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I. I NTRODUCTION

Having been referred to as the Holy Grail of autonomous
robotics research, Simultaneous Localization and Map build-
ing (SLAM) lies at the core of most autonomous robotic
applications [1]. This tutorial article explains recent advances
in the representations of robotic measurements and the map
itself, and their consequences on the robustness of SLAM.
Fundamentally, the concept of aset basedmeasurement and
map state representation allowsall of the measurement in-
formation, spatial and detection, to be incorporated into joint
Bayesian SLAM frameworks. Representing measurements and
the map state as Random Finite Sets (RFSs), rather than the
traditionally adopted random vectors, is not merely a triviality
of notation. It will be demonstrated that a set based framework
circumvents the necessity for any fragile data associationand
map management heuristics, which are necessary in vector
based solutions.
The article focusses on an implementation of the simplest
Bayesian set based estimator - the Probability Hypothesis
Density (PHD) Filter, and its application to SLAM. Using
particles to represent hypothesized vehicle trajectoriesand a
Rao-Blackwellized (RB) PHD filter for each particle’s map,
estimates of the location and, importantly thenumber of
features which have passed through the field(s) of view of
a vehicle’s sensor(s), are estimated.
Vector based SLAM solutions do not estimate this number
of features, and instead rely on map management and data
association heuristics, which are implemented outside of the
Bayesian (e.g. Kalman, Unscented Kalman, Particle Filter)es-
timator to determine which features to update. In the parallel,
but closely related, field of target tracking, recent research
has shown that estimating thenumber of targets, as well
as their spatial locations, is central to any tracking problem
[2]. A philosophy often adopted in the SLAM community
is that it is not important to estimate all of the features
which have passed through the field(s) of view of the robot’s
sensor(s), provided enough can be estimated to achieve good
robot localization results. In response, the reader is briefly
diverted to the detections produced by a radar in Figure 7
where many false alarms (false positives) are apparent. Due
to these false alarms, a vector based Multi-Hypothesis (MH)
Factorized Solution to SLAM (FastSLAM) implementation
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estimates the SLAM map to contain between 30 and 35 point
features (Figure 9) when in fact only 22 had entered the field
of view of the sensor. How can such a SLAM estimate be
trusted? Over (or under) estimating feature number, through
map management and (false) data association decisions can
only impair the vehicle location and map estimates in their
entirety. This problem was noted in [3], where a useful metric
was defined which could quantify feature based SLAM map
quality, when represented as an RFS, in terms ofnumber and
spatial estimation errors.
The necessity for an RFS based map state has been noted in
the recent literature, with other researchers addressing SLAM
with dynamic targets [4], [5] and multi-robot solutions [6].
To estimate feature number in a principled manner, the PHD
Filter incorporates estimates of the probabilities of detection
and false alarm of feature detectors. This could be interpreted
in a negative sense, in that set based SLAM methods appear
to need two extra parameters (probabilities of detection and
false alarm) which are not considered necessary in vector
based SLAM. It should be noted however that in vector based
SLAM these valuesare (possibly inadvertently) used, since
in the Bayesian update, unity probability of detection and
zero probability of false alarm are assumed, as a result of
the complete reliance on the external feature management and
association heuristics.
To provide motivation for set based SLAM methods, the arti-
cle begins by demonstrating the true uncertainty which results
when well known vision, laser range finder and short range
radar based feature detectors are applied to real data. The
randomness in the number, as well as location of detections
is highlighted. This leads to the re-modelling of the SLAM
concept with RFSs. Set based estimation requires the use of
Finite Set Statistics (FISST), the concepts of which are also
introduced, together with the simplest FISST, the PHD Filter.
A full diagrammatic implementation of PHD based SLAM is
given with comparative results with a state of the art vector
based SLAM method in a challenging coastal environment1.

II. SENSING AND DETECTION ERRORS

In Feature Based (FB) SLAM, detection algorithms are used
in conjunction with various sensors. By use of examples
showing state of the art feature detectors with a Millimeter
Wave (MMW) radar, Laser Range Finder (LRF) and a camera,
common sensing and detection errors will be highlighted,
motivating the need for a re-evaluation of stochastic FB-
SLAM concepts, which jointly consider sensing and detection
errors. Consider the sensor suite, used in the acquisition of the
data, together with the robotic platform, shown in Figure 1.
The robotic platform is the Clearpath Husky A200 skid steer
vehicle, used for sensing and mapping experiments in mining
environments. The radar is a high speed scanning, pencil

1The coastal SLAM results were previously published in [3], [7]
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Fig. 1. The Husky A200 with a camera, LRF and a MMW radar.

beam2, Millimeter Wave (MMW) radar from Acumine Pty.
Ltd, providing one scan per second, with a range resolution of
50cm, up to a maximum range of 200m. The LRF is the Sick
LD-LRS1000, capable of continuous360o scanning and range
measurements between 2.5 and 80m. Images are provided by
the monocular camera from an Xbox Kinect camera system.
Figure 2 shows two sets of detected features (left and right
columns) based on radar point features, laser based,Random
Sampling Consensus(RANSAC) line features and the visual
Speeded-Up Robust Features(SURF) algorithm. The purpose
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Fig. 2. The random nature of detections, based on a radar CFAR
detector, line based RANSAC and the SURF detection algorithm.

