Detection Likelihoods for Safer Occupancy

Mapping

John Mullane
Martin Adams
Wijerupage Sardha Wijesoma

School of Electrical & Electronic Engineering
Nanyang Technological University
Singapore



Presentation Outline

o Introduction
@ Motivation
@ Environment Representation
@ Stochastic Estimation

© The GBRM Framework
@ The Range-based Recursion
@ The Detection-based Recursion
@ Verification: Ideal Likelihoods

© case Study: MMW Radar Map Estimation
@ The Measurement Likelihoods
@ Filter Implementations
@ Filter Analysis

e Conclusions & Future Directions
@ Conclusions & Future Directions



Introduction

Presentation Outline

o Introduction
@ Motivation



Introduction

Motivation

@ Accurate map estimation is critical for safe and reliable
autonomous navigation



Introduction

Motivation

@ Accurate map estimation is critical for safe and reliable
autonomous navigation

@ Exteroceptive sensors can be noisy, stochastic methods
popular



Introduction

Motivation

@ Accurate map estimation is critical for safe and reliable
autonomous navigation

@ Exteroceptive sensors can be noisy, stochastic methods
popular

@ As sensing noise increases, performance of current
occupancy grid approaches deteriorate



Introduction

Motivation

@ Accurate map estimation is critical for safe and reliable
autonomous navigation

@ Exteroceptive sensors can be noisy, stochastic methods
popular

@ As sensing noise increases, performance of current
occupancy grid approaches deteriorate

v/ Examine mathematical foundation of standard occupancy
measurement likelihoods



Introduction

Motivation

@ Accurate map estimation is critical for safe and reliable
autonomous navigation

@ Exteroceptive sensors can be noisy, stochastic methods
popular

@ As sensing noise increases, performance of current
occupancy grid approaches deteriorate

v/ Examine mathematical foundation of standard occupancy
measurement likelihoods

v’ Improve accuracy of maps estimated, as sensor noise
increases
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Environmental Perception

v Provides real-time situational awareness
v Provides absolute correction data for real-time path
estimation

ssed Detection|

@ Measurement Uncertainty:

X Measurement noise X Detection uncertainty
X Spurious measurements X Data association uncertainty
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Sample Environment
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Figure: A General 2D Autonomous Navigation Scenario.
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Map Representation
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Dealing with Measurement Uncertainty

v Environmental Estimation: Robotic Mapping

v/ Bayesian approach, widely accepted in robotics

@ Assuming vehicle path is known (RM):

pk|k(Mk|Zk, Xk, Uki‘l ) XO) =
Ik (Zk I Mic, Xi)Prjie—1 (M| 25T, X, R, Xo)
T 9k (Zk| My, Xic)Prk—1(Mk | ZK=1, uk =1, Xo) dM

Pik(Mk| Z%, X5, uk=1, Xq): encapsulates all uncertainty
about the map at time k.
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The Measurement Likelihoods
@ Widely adopted in the GBRM literature.

o Grid Maps:

Gk(Zk = r|Mx = GRID, Xk) [Elfes, ’89]

Occupancy

@ How are the measurement likelihoods calculated ?
Gk(Zk = f|Mk = E7 Xk) ?
Gk(Zk = f|Mk = O7 Xk) ?
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Introduction

Motivation Summary

@ Safe autonomous navigation requires accurate map
estimates

X In challenging environments (landmarks of various shapes
and sizes) and noisy sensors (radar / sonar), incorporation
of uncertainty in to filter recursion is critical

X Occupancy mapping likelihoods appear to have some
inconsistencies

v Change the measurement space from range/bearing to
detection/non-detection

v’ Improve robustness of occupancy grid framework to noisy
environments and sensors
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The GBRM Framework

The GBRM Problem

P (Mic=[my, ..., My ]| 2%, XK UK, X0) =
)  Ik(Z M, Xie)Pug—1 (Mie| 251, XK, Uk, Xp)
A J 9k(Zk M, Xi)Prk—1 (M| 251, uk=1, Xo) dM
H W Bayesian recursive approach

B Measurement uncertainty
B Map occupancy uncertainty
v B Decompose map into W x H independent
estimation problems
i=WxH ‘
Pak(MlZ, Xi) =TT Pri(mil 2%, X¥)

i=1

GBRM requires the propagation of the map occupancy state. |




The GBRM Framework

Current Approach: The Range-based Recursion

The Range-based GBRM Filter

pk|k(Mk: [m17 ceey mWXH]‘Zk7 Xk7 Uk71 ’ XO) =
Ik(Zk| M, Xie)Prj—1(Mi| ZK =1, XK uk=1, Xo)
J 9k (Zk| M, Xie)Prk—1 (M| ZK=1, uk =1, Xo) dM.

State is binary: M =[O, E]

Prediction: pyjx—1(Mi|Z¥=1, X*, uk=1, Xo)
Measurement: Z, =range/bearing

Form likelihood: gk(Zx| Mk, Xk)

Bayesian Update: pyx(Mk|Z*, X*, uk=T, Xo)

®© ¢ ¢ ¢ ¢
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Current Approach: The Range-based Recursion

The Range-based GBRM Filter

pk|k(Mk: [m17 ceey mWXH]‘Zk7 Xk7 Uk71 ’ XO) =
Ik(Zk| M, Xie)Prj—1(Mi| ZK =1, XK uk=1, Xo)
J 9k (Zk| M, Xie)Prk—1 (M| ZK=1, uk =1, Xo) dM.

State is binary: M =[O, E]

Prediction: pyjx—1(Mi|Z¥=1, X*, uk=1, Xo)
Measurement: Z, =range/bearing
Form likelihood: gx(Zx| Mk, Xk)
Bayesian Update: pyx(Mk|Z*, X*, uk=T, Xo)

|6 ¢ 6 ¢
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Gk(2x = rlmy x) = O, Xk)

@ The likelihood of a range measurement conditioned on the
occupancy state and vehicle pose
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The Measurement Likelihood: State Dependency

@ The likelihood of a range measurement conditioned on the
occupancy state and vehicle pose

Q. What is the function that relates my () and Xx to z, where
Zx is range reading? J

A. Use z, = {Detection,No Detection} to get state dependant
measurement equation. }
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Gk(zx = rlmy x) = O, Xk)

@ Dealing with detection uncertainty and spurious
measurements.
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The GBRM Framework

The Measurement Likelihood: Uncertainty

@ Dealing with detection uncertainty and spurious
measurements.

Q. For no range reading, how is Gx(zx = r|my (x) = [O, E], Xk)
defined ? J

A. Use zx = {Detection,No Detection} to have a well-defined
likelihood. J




The GBRM Framework

Current approach: Drawbacks

@ Grid-based Framework

v/ Estimation state space: Occupancy
v/ Map representation
o Measurement Likelihood:

v/ Measurement Noise

X State dependent

X Detection Uncertainty
X Spurious Measurements
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The GBRM Framework

Proposed Approach: Advantages

@ Grid-based Framework

v/ Estimation state space: Occupancy
v/ Map representation
o Measurement Likelihood:

v/ Measurement Noise

v State dependent

v Detection Uncertainty
v/ Spurious Measurements
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Proposed Approach: The Detection-based Recursion

The Detection-based GBRM Filter

pk|k(Mk: [m17 ceey mWXH]‘Zk7 Xk7 Uk71 ’ XO) =
Ik(Zk| M, Xie)Prj—1(Mi| ZK =1, XK uk=1, Xo)
J 9k (Zk| M, Xie)Prk—1 (M| ZK=1, uk =1, Xo) dM.

State is binary: M =[O, E]

Prediction: pyjx—1(Mi|Z¥=1, X*, uk=1, Xo)
Measurement: Z, =Detection / Non-detection
Form likelihood: gk(Zx| Mk, Xk)

Bayesian Update: pyx(Mk|Z*, X*, uk=T, Xo)

®© ¢ ¢ ¢ ¢
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Proposed Approach: The Filtering State-Space

New (state-dependent) 7

occupancy measurements )
p(z,=detection|m, )

p(zy=range|m,)

Occupancy State Space

Previous (state-independent)
occupancy measurements

dedyd;did didadada Spatial State Space



The GBRM Framework

Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

the measurement likelihood is state-dependant J

the measurement likelihood always exists J




The GBRM Framework

Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

PV [0, £20)

POV, ., [He Q) |

Probability

Y

1R Signal Power
<«— Decide Hy ><———Decide Hg ——»

V)
/")
)
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Simulation: Known Likelihoods
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Simulation: Known Likelihoods
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Simulation: Known Likelihoods

Previous Approach
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Filter Implementation ?

v Likelihoods are landmark dependent

o Landmark properties affect its fluctuation model
v Likelihoods are detector dependent

o Statistical detectors/parameters alter likelihoods
v Likelihoods are sensor dependent

@ Detection theory may differ between sensor - MMWR, LMS,
Camera, Sonar etc. etc.
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Case Study: MMW Radar Map Estimation

The MMW Radar

@ Operates at 77GHz

@ Returns unprocessed data allowing for
custom detector design




Case Study: MMW Radar Map Estimation

The Detection Problem: A Stochastic Approach

X Rarely considered in current navigation algorithms
v/ Stochastic detectors exploit statistics of underlying signals




Case Study: MMW Radar Map Estimation

The Detection Problem: A Stochastic Approach

v/ Outperform classically adopted constant thresholds
v Detections (and non-detections) are statistically significant

Intensity

0 20 0 80 100

40 6
Range (m)

Spectrum at Bearing Angle 1

Intensity

- ﬁ‘l A it iﬂ:lglll

Spectrum at Bearing Angle 2



Detection

Probability

Case Study: MMW Radar Map Estimation

Statistics

Py, [ Ho,£20)

Uit

P, [He Q) |
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<«—— Decide Hy »><———Decide Hg ——— >
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Detection Statistics

P(W; . [HoL20)

Uit

P, | HE Q6) ‘

Probability

R Signal Power
Decide H; —»<——— Decide Ho

Pq = /0 PlYgitr = TritrHolfu(p)dp

Po= /0 Plvaicr < Thier Helfu(n)dp
P — /0 Plérisr < TarerHolfu(u)du

P, :/0 PlYgivr > ThivrHe]fu(1)dp



Case Study: MMW Radar Map Estimation

MMWR: Stochastic Detection

@ Form a threshold: T = 7Q¢

@ Popular approaches: OS,
CA, GO, SO, ...

Intensity

40 60
Range (m)

@ At a given range, r, assuming Qg = pu then,

9k(2k =Dl My 1y = 0. Xic) = /0 Plyr > To|Holfu(R)dA

Ik(2k=D|my (ry=E, Xk) :/o Plr > TrHelf(R)di



Case Study: MMW Radar Map Estimation

MMWR: OS-CFAR Likelihoods

@ Assume v(Qg) is IID,

Intensity

Ik(zZk=DImy () =E, Xk) =K J

@ Analgous to data association threshold

v \° test accepts a correct assignment with a fixed probability

v CFAR test accepts an incorrect assignment with a fixed
probability

v’ Both threshold give no information of the converse
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MMWR: OS-CFAR Likelihoods

_ow
k(2K =DImy ;)= O, X) = (1 + 1% ) J

where,
T, = Tﬁr
) 2WY (Kos — 17 + 2W — Kos)!
= k —P
T =arg mn ( "S(kos) (r + 2W)! fa
ﬂr = “Uos,koS
Vos = sort([Yr—g—w, -, Yr—cl U [YriGi1s - s Yriciwl)
ﬁr — wr -

fur
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MMWR: Evaluating the Likelihoods

Prik(Mi ()= 0] 2%, X¥) =

9 (k| Mi (x) = O, Xic)Prik—1(Mi ()= O 21, XK)
Priie(Zic| My (), X5)
Likelihood Filter

Discrete probabilistic

Binary Bayes Filter

Discrete evidential

Dempster-Shafer Evidential Filter

Continuous probabilistic

if Gaussian - Kalman Filter
if non-Gaussian - Particle Filter.
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@ Filter Implementations



Case Study: MMW Radar Map Estimation

MMWR: Discrete Probabilistic GBRM Filter

Prik(Mk = O|zx () = D) =
Zp, Pkjk—1(Mk = O|Zx_1)
Zp, Prjk—1(Mk = O|Zk_1) + Zp,Pxjk—1(Mk = E|Zx_1)

Pix(Mx = Olzi () = D) =
Zp, s Prik—1(Mk = O|Zk_1)
Zp,s Prik—1(Mk = O|Zk_1) + Zp, Pkjk—1(Myk = E|Zk_1)




Case Study: MMW Radar Map Estimation

MMWR: Discrete Evidential GBRM Filter

Y. mz(A)mm(B)

_ AnB=C
() = S A ma(B)
ANB=0)
mz(mll(:‘zk = D) = ZP —|—Zpd +ZP

md n u

_ Zp,
mz(mﬂzk - D) - Zp  +2Zp +2Zp
md n u

Zp,

) — N\ —
mz(mk ‘Zk - D) - med + an + Zpu

mz(ml|zx) = 0



Case Study: MMW Radar Map Estimation

MMWR: Continuous Probabilistic GBRM Filter

N

qu\kq(okq,(r)fzkr)q) ~> W,E’L,(,)%(ki)_1 (r)(ok—1,(r))
P ;
where,
_ | Mk—1,(n) }
O - — b
=10 [ Ak—1,(r)

0/(<I,(r) ~ Q(Ok (%1 (r)> Zk.(r)

p(2x, r)|0;(<i) )P(Ok 0 |Ok 1.(n)

q(Ok r)\Ok 1, r)vzk(l’))




Case Study: MMW Radar Map Estimation

MMWR: Continuous Probabilistic GBRM Filter

P(My_1,(r)12(5 ") ~ P(Mi_1,(ry = 1|2(571,1)

Prk|k—1 ()\k,(r)|2k,)_1) = pk—1|k—1()‘k—1,(r)|zkr)_1)

Q(Ol(<l,)(r) ol () Zk(n) = p(o,(('}(,)!o,((% o)

P2k ()0} }1y) =



Case Study: MMW Radar Map Estimation

Presentation Outline

© case Study: MMW Radar Map Estimation

@ Filter Analysis



Case Study: MMW Radar Map Estimation

Testing Environment

Radar Scan Map Laser Scan Map

¥t

BT -rt
"

g e

Loy -
o *4_‘:___—

LA T
-
. &

»

i

% % -0 -0 0 W W N @ 50 40 30 -0 0 0 10 2 W 4 50
Meters Meters

Figure: Testing Ground overview with corresponding scan maps
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Testing Environment
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Figure: Carpark binary ground-truth GB map.



Case Study: MMW Radar Map Estimation

GBRM: Error Quantification

@ Vector Map Comparison

@ Sum of Squared Error (SSE) common [Martin, '96], [Collins 98],

[Rachlin, 05]
q

> (mj— fn)?

i
X Not applicable to outdoor environments

q90
NASSE = o.5<ql > (P(mp|z" m'=1) — 1)%+
0o

q
@ a0) —1%) | Z (P(mi |2, m' =0) - 0)2>

I:qo+1



Case Study: MMW Radar Map Estimation

GBRM: Error Quantification
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Figure: Grid-based error metric comparison with localisation error.



Case Study: MMW Radar Map Estimation

Discrete Probabilistic Implementation
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Figure: Discrete probabilistic detection filter (left) and discrete range
filter (right).
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Discrete Probabilistic Implementation

Discrete Range-Likelihood - - -
Discrete Detection-Likelihood —
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Figure: Discrete probabilistic detection vs range likelihood NASSE
comparison.



Case Study: MMW Radar Map Estimation

Discrete Evidential Implementation

meters

0

20 E -10 0
meters meters meters

Instantaneous mass distributions on the map.
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Discrete Evidential Implementation
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Discrete Evidential Implementation

NASSE metric

Discrete Range Filter - - -
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Continuous Probabilistic Implementation
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NASSE Comparisons
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NASSE Comparison vs. Detector Parameter
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Figure: Continuous detection vs range likelihood NASSE vs sliding
window width.
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Campus Results

Campus excerpt map estimate
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Campus Results
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Figure: Comparison of radar and laser posterior grid map estimates
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Campus Results

Figure: Campus excerpt map estimate
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Campus Results

Figure: Campus excerpt map estimate
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Conclusions & Future Directions

Conclusions

@ Autonomous safety is highly dependant on accurate
environmental representation

v’ Error of estimated grid maps can be reduced by
incorporating the measurement uncertainty directly into the
measurement likelihood

v Changing measurement space to detection/non-detection
makes the likelihoods physically intuitive

v Likelihoods derived and mapping filters implemented using
a MMWR sensor

v Improved mapping accuracy, particulary in situations of
high false alarm and missed detection probability



Conclusions & Future Directions

Future directions

@ Extend detection recursion to other sensing modalities

@ For radar: Develop the EKF - Evidential Kalman Filter
(Continuous evidential likelihoods)

@ Extend to feature extraction algorithms - estimating the
probability of feature existence
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