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I. INTRODUCTION estimates the SLAM map to contain between 30 and 35 point

Having been referred to as the Holy Grail of autonomofatures (Figure 9) when in fact only 22 had entered the field
robotics research, Simultaneous Localization and MapdbuiPf View of the sensor. How can such a SLAM estimate be
ing (SLAM) lies at the core of most autonomous roboti€usted? Over (or under) estimating feature number, tiroug
applications [1]. This tutorial article explains recenvadces Map management and (false) data association decisions can
in the representations of robotic measurements and the ARl impair the vehicle location and map estimates in their
itself, and their consequences on the robustness of SLARAtUrety. This problem was noted in [3], where a useful noetri
Fundamentally, the concept ofset basedneasurement andWwas defined which could quantify feature based SLAM map
map state representation allow#l of the measurement in-quality, when represented as an RFS, in termawfiber and
formation, spatial and detection, to be incorporated intotj SPatial estimation errors. _
Bayesian SLAM frameworks. Representing measurements ah§ necessity for an RFS based map state has been noted in
the map state as Random Finite Sets (RFSs), rather thantlﬁ_eerecent I|_terature, with other resear_chers addre_sslmg/ls
traditionally adopted random vectors, is not merely aafitg With dynamic targets [4], [5] and multi-robot solutions [6]
of notation. It will be demonstrated that a set based framlewd O estimate feature number in a principled manner, the PHD
circumvents the necessity for any fragile data associatiwh Filter incorporates estimates of the propabllltles of.dmm
map management heuristics, which are necessary in veéfeyl false alarm of feature detectors. This could be integdre
based solutions. in a negative sense, in that set based SLAM methods appear
The article focusses on an implementation of the simplé&tneed two extra parameters (probabilities of detectia an
Bayesian set based estimator - the Probability Hypothel§ilse alarm) which are not considered necessary in vector
Density (PHD) Filter, and its application to SLAM. Usingbased SLAM. It should be noted however that in vector based
particles to represent hypothesized vehicle trajectaies a SLAM these valuesare (possibly inadvertently) used, since
Rao-Blackwellized (RB) PHD filter for each particle’s magh the Bayesian update, unity probability of detection and
estimates of the location and, importantly thember of Z€ro probability of false alarm are assumed, as a result of
features which have passed through the field(s) of view B complete reliance on the external feature managemeint an
a vehicle’s sensor(s), are estimated. association heuristics. _
Vector based SLAM solutions do not estimate this numb&p Provide motivation for set based SLAM methods, the arti-
of features, and instead rely on map management and d@abegins by demonstrating the true uncertainty whichltesu
association heuristics, which are implemented outsidenef ¥hen well known vision, laser range finder and short range
Bayesian (e.g. Kalman, Unscented Kalman, Particle Fiésy) radar based feature detectors are applied to real data. The
timator to determine which features to update. In the para”randomness in the number, as well as location of detections
but closely related, field of target tracking, recent resears highlighted. This leads to the re-modelling of the SLAM
has shown that estimating theumber of targets, as well concept with RFSs. Set based estimation requires the use of
as their Spatia| locations, is central to any tracking mnb| Finite Set Statistics (FlSST), the Concepts of which are als
[2]. A philosophy often adopted in the SLAM Communin}ntroduced, together with the simplest FISST, the PHD Filte
is that it is not important to estimate all of the feature® full diagrammatic implementation of PHD based SLAM is
which have passed through the field(s) of view of the robof&/en with comparative results with a state of the art vector
sensor(s), provided enough can be estimated to achieve ge@ged SLAM method in a challenging coastal environtent
robot localization results. In response, the reader isflprie
diverted to the detections produced by a radar in Figure 7
where many false alarms (false positives) are apparent. Dud-eature Based (FB) SLAM, detection algorithms are used
to these false alarms, a vector based Multi-Hypothesis (Mid) conjunction with various sensors. By use of examples
Factorized Solution to SLAM (FastSLAM) implementatiolshowing state of the art feature detectors with a Millimeter
Wave (MMW) radar, Laser Range Finder (LRF) and a camera,
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Il. SENSING AND DETECTION ERRORS
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of the 2 columns is to show the random nature, not only in the
spatial locations of the detected features, but in the numbe
and nature of the detections themselves.

