp_orbit TYPE, we could now defineesv function

SUBROUTINE allocate_proton_array(this_array ,n)

TYPE (single_particle_descript), INTENT(INOUT) :: thisarray

INTEGER , INTENT(IN) :: n

IF (ASSOCIATED (this_array%itzp) ) &
DEALLOCATE(this_array%itzp)

CALL allocate_sp_array(this_array ,n)

this_array%itzp (i)=0

END SUBROUTINE allocate_proton_array

and

SUBROUTINE dellocate_proton_array(this_array)

TYPE (single_particle_descript), INTENT(INOUT) :: thisarray
DEALLOCATE(this_array%itzp)
CALL deallocate_sp_array(this_array)

END SUBROUTINE deallocate_proton_array

and we could define a MODULE

MODULE proton_class
USE single_particle_orbits
TYPE proton_sp_orbit
TYPE (single_particle_orbits), PUBLIC :: &
proton_particle_descript
INTEGER, DIMENSION(:), POINTER, PUBLIC :: itzp
END TYPE proton_sp_orbit
INTERFACE allocate_proton
MODULE PROCEDURE allocate_proton_array, read_protonraar
END INTERFACE
INTERFACE deallocate_proton
MODULE PROCEDURE deallocate _proton_array
END INTERFACE

CONTAINS
! various procedure

END MODULE proton_class

PROGRAM with_just_protons
USE proton_class
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TYPE (proton_sp_orbit ) :: proton_data
CALL allocate_proton(proton_data)

CALL deallocate_proton_array(prton_data)

We have a written a new class which contains the data of theeddass and all the procedures of the
base class have been extended to work with the new derivssl. disterface statements have to be used
to give the procedure uniform names.

We can now derive further classes for other particle typeh 813 neutrons, hyperons etc etc.

A.4 Debugging of codes
Debugging is very useful in connection with segmentatianitfaA text editor like Emacs has an in-
built debugger. In the present section we take a C++ prograanaaalyze the code using the LINUX
debugging progransDB.

The steps are the following:

— Compile the program with debugging option on

c++ -g program_name.cpp -0 program_name

— Startemacs

— Start the debugging progra@DB in emacs

ESC x — gdb return — program_name

— Split theemacswindow in two
CTRLx 2

— Read your source code into the second window. Then you adlg teastart the debugging session.
This means that you can execute your program in steps anduibgentrol over execution of each
individuel program statements.

— We start the program and stop at the first statement in the code

Put your pointer in the source code window and place it at thedkecutable statements. Then
CTRL x — space

In the GDB window you get information about our firbteakpoint

— Start the program in th& DB window
run (orr)
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The program starts and stops at the finggakpoint. Now you have a large number of commands
at your disposal. You can as an example execute statemetdtbyngnt using the command

— Start the program in th&DB window
next (or n)

— continue (orc)

continue the execution from the current statement to thebreakpoint.
— If a statement is a call to a function you have two possibiti

— Start the program in th& DB window
next (or n) or step s

which takes you into the chosen subfunction and stops atstestatement. Then you can step
through the subfunction using the commarekt as before till the end of the subfunction. Then

you return to the previous calling function.

After having full control over the program execution we cdrtain information of what is going on
by using some of the following commands

— print variable
print *vector@10
display variable
display *varable@10

— If you want to start the program again, just typm .

— Clean up command:
delete (or d)
delete display

quit (or q)

A.5 How to make figures with Gnuplot

We end this appendix with a practical guide on making figuodset included in an eventual report file.
Gnuplot is a simple plotting program which follows the Linux/Unix enating system. It is easy to use
and allows also to generate figure files which can be includedATEX document. Here we show how
to make simple plots online and how to make postscript vaessaf the plot or even a figure file which

can be included in ®TEX document. There are other plotting programs sucknagrace as well which
follow Linux or Unix as operating systems. An excellent alegive which many of you are familiar with

is to use Matlab to read in the data of a calculation and vizeidhe results.
In order to check if gnuplot is present type

which gnuplot
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If gnuplot is available, simply write
gnuplot

to start the program. You will then see the following prompt
gnuplot>

and type help for a list of various commands and help optidhgppose you wish to plot data points
stored in the filenydata.dat. This file contains two columns of data points, where the fiobtmn refers
to the argument while the second one refers to a computed function vlus.

If we wish to plot these sets of points with gnuplot we just é&d to write

gnuplot>plot ’mydata.dat’ using 1:2 w 1
or
gnuplot>plot ’mydata.dat’ w 1

since gnuplot assigns as default the first column asrth&is. The abbreviation | stand for 'with
lines'’. If you prefer to plot the data points only, write

gnuplot>plot ’mydata.dat’ w p

For more plotting options, how to make axis labels etc, tygp nd chooselot as topic.
Gnuplot will typically display a graph on the screen. If we wish to edkiis graph as a postscript
file, we can proceed as follows

gnuplot>set terminal postscript
gnuplot>set output ’mydata.ps’
gnuplot>plot ’mydata.dat’ w 1

and you will be the owner of a postscript file calleydata.ps which you can display witlghostview
through the call

gv mydata.ps

The other alternative is to generate a figure file for the damtnmandling prograntATeX. The
advantage here is that the text of your figure now has the sante &s the remainingTeX document.
Fig.[3:2 was generated following the steps below. You neetliia file which ends withgnu. The file
used to generate Fig_B.2 is call@drivative.gnu and contains the following statements, which are a mix
of LATEX and Gnuplot statements. It generates a filerivative.tex which can be included in BETEX
document. Writing the following

set terminal pslatex

set output "derivative.tex"

set xrange [-15:0]

set yrange [-10:8]

set xlabel "log$_{10}(h)$"

set ylabel "$\epsilon$"

plot "out.dat" title "Relative error" w 1
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generates B'TEX file derivative.tex. Alternatively, you could write the above commands in adieiva-
tive.gnu and useGnuplot as follows

gnuplot>load ’derivative.gnu’
You can then include this file in ATEX document as shown here

\begin{figure}

\begin{center}

\input{derivative}

\end{center}

\caption{Log-log plot of the relative error of the second
derivative of $e~x$ as function of decreasing step
lengths $h$. The second derivative was computed for
$x=10% in the program discussed above. See text for
further details\label{fig:lossofprecision}}

\end{figure}

Most figures included in this text have been generated usingligt.
Many of the above commands can all be baked in a Python codefollbwing example reads a file
from screen withr andy data, and plots these data and saves the result as a padigare.

#1/usr/bin/env python
import sys

from Numeric import =
import Gnuplot

g = Gnuplot.Gnuplot(persist=1)

try :
infilename = sys.argv[1l]
except:
print "Usage of this script", sys.argv[0], "infile", sys.argv|[l]; sys.
exit (1)

# Read file with data
ifile = open(infilename , ’r?)
# Fill in x and y
x =101 y=1II
for line in ifile:
pair = line.split()
x = float(pair[0]); y = float(pair[1])
ifile.close ()

# convert to a form that the gnuplot interface can deal with

d = Gnuplot.Data(x, y, titlezdata from output file’, with=’"1p?)

g.xlabel(>log10(h) ) # make x label

g.ylabel(®’log10(|Exact-Computed|)/|Exact|?)

g.plot(d) # plot the data

g.hardcopy(filename*relerror.ps",terminal=postscript", enhanced=1, color
=1)
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