2narrow beam width of approximately1.8o.

of the 2 columns is to show the random nature, not only in the
spatial locations of the detected features, but in the number
and nature of the detections themselves.

A. Feature Detection with Radar

Radars can give received powerPlan Position Indicator(PPI)
images which display multiple received power values at
discrete points in space. These power values are corrupted
with random receiver noise and the challenge is to detect
those power values emanating from true objects within an
environment. In Figure 2(a), radar detections are based on
the application of a commonly usedOrdered Statistics -
Constant False Alarm Rate(OS-CFAR) detector applied to
the received power values [8], [9]. All power values exceeding
the OS-CFAR threshold are shown as crosses, together with
the superimposed ground truth location of objects (trees,
lamp posts etc) shown as ellipsis. The two experiments were
carried out in the same environment, under the same lighting
conditions. It is evident that, due to the random power noisein
each radar scan, some of the features detected in one image are
missed in the other, as is the random presence of false alarms.
Under an OS-CFAR detector, the probabilities of false alarms
Pfa and detectionPD can be quantified under certain noise
distribution assumptions.

B. RANSAC Line Detection with LRFs

Figure 2(b) shows data samples from a360o laser range scan,
recorded in an environment in which a single wall was present
(labelled). The RANSAC algorithm was applied, to extract
line segments from the data [10]. Due to RANSAC’s random
nature in selecting its initial model inlier points, the left scan
shows the line correctly detected, whereas the right scan shows
that the true wall is missed, and that a false line is detected.
Similarly to the radar detection concepts, a “Possible detection
threshold” for RANSAC can be set, again yielding an approx-
imatePfa and, depending on the number of data inliers within
the actual line,PD.

C. Visual Feature Detection with SURF

In the case of the camera, a well known “Blob detector” called
the SURF detector is applied in Figure 2(c). This detector
searches for local maxima in theDeterminant of Hessian
(DoH) applied to a 2D array of image pixels, at various scales
[11]. Such a maxima is an indication of a distinctive region
in the image space, corresponding to a possible feature, likely
to be detected from other locations. The SURF descriptors
are shown as circles, the area of which correspond to the
scale at which SURF determined the maximum DoH, at the
pixel center of that circle. In the right image, the ambient
light level has reduced slightly. In low light environments, the
camera increases its gain, which also amplifies the noise. In
any blob detector (e.g. SURF) this variation in pixel intensities
introduces randomness into the detection process. The green
circles correspond to SURF features which were detected in
over 90% of the 300 recorded images of the same scene,
and are therefore taken to approximate “ground truth SURF
features”. In this case, varying the light conditions in a scene,
so that the DoH varies, can give approximate but meaningful
Pfa andPD values for the SURF features.
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D. General Sensing Errors

Although spatial errors occur in terms of the estimated lo-
cation of the features, of far greater importance is the fact
that the correctness of the detections themselves is question-
able. Consequently, the realistic uncertainty associatedwith
measurement data includes detection (or feature extraction)
uncertainty, spurious measurements and spatial uncertainty.
The ability to account for all of these errors in a joint and
principled manner, has a huge impact on feature based SLAM,
and provides the motivation for re-modelling FB-SLAM under
a set based framework as follows.

III. R E-MODELLING SLAM TO ACCOUNT FOR

DETECTION AND SPATIAL UNCERTAINTY

A. Feature Measurements Modelled as Random Finite Sets

In the visual, laser and radar based measurement examples
of Figure 2, it is clear that, in general, a “measurement”
consists of a random number of detections, each with spatial
uncertainty. This implies that the result of any realistic feature
detection process is a measurement that isnot a vector. For
example, for the point feature radar detections in Figure 2(a),
resulting in measured range and bearing valuesr andθ respec-
tively, let the collected detections bez1 = [r1 θ1]T , . . . , zz =
[rz θz]T , which could be false or otherwise. A vector model
for this measurement[z1 . . . zz]T has a fixed dimensionz,
but the number of detections can vary from zero to some
arbitrarily large number due to the possibility of missed
detections and multiple false alarms. Another problem is that
the components of the vectorz1, . . . , zz have fixed order,
but the actual detectionsz1, . . . , zz have no inherent physical
order. Therefore, a more precise model of the measurement is
a finite observationset, which by definition has no fixed order
and has elements comprising the individual detections:

Z = {z1, . . . , zz} = {[r1 θ1]T , . . . , [rz θz]T } (1)

Hence, at any instant, a sensor can be considered to collect a
finite setZ = {z1, . . . , zz} of measurementsz1, . . . , zz from
a measurement spaceZ0 as follows:

Z = ∅ (no features detected)
Z = {z1} (one featurez1 detected)
Z = {z1, z2} (two featuresz1, z2 detected)

...
...

