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Abstract. The behavior of a gas may be quite atypical if the velocity distribution function is significantly
distorted by the presence of large gradients. Under such circumstances phenomena like shear thinning or
negative effective thermal conductivity may be present. Hydrodynamic equations derived directly from
Boltzmann’s equation using a moment expansion method yield predictions which are sensitive to the value
of Knudsen numbers associated to the macroscopic fields themselves and provide a rational for the peculiar
behavior. In the case of sheared laminar flows the law of viscous flow predicts non-Newtonian effects
including shear thinning and the law of energy transport (associated to what is usually called heat flux) is
more general than Fourier’s law: it is not linear and it implies a flux with a nontrivial component parallel
to the isotherms. These nonlinear transport laws are well corroborated by molecular dynamic simulations
based on straightforward Newtonian dynamics. More in general it is shown that the energy flux is naturally
split in a component that removes heat from the system and a divergenceless component which represents
a flux of energy which does not leave the system.

INTRODUCTION

Extracting information from Boltzmann’s equation can be a subtle and difficult endeavor [1,2]. The inte-
grodifferential nature of Boltzmann’s equation has a free convective part on the left hand side and a collisional
term on the right hand side. Rarefied gases are sometimes identified with those for which the collisional term
can be considered a perturbation of the free convective part, which is tantamount to saying that the Knudsen
number—defined as the ratio between the mean free path and the typical distance L between walls, Kn ∼ `/L—
is comparable to unity or larger. Under such circumstances no standard hydrodynamics can be valid. There
are other physical situations under which standard hydrodynamics cannot be valid. For example, associating
a distance LX = X0/|∇X|, to a inhomogeneous hydrodynamic field X (X0 being a typical value for X), if the
Knudsen number

KX = `/LX

is not negligible, standard hydrodynamics cannot hold either.

Standard hydrodynamics is built with three types of equations. For example it takes the form of: (i) dynamic
equations for the number density n, the velocity field v and temperature field T ; (ii) equations of state for the
energy density u = u(n, T ) and the hydrostatic pressure p = p(n, T ) and (iii) constitutive equation that take
the form of two linear transport laws: Newton’s law of viscous flow and Fourier’s law of heat conduction [3].
When Chapman-Enskog method is used to solve Boltzmann’s equation the previous picture is recovered in the
so called Navier-Stokes level [2]. Beyond that the complex Burnett scheme is obtained. None of these schemes
are enough to describe the regimes we have been studying.

All this picture gets invalidated if at least one field X has a gradient large enough that the effects stemming
from the associated Knudsen number KX cannot be neglected. This is true even though the standard Knudsen
number Kn continues being small.
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In the following sections we describe the way to get a gas dynamics from a moment expansion. The present
article then analyzes the case of sheared gases, describe a theoretical framework specialized for them, compare
some of its implications with our own Newtonian molecular dynamic results and give a viewpoint from which
the energy flux (sually called heat flux) can be split in two physically different vector fields: Q‖ is a flux
carrying energy from hot to cold parts and Q⊥ is a flux of energy moving in closed circuits inside the system,
never leaving it. Usual hydrodynamics assumes that only Q‖ exists but rarefied gas physics has known for
quite some time now that there is something else. For example, see the remark after (8.20) in [4] and the
top right paragraph in page 892 in [5]. The words hot and cold are written in a slanted form, because for gas
systems far from equilibrium it is not universal what one should understand by temperature. In the present
paper temperature T is used to mean the average kinetic energy per particle, but we will see that Q‖ does not
obey a law directly related to the gradient of T , but rather to −∇Θ and Θ cannot be expressed in any simple
way in terms of the hydrodynamic fields.

GAS DYNAMICS

The theory described below comes from the picture given originally by Grad [6]. It is a moment expansion
which is known from plain statistics to be a powerful method. Moment expansion methods can summarily be
described as follows. The local Maxwellian distribution function fM (r, c, t) is considered to be the reference
function about which an expansion is made. It is written in terms of the peculiar velocity C = c − v(r, t),
where v(r, t) is the hydrodynamic velocity. A set of orthonormal polynomials on C, Ha(C ), are built in the
sense that H0 = 1 and ∫

Ha(C )Hb(C ) fM (r,C, t) dC = δab .