A. Feature Detection with Radar

Radars can give received powelan Position Indicator(PPI)
images which display multiple received power values at
discrete points in space. These power values are corrupted
with random receiver noise and the challenge is to detect
those power values emanating from true objects within an
environment. In Figure 2(a), radar detections are based on
the application of a commonly use@rdered Statistics -
Constant False Alarm RatéOS-CFAR) detector applied to
the received power values [8], [9]. All power values excagdi

the OS-CFAR threshold are shown as crosses, together with

Fig. 1. The Husky A200 with a camera, LRF and a MMW radar_the superimposed ground truth location of objects (trees,

lamp posts etc) shown as ellipsis. The two experiments were
carried out in the same environment, under the same lighting

beant, Milimeter Wave (MMW) radar from Acumine Pty. conditions. It is evident that, due to the random power nivise

Ltd, providing one scan per second, with a range resolutfon

gsach radar scan, some of the features detected in one inege ar

50cm, up to a maximum range of 200m. The LRF is the sipissed in the other, as is the random presence of false alarms

LD-LRS1000, capable of continuoB$0° scanning and range
measurements between 2.5 and 80m. Images are providecf_
the monocular camera from an Xbox Kinect camera systech.S
Figure 2 shows two sets of detected features (left and ri
columns) based on radar point features, laser ba®addom

Under an OS-CFAR detector, the probabilities of false atarm
and detectionPp can be quantified under certain noise
ribution assumptions.

ht
%. RANSAC Line Detection with LRFs

Sampling ConsensURANSAC) line features and the visuaFigure 2(b) shows data samples from@0° laser range scan,
Speeded-Up Robust Featu&3URF) algorithm. The purposerecorded in an environment in which a single wall was present
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ANSAC line detector

(c) Visual SURF features.

(labelled). The RANSAC algorithm was applied, to extract
line segments from the data [10]. Due to RANSAC'’s random
nature in selecting its initial model inlier points, thetletan
shows the line correctly detected, whereas the right soansh
that the true wall is missed, and that a false line is detected
Similarly to the radar detection concepts, a “Possiblealite
threshold” for RANSAC can be set, again yielding an approx-
imate P, and, depending on the number of data inliers within
the actual line,Pp.

C. Visual Feature Detection with SURF

In the case of the camera, a well known “Blob detector” called
the SURF detector is applied in Figure 2(c). This detector
searches for local maxima in thBeterminant of Hessian
(DoH) applied to a 2D array of image pixels, at various scales
[11]. Such a maxima is an indication of a distinctive region
in the image space, corresponding to a possible featuedy lik

to be detected from other locations. The SURF descriptors
are shown as circles, the area of which correspond to the
scale at which SURF determined the maximum DoH, at the
pixel center of that circle. In the right image, the ambient
light level has reduced slightly. In low light environmentise
camera increases its gain, which also amplifies the noise. In
any blob detector (e.g. SURF) this variation in pixel inidas
introduces randomness into the detection process. The gree
circles correspond to SURF features which were detected in
over 90% of the 300 recorded images of the same scene,

Fig. 2. The random nature of detections, based on a radar CFARd are therefore taken to approximate “ground truth SURF
detector, line based RANSAC and the SURF detection algorithmfeatures”. In this case, varying the light conditions in ars,

Znarrow beam width of approximatel.8°.

so that the DoH varies, can give approximate but meaningful
Py, and Pp values for the SURF features.



D. General Sensing Errors robot’s position has no dimensional uncertainty. Thewftre

Although spatial errors occur in terms of the estimated [EPOt vehicle state is adequately modelled asralom vector
cation of the features, of far greater importance is the fiich in its general form is propagated forward in discrete
that the correctness of the detections themselves is questiime according to the state transition equation

able. Consequently,_the realistic uncertainty associatitial _ Xi = "Xt 1, U1, vp—1) ©)
measurement data includes detection (or feature extrgctio vehrn ) o
uncertainty, spurious measurements and spatial uncsrtaifnere /*<'() is the (generally non-linear) state transition
The ability to account for all of these errors in a joint anf#nction, a specific example of which will be demonstrated
principled manner, has a huge impact on feature based SLAf the marine application in Equations 1Ly, are any

and provides the motivation for re-modelling FB-SLAM undéfeterministic inputs applied to the vehicle at tirhe- 1 and
a set based framework as follows. v_1 models the, assumed zero mean, random noise modelling

the uncertainty of the functiorive"().