...
Z = {z1, . . . , zz} (z featuresz1, . . . , zz detected)

(2)

Since the number of feature detections inZ as well as the
values of the individual detectionszi are random in nature,Z
is referred to as aRandom Finite Set(RFS).

B. The Vehicle State Modelled as a Random Vector

In SLAM formulations, the vehicle’s current pose state is
typically modelled as a time varying vectorXk, containing its
2D xk, yk position and its orientationφk, at timek. 3D vehicle
states are also possible, containing the six degrees-of-freedom
state variables,xk, yk, zk as well as the vehicle’s roll pitch
and yaw angles, and possibly more states containing velocity,
acceleration and higher order variables. Irrespective of the
complexity of the chosen vehicle state, its dimensions are fixed
as time progresses, and the order of the variables in the vector
remain the same - i.e. unlike the map feature estimates and
measurements, in single robot SLAM, the state related to the

robot’s position has no dimensional uncertainty. Therefore, the
robot vehicle state is adequately modelled as arandom vector,
which in its general form is propagated forward in discrete
time according to the state transition equation

Xk = f veh(Xk−1, Uk−1, vk−1) (3)

where f veh() is the (generally non-linear) state transition
function, a specific example of which will be demonstrated
in the marine application in Equations 11,Uk−1 are any
deterministic inputs applied to the vehicle at timek − 1 and
vk−1 models the, assumed zero mean, random noise modelling
the uncertainty of the functionf veh().

C. Map State Space Modelled as an RFS

The number of features in the map state can vary from
zero to some arbitrarily large number. Ideally it should grow
monotonically as features enter the FoV of the sensor(s). This
further justifies the need for aset based map representation,
containing individual feature states as follows:

M = ∅ (no features present)
M = {m1} (one feature with statem1 present)
M = {m1,m2} (two featuresm1 6= m2 present)

...
...

M = {m1, . . . ,mm} (m featuresm1 6= · · · 6= mm present)

D. Relating RFS Measurements to the SLAM State

To encapsulate detection uncertainty, as well as spatial mea-
surement noise, the detected features from a vehicle with
poseXk, at time k, can be mathematically modelled by an
RFS Zk. This is formed by the union of a set of features
expected to be generated under the current map estimate and
a set of false detections. Importantly, each set encapsulates the
aforementioned detection and spatial uncertainties and hence

Zk︸︷︷︸ =
⋃

m∈Mk

Dk(m,Xk)︸ ︷︷ ︸ ∪ Ck(Xk)︸ ︷︷ ︸
All Feat’s Expected Feat’s False Feat’s

(4)
where Dk(m,Xk) is the RFS of measurements generated
by a feature at locationm and Ck(Xk) is the RFS of the
spurious measurements at timek, which may depend on
the vehicle poseXk. Zk = {z1k, z

2
k, . . . , z

zk

k } consists of a
random number,zk, of spatial measurementszik, whose order
of appearance has no physical significance with respect to the
estimated map of features.
For each feature,m ∈ Mk, andzik ∈ Zk,

Dk(m,Xk) = {zik} (5)

with probability density PD(m,Xk)g(z
i
k|m,Xk) and

Dk(Xk,m)=∅ with probability 1−PD(m,Xk). PD(m,Xk)
is the probability of detection of featurem. This could depend
also on the vehicle poseXk and the feature’s coordinates
m as well as other characteristics of the feature in question.
g(zik|m,Xk) represents the sensor’s likelihood of detecting
zik, given the spatial informationm andXk. In the robotics
literature this is commonly introduced as

zik = hspatial(Xk,m) + spatial noise terms (6)

where hspatial() is the spatial function relating the vehicle’s
coordinates and the feature’s parameters3 [1].

3In the case of point features, these would be its coordinates.
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Note the principled association of both detection (PD(m,Xk))
and spatial (g(zik|m,Xk)) uncertainties with the RFS
Dk(m,Xk). The spatial uncertainty termg(zik|m,Xk) would
reflect the statistics of the appropriate “spatial noise terms” in
Equation 6. Similarly, the spurious measurement rate statistics
corresponding toCk(Xk) are typically a priori assigned based
on an expectedPfa, available from the chosen detection
method.