The polynomials Ha are obtained simply by building a base of orthonormal polynomials starting from H0 = 1
and from first degree upwards using standard methods. We have built polynomials only on Ci, Ci Cj and
C2 Ci as Grad did, namely, up to third order and not all of them. One could go on but so far this seems to
be enough. The resulting polynomials Ha are Hermite polynomials. Next, the distribution function is defined
having the form

f(r,C, t) =
∑
a

Ha(C)Ra(r, t) fM (r,C, t)

The coefficients Ra (moments of the distribution) are formally obtained requiring first that f is normalized
to the number density:

∫
f dc = n and then that the averages 〈A〉 ≡ 1

n

∫
Adc give the formally correct

results, namely, it is required that the hydrodynamic velocity is v = 〈c〉, the temperature is T = m
2

〈
C2
〉

(the temperature is measured in energy units so that Boltzmann’s constant is kB = 1.), the pressure tensor is
Pij = 〈mnCi Cj〉 and the heat flux vector is Q = mn

2

〈
C2 C

〉
. Such requirements totally define the Ra. In

such formalism the collisional contribution to transport is neglected altogether.

The following step is to replace the above distribution in Boltzmann’s equation to derive integrability condi-
tions multiplying the kinetic equation consecutively by the Ha and integrating the equation over C. The idea
is to do this up to a given order and drop all contributions coming from polynomials of degree higher than a
chosen value (up to order 3 in our case). These integrability conditions turn out to be a set of hydrodynamic
equations for the different moments.

The resulting gas-dynamic equations were found by Grad [6] and they, when specialized to the d-dimensional
fluid of hard spheres (d = 2 or 3), can be found in [7,8]. This gas-dynamics consists not only of equations for
the density, the velocity field and the temperature, but it also consists of equations for the symmetric traceless
part pij of the pressure tensor (Pij = p δij + pij), and for the heat flux vector Q. The extra equations are, we
reiterate, dynamic equations and they take the place of the constitutive equations in standard hydrodynamics.
Namely, there is no need to introduce constitutive equations and their role is taken by dynamic equations
which enter the formalism in the same footing as the traditional hydrodynamic equations.

The moment expansion method as used in the present work assumes analyticity of the distribution function.
It is known that this is not true near hard walls. Hence the present formalism cannot be expected to be true
near walls.
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FIGURE 1. A flat channel of width L and walls parallel to the X axis kept at temperature T0. The laminar flow is

in the X direction (vy = 0) and all hydrodynamic fields depend only on the transversal coordinate y.

LAMINAR FLOW

We have been studying this dynamics in the case of laminar planar flows with the velocity field having a
gradient large enough that its effect cannot be described using standard hydrodynamics. Below we give the
generic equations for a laminar, planar and stationary bidimensional flow in the X direction in the presence of
an external force (X direction as well) which, on each particle of the fluid, is mg. Only the component vx(y)
is nontrivial (see Fig. 1) and with it we define the dimensionless shear rate γ

γ = τ
dvx
dy

where τ ≡ 1
2σ p

√
mT
π is the local relaxation time, σ is the diameter of the hard particles and the only relevant

coordinate is the transversal coordinate y. It turns out that the Knudsen number Kv, (KX in the introduction)
associated to the velocity vx is γ except for O(1) factors, namely, the dimensionless shear rate can be considered
the Knudsen number associated to the velocity field and its gradient.

From now on, instead of using the traceless and symmetric part of the pressure tensor, pij we use some of
the components of Pij = p δij + pij as the independent hydrodynamic fields. The formalism yields, in this
laminar stationary case, hydrodynamic equations for the following seven fields: n, γ, T , Pyy, Pxy, Qx and Qy

Pyy = uniform (1)

P ′xy =
mg

T
Pyy −

3mgγ
T

Pxy (2)

τ Q′y = −γ Pxy (3)

−τ
2
Q′x = γ Pyy − γ p+ (p τ) v′x + Pxy (4)

p = Pyy −
3γ
2
Pxy , Pxx = Pyy − 3γ Pxy (5)

Qy = −4τ Pyy
m

T ′ + g τ (2Pxy − 3γ p)− γQx −
3τPxy
m

(γ T )′ (6)

