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Figure: 2D Feature-SLAM lllustration.
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@ What is the estimation problem?

@ Unknown vehicle trajectory and the feature map
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[Thrun, 2002],[Dissanayake et al., '01], [Leonard, Durrant-Whyte and Cox,
'92], [Smith et. al. '90]
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SLAM: New Concepts

@ What is the estimation problem?

@ Unknown vehicle trajectory and the feature map

@ Uncertain vehicle pose, feature location and feature number
[Thrun, 2002],[Dissanayake et al., '01], [Leonard, Durrant-Whyte and Cox,
'92], [Smith et. al. '90]

@ What is the true joint SLAM state?

@ Vehicle trajectory: A vector of vehicle poses at each time.
o The feature map: A set of features representing the map.

@ SLAM Estimation Error vs. Ground Truth?

@ Vehicle estimate evaluation: RMSE

o Map estimate evaluation: Joint error in feature number and
location.
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The Feature Map: What is the true state ?

v The feature map as a vector: Feature order is rigid.

P ) \ Given X':

m, _\ ‘ms
-~ M = [my,mz,mg,mg,Ms,Me,M7]
A 1 Gi 2.
2 - iven X=:
= DAY
N
VA M = [mg4,m2,m3,m¢,Ms,mz,me]
/ / . 3
mos 1,7 " Given X3:
1o r_ -7 )
b _ M = [mg,m7,ms,mg,mM3z,Mz,M;]
/ I
me | | 'm2 e Estimated map vector depends on

the vehicle trajectory ?



Motivation

The Feature Map: Finite Set Representation

M = [m4, m2, Mg, My, M5, Mg, M7]
M = [my4, mz, M3, My, M5, M7, Mg]

M = [m77 m67 m57 m47 m37 m27 m1]

M = {m4, mz, m3, Mg, M5, Mg, M7}

v Order of features cannot be significant

v’ Finite set representation naturally encapsulates all
possible permutations of the features in map
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Motivation

Data Association

@ The Measurement-State assignment problem:




Motivation

Data Association

v Inherent problem in SLAM (even for an ideal sensor)

X Current vector-valued formulations requires it to be solved
prior to Bayesian (Kalman) update: [Lochana et. al, 2006], [Niera
and Tardos, 2001], [Makarsov and Durrant-Whyte, 1995]

o Why ?: Features and measurements are rigidly ordered in a
finite-vector-valued map state

v’ Proposed approach does not require it to be solved:

o Why ?: Features and measurements are represented by
finite-valued-sets. No distinct order assumed
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The Feature Measurement

@ Classical Measurement Model:
Z = h(M, X) + Noise

M = [m4,mz,Mm3,My,Ms,Me,M7] = Z = [21,22,23,24,25,26,27]
M = [my4,mz,mz,mq,Ms,m7,Mg] = Z = [24,22,23,21,25,27,Z¢]
M = [mg,m7,ms5,my,M3,M2,M1] = Z = [26,27,25,24,23,22,21]

v No physical significance to the order of measurements

X Vector approaches require measurement order to match
the feature order in the map state

X Vector approaches require the data association problem to
be solved
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Finite Set Representation

M = [mq,m2, M3, My, M5, Mg, M7]  Z = [21,22,23,24,25, 26, Z7]
M = [mg,mp, m3, My, M5, M7, Mg]  Z = [24,22,23,21,25,27, Zg)

M = [m77 m67 m57 m47 m37 m27 m1] Z = [277 267 257 Z47 237 227 21]

M = {m1 ) m27 m37 m47 m57 m67 m7} Z = {21 ) 227 237 Z47 257 267 27}

v’ Finite set representation naturally encapsulates all possible
permutations of the feature map and measurement

v’ No rigid ordering of states. Data association assignment
does not have to be addressed



Motivation

Presentation Outline

o Motivation

@ The Map Management Problem



Motivation

The Map Management Problem

@ Number of features is a priori unknown. The Map size
grows monotonically:

o

m, \ ' m,
Vector map transition:
False alarms My_q = [m1 , My, m3]

/ New Feature -
-., \ Myjk—1 = [M1, M2, mg]* + " [My]

0
‘"3 gzz , & " Setmap transition:
- % . Mk*‘l = {m1)m2)m3}
: "mz Mkk—1 = {my, mz, Mg} U {my}
k \

Missed detection
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The Map Management Problem

@ Imperfect sensor:

[
\
C \
m, \ 'm Vector measurement:
‘ = h([my, m2, m3, m4], Xx) + Noise
|
False alarms | New Feature [21722,23724,25] ;
N’ \ h([m+, mz, mz, m4], Xx) + Noise
‘"3 .:'-.,Zz //;": m, Set Measurement:
L Ze= U ©(m XU Cx

, , meMyk—1
3 Omz
\' Missed detection

\
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The Map Management Problem

@ Feature-based SLAM is commonly phrased as “a state
estimation problem involving a variable number of
dimensions (features)” [Thrun, 2002],[Dissanayake et al., '01], [Leonard,
Durrant-Whyte and Cox, '92], [Smith et. al. '90]

X Random vector representation does not model uncertainty
in number

X Post-processing feature number filters required [Montemerio et.
al., ’03], [Lochana et. al., '06], [Dissanayake et. al, '01]

v Random finite set (RFS) models uncertainty in state values
and number
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@ Acquire measurement, Zi
Independent: Data Association )

@ Measurement update:

p(Xk’Mk|Zka Uk71,X0) =
9(Zk My, Xi)p(XK, M| Z1, uF =T, Xp)
ffg(ZkM/Ik,Xk)p(Xk,Mk|Zk71,Uk71,Xo)kade
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Motivation

Classical vector-valued Bayesian Approach

@ Time update: p(Xk, Mx|ZK~1, uF=1, Xo) =
[ 1O MIXET Mt )P0 M| 257, 2, X)X

@ Acquire measurement, Zi
Independent: Data Association )

@ Measurement update:  \ust be of equal dimension

p(Xk M |Zk k—1
9(Z| M, X ()(xk My | 241, Uk )a

I | 9(Zrttete X ( X‘*—M—tf“—‘,—u*—‘ﬁ@ﬂxkd/wk

Independent: Map Management )

X Feature state and number are not jointly propagated or
estimated
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@ Time update: p(Xk, Mx|ZK=1, uF=1, Xo) =

[ 1O MY Mg )P OX M| 257, 042, X o
@ Acquire measurement, Zj

@ Measurement update:

p(Xk7 Mk’Zkv Uk_1 ) XO) =
9(Zic|Mie, Xi)p(XK, M| ZK=1, uk =1, X)
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Motivation

Proposed RFS Bayesian Approach

@ Time update: p(Xk, Mx|ZK=1, uF=1, Xo) =
[ O M M, )P M| 277, 02, X o

@ Acquire measurement, Zj

@ Measurement update:
Can be of differing dimension

p(X*, M| Z¥, U =
9(Zk| Mk, Xic Jp(X*, M| ZK—T, uk T )a

J S a Q\Z‘HWX‘*—Mﬂik—‘—uf‘—‘ﬁﬁkade

v Jointly estimate feature state, number and vehicle pose
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The RFS-FBRM Framework

The Poisson RFS Feature Map

@ The RFS Map:
|Mk| increases monotonically

FOV(Xg) N Mg
However, FOV(Xk) N Mk can -

be assumed Poisson == a
[Makarsov, 1995]

o

/FOV(Xk)
N FOV( Xk
@ The RFS Measurement: \ /‘VEW' g

/

Zx = U @(m, Xk) U Ck() 1

me Mg I

o
\

\

Clutter measurements, Cy, \
also assumed Poisson !



The RFS-FBRM Framework

RFS Process Model

@ The RFS Map:
The map state at time k—1,
My_1 = Mn FOV(X*=1) where
FOV(X*—1=FOV(Xo) U FOV(X{)U---U FOV(X_4)

@ The RFS Process Model
Mk|k71 = Mi_4 U (FOV(XK) N Mk1)



The RFS-FBRM Framework

RFS Process Model

@ The RFS Map:
The map state at time k—1,
My_1 = Mn FOV(X*=1) where
FOV(X*—1=FOV(Xo) U FOV(X{)U---U FOV(X_4)

@ The RFS Process Mode

@ New feature RFS

@ No a priori knowledge of the map
o Use Zx_4 to form the RFS



The RFS-FBRM Framework

RFS Measurement Model

@ RFS Measurement Model

Zv = |J e(m, Xk) u Ci(Xk)

me My
@ where,
o(m, X¢) = {z} w?th densityI;IJD(m, Xk)g(z|m, Xk)
{0} with probability 1—pp(m, X)

@ and Ck(Xx) is the (perhaps vehicle state dependent) RFS
of the spurious measurements
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The RFS-FBRM Framework

First Order Recursion

Prik(Mic={my, ..., mguy HZ*, X, Uk, Xo) =
Ik(Zk | M, Xi)Prejie—1 (M | 2571, X5 uk=1, X)
I 9k (ZkIMi, Xic) Pk k—1(My|ZK=1, k=1, Xo) dMik

@ Multiple integrals render the recursion intractable

@ Propagate the first-order moment, the intensity function: v
[Mahler 03, Vo '06]

Vik—1(Mk| X)) = Vie—1(Mi—1|Xk—1) + b(Mk|-)

Vi (M| Xk) = Vkjk—1(M|Xk) |1 — Pp(M| Xy )+

3 Pp(M|Xk)g(z|M, Xi)
ck(2) + [ Po(CIXk) gk (2I¢; Xi) Vikjk—1 (¢ Xk)dC

ZEZk



The RFS-FBRM Framework

GMM Implementation

@ Prior: Jk—1 _
Vk—1(Mk—1|Xk-1) ZWK N(m ) PP

ka
b(Mk|Zi—1, Xk—1) = > wON (m; ), PY))
=1
@ Prediction: ks :
Vik—1 (M| Xic) = Z k\k N 5(1\)k 1’PI(<j\)k 1)
@ Update:

Vie(Mk | Xk) = Vijk—1 (M| Xk) [1 — Pp(m[Xi)+

Jk|k—1
o> va (z, m| Xx) ]

zeZ, =1



The RFS-FBRM Framework

The GMM Intensity Function

meters

Figure: Gaussian mixture representation of the intensity function,
showing peaks at feature locations, with 2 features represented by a
single peak with weight 2 as highlighted. Black dots show the true
feature locations within sensor range.



The RFS-FBRM Framework

The GMM Intensity Function

L

)
meters

Figure: Gaussian mixture representation of the intensity function,
showing peaks at feature locations, with all features correctly
resolved. The new Gaussians of the mixture have unity weights, with
some smaller components also evident of small weight.
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The RFS-FBRM Framework

FBRM: Error Quantification

@ Current error analysis:

X Independently analyses each map estimate
X Disregards the dimensionality estimation problem

meters

meters



The RFS-FBRM Framework

FBRM: Error Quantification

@ Current error analysis:

X Independently analyses each map estimate
X Disregards the dimensionality estimation problem

meters
meters

d=1.48

[ 5 10 15 5 = = o
meters ‘ M| meters

5 1/p
@ fr Ao [V - ©) (B )P Yy
a7 (1.0) = (s (i, i mpp+ o211 )

jeft,

where, d© (A, m;) = min(c, || — my||)

[Schuhmacher, '08]
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FBRM: Simulated Environment
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Figure: Comparison of FB mapping error vs. measurement noise
(left) and clutter rate (right) for the proposed filter and the classical
EKF solution.
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FBRM: Simulated Environment
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The RFS-FBRM Framework

FBRM: Real Environment

Figure: Overview of campus dataset segment for PHD-FBRM filter
testing.
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FBRM: Real Environment
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Figure: FBRM map estimate comparison.
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FBRM: Real Environment
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The RFS FB-SLAM Framework

The FB-SLAM Problem

Pr (X, Mc={my, ..., mquo Y1 Z5, U1, Xo) =
Ik (Zk | Mic, Xi)Prjie—1 (X, M| ZF=1, 1R, Xo)
f fgk(zk|Mkan)pk|k_1(Xk, Mk|Zk71,Uk71,Xo)kade

W Bayesian recursive approach

B Measurement uncertainty

B Map feature number and spatial uncertainty
B Vehicle pose uncertainty

FB-SLAM requires the joint propagation of the map dimensional
and spatial uncertainty, as well as the vehicle pose uncertainty.}




The RFS FB-SLAM Framework

The RFS FB-SLAM Recursion

@ The vehicle trajectory is represented by the vector,
XK =Xy, Xz, , Xi]

since k (the dimensionality) is known and the order is
significant.



The RFS FB-SLAM Framework

The RFS FB-SLAM Recursion

@ The vehicle trajectory is represented by the vector,
XK =Xy, Xz, , Xi]

since k (the dimensionality) is known and the order is
significant.

@ The feature map is represented by a finite set,
Mi = {my,mgz, - My}

g(k) is the unknown number of observed map features
over the vehicle trajectory, X*



The RFS FB-SLAM Framework

The RFS FB-SLAM Recursion

@ Vehicle state evolves in time according to a standard
Markov vehicle model,

Xkjk—1 = fy(Xk—1, Uk + Qk)

@ A static (but increasing in cardinality) map evolves
according to,

Mik—1 = Mk_1 U Bk(Zk—1)

where By(-) is the RFS of the new features which have
entered the map.
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The RFS FB-SLAM Recursion

@ The RFS Bayesian FB-SLAM recursion can then be
written,

o P XK, M| ZK, uk=1, Xo) =

Ik (Zic| M, Xi) Pri—1 (X, M| ZK=1, uk =1 Xo)
I 9k(Zk| My, Xi) P jk—1 (XK, Mic| ZE=1, uk=1, Xo) dXk pu(dMi)

@ where, pyik—1 (XK, M| ZE=1, Uk, Xo) =

/ (X My Xi_1, Mi_1, U 1) %
Pre—1 (XK M1 2571, U2 Xo) X1 (M 1)
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The RFS FB-SLAM Recursion

@ The RFS Bayesian FB-SLAM recursion can then be
written,

o P XK, M| ZK, uk=1, Xo) =

Ik (Zic| M, Xi) Pri—1 (X, M| ZK=1, uk =1 Xo)
I 9k(Zk| My, Xi) P jk—1 (XK, Mic| ZE=1, uk=1, Xo) dXk pu(dMi)

@ where, pyik—1 (XK, M| ZE=1, Uk, Xo) =

/ (X My Xi_1, Mi_1, U 1) %
Pre—1 (XK M1 2571, U2 Xo) X1 (M 1)

@ Similar to the classical FB-SLAM recursion, except that the
dimensionality of Z, and My are not fixed with time.
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The RFS FB-SLAM Framework

The First Order Approach

@ Append each map element, m € My, with the vehicle

trajectory,
= x|
and form the joint SLAM RFS at time k,
k
Ck = {C/lv(l%v ) /?( )}
@ Invoke a conditional vehicle-map state independence by

reducing the problem to multiple estimations of a single
trajectory and single map feature.



The RFS FB-SLAM Framework

The First Order Approach

@ |My| is monotonically increasing with time however,
@ |Myk—1 N FOV(X)| can be assumed Poisson with
probability density v(m)/N.
o However, PHD-SLAM requires ¢, to be Poisson with
probability density v(X*, m)/N

V(X¥, m) = p(X*|m)¥(m)



The RFS FB-SLAM Framework

The First Order Approach

It can then be shown that,
@ PHD FB-SLAM Time update:

Vijk—1(Ck) =

/f(Ck’Ck—hUk—1)Vk—1(Ck—1)de—1 + by

Z/f(Ck|Xk1,mk,Uk1)Vk1(Xk1,mk)ka1 + by
@ PHD FB-SLAM Measurement update:

ve(Gi) = [1 o

3 Po(Ck) 9k (21¢k)
ck(2) + [ po(£)9(2|6) Vikik—1

(©)de Viik—1(Ck)

ZeZk
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The RFS FB-SLAM Framework

The GMM Implementation

@ More efficient than SMC approaches for mildly non-linear
systems

o If the prior and birth intensities are GMM,

NXJk 1
Vik—1(Ck—1) ZW 5(1)1;P;((I)1)

NXka

b= D Wil (G i Pok)

i=1
then the predicted intensity is also GMM,

Jk|k—1

(1) (1)
Vik—1(Ck) = Z Wk|k N kl\k 1’Pkl\k )



The RFS FB-SLAM Framework

The GMM Implementation

@ Assuming a Gaussian measurement likelihood, g(z|(x),
the joint posterior intensity, vk((x), is consequently a
Gaussian mixture,

Jk|k—1
Vi (Ck) = Vikik—1(Ck) [1 — Pp(¢k) + Z Z VGk Z|Ck)]

zeZ, i=1

o where, ‘ ‘
Vay(216k) = wN (G s PO

Po(C)Wi_19" (2, Ck)
Jk|k—1

2)+ Y Po(G)wih_19D(z, )

j=1

with, g)(z, k) =N (2; Hil_1, SY).

Wl




The RFS FB-SLAM Framework

The GMM Implementation

@ The individual components are obtained from the standard
EKF update equations,

(1) (1) (1)
Pk = k=t T K (Z2 = Hk'uk|k )

Pk =11 - KOVHIPY,
KD = P VHIISY]™
S\) = R + VHcP{)_ VH{

o VHj being the Jacobian of the measurement equation with
respect to the features estimated location.
@ ck(z) = A VU(z) with A¢ being the clutter density.
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The RFS FB-SLAM Framework

FB-SLAM: Simulated Environment

@ Comparison of proposed ‘PHD-SLAM’ with ‘FastSLAM +
ML DA + Map Management’ in feature map environments

@ Vehicle speed and steering input noise of 1ms~' and 5°

@ Two scenarios tested, with Rpzx = 10m:

Scenario Pp Ac oR Oo
Simple [0.95| 0m=2 |0.25m|0.5°
Challenging | 0.95 | 0.03m=2 | 12.5m | 25°

@ N = 10 for both filters



The RFS FB-SLAM Framework

FB-SLAM: Simulated Environment

meters

A5k
* X
—20
=25 [ Missed feature - =
by GM-PHD filter
=30L L L 5 . L
=30 =20 =10 0 10 20 30

meters

Figure: Comparative results for the proposed GM-PHD SLAM filter
(black) and that of FastSLAM (red), compared to ground truth (green).



The RFS FB-SLAM Framework

FB-SLAM: Simulated Environment

o o 20 30 40
meters

Figure: The raw dataset at a clutter density of 0.03m—2.
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FB-SLAM: Simulated Environment

L Singlefalse featur
w %~ by PHI)-SLAM Filter

meters
&

20}
Single missed feature
by PHD-SLAM Filter
s

25 -0 15 -0 -5

o
meters

Figure: The estimated trajectories of the GM-PHD SLAM filter (black)
and that of FastSLAM (red). Estimated feature locations (crosses) are
also shown with the true features (green circles)
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FB-SLAM: Simulated Environment
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Figure: Feature number estimates.
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FB-SLAM: Simulated Environment

o
(32
T

o

o
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a1
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Heading Error (rads)
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Update Index

Figure: The error in vehicle heading estimate for the PHD-SLAM
(black) and FastSLAM (red) filters.
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FB-SLAM: Real Environment

@ Outdoor carpark environment

Radar Scan Map Laser Scan Map

i g PSS 1 . S S —
40 -0 -20 -0 0 10 20 30 40 50 40 -3 -20 -0 0 10 20 330 4 50
Meters Meters

Figure: Sample data registered from radar and laser sensors.
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FB-SLAM: Real Environment

@ Odometry with extract feature measurements

40 o 40

meters

=40/

: M S S N A it TV S I
S0 40 -0 -0 -0 0 10 0 30 4 50 0 4 % -x -0 0 W o2 N 4 50
meters meters

Figure: Extracted point feature measurements with odometry.
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FB-SLAM: Real Environment

@ EKF, FastSLAM and PHD-SLAM with laser data
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Figure: Posterior SLAM estimate using laser data.
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FB-SLAM: Real Environment
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Figure: Posterior SLAM estimate using radar data.
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Conclusions

@ Previous vector based SLAM sub-optimally deal with the
dimensionality and data association problems

@ The Set-SLAM recursion presents an alternative
feature-based Bayesian SLAM recursion which jointly
considers the entire system uncertainty

@ The proposed PHD-SLAM and GM implementation
demonstrate the validity of the framework.

@ Promising results shown, especially in scenarios of
high-clutter and large data association ambiguity.
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Future directions

@ Extend FBRM/FB-SLAM solution to higher order
recursions - propagate density on feature number

@ Exploit robot motion in a Jump Markov approach to switch
between lower and higher moment filters

@ Extend RFS-SLAM to other formulations (FastSLAM ?, Full
covariance EKF ?)

RFS approach highlights that the majority of work on FB-SLAM
to date is conditioned on a known number of features. J
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