E. RFS Map Prediction Model

Let M be the RFS representing the entire unknown and
unexplored static map. The explored mapMk−1 then evolves
in time according to,

Mk︸︷︷︸ = Mk−1︸ ︷︷ ︸ ∪

(
FoV (Xk)︸ ︷︷ ︸ ∩ M̄k−1

)

Current Previous Sensor(s)
Map Set Map Set FoV

(7)
whereM̄k−1 - the set of features not inMk−1.
This map state transition equation describes the fact that
the set of map features grows monotonically as a vehicle’s
sensor(s) FoV(s) cover more of the unexplored environment.

F. Bayesian SLAM with a Finite Set Feature Map

An RFS can be represented by a discrete distribution that
characterizes the time varying number of features,mk, in the
set and a family of joint distributions which characterize their
spatial distributions. Therefore, an RFS Feature Based (FB)-
SLAM state can be described by its PDFpk|k(Xk,Mk =
{m1,m2, · · · ,mmk}|Zk, Uk−1, X0), whereZk represents the
set of all measurements from time0 to k, Uk−1 represents all
inputs from time0 to k − 1 andX0 is the initial pose of the
vehicle.
Similarly to the FastSLAM concept [12], the PHD-SLAM
joint posterior can be factorized using a Rao-Blackwellized
(RB) implementation, in which the map is represented as
a conditional PDF, conditioned on an entire vehicle trajec-
tory Xk [13]. Under an RB implementation, the vehicle
trajectory Xk is represented as vector particles

(
Xk

)(i)
,

each of which maintain their own set based map estimate
p
(i)
k|k

(
Mk|Z

k,
(
Xk

)(i))
. The Bayesian recursion of the map,

per trajectory particle, is then

pk|k

(
Mk|Z

k,
(
Xk

)(i))

︸ ︷︷ ︸
∝ pk|k−1

(
Mk|Z

k−1,
(
Xk

)(i))

︸ ︷︷ ︸
Map posterior cond’d predicted map conditioned
on trajectory particlei on trajectory particlei

× g
(
Zk|Mk, (Xk)

(i)
)

︸ ︷︷ ︸
,

Measurement
likelihood

(8)
It is important to note that the measurement likeli-
hood g

(
Zk|Mk, (Xk)

(i)
)

and the predicted SLAM state

pk|k−1(X
k,Mk|Z

k−1, Uk−1, X0), are finite set statistic
(FISST) densities representing the RFSs, which, contrary to
the vector based implementation of Bayes theorem,do not
have to be of compatible dimensions. This means that the
feature number in the predicted SLAM map does not have
to equal that corresponding to the measurement likelihood,

eliminating the need for fragile map management routines.
By adopting an RFS map model, integrating over the map
becomes a set integral - i.e. an integral which sums not only
over all spatial possibilities of the map state (as is the case of a
vector integral), but over its cardinality possibilities also. This
feature map recursion therefore encapsulates the inherentfea-
ture number uncertaintyof the map, introduced by detection
uncertainty, spurious measurements and vehicle maneuvers, as
well as the feature location uncertainty introduced by spatial
measurement noise. Features are not rigidly placed in a map
vector, nor are measurements simply a direct function of the
map state, due to the explicit modelling of false measurements.

IV. F INITE SET STATISTICS (FISST)

Finite Set Statistics(FISST), are necessary to implement the
map component of the factored SLAM solution in Equation
8. As in the set based measurements and map representations,
the ith trajectory map posteriorpk|k

(
Mk|Z

k,
(
Xk

)(i))
is a

multi-feature PDF which encompasses all the possibilities:

pk|k

(
Mk|Z

k,
(
Xk

)(i))
−→ pk|k

(
∅|Zk,

(
Xk

)(i))
;

pk|k

(
{m1}|Zk,

(
Xk

)(i))
; pk|k

(
{m1,m2}|Zk,

(
Xk

)(i))
;

. . . pk|k

(
{m1, . . . ,mmk}|Zk,

(
Xk

)(i))

As in vector based SLAM, as a consequence of the above
multi-feature PDF, the general RFS Bayes recursion of Equa-
tion 8 is mathematically intractable since multiple integrals on
the space of features would be required.

A. The PHD Filter

An approximation to set-based estimation which is tractable, is
to exploit the physical intuition of the first moment of an RFS,
known as its PHD,vk. Also known as theintensity function,
the PHD at a point, gives thedensityof the expected number
of features occurring at that point. The strategy of this filter
is opposite to that of conventional vector based approaches,
which require external methods to fix the number of map
features, and then attempt to optimize their location estimates.
The PHD Filter tracks only the overall feature map behavior,
and then attempts to detect and track individual features as
new measurements are made.
A PHD functionvk must have the following two properties:

1) The mass (integral of the density over the volume) of the
PHD within a given spatial regionS, gives the expected
number of features inS.

2) As a consequence, the peaks of the PHD indicate
locations with high probability of feature existence.

V. RFS SLAM WITH THE PHD FILTER

The aforementioned Rao-Blackwellized (RB) SLAM imple-
mentation is adopted, which uses a PHD approximation for
the set based map, conditioned on the vehicle trajectory. A
weighted sum-of-Gaussians is used as the PHD function, and
the mapping recursion is approximated by a GM-PHD Filter.
The trajectory recursion adopts a Particle Filter [3]. Thisis
referred to as RB-PHD-SLAM.
The map is predicted with a GM form of the PHD predictor,
the implementation of which will be explained in the next
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section.

vk|k−1(m|Xk)
︸ ︷︷ ︸

= vk−1|k−1(m|Xk−1)
︸ ︷︷ ︸

+ b(m|Xk)︸ ︷︷ ︸
Predicted PHD Prior PHD Birth PHD

(9)
wherevk−1|k−1(m|Xk−1) is the previous GM estimate of the
PHD, vk|k−1(m|Xk) is its prediction at timek andb(m|Xk)
is the GM-PHD of the birth RFS, used to model the new
features predicted to enter the FoV of the vehicle’s sensor(s)
- i.e. the bracketed term on the RHS of Equation 7.b(m|Xk)
is similar to the proposal function used in particle filters,and
is used to give somea priori information to the filter about
where features are likely to appear in the map. In SLAM,
with no a priori information, b(m|Xk), may be uniformly
distributed in a non-informative manner about the space of
features. However, in this work, the feature birth proposal
at time k is chosen to be a GM containingJb,k Gaussian
components, representing the set of measurements at timek−1,
Zk−1 [7].
The PHD corrector equation is [2]:

vk|k(m|Xk)
︸ ︷︷ ︸

= vk|k−1(m|Xk)(1− PD(m|Xk))︸ ︷︷ ︸
+

Posterior All predicted features weighted
PHD by their probs. missed detection

vk|k−1(m|Xk)
∑

z∈Zk

Λ(m|Xk)

ck(z) +
∫
Mk

Λ(ξ|Xk)vk|k−1(ξ|Xk)dξ
︸ ︷︷ ︸
All pred. features, updated by the spatial locations of all

the new measurements, and their probabilities of detection
(10)

where vk|k(m|Xk) is the new GM estimate of the PHD at
time k, Λ(m|Xk) = PD(m|Xk)gk(z|m,Xk) and,

PD(m|Xk) = the probability of detecting a land-
mark atm, from vehicle poseXk.

ck(z) = PHD of the clutter RFSCk in
Equation 4 at timek.

VI. I MPLEMENTING THE RB-PHD-SLAM FILTER

The PHD-SLAM density at timek−1 can be represented by a
set ofN particles, each accompanied by their own GM-PHDs
representing their belief of the map. The RB-PHD-SLAM
filter then proceeds to approximate the posterior density bya
new set of weighted particles according to the block diagrams
in Figures 3 to 5.

A. Per Particle PHD Mapping – Implementation

1) Prediction – Implementing Equation 9:Figure 3 imple-
ments the predictor Equation 9 on a per trajectory particle
basis. Firstly theJb,k birth Gaussians replicate the spatial lo-
cations of the|Zk−1| prior measurements (i.e.Jb,k = |Zk−1|,
using the inverse spatial measurement model

(
hspatial

)−1
(),

and are each assigned equal weight. Secondly each prior
map Gaussian is predicted forward in time yieldingJk−1|k−1

propagated Gaussians. For a static map (assumed here) these
propagated Gaussians simply equal the prior, in terms of their
means, covariances and weights. Any knowledge of dynamic
map behavior would be incorporated at this point. Finally the
Jb,k birth andJk−1|k−1 propagated Gaussians are summed to
form the Jk|k−1 = Jb,k + Jk−1|k−1 predicted Gaussians on
the RHS of Figure 3, thus implementing Equation 9.

2) Correction – Implementing Equation 10:Based on the pre-
dicted GM-PHD, if the measurement likelihoodgk(z|m,Xk)
is also of Gaussian form, it follows from Equation 10 that
the posterior map PHD,v(i)

k|k(m|X
(i)
k ) is also a GM. Figure

4 shows the per trajectory particle update implementation
procedure of Equation 10.

Note that in the “Filtering actions” block “Update GM-PHD
missed det. components”, the means and covariance of all the
Jk|k−1 predicted Gaussians are simply copied into the poste-
rior GM-PHD map estimate, but with their weights reduced
by the probability of missed detection (1−PD

(
m|X

(i)
k|k−1

)
).

This takes into account the possibility that they may not be
observed in the new measurement setZk. This represents the
first term on the RHS of Equation 10.

To implement the second term on the RHS of Equation 10,
each of theJk|k−1 predicted Gaussian component’s spatial
means and covariances are corrected by each of thezk

measurements. This can be achieved by the standardextended
Kalman filter (EKF) equations, as shown in Figure 4. The
weights of each of theseJk|k−1×zk new Gaussian components
are updated based on the probability of detection of each
predicted Gaussian, the Mahalanobis distance between that
component’s predicted spatial measurement and each actual
measurement and the false alarm variableck(z). The false
alarm PHD ck(z) represents the prior knowledge of the
probability of false alarmPfa. In a scan, in whichNd feature
detection hypotheses are made (whether determined to be
detections or not), an average ofnc = PfaNd false mea-
surements will result. Therefore,ck(z) = ncV U(z), where
nc is the false alarm rate per scan,V is the volume (or area
in the 2D experiments presented here) corresponding to the
FoV of the sensor(s) andU(z) is a uniform distribution over
the measurement space. The missed detection and weighted
prediction Gaussian components are then merged to form the
Jk|k−1 +

(
Jk|k−1 × zk

)
Gaussians forming the updated GM-

PHD vk|k

(
m|

(
Xk−1

)(i))
.

It is important to note that, unlike in vector based SLAM
implementations, feature initialization, termination and asso-
ciation routines are unnecessary in the PHD filter implemen-
tation. A reduced weight copy of the feature predictions are
incorporated into the final map estimate, allowing for the
possibility that the sensor(s) may have missed them. Also,
all measurements are fused with all predictions, so that no
assumptions on the nature of the measurements is necessary.

Finally, to curb the explosive growth in the number of Gaus-
sians formed between the prediction and update stages of the
RB-PHD-SLAM filter, Gaussian merging and pruning can be
adopted as shown in Figure 4. Importantly, note that although
a computational limit has to be set, in terms of the number of
Gaussians realizable, no feature pruning or map management
heuristics were necessary in this implementation, and the final
weights of each Gaussian maintain an estimate of the number
of features they represent. The equivalent computational limit
in a vector based, multi hypothesis SLAM implementation
would require heuristic based curbing of measurements and
map predictions, forcing each to be of the same, computation-
ally manageable dimensions, with no such Bayesian estimate
on the true number of features, which have intersected the
FoV of the vehicle’s sensor(s).
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Fig. 3. The implementation of the PHD predictor Equation 9.

B. Updating the Vehicle Trajectory Particles – Implementation

The PHD-SLAM filter adopts a particle approximation of the
posterior vehicle trajectory,pk|k(Xk). Figure 5 shows how
the trajectory particles are propagated forward in time. A fun-
damental difference between RB-PHD-SLAM and FastSLAM
should be noted. In FastSLAM, each pose particle is used to
generate a predicted measurement vector. The actual measure-
ment vector, recorded from the unknown, true vehicle location,
is then superimposed on to each particle. The likelihood of that
measurement vector corresponding to that particle’s predicted
measurement vector is calculated to form a particle weight,
through the measurement likelihoodg

(
Zk|Z

k−1,
(
Xk

)(i))
.

This requires the usual, fragile predicted and observed feature
management and association routines, for which there is no
concept within the RFS framework.
In RB-PHD-SLAM, the measurement likelihood is
g
(
Zk|Z

k−1,
(
Xk

)(i))
which is defined on the space

of finite sets, unlike its FastSLAM counterpart, which is
defined on a Euclidean space. Therefore, alternative methods
are necessary to evaluateg

(
Zk|Z

k−1,
(
Xk

)(i))
, and hence

the trajectory particle’s new weight. Mullaneet al showed
that this set based measurement likelihood can be evaluated
in closed form, based on an arbitrary choice of map setMk,
the simplest of which is the empty map strategyMk = ∅ [3].

C. Estimating the Posterior Trajectory and Map - Implemen-
tation

In MH-FastSLAM, the final trajectory is selected as the parti-
cle

(
Xk

)(i)
with the highest weight, and the final map estimate

is its corresponding map. This is known as the maximum

a-posteriori (MAP) map estimate4. This strategy could also
be used for RB-PHD-SLAM, however, in contrast to vector
based SLAM algorithms, the PHD map representation yields
a natural ability to average feature maps, to give an expected
a-posteriori (EAP) map. Map estimates from theN updated
trajectory particles

(
Xk

)(i)
output in Figure 5 can be averaged

into an expected map,even with map estimates of different
size and without having to resolve the intra-map feature
associations[9]. The estimated number of features in the
posterior map PHD, is simply the sum of the Gaussian weights
in the outputvk|k

(
m|Xk

)
. The expected feature based map

estimate can then be extracted by choosing them̂k|k highest
local maxima. Pseudo-code implementation details of this
algorithm are given in [3], [7], [9].

VII. RB-PHD-SLAM COMPUTATIONAL COMPLEXITY

The computational complexity of RB-PHD-SLAM is,
O(mkzkN) i.e. linear in the number of features (in the FoV),
linear in the number of measurements and linear in the
number of trajectory particles. RB-PHD-SLAM simulations
in [7] have shown that, the computational time is comparable
with that of the MH-FastSLAM algorithm. Note that due
to the RB structure of RB-PHD-SLAM, binary tree based
enhancements, such as those applied to traditional FastSLAM
[12], can be readily developed to further reduce the complexity
to O

(
zkN log(mk)

)
.