C. Map State Space Modelled as an RFS

tEhe number of features in the map state can vary from

zero to some arbitrarily large number. Ideally it shouldvgro

In the visual, laser and radar based measurement exampigionically as features enter the FoV of the sensor(ss Th

of Figure 2, it is clear that, in general, a "measurement, o iystifies the need for setbased map representation,

consists of a random number of detections, each with Spattfghtaining individual feature states as follows:
uncertainty. This implies that the result of any realisgatfire '

detection process is a measurement thatasa vector For M = 0 (no features present)

example, for the point feature radar detections in Figues,2( M = {m'} (one feature with state:" present)
resulting in measured range and bearing vatuasd6 respec- M= {m' ;m?} (two featuresm' # m? present)

tively, let the collected detections be = [r! 0%]T,... 23 = : ;

[ 63]T, which could be false or otherwise. A vector model  — {m',...,m™} (mfeaturesm! # --- £ m™ present)
for this measuremenf:! ... 237 has a fixed dimension, )
but the number of detections can vary from zero to sorfe R€ating RFES Measurements to the SLAM State

arbitrarily large number due to the possibility of missefo encapsulate detection uncertainty, as well as spatia- me
detections and multiple false alarms. Another problem & tffurement noise, the detected features from a vehicle with
the components of the vectar', ..., 23 have fixed order, Pose Xy, at timek, can be mathematically modelled by an
but the actual detections', ..., z? have no inherent physicalRFS 2. This is formed by the union of a set of features
order. Therefore, a more precise model of the measuremer@xgected to be generated under the current map estimate and

a finite observatioset which by definition has no fixed ordera set of false detections. Importantly, each set encagsulla¢
and has elements comprising the individual detections: ~ aforementioned detection and spatial uncertainties andehe

IIl. RE-MODELLING SLAM TO ACCOUNT FOR
DETECTION AND SPATIAL UNCERTAINTY

A. Feature Measurements Modelled as Random Finite Se

_ 5V — ([l pUT 5 g T Z = U D(m, Xx) U Cp(Xk)
Z=A{z,. . By={[r 0 ,..., [ 6]} Q) N e, N N
Hence, at any instant, a sensor can be considered to colleci Feat’s Expected Feat's False Feat's
finite setZ = {z!,..., 2%} of measurements!,... 2% from (4)

where Dy (m, X},) is the RFS of measurements generated

a measurement spacg as follows: : -
by a feature at locatiomn and Ci(X}) is the RFS of the

zZ= @1 (no featuresl detected) spurious measurements at tinke which may depend on
Z= {1Z }2 (one featurelz %etected) the vehicle poseX;. 2, = {z},22,...,2}*} consists of a
z= {2} (two features:, 2* detected) (2) random number;, of spatial measurements, whose order

of appearance has no physical significance with respecgto th
estimated map of features.

Z= {z',...,23} (;features:!,..., 23 detected) ,
For each featurep € My, andz;, € Zy,

Since the number of feature detectionsZnas well as the

values of the individual detections are random in natureZ Di(m, Xi) = {2} (5)
is referred to as &andom Finite SefRFS). with  probability density Pp(m, Xy)g(zi|m, X;) and
B. The Vehicle State Modelled as a Random Vector Dy, (X, m) =0 with probability 1 — Pp(m, X). Pp(m, Xj)

In SLAM formulations, the vehicle’s current pose state :s the probability of detection of feature. This could depend

woically modelled as a time varving vectdh. . containing its Riso on the vehicle pos& and the feature’s coordinates
ZYIS y osition and its orienta{iog at tir;’ek 3D veh?cle m as well as other characteristics of the feature in question.
ThyYr P D ' g(zi|lm, X)) represents the sensor’s likelihood of detecting

states are also possible, containing the six degreeefiom zi, given the spatial informatiom» and Xj. In the robotics

state variablesgy, v, 2k as well as the vehicle s r.oII p'tChIiEerature this is commonly introduced as

and yaw angles, and possibly more states containing vegloci ' _

acceleration and higher order variables. Irrespectivehef t 28 = hSPAR X, m) 4 spatial noise terms (6)
complexity of the chosen vehicle state, its dimensions aeslfi where hspaﬁab is the spatial function relating the vehicle’s

as time progresses, and the order of the variables in ther\/e% rdinates and the feature's paramét¢td.
remain the same - i.e. unlike the map feature estimates an8 '

measurements, in single robot SLAM, the state related to thén the case of point features, these would be its coordinates



Note the principled association of both detectiéty(m, X)) eliminating the need for fragile map management routines.
and spatial {(z;|m,Xx)) uncertainties with the RFSBy adopting an RFS map model, integrating over the map
Dy (m, Xx). The spatial uncertainty termy(z;|m, X;) would becomes a set integral - i.e. an integral which sums not only
reflect the statistics of the appropriate “spatial noism#&rin  over all spatial possibilities of the map state (as is the cdsa
Equation 6. Similarly, the spurious measurement ratessizgi vector integral), but over its cardinality possibilitidls@ This
corresponding t@;, (X,) are typically a priori assigned basedeature map recursion therefore encapsulates the inