Detection Likelihoods for Safer Occupancy Mapping

John Mullane Martin Adams Wijerupage Sardha Wijesoma

School of Electrical & Electronic Engineering Nanyang Technological University Singapore

<□> <四> <四> <三> <三> <三> <三> <三

Presentation Outline

- Introduction
- Motivation
- Environment Representation
- Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
 - Conclusions & Future Directions
 - Conclusions & Future Directions

Presentation Outline

Introduction

Motivation

- Environment Representation
- Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
- Conclusions & Future Directions
 Conclusions & Future Directions

 Accurate map estimation is critical for safe and reliable autonomous navigation

- Accurate map estimation is critical for safe and reliable autonomous navigation
- Exteroceptive sensors can be noisy, stochastic methods popular

- Accurate map estimation is critical for safe and reliable autonomous navigation
- Exteroceptive sensors can be noisy, stochastic methods popular

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 As sensing noise increases, performance of current occupancy grid approaches deteriorate

- Accurate map estimation is critical for safe and reliable autonomous navigation
- Exteroceptive sensors can be noisy, stochastic methods popular
- As sensing noise increases, performance of current occupancy grid approaches deteriorate
- Examine mathematical foundation of standard occupancy measurement likelihoods

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Accurate map estimation is critical for safe and reliable autonomous navigation
- Exteroceptive sensors can be noisy, stochastic methods popular
- As sensing noise increases, performance of current occupancy grid approaches deteriorate
- Examine mathematical foundation of standard occupancy measurement likelihoods
- Improve accuracy of maps estimated, as sensor noise increases

Environmental Perception

- Provides real-time situational awareness
- Provides absolute correction data for real-time path estimation

Environmental Perception

- Provides real-time situational awareness
- Provides absolute correction data for real-time path estimation

- Measurement Uncertainty:
 - X Measurement noise
 - X Spurious measurements
- Detection uncertainty
 Data association uncertainty

Presentation Outline

Introduction

- Motivation
- Environment Representation
- Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
- Conclusions & Future Directions
 Conclusions & Future Directions

Sample Environment

Figure: A General 2D Autonomous Navigation Scenario.

(ロ)、(型)、(E)、(E)、 E) のQ()

Map Representation

Represent the map, M, as a mathematical object.

Map Representation

✓ Represent the map, M, as a mathematical object.

Grid-based Map

- [Moravec, '85]
- [Elfes, '89]
- [Martin, '96]
- [Konolgie, '97]
- [Pagac, '98]
- [Gutmann, '99]
- [Foessel, '02]
- [Thrun, '02]
- [Hahnel, '03]
- [Grisetti, '03]
- [Thrun, '03]

= 900

• [Yang, '06]

Presentation Outline

- Introduction
- Motivation
- Environment Representation
- Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
- Conclusions & Future Directions
 Conclusions & Future Directions

Dealing with Measurement Uncertainty

- Environmental Estimation: Robotic Mapping
- Bayesian approach, widely accepted in robotics
- Assuming vehicle path is known (RM):

$$p_{k|k}(M_k|Z^k, X^k, u^{k-1}, X_0) = \frac{g_k(Z_k|M_k, X_k)p_{k|k-1}(M_k|Z^{k-1}, X^k, u^{k-1}, X_0)}{\int g_k(Z_k|M_k, X_k)p_{k|k-1}(M_k|Z^{k-1}, u^{k-1}, X_0)dM_k}$$

 $p_{k|k}(M_k|Z^k, X^k, u^{k-1}, X_0)$: encapsulates all uncertainty about the map at time *k*.

The Measurement Likelihoods

- Widely adopted in the GBRM literature.
 - Grid Maps:

$$G_k(Z_k = r | M_k = \text{GRID}, X_k)$$
 [Elfes, '89]

▲□▶▲□▶▲□▶▲□▶ = のへの

G(Z - r|M - GRID X)

The Measurement Likelihoods

- Widely adopted in the GBRM literature.
 - Grid Maps:

 $G_k(Z_k = r | M_k = \text{GRID}, X_k)$

[Elfes, '89]

(日) (日) (日) (日) (日) (日) (日) (日)

• How are the measurement likelihoods calculated ?