VIII. C OMPARISONS OFPHD AND VECTORBASED

SLAM IN A MARINE ENVIRONMENT

To demonstrate the robustness of PHD-SLAM in the presence
of many false alarms and missed feature detections, SLAM

4It should be noted that the particle with the maximum weight is,in general,
only an approximation of the MAP estimate [14], [15].
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Fig. 4. The implementation of the PHD corrector Equation 10.
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algorithms, based on a commercially available X-band marine
radar, are implemented on a sea kayak referred to as an
Autonomous Surface Craft (ASC). The ASC was remote
controlled in an off-shore test site in Singapore’s southern
Selat Puah marine environment. Data from the radar, GPS and
an inexpensive single-axis gyro were logged using an on-board
processing unit as the ASC traversed the environment, which
comprised geographical and sea-surface vessel landmarks.The
standard, automated OS-CFAR feature detector, introducedin
Section II-A, was applied to the radar data to provide the
features to be input to the SLAM algorithms.
With restrictive feature modeling, and a lack of vehicle control
input information, it is demonstrated that by adopting the RFS
concepts, and the PHD Filter, useful localization and mapping
results can be obtained, despite an actively rolling and pitching
ASC on the sea surface. The vector based SLAM algorithm
MH-FastSLAM, is also implemented and compared.

A. The ASC and the Coastal Environment

The ASC was originally developed at the Dept. of Mechanical
and Ocean Engineering, MIT for experiments in autonomous
navigation in rivers and coastal environments [16]. For sta-
bilization, lateral buoyancy aids were added to the platform,
as depicted in Figure 6. The figure shows the ASC at sea,

Fig. 6. The Autonomous Surface Craft (ASC) adapted kayak.

with the X-Band radar, mounted on a 1.5m length pole above
the sea surface. The X-Band radar used was the M-1832
BlackBox Radar from Furuno and was primarily used to detect
buoys and ships at large distances (several kms) which were
approximated to be point features. The mechanically scanned
beam has a width of3.9o in azimuth and20o in elevation.
The large elevation beam width makes the sensor robust to the
sometimes severe pitch and roll of the ASC. A GPS receiver
(Crescent Hemisphere 110), as well as a KVH Industries,
Inc. DSP5000 single-axis gyroscope for 3D pose(xk, yk, φk)
measurements were also used in the experiments. An on board
processing unit logged the GPS and gyro data at a rate of
1Hz, with the radar data being sampled and logged at a scan
rate of 0.5Hz - i.e. 1 full 360o sweep of the environment
required 2 seconds. The radar range bin resolution,δr(q),
was set to 7.5m, with a maximum range of 7.68Km. All
power values which exceeded the OS-CFAR threshold were
considered as valid point features in the RB-PHD-SLAM and
MH-FastSLAM experiments.
Together with the known GPS locations of the surrounding
buoys, an Automatic Identification System (AIS) receiver was
used for ground truth verification of the map features in the

experiments. AIS is a short range coastal tracking system
used for identifying and locating sea vessels by electronically
exchanging data. This enables the system to receive position
and speed estimates from a large number of vessels present
in the area. Since those vessels were used as features in the
SLAM algorithms, this source of information was used as
ground truth to verify and compare the features extracted from
the radar data, with the position delivered by the AIS.

B. The ASC Process Model

A sea-based ASC is subject to numerous uncertain distur-
bances such as currents and wind, moving the ASC in any
arbitrary direction. To account for this, the following non-
linear process model (f veh() in Equation 3) is adopted

xk = xk−1 + Vk−1∆Tk cos(φk−1 + δφk−1) + vxk−1

yk = yk−1 + Vk−1∆Tk sin(φk−1 + δφk−1) + v
y
k−1

φk = φk−1 + δφk−1 + v
φ
k−1

i.e. Xk = f veh(Xk−1, Uk−1, vk−1) (11)

where xk, yk and φk represent the Easting, Northing and
ASC heading angle with respect to north at timek, Xk =
[xk yk φk]

T andf veh() is the vehicle motion vector function
encapsulating Equations 11.Uk−1 represents a vector com-
prising the input velocity signal and the measured angular
change - i.e.Uk−1 = [Vk−1 δφk−1]

T , recorded by an on board
single axis gyroscope.vxk−1, vyk−1 andvφk−1 represent random
perturbations in the ASC motion due to external sea forces and
are modeled by white Gaussian signals, encapsulated in the
noise vectorvk−1 = [vxk−1 v

y
k−1 v

φ
k−1]

T . ∆Tk = tk − tk−1

is determined from the measurement rate of the gyro. In
this experiment, for simplicity,Vk = Vk−1 and is chosen a
priori due to the lack of suitable Doppler Velocity Log (DVL)
sensors. A constant velocity model could also be assumed,
accompanied by the recursive estimation ofVk, integrated
into the SLAM algorithm. This vehicle process model will be
used in both the SLAM algorithms, developed for comparison
purposes, in this article.

C. Vector Based Multi-Hypothesis FastSLAM Comparison

FastSLAM estimates the map on a per-particle basis, meaning
that different particles can be associated with different features
[12]. This means that the FastSLAM filter has the possibility
to maintain different tracks for each possible hypothesis of
each detected feature, known asMultiple Hypothesis Tracking
(MHT). A new particle is created for each new hypothesis
of each measurement, meaning that each particle is split into
n+2 new particles, one for each of then possible associations,
one particle for the non-association hypothesis and the other
particle for a new feature hypothesis. Particles with incorrect
data association are more likely to be eliminated than those
which were based on correct associations. This step reduces
the number of particles back to its original number. This
vector based, MH-FastSLAM method was implemented for
comparison, based exactly on the methods given in [12], [17].

D. A Comparison of RFS & Vector Based SLAM at Sea

For the RB-PHD-SLAM filter, a Monte Carlo (MC) analysis
is presented based on 50 sample runs using 100 trajectory
particles in each trial. In this comparative experiment, the
ASC was remote controlled to execute a curved trajectory
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of approximately 13km and the maximum range of the radar
was limited to just over 1km. Multiple loops were traversed.
The AIS provided a quantifiable ground truth map in terms
of feature number and location as time progressed. Figure 7,
shows a GPS trajectory with the entire history of all point
detections superimposed. These are shown as black points.

Fig. 7. Overview of the test site showing the GPS trajectory (green
line) and AIS coordinates (green dots) of the point feature map. The
point feature measurement history is also provided (black dots).

This is all superimposed onto a satellite image of the area.
Many of the measured features appear close to the sea vessels,
detected by the independent AIS (shown as green dots), which
were taken as ground truth. It is also evident that many false
alarms are present due to the sea clutter and noise.
Figure 8 compares the posterior SLAM estimates from MH-
FastSLAM (top graph) and RB-PHD-SLAM (bottom graph).
For fair comparison with MH-FastSLAM, the RB-PHD-
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Fig. 8. Upper graph: The posterior SLAM estimate (red) from MH-
FastSLAM. Lower graph: The posterior SLAM estimate (blue) from
RB-PHD-SLAM, in comparison to the ground truth (green). Crosses
represent the estimated landmark locations in each case and the
circles represent their ground truth (AIS) locations.

SLAM final trajectory particle and final GM-PHD map es-
timates are the MAP values explained in Section VI-C. The
estimated map features (crosses) are the maxima of the Final
GM-PHD map estimate. It can be seen that MH-FastSLAM
over estimates the number of features due to multiple data
association failures, as a result of many false measurements,
and exhibits larger spatial errors for those features which
truly correspond to actual landmarks. Importantly, Figure9
compares the estimated map sizes. The labelled “True feature
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Fig. 9. Comparison of the number of estimated features for each
approach. The number estimated by the MH-FastSLAM algorithm is
shown in the upper curve, and that estimated by the RB-PHD-SLAM
Filter is shown in the lower curve. The true feature count (based on
the AIS) is labelled, and settles at a constant value of 21.

count” finally settles at 21, when all of the ships detected
by the AIS should have entered the FoV of the ASC’s radar.
Note that the RB-PHD-SLAM feature number estimate closely
resembles, and on average tends to, the true feature number.
Since the MH-FastSLAM vector based feature management
routines are typically dependant on the data association deci-
sions, this dramatically increases its map estimation error.
The RB-PHD-SLAM approach can be seen to generate more
accurate localization and feature number estimates, however
it can also be seen that some feature estimates are misplaced
in comparison to the ground truth feature map. However, as
a first approximation to RFS based estimation, the PHD filter
is still demonstrated to be useful for high false alarm feature-
based SLAM applications.

IX. SUMMARY

Bayes optimality of the SLAM problem, which utilizes all
measurements and estimated map features, and yields esti-
mates of the number of features which have passed through
the field(s) of view of the vehicle’s sensor(s), as well as their
location estimates, is only possible under the RFS framework.
Such a framework requires recently developed Finite Set
Statistic (FISST) tools, and the simplest of these, the PHD fil-
ter, was introduced. The implementation of PHD Filter SLAM
was the focus of the article. With computational complexity
comparable to that of a state of the art MH-FastSLAM, RB-
PHD-SLAM’s ability to jointly estimate both detected target
number as well as location was shown, as it provided superior
estimates of these quantities as time progressed.
Further enhancements which adopt higher order FISSTs, such
as the Cardinalized PHD (C-PHD) Filter and Multi-Bernoulli
RFS techniques are avenues for future work.
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