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Two-Dimensional Gas of Disks: Thermal Conductivity 
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The phenomenon of heat conduction in a two-dimensional gas of N hard disks 
is studied in the hydrostatic regime by means of nonequilibrium molecular 
dynamics (N ranging from 100 to 8000). For systems with N>~I500 the 
temperature and density profiles observed are in excellent agreement with the 
continuous theory, but the conductivity k differs from the one derived from 
Enskog's theory in a systematic way. This difference seems to slowly decrease 
with increasing density. 

KEY WORDS: Kinetic theory; thermal conductivity; molecular dynamics; 
hard disks; Enskog's Theory. 

1. INTRODUCTION 

Enskog's theory for transport coefficients arises from extending the 
Boltzmann formalism by introducing corrections that account for the fact 
that the molecular diameter is no longer small compared with the mean 
free path. A major consequence of this is that a mechanism of momentum 
and energy transfer which is negligible at lower densities becomes impor- 
tant, namely the collisional transfer of flux can be as important as the 
kinetic transfer. Still, Enskog's theory takes into account the correlations 
in position in an approximate way and does not consider correlations in 
velocity. In spite of these restrictions, Enskog's theory--which was 
developed for the case of bare hard spheres--is the best systematic descrip- 
tion that yields transport coefficients in the context of kinetic theory. (1~ 
Gass applied it to the case of hard disk. t-'~ 

To test the validity of kinetic theory there is perhaps no better ground 
than computational simulations of many particle systems. In fact, one of 
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the reasons why molecular dynamics (MD) simulations have the impor- 
tance they have is that they provide essentially exact "experimental" data 
on well defined models. As there is no uncertainty about the form of the 
particle-particle and particle-wall interactions, theoretical predictions can 
be tested unambiguously in a manner that is generally impossible with data 
obtained in experiments with real fluids. 

The first determinations of transport coefficients by means of equi- 
librium MD are found in ref. 3 (see also ref. 4). Later nonequilibrium MD 
was widely used. In ref. 5--studying a system of Lennard-Jones particles in 
the stationary regime under conditions that correspond to liquid 
argon--they were able to show that the Fourier law remains valid even for 
temperature gradients as big as  l 0  9 K/cm (see also ref. 6). In the case of a 
two-dimensional system of hard disks there is an extensive study of the 
decay of autocorrelation functions by equilibrium MD in ref. 7. In refs. 8 
and 9 hard-disks nonequitibrium MD was applied to study space correla- 
tions in the presence of thermal gradients and thermal conductivity. 

In this paper we have carefully studied the behavior of the conduc- 
tivity k 

k(p, T) = ko(p )x/C-T (1.1) 

of a two-dimensional system of N hard disks enclosed in a rectangular 
Lx x L z box, by means of nonequilibrium molecular dynamics. We pay 
particular attention to one value of the density p and explore the behavior 
of ko(p) for a few other values of p. Because the system has no intrinsic 
energy scale the temperature dependence of k can only be x / ~  if the 
Fourier law is true. 

We know of no previous systematic study of the conductivity for this 
simple system using nonequilibrium MD. Since the cost of simulating it is 
possibly smaller than for any other interesting system (as explained in the 
next paragraph), a wider variety of situations can be explored to test 
kinetic theory using standard and common computational equipment. 

As has been discussed in detail in the literature, the evolution of hard 
spheres (in 2D or 3D) can be efficiently simulated, because one goes from 
one collision to the next analytically. 1~~ There is no need to predefine a 
small time step in the program as necessary when continuous potentials are 
used. The time intervals by which the simulation proceeds are dictated by 
the dynamics itself. A comparison of the two cases (step versus continuous 
potentials) can be found in ref. 13, w 

The transport coefficients of a system of hard disks are necessary also 
to analyze in depth many recent simulational results such as, for example, 
B6nard convection with hard-disk systems. 1~4-~61 In fact, this paper is the 
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first of three dealing with the same system. The next two will be on 
viscosity and on B6nard convection. 

In our simulations we can measure the local heat flux anywhere in the 
system and we can even separate the collisional from the translational con- 
tributions. Determining the conductivity in this way, however, is lengthy 
and noisy. We have preferred to measure the net heat flux Qz across the 
system as would be done in real experiments and define an effective conduc- 
tivity ken. which is the result of the different conductivities that the layers of 
this stratified system have. 