 $G_k(Z_k = r | M_k = E, X_k)$? $G_k(Z_k = r | M_k = O, X_k)$?

 Safe autonomous navigation requires accurate map estimates

- Safe autonomous navigation requires accurate map estimates
- In challenging environments (landmarks of various shapes and sizes) and noisy sensors (radar / sonar), incorporation of uncertainty in to filter recursion is critical

- Safe autonomous navigation requires accurate map estimates
- In challenging environments (landmarks of various shapes and sizes) and noisy sensors (radar / sonar), incorporation of uncertainty in to filter recursion is critical

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 Occupancy mapping likelihoods appear to have some inconsistencies

- Safe autonomous navigation requires accurate map estimates
- In challenging environments (landmarks of various shapes and sizes) and noisy sensors (radar / sonar), incorporation of uncertainty in to filter recursion is critical
- Occupancy mapping likelihoods appear to have some inconsistencies
- Change the measurement space from range/bearing to detection/non-detection

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

- Safe autonomous navigation requires accurate map estimates
- In challenging environments (landmarks of various shapes and sizes) and noisy sensors (radar / sonar), incorporation of uncertainty in to filter recursion is critical
- Occupancy mapping likelihoods appear to have some inconsistencies
- Change the measurement space from range/bearing to detection/non-detection
- Improve robustness of occupancy grid framework to noisy environments and sensors

Presentation Outline

- Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
- Conclusions & Future Directions
 Conclusions & Future Directions

Grid Mapping Example

The GBRM Problem

р

$$\underset{k|k}{\overset{(K)}{\longrightarrow}} (M_{k} = [m_{1}, \dots, m_{W \times H}] | Z^{k}, X^{k}, u^{k-1}, X_{0}) = \\ \xrightarrow{w} \xrightarrow{g_{k}(Z_{k} | M_{k}, X_{k}) p_{k|k-1}(M_{k} | Z^{k-1}, X^{k}, u^{k-1}, X_{0})} \\ \int g_{k}(Z_{k} | M_{k}, X_{k}) p_{k|k-1}(M_{k} | Z^{k-1}, u^{k-1}, X_{0}) dM_{k}$$

Bayesian recursive approach
 Measurement uncertainty
 Map occupancy uncertainty
 Decompose map into W × H independent estimation problems

$$p_{k|k}(M_k|Z^k,X_k) = \prod_{i=1}^{i=W\times H} p_{k|k}(m_k^i|Z^k,X^k)$$

GBRM requires the propagation of the map occupancy state.

Current Approach: The Range-based Recursion

The Range-based GBRM Filter

$$p_{k|k}(M_k = [m_1, \dots, m_{W \times H}] | Z^k, X^k, u^{k-1}, X_0) = \frac{g_k(Z_k | M_k, X_k) p_{k|k-1}(M_k | Z^{k-1}, X^k, u^{k-1}, X_0)}{\int g_k(Z_k | M_k, X_k) p_{k|k-1}(M_k | Z^{k-1}, u^{k-1}, X_0) dM_k}$$

- State is binary: M = [O, E]
- Prediction: $p_{k|k-1}(M_k|Z^{k-1}, X^k, u^{k-1}, X_0)$
- Measurement: Z_k =range/bearing
- Form likelihood: $g_k(Z_k|M_k, X_k)$
- Bayesian Update: $p_{k|k}(M_k|Z^k, X^k, u^{k-1}, X_0)$

Current Approach: The Range-based Recursion

The Range-based GBRM Filter

$$p_{k|k}(M_k = [m_1, \dots, m_{W \times H}] | Z^k, X^k, u^{k-1}, X_0) = \frac{g_k(Z_k | M_k, X_k) p_{k|k-1}(M_k | Z^{k-1}, X^k, u^{k-1}, X_0)}{\int g_k(Z_k | M_k, X_k) p_{k|k-1}(M_k | Z^{k-1}, u^{k-1}, X_0) dM_k}$$

(ロ) (日) (日) (日) (日) (日) (日) (日)

- State is binary: M = [O, E]
- Prediction: $p_{k|k-1}(M_k|Z^{k-1}, X^k, u^{k-1}, X_0)$
- Measurement: Z_k =range/bearing
- Form likelihood: $g_k(Z_k|M_k, X_k)$
- Bayesian Update: $p_{k|k}(M_k|Z^k, X^k, u^{k-1}, X_0)$

The Measurement Likelihood: State Dependency

$$G_k(z_k = r | m_{k,(x)} = O, X_k)$$

 The likelihood of a range measurement conditioned on the occupancy state and vehicle pose

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The Measurement Likelihood: State Dependency

$$G_k(z_k = r | m_{k,(x)} = O, X_k)$$

 The likelihood of a range measurement conditioned on the occupancy state and vehicle pose

Q. What is the function that relates $m_{k,(x)}$ and X_k to z_k , where z_k is range reading?

The Measurement Likelihood: State Dependency

$$G_k(z_k = r m_{k,(x)} = O, X_k)$$

 The likelihood of a range measurement conditioned on the occupancy state and vehicle pose

Q. What is the function that relates $m_{k,(x)}$ and X_k to z_k , where z_k is range reading?

A. Use $z_k = \{\text{Detection}, \text{No Detection}\}\$ to get state dependent measurement equation.

The Measurement Likelihood: Uncertainty

$$G_k(z_k=r|m_{k,(x)}=O,X_k)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

 Dealing with detection uncertainty and spurious measurements.

The Measurement Likelihood: Uncertainty

$$G_k(z_k=r|m_{k,(x)}=O,X_k)$$

 Dealing with detection uncertainty and spurious measurements.

Q. For no range reading, how is $G_k(z_k = r | m_{k,(x)} = [O, E], X_k)$ defined ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

The Measurement Likelihood: Uncertainty

 Dealing with detection uncertainty and spurious measurements.

Q. For no range reading, how is $G_k(z_k = r | m_{k,(x)} = [O, E], X_k)$ defined ?

A. Use $z_k = \{\text{Detection}, \text{No Detection}\}\$ to have a well-defined likelihood.

(日)

Current approach: Drawbacks

- Grid-based Framework
 - Estimation state space: Occupancy
 - Map representation
 - Measurement Likelihood:
 - Measurement Noise
 - X State dependent
 - X Detection Uncertainty
 - X Spurious Measurements

Presentation Outline

- Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
- Conclusions & Future Directions
 Conclusions & Future Directions
◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

Proposed Approach: Advantages

- Grid-based Framework
 - Estimation state space: Occupancy
 - Map representation
 - Measurement Likelihood:
 - Measurement Noise
 - State dependent
 - Detection Uncertainty
 - Spurious Measurements

Proposed Approach: The Detection-based Recursion

The Detection-based GBRM Filter

$$p_{k|k}(M_k = [m_1, \dots, m_{W \times H}] | Z^k, X^k, u^{k-1}, X_0) = \frac{g_k(Z_k | M_k, X_k) p_{k|k-1}(M_k | Z^{k-1}, X^k, u^{k-1}, X_0)}{\int g_k(Z_k | M_k, X_k) p_{k|k-1}(M_k | Z^{k-1}, u^{k-1}, X_0) dM_k}$$

- State is binary: M = [O, E]
- Prediction: $p_{k|k-1}(M_k|Z^{k-1}, X^k, u^{k-1}, X_0)$
- Measurement: Z_k =Detection / Non-detection
- Form likelihood: $g_k(Z_k|M_k, X_k)$
- Bayesian Update: $p_{k|k}(M_k|Z^k, X^k, u^{k-1}, X_0)$

Proposed Approach: The Filtering State-Space

▲□▶▲□▶▲臣▶▲臣▶ 臣 のへで

Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

the measurement likelihood is state-dependant

the measurement likelihood always exists

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Proposed Approach: Key Observations

With z={Detection, Non-Detection}:

the measurement likelihood is state-dependant

the measurement likelihood always exists

the measurement likelihood becomes the detection statistics

Presentation Outline

- Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
- Conclusions & Future Directions
 Conclusions & Future Directions

Simulation: Known Likelihoods

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Simulation: Known Likelihoods

590

Simulation: Known Likelihoods

590

Filter Implementation ?

- Likelihoods are landmark dependent
 - Landmark properties affect its fluctuation model

(日) (日) (日) (日) (日) (日) (日) (日)

Filter Implementation ?

- Likelihoods are landmark dependent
 - Landmark properties affect its fluctuation model
- Likelihoods are detector dependent
 - Statistical detectors/parameters alter likelihoods

Filter Implementation ?

- Likelihoods are landmark dependent
 - Landmark properties affect its fluctuation model
- Likelihoods are detector dependent
 - Statistical detectors/parameters alter likelihoods
- Likelihoods are sensor dependent
 - Detection theory may differ between sensor MMWR, LMS, Camera, Sonar etc. etc.

Presentation Outline

- 1 Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
 - Conclusions & Future Directions
 Conclusions & Future Directions

The MMW Radar

- Operates at 77GHz
- Returns unprocessed data allowing for custom detector design

= 900

(日)

The Detection Problem: A Stochastic Approach

- X Rarely considered in current navigation algorithms
- Stochastic detectors exploit statistics of underlying signals

(日)

The Detection Problem: A Stochastic Approach

- ✓ Outperform classically adopted constant thresholds
- Detections (and non-detections) are statistically significant

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ の < @

Detection Statistics

Detection Statistics

MMWR: Stochastic Detection

 Popular approaches: OS, CA, GO, SO, ...

• At a given range, *r*, assuming $\Omega_E = \mu$ then,

$$g_k(z_k = D|m_{k,(r)} = O, X_k) = \int_0^\infty P[\psi_r \ge T_r |\mathcal{H}_O] f_\mu(\hat{\mu}) d\hat{\mu}$$
$$g_k(z_k = D|m_{k,(r)} = E, X_k) = \int_0^\infty P[\psi_r \ge T_r |\mathcal{H}_E] f_\mu(\hat{\mu}) d\hat{\mu}$$

▲ロ ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ■ の Q ()・

MMWR: OS-CFAR Likelihoods

- Analgous to data association threshold
 - \checkmark χ^2 test accepts a *correct* assignment with a fixed probability
 - CFAR test accepts an *incorrect* assignment with a fixed probability
 - Both threshold give no information of the converse

MMWR: OS-CFAR Likelihoods

$$g_k(z_k=D|m_{k,(r)}=O,X_k)=\left(1+\frac{T_r}{1+\Re r}\right)^{-2W}$$

where,

$$T_{r} = \tau \hat{\mu}_{r}$$

$$\tau = \arg \min_{\tau} \left(k_{os} \binom{2W}{k_{os}} \frac{(k_{os} - 1)!(\tau + 2W - k_{os})!}{(\tau + 2W)!} - P_{fa} \right)$$

$$\hat{\mu}_{r} = \Psi_{os,k_{os}}$$

$$\Psi_{os} = \operatorname{sort}([\psi_{r-G-W}, \dots, \psi_{r-G}] \cup [\psi_{r+G+1}, \dots, \psi_{r+G+W}])$$

$$\bar{\Re}_{r} = \frac{\psi_{r} - \hat{\mu}_{r}}{\hat{\mu}_{r}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MMWR: Evaluating the Likelihoods

$$p_{k|k}(m_{k,(x)} = O|z^k, X^k) = \frac{g_k(z_k|m_{k,(x)} = O, X_k)p_{k|k-1}(m_{k,(x)} = O|z^{k-1}, X^k)}{p_{k|k}(z_k|m_{k,(x)}, X^k)}$$

Likelihood	Filter
Discrete probabilistic	Binary Bayes Filter
Discrete evidential	Dempster-Shafer Evidential Filter
Continuous probabilistic	if Gaussian - Kalman Filter
	if non-Gaussian - Particle Filter.

Presentation Outline

- 1 Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
 - Conclusions & Future Directions
 Conclusions & Future Directions

MMWR: Discrete Probabilistic GBRM Filter

$$P_{k|k}(M_k = O|Z_{k,(r)} = D) = \frac{Z_{P_d}P_{k|k-1}(M_k = O|Z_{k-1})}{Z_{P_d}P_{k|k-1}(M_k = O|Z_{k-1}) + Z_{P_{fa}}P_{k|k-1}(M_k = E|Z_{k-1})}$$

$$P_{k|k}(M_k = O|z_{k,(r)} = \bar{D}) = \\ \frac{Z_{P_{md}}P_{k|k-1}(M_k = O|Z_{k-1})}{Z_{P_{md}}P_{k|k-1}(M_k = O|Z_{k-1}) + Z_{P_n}P_{k|k-1}(M_k = E|Z_{k-1})}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

MMWR: Discrete Evidential GBRM Filter

$$\mathfrak{m}_m(C) = \frac{\sum\limits_{A \cap B = C} \mathfrak{m}_Z(A)\mathfrak{m}_m(B)}{1 - \sum\limits_{A \cap B = \emptyset} \mathfrak{m}_Z(A)\mathfrak{m}_m(B)}$$

$$m_{z}(m_{k}^{F}|z_{k}=\bar{D}) = \frac{Z_{P_{md}}}{Z_{P_{md}}+Z_{P_{n}}+Z_{P_{u}}}$$
$$m_{z}(m_{k}^{E}|z_{k}=\bar{D}) = \frac{Z_{P_{n}}}{Z_{P_{md}}+Z_{P_{n}}+Z_{P_{u}}}$$
$$m_{z}(m_{k}^{U}|z_{k}=\bar{D}) = \frac{Z_{P_{u}}}{Z_{P_{md}}+Z_{P_{n}}+Z_{P_{u}}}$$

 $\mathfrak{m}_z(m_k^{\emptyset}|z_k)=0$

MMWR: Continuous Probabilistic GBRM Filter

$$p_{k-1|k-1}(o_{k-1,(r)}|z_{(r)}^{k-1}) \approx \sum_{i=1}^{N} w_{k-1,(r)}^{(i)} \delta_{o_{k-1,(r)}^{(i)}}(o_{k-1,(r)})$$

where,

$$o_{t-1,(r)} = \begin{bmatrix} m_{k-1,(r)} \\ \lambda_{k-1,(r)} \end{bmatrix}$$

$$o_{k,(r)}^{(i)} \sim q(o_{k,(r)}|o_{k-1,(r)}^{(i)}, z_{k,(r)})$$
$$w_{k,(r)}^{(i)} = w_{k-1,(r)}^{(i)} \frac{p(z_{k,(r)}|o_{k,(r)}^{(i)})p(o_{k,(r)}^{(i)}|o_{k-1,(r)}^{(i)})}{q(o_{k,(r)}^{(i)}|o_{k-1,(r)}^{(i)}, z_{k,(r)})}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

MMWR: Continuous Probabilistic GBRM Filter

$$p(m_{k-1,(r)}|z_{(r)}^{k-1}) \sim p(m_{k-1,(r)} = 1|z_{(r)}^{k-1}, \Pi)$$

$$p_{k|k-1}(\lambda_{k,(r)}|z_{(r)}^{k-1}) = p_{k-1|k-1}(\lambda_{k-1,(r)}|z_{(r)}^{k-1})$$

$$q(o_{k,(r)}^{(i)}|o_{k-1,(r)}^{(i)}, z_{k,(r)}) = p(o_{k,(r)}^{(i)}|o_{k-1,(r)}^{(i)}).$$

$$p(z_{k,(r)}|o_{k,(r)}^{(i)}) = \frac{p(\psi_r|m_{(r)} = 1, \Omega_O)}{p(\psi_r|m_{(r)} = 0, \Omega_E)}$$

$$\hat{o}_{k,(r)} = \sum_{i=1}^N w_{k,(r)}^{(i)} o_{k,(r)}^{(i)}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Presentation Outline

- 1 Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
 - Conclusions & Future Directions
 Conclusions & Future Directions

Testing Environment

Figure: Testing Ground overview with corresponding scan maps

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Testing Environment

Figure: Carpark binary ground-truth GB map.

• □ > • □ > • □ > • □ > • □ >

GBRM: Error Quantification

- Vector Map Comparison
- Sum of Squared Error (SSE) common [Martin, '96], [Collins '98], [Rachlin, '05]

$$\sum_{i}^{q} (m_i - \hat{m}_i)^2$$

X Not applicable to outdoor environments

NASSE =
$$0.5 \left(\frac{1}{q_O} \sum_{i=0}^{q_O} \left(P(m_k^i | z^{i,k}, m^i = 1) - 1 \right)^2 + \frac{1}{(q - q_O)} \sum_{i=q_O+1}^{q} \left(P(m_k^i | z^{i,k}, m^i = 0) - 0 \right)^2 \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

GBRM: Error Quantification

Figure: Grid-based error metric comparison with localisation error.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sac

Discrete Probabilistic Implementation

Figure: Discrete probabilistic detection filter (left) and discrete range filter (right).

Discrete Probabilistic Implementation

Figure: Discrete probabilistic detection vs range likelihood NASSE comparison.

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで

Discrete Evidential Implementation

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ◆ ◎ ●

Discrete Evidential Implementation

Discrete evidential detection filter (left) and discrete range filter (right).
Discrete Evidential Implementation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Continuous Probabilistic Implementation

▲□▶▲□▶▲□▶▲□▶ □ のQで

NASSE Comparisons

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

3

Sac

NASSE Comparison vs. Detector Parameter

$$g_k(z_k = D | m_{k,(r)} = O, X_k) = \left(1 + \frac{T_r}{1 + \bar{\Re}_r}\right)^{-2N}$$

Figure: Continuous detection vs range likelihood NASSE vs sliding window width.

Figure: Campus excerpt map estimate

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

ъ

Sac

Figure: Comparison of radar and laser posterior grid map estimates

(日)

Figure: Campus excerpt map estimate

• □ > • @ > • □ > • □ >

э

Figure: Campus excerpt map estimate

 $\mathfrak{I} \mathfrak{Q} \mathfrak{Q}$

Presentation Outline

- Introduction
 - Motivation
 - Environment Representation
 - Stochastic Estimation
- 2 The GBRM Framework
 - The Range-based Recursion
 - The Detection-based Recursion
 - Verification: Ideal Likelihoods
- 3 Case Study: MMW Radar Map Estimation
 - The Measurement Likelihoods
 - Filter Implementations
 - Filter Analysis
 - Conclusions & Future Directions
 - Conclusions & Future Directions

Conclusions

- Autonomous safety is highly dependant on accurate environmental representation
- Error of estimated grid maps can be reduced by incorporating the measurement uncertainty directly into the measurement likelihood
- Changing measurement space to detection/non-detection makes the likelihoods physically intuitive
- Likelihoods derived and mapping filters implemented using a MMWR sensor

 Improved mapping accuracy, particulary in situations of high false alarm and missed detection probability

Future directions

- Extend detection recursion to other sensing modalities
- For radar: Develop the EKF Evidential Kalman Filter (Continuous evidential likelihoods)
- Extend to feature extraction algorithms estimating the probability of feature existence

Acknowledgements

 The research described in this project was funded in part by the Singapore National Research Foundation (NRF) through the Singapore-MIT Alliance for Research and Technology (SMART) Center for Environmental Sensing and Monitoring (CENSAM).