Qx = 3γ Qy + 2g τPyy +
6τPxy
m

T ′ (7)

where the prime denotes derivative with respect to y. The mass continuity equation is an identity. The first
two equations

are the momentum balance equations and in Eq. (2) the term proportional to Pxy is characteristic of the
present approach. If there is no external force g this equation tells us that Pxy is uniform too; this is the case of
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FIGURE 2. At left the profile of the dimensionless shear rate γ observed in a Newtonian molecular dynamic simulation

for a system with N = 7680 particles, fraction of occupied area ρA = 0.01 and v0 = 1.4
√
T0/m. The horizontal line

represents the theoretical value γ = 0.066869 ± 0.000062. Away from the walls the discrepancy is about of 0.9%. At

right the viscosity ratio η/η0 given in (8) versus γ showing shear thinning, is compared with the viscosity ratio derived

directly from the observations of a Couette flow of a system of N = 7680 particles.
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FIGURE 3. The theoretical and observed profiles of the heat currents Q for the system with N = 7680 particles and

γ = −0.066869 ± 0.000062. The transversal heat current Qy (crosses) fits quite well the theory, while the agreement

between the theoretical and observed profiles of the longitudinal heat current Qx (rhombus) is fair. Both currents are

scaled with the factor T0

√
T0/m.
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FIGURE 4. Temperature profile for a Couette system with T0 = 1, γ = 0.06 and N = 29538 particles. The rhombus

give the simulational results and the solid line corresponds to the theoretical prediction. Notice that the temperature

near the walls is distinctly not equal to T0 = 1.
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FIGURE 5. The theoretical and observed profiles of the heat currents Q of a Poiseuille system of N = 7056 particles,

fraction of occupied area ρA = 0.01



a Couette flow, for example. The third equation is the standard energy balance equation. If in Eq. (4) all terms
are erased except for the last two, Newton’s usual viscous flow law is recovered, but Eq. (4) in full is a quite
nontrivial transport law which involves the heat flux component Qx parallel to the isotherms. Equations (5)
come from the balance associated to the pij and they provide algebraic relations for the hydrostatic pressure
and for Pxx in terms of Pxy and Pyy. The fact that Pxx differs from Pyy is a characteristic feature of the local
anisotropy of the present gas regime. The first two terms of Eq. (6) alone would give Fourier’s law but again,
the present law is quite nonlinear and it involves other fields [9]. The last equation is an equation for Qx and it
is absent from standard hydrodynamics. This flux coincides with remarkable precision with the one observed
in our molecular dynamic simulations.

In [8] we were able to find a closed solution to this hydrodynamics in the case of a laminar planar Couette
flow (g = 0) characterized by externally imposed velocities ±v0 at the two opposite walls in Fig. 1. In this case
the formalism predicts that γ is uniform which can be compared with the simulational results shown in Fig. 2:
only near the walls, where the present theory is known to be unreliable, the uniformity of γ clearly fails. In [8]
it is shown, for example, a closed and nonlinear law of viscous flow that can be cast in the form of Newton’s
law but with a shear dependent viscosity coefficient

η

η0
=

8

15γ2 + 4 +
√

16 + 120γ2 − 63γ4
(8)

where η0 is the well known ideal gas shear viscosity, η0 =
√
mT/π/(2σ). It is seen that η depends on the shear

rate γ and presents shear thinning as seen in Fig. 2 both the predicted and observed values. The observed
and predicted values for the two components of the heat flux are seen in Fig. 3. Those results lead us to get
analytic closed forms for the thermal conductivities associated to Qx and to Qy [8]. They depend not only on
temperature and density but also, like the effective viscosity, they depend on the shear rate. The temperature
seems to be sensitive to the size of the system up to relatively large systems and we had to go to a system of
about 30000 particles to obtain a good fit, shown in Fig. 4.

Similar results have also been obtained for a laminar stationary Poiseuille flow [10] except for one interesting
feature predicted by our formalism and observed in our simulations: even though generally speaking the system
is hotter in the middle of the channel and the heat flows towards the walls, the temperature profile T has a
shallow minimum at the center as shown in Fig. 6 in spite that the heat flux vector takes the energy towards
the walls. This minimum has been observed in simulations and an explanation was originally given using the
BGK approximation to Boltzmann equation [11], see also [10]. Namely, near the center of the channel the
system behaves as if the thermal conductivity was negative as in [5]. The dimensionless quantity which serves
to measure the intensity of the external force in this case is seen to be F = mgL/(T0 Kn), where L is the width
of the Poiseuille channel. Our formalism says that this local minimum exists for all values of F . The solution
found in [10] is perturbative using F as small parameter, hence Kn cannot be too small. In the next section
we comment on this and other peculiarities of the energy (heat?) flux.

PECULIARITIES OF THE ENERGY FLUX

Our aim is to analyze the meaning and physical reason for the existence of an energy flux Q which is not
totally pointing in the direction of −∇T . It is quite general that a vector field can be split in the form

Q = Q‖ + Q⊥ (9)

in such a way that

∇×Q‖ = 0 ⇐⇒ Q‖ = −∇Θ

(10)
∇ ·Q⊥ = 0 ⇐⇒ Q⊥ = ∇×A

This split is not unique but it always exists. For example, finding a vector field R by solving ∇2R = −Q leads
to define

A = ∇×R and Θ = ∇ ·R (11)



1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

T

�

y/L

theo
sim

1.28

1.285

1.29

1.295

1.3

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

T

�

y/L

theo
sim

FIGURE 6. At left the temperature profile in the case of a system Poiseuille flow obtained with a system with

N = 9581 particles, F = 2.5195 and fraction of occupied area, ρA = 0.005 and Kn = 2/(
√
πσnL) = 0.101. The figure at

right amplifies the central part of the profile.

In fact, it can easily be seen that there is consistency using the following check:

Q⊥ = ∇× (∇×R) ≡ ∇(∇ ·R)−∇2R = −Q‖ + Q

From the physical point of view the divergenceless nature of Q⊥ means that it represents a flux along closed
lines (no sources) showing that Q⊥ represents an energy flux in the system without ever leaving it. With Q⊥
one could define lines of flux resembling a textbook description of a magnetic field. In contrast Q‖, like a
conservative force, or like in Fourier’s law, can be expressed as the gradient of a scalar field and an integration∫ b
a

Q‖ · dr gives a unique difference Θa − Θb regardless of the integration path. The field Θ resembles a
temperature, but dimensionally it is like T 3/2.

In the case of the planar Couette flow taking

A =

 0
0

αA T
3/2(y)

 , Θ = αθ T
3/2(y) (12)

makes us recover the expressions for the heat flux vector found in [8] provided that the constants αk are given
by,

αθ = − 16
σ
√
π

1
33γ2 − 4− δ

(13)

αA =
1

24σ
√
πγ3

8− 6γ2 + 9γ4 − (2− 9γ2) δ
1− 3γ2

where δ ≡
√

16 + 120γ2 − 63γ4. As mentioned before, in this case in fact the dimensionless shear rate γ is
uniform and therefore the αk’s are indeed constants.

At it was mentioned at the end of the last section, it has been observed that in the case of a planar laminar
Poiseuille flow the temperature profile T shows a shallow local minimum at the center of the channel and in
fact the gas dynamics described by Eqs. (1)-(7) predicts that such local minimum exists. In Fig. 6 there is
a comparison between theory and simulational results for a Poiseuille system with F = 2.5195. This peculiar
behavior becomes more edible once we realize that the field Θ decreases monotonically from its maximum at
the center. Namely, there is something like a Fourier law but it is Θ and not T the field that drives the energy
flux from Θhot to Θcold regions of the system. To be absolutely sure that Θ(y) has a maximum at the center
of the channel and that it is a concave function all the way up to the walls we notice that Θ′′ = −Q′y < 0. In



fact from Eq. (3) it is seen that −Q′y = γ Pxy/τ which is a negative quantity because Pxy and γ have opposite
sign.

In summary, Boltzmann’s equation plus moment expansion methods yield gas-dynamic equations beyond
standard hydrodynamics. These are dynamic equations for: n, v, T , Pij and Q and there is no need to assume
constitutive equations whatsoever. Instead they imply nonlinear dynamic equations for Pij and Q. Newto-
nian molecular dynamic simulations are excellently well described by such formalism (at least laminar flows).
The non-Newtonian and non-Fourier behavior of gases (e.g., anomalous energy flux) should be measurable in
actual experiments. The non-Fourier behavior has been analized showing that the flux Q naturally splits in
components that extranct (Q‖) and do not extract heat from the system (Q⊥). The first component satisfies
a Fourier-like law. The other component is divergenceless and represents a flux of energy that circulates inside
the system never abandoning it.
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