An important technical detail comes from a known temperature jump 
that occurs at the walls when the system is subjected to a temperature dif- 
ference A T. Because of this jump it is necessary to correct the temperatures 
at the walls by defining a ne~v difference AT*. 

In Section 2 the characterization of the system, basic notation and the 
formal definition of the effective conductivity are given. Section 3 describes 
the way measurements are performed, the control parameters, the length of 
the simulations, and the basic physical characteristics of the dynamics of 
the system: equation of state and wall effects. In particular the already 
mentioned corrected temperature difference LIT* is defined here. The 
results are in Section 4: (a) Profiles of temperature and density obtained 
from the hydrostatic equations including Fourier's law show excellent 
agreement with the profiles obtained in the simulations. (b) The measure- 
ment of the net heat flux across the system and the use of the Fourier law 
yields an effective value for the effective conductivity ksi m for several values 
of the density. These values are compared with the effective conductivity 
that can be derived from Enskog's theory ktheo for the same densities. We 
find that the difference between the two conductivities (theoretical---coming 
from the approximations in Enskog's theory--and simulational) seems to 
decrease with increasing density. 

Compare this situation with what happens for systems of hard spheres 
in 3D, where the differences increase with the density, as can be seen, for 
example, in ref. 3, where the authors studied a system of 108 hard spheres 
occupying a fraction of the total volume in the rang e from 0 to 0.52. 

2. THE S Y S T E M  A N D  ITS HEAT C O N D U C T I V I T Y  

2.1. The System 

The basic parameters of our system of hard disks are: the number of 
disks N; their mass and diameter m, D; the size of the rectangular box 
(Lx, Lz); the acceleration of gravity g; and the temperatures at the top and 
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bottom walls T, = Tb-elT,  Tb. The reduced temperature to which the 
system is subjected 

C =elT 
' -  Tb (2.1) 

We define the aspect ratio 2 = L x / L z  and the bulk area density 
Pa = (n /4)ND2/LxLz  . In this way the lengths Lz/D of the systems with 
different bulk densities are determined once we fix the number of particles 
N and the aspect ratio 2. 

A system of hard disks locally obeys an equation of state that we take 
to be that of Henderson tls) 

1 +p~18 
pLxLz=NHkBT,  H(pA) (1 --pA) 2 (2.2) 

where PA = pA(r, t) is the local area density. 
Because the system consists of only a few thousand particles, we need 

to use large temperature differences to have a good signal-to-noise ratio. 
Due to the important compressibility of this gas a significant density 
gradient would appear had we not added a linear external field (accelera- 
tion of gravity g) in the direction of the temperature gradient. Care has 
been taken to be outside the convective regime. ('7) In most simulations g 
was in fact adjusted to produce a density profile as independent of height 
as possible. It can be shown (14~ that if elT is relatively small, this happens 
when Fr,~H(pA) where Fr is defined by 

Fr - mgLz 
knzl T (2.3) 

[ Parenthetically we remark that the region of convection cannot be given 
in any simple way. For incompressible fluids the Rayleigh number Ra alone 
determines the zone in the control parameter space where there is convec- 
tion, but in a forthcoming paper we will quantify the limiting line between 
the convective from the purely conductive zones in the Fr-Ra plane, which 
is not at all trivial. Besides, Ra is defined in terms of the conductivity 
(which we are studying in the present paper) and the viscosity, which will 
be studied next.] 

The disks have elastic collisions among themselves. The vertical walls 
of the rectangular box are perfectly elastic, while the upper and lower walls 
simulate contact with heat baths at temperatures T b at the bottom and T, 
at the top. It would have been simpler to use periodic vertical conditions 
instead of elastic walls, but the runs used in the present study are an 
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inseparable unit from those that study the convective regime. In our con- 
ventions a disk hits a wall when its center does so. When a particle hits a 
horizontal wall the tangential component is conserved while the normal 
component is' sorted from the Maxwellian distribution associated with the 
temperature of the wall (stress free boundary conditions). 

A set of values for AT is used to be able to extrapolate to AT= O. 
Further since the system is finite we have to see the behavior of the con- 
ductivity as a function of the number of particles and in this way be able 
to see the tendency as N goes to infinity. Our results in this respect are in 
fig. 4 and we are unable to draw a clear conclusion. For three values of N 
(900, 1521, and 8100) we have enough statistics and there is a slight 
increase of k with N. 

2.2. Heat  Flux and Ef fect ive  Conduct iv i ty  

From Q~ one can define the effective conductivity of the system as 

QzLz 
ksim- AT (2.4) 

Since the system has an important temperature gradient we directly com- 
pare the effective conductivity obtained by means of the simulations using 
(2.4) with the effective conductivity ktheo that stems from Enskog's theory. 

2.3. Theoret ica l  Ef fect ive  Conduct iv i ty  

The expression for the conductivity k for a gas of hard disks predicted 
by Enskog's theory has the form (1.1) and is given by 

2kB (ka_T~ ',2 3 +0.8718(2pAx(pa)) 2] (2.5) k = l . 0 2 9 ~ k - - ~ - n j  [ I+~(2pAx(pA) )  

where X is the pair correlation function at contact (27~ 

H - -  1 1 - (7 /16 )  pA 
X(PA)- 2p-~-~- (1-pA) 2 (2.6) 

Since (2.5) depends on the local values of the density and temperature, we 
define, in a straightforward manner, a theoretical effective conductivity ktheo 
for the system as a whole as the limit 6--+ 0 of 

/ l Nsllees \ - -  1 

ktheo=/"-~-~ ~ kT*} (2.7) 
\Nsuces i= 1 ,] 

822/82/5-6-16 
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where each i represents a horizontal slice of width J of  the system. For  our 
purposes, however, we have used (2.7), evaluating a set of  ki(PA, T) from 
(2.5) using the observed average values of  PA and T, averaged in each 
horizontal slice i. The logic behind (2.7) is the same as used to obtain the 
effective resistance ( r =  Ilk) of a system of resistors (the horizontal slices) 
connected in series. Although it is easy to derive, it is better to simply think 
of  the parallel between q = - k  V T and J = - g  V V, where J is the electric 
current density, V is the electric potential, and g the electric conductivity). 

3. O B S E R V A T I O N  M E A N S  A N D  M E T H O D S  

3.1. Observat ion Cells 

To make the observations we have made use of  our  own efficient algo- 
rithm r and the carefully devised measurement routines described in 
ref. 17. The system is divided in cells to observe its behavior. The routines 
make a detailed balance of the mass, momentum,  and energy in each cell 
(these are densities) and what comes in or out across each of  the walls of  
every cell (fluxes). The measured quantities are then averaged in time in 
every cell or wall depending on whether they are densities or fluxes. At the 
end we have mainly used horizontal averages of  the observed quantities, 
leaving out the observations near the vertical and horizontal wails. 
A standard observation mesh was chosen depending on N and the area den- 
sity flA- In most simulations we used a cell mesh of  15 x 15. 

3.2. Control  Parameters 

In principle the set of possible control parameters is rather large: 
g, A T = T b - T , ,  the bulk area density fia, N and 2 = L x / L z .  We con- 
sidered systems with N ranging from 100 to 8000 inside a box of aspect 
ratio 2 = 1. In most of  the simulations the density was chosen as P,4 = 0.2 
and N - -  1521, while Fr and C, were used as control parameters. 

The regime in which the density profile is flatter [Fr ~ H(pA)]  is easier 
to analyze since in this case the density variation effects--to determine k as 
a function of the local values PA of the area densi ty--are  smaller. 

3.3. S imulat ion Times 

To determine the length of the simulations we considered the thermal 
diffusion time tdcr ~ L z / x  measured in number  of collisions (where K is the 
thermal diffusivity). During this time the number  of  collisions ~co~ is Ftdirr, 

" " d i f f  
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where F is the total collision rate. From Enskog's theory applied to a gas 
of N hard disks it is known that the total collision rate is t2~ 

4p ANX(P A) (3.1) 
F= D(kB T/gm)112 

The characteristic time for the thermal diffusivity is tdiff----Lz/h" = 7kBN/),k, 
where 7 = 7 (p~)=  cp/c,, ~ 2. Using (2.5) and (3.1) we obtain the number of 
collisions in one /diff: 

N 2 ~ o l  2p A X - 
"'d~n=7 2 1.0291-1 +(3/2)(2p,4z(p,4))+O.8718(2p,4x(pA)) 2] (3.2) 

Hence ,~rc~ diff ~ 4pA N2, which corresponds to an average of 8pAN collisions 
per disk in one diffusion time. In every run there was a thermalization 
period, typically of 10td~fr (which means about 24,000 disk-disk collisions 
per disk in the case of a system of N =  1521 particles and a density of 
PA=0.20), after which time averages were taken during the last 10~10 
diffusion times (initially the particles are placed regularly with velocities 
sorted from Maxwellian distributions with T varying linearly from T, to T b 
according to height). 

3.4. Local Equation of State 

Having subjected our system to large temperature differences and with 
large values for g the equilibrium equation of state is observed to be valid 

I I I I I I I I I 

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
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0.2 - ~  

0 I I I I I I I I I 
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Fig. 1. Profiles of pressure (Q), density (+) ,  and temperature IO) versus height : for a 
system with N =  1521, #,4 =0.2, F r =  1.56, and Ct=0.624. The ratio p L . r L z / N H k o T ( x  ) is 
also plotted. 
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in the range Fr = 0.3-1.7 with C, up to its maximum value C, = 1. This is 
true even when there is convection, c~7~ In Fig. 1 we show typical vertical 
density, pressure and temperature profiles obtained for a system of 1521 
particles with PA = 0.2 and C, = 0.624. The figure also shows how well the 
equation of state is satisfied, plotting the ratio I = p L x L z / N H ( p A ) k B T  
using the values of p, T, and PA obtained from the simulation. The 
observed values of the ratio I differ by less that 1% from unity when 
Henderson's equation of state (2.2) is used. 

3.5. Wall  Effects at Equil ibrium 

An important effect in simulations with a few thousand particles is the 
magnitude of the boundary effects of microscopic origin. To be able to 
quantify these effects we first made simulations in thermal equilibrium with 
and without gravity. 

One well-known effect is the density peak near hard walls, t~9-2~1 For a 
system of 1521 disks the density was measured in an exceptionally fine 
mesh of 77• The density was observed to go up about 15% for a 
system with a bulk density of PA = 0.2. The width of this denser boundary 
layer is about one free path. In our case the wall effects were negligible 
beyond the first standard observation cell. Had we chosen higher densities, 
the boundary effects would be larger, but not wider. No boundary effect for 
the temperature (at equilibrium) was observed. 

3.6. Wall  Temperature  Jump 

Once a conductive regime is established, the measured temperature 
difference in the bulk is smaller than the externally imposed difference. This 
is a well-known effect c5" 22~ due to a temperature discontinuity at the walls. 
A similar effect is observed in real, dilute systems. <23~ This temperature 
discontinuity is related to both the collision rate and the temperature 
difference. In fact, the discontinuity of T(r) near hard walls is an effect of 
the stochastic thermalization at the walls. A simple derivation of it is the 
following. The relation between the externally imposed temperature dif- 
ference and the measured temperature difference can be estimated assuming 
local thermodynamic equilibrium and taking into account the rate of 
energy interchange in collisions with the thermalizing walls. Calling T* and 
T ' t h e  temperatures near the lower and upper walls inside thefluid, the flux 
of energy across the walls can be written as Q b = a F b k s ( T  b -  T'~) and 
Q, = 3 F, k s( T , * -  T,), where F j ( j =  b, t) are the disk-wall collision rates at 
the two thermalizing walls. The factor 3/2 comes from the velocity distribu- 
tion of the particles hitting the wall. In the stationary case it is necessary 
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(Fourier law) to have that Qb = Q, = kerr( T ~ -  T*)/Lz and from this, if the 
imposed temperature difference is AT, the effective difference AT* is 

where 

tiT* =(1 + e ) - '  AT (3.3) 

depends on the particle-wall collision rates F b and FI at the lower and 
upper walls, respectively. 

Notice that the number of particles enters this expression through the 
height L z  of the s~stem as Lz  = (~N/4pa2)l/2D. Keeping 2 and/~,~ fixed, 
Lz  diverges as x/N, making e vanish in the large-N limit. For a system of 
N =  1521 particles, ,O a =0.2, C, =0.5, and L z = 7 8 D  we get AT*/AT,~0.85, 
which approximately corresponds to the temperature jump ratio observed 
in our simulations. 

Extrapolating the observed temperature profile from the bulk, the 
simulations yield the effective temperatures at the walls and from here we 
get the effective temperature difference AT* (and also the effective tem- 
perature ratio C * - z f T * / T *  and Fr*= mgLz/kBAT*)  which will be used 
in (2.4) to make comparisons with the conductivity predicted by Enskog's 
theory. 

4. O B S E R V A T I O N S  A N D  C O M P A R I S O N S  W I T H  THE T H E O R Y  

4.1. Density,  Tempera ture ,  and Pressure Profi les 

Numerically solving the NS equations under hydrostatic conditions 
making use of (a) Henderson's equation of state (2.2), (b) Fourier's law, 
(c) the conductivity k(pA(z), T(z)) taken from Enskog's theory, (d) the 
effective temperature values T*, T~' and (e) the condition that 15ALz = 

pA(z) dz, it is possible to find the theoretical density, temperature, and 
pressure profiles. In Fig. 2 we compare these profiles with those obtained 
from the simulations for typical values of the imposed Fr and CI. Excellent 
agreement is obtained. We remark that these comparisons are made not 
only when PA is approximately constant [ Fr* - mg Lz/(  k BA T* ) ~ H( p A) ], 
but also when the density varies significantly with height. In the com- 
parison with theoretical results (below), we make some remarks regarding 
this agreement. Note that near the borders (z = 0 and z = Lz) the density 
profile is distorted by boundary effects. 
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Fig. 2. Density and temperature profiles obtained from our simulations and from the theory 
for N =  1521, #~A =0.20, C*= 0.786, Fr* =0.379. 

4.2. The Effective Conductivity k 

Figure 3 shows a comparison of the values of k versus C* obtained 
from the simulations with N =  1521, PA =0.2, and F r * ~  1.56 using (2.4) 
with the theoretical conductivity, (2.7). To get the results summerized in 
Fig. 3 we used seven different simulations for each C,, starting from initial 
conditions that are microscopically different but macroscopically equiv- 
alent (same density and velocity profiles) Note that because of the statisti- 
cal fluctuations in the measured values of T ' a n d  T~ < the values of C ' show 
a dispersion for every externally imposed C,. For C * < 0 3  only one 
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Fig. 3. Conductivities k~im ( �9 ) and ktheo ( ~ ) and their ratio ( ~ )  versus C ' f o r  a system with 
N =  1521, p =0.20, F r * =  1.56. The dotted line indicates the mean value 1.044 of the ratio. 
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simulation was made for every C,. The observed values of k are systemati- 
cally larger than the theoretical values. 

For a remarkably wide range of values of C* the ratio ksim/ktheo is 
nearly constant (Fig. 3) in spite of the large temperature variations across 
the system. This can be understood from (2.7)--assuming that the density 
is about uniform (and equal to pA)--because one can then derive that 
kerr ~ko(fi ,4)Lz/~ dz / [T(z )]  I/2. To evaluate the ratio ksim/kthco the same 
temperature profile is used in the numerator and denominator and there- 
fore this factor cancels out. Only the ratio between the ko's remains. 

For the case fiA =0.2, Fr* = 1.56, and N =  1521 (leaving out cases for 
which the signal/noise ratio is too small, i.e., C* < 0.5), the extrapolation 
from these simulational results yields ksi,,/ktheo = 1.044-t-0.004. 

4.3. Comparison with Theoretical Profiles 

We would like to understand why the observed profiles fit so well the 
theoretical predictions (as in Fig. 2) while the observed conductivity shows 
an indisputable difference from Enskog's prediction. In other words, how is 
it possible to have a discrepancy in the conductivity without having one in 
the profiles? 

From a theoretical point of view we know that k has the form (1.1) 
and any correction can be written as a corrective factor C(p.4) affecting the 
particular ko given in (2.5). 

First let us notice that the local conductivity enters the formalism only 
through the energy balance equation, which in hydrostatics simply is 
V. q = 0, namely, V.  (kVT)  = 0. Since the only coordinate that matters is z, 
the last equation is (kT ' ) '  = 0  or T " / T ' =  - k ' / k .  If we use (1.1), k = kox//--T, 
then the T-profile equation is 

T" /T '  + T ' / ( 2 T ) =  k'o/ko = ( ko  ~ dko/dpA)p'~ 

Making the change ko --* Cko in the last expression amounts to changing 
k o  ~ dko/dp A by k o  ~ dko/dp A + C -  ' dC/dp A, adding a term C - ~ dC/dp a on 
the right-hand side. From the factor ko in (2.5) one can get that 
k o  ~ dko/dpA grows smoothly from 3.44 at pA=0.15 to 9.0 at pA=0.55, 
while from the data summarized in Fig. 5 one can estimate that about 
PA =0.2 that value of C-~dC/dpA is about 0.013. Namely, the observed 
correction to the conductivity would affect the temperature and density 
profiles by leas than 0.3%. 

4.4.  On  size e f f e c t s  

Figure 4 shows the ratio ktheo/ksim for N =  100, 300, 900, 1521, 2500, 
and 8100. For N =  100, 300 and 2500 only one initial condition was taken 
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Fig. 4. Ratio ksi~/kth~o versus I/v/ 'N. 

while C, was changed (hence no error bars in these cases). For N = 8 1 0 0  
only two initial conditions were considered, while for N = 9 0 0  and 1521 
seven different initial conditions were considered. The cases N =  900, 1521, 
and 8100 indicate that the ratio is slightly increasing with N, but for the 
excessive computational cost we disregarded the possibility of making more 
simulations with N =  8100 or simulations with larger N. We draw no 
conclusions. 

4.5. Other Values for the Density 

Though we have not made a systematic study of the conductivity as 
a function of the density we obtained the ratio ksim/ktheo for different 
densities (PA =0.1, 0.2, 0.3, 0.4 and 0.5) in the case of a system of N =  1521 
particles with Fr*= H(,~A). These ratios are plotted in Fig. 5. 

We see that the most important discrepancies with Enskog's predic- 
tions seem to take place for PA ~ 0.2. This may seem strange since one 
should think that the discrepancies increase with the density. But from our 
results it seems that the higher order corrections that come in beyond 
Enskog's theory go down with the density, eventually changing sign. To 
support this, we have the above results and a recent one ~26) where the 
authors show that for a system of particles at/~A = 0.55--interacting with 
a hard (but not infinitely hard) potential--the ratio of conductivities is 
0.93. This result, seen in Fig. 5 as an open circle, roughly follows the 
tendency of our results. 
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Fig. 5. 
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Observed values for the ratio ksim/ktheo versus ,6A for systems of N= 1521 particles. 
The open circle is the ratio reported in ref. 26 (see text). 

F I N A L  C O M M E N T S  

1. In this paper we assumed that the Fourier law is valid. We were 
able to obtain excellent agreement between theory and simulations 
regarding the density and temperature profiles when the bulk density is 
,hA =0.2. 

2. Next, we were able to define an effective conductivity in such a 
way that the ratio ksim/ktheo is independent of the temperature difference 
for a wide range of density values (,hA from 0.1 to 0.5). This independence 
from the temperature difference validates Fourier's law for our system and 
allows us to extrapolate the value of the conductivity to the limiting case 
A T =  0 for different values of the density ,hA" 

3. The ratio ksim/ktheo however, unequivocally differs from unity. For 
intermediate densities (,hA about 0.2) the effective conductivity is larger 
than the one predicted by the theory while it starts to go down for larger 
values of,hA and finally the simulational conductivity appears to be slightly 
smaller than the theoretical value when ,hA ~ 0.5. 

4. To understand why it is consistent that the profiles (item 1 above) 
fit so well while the conductivity does not (item 3), we observed that the 
corrective factor C(pA) multiplying the Enskog's ktheo is so weakly 
dependent on density--for the case ,hA = 0.2--that it cannot be detected in 
the density and temperature profiles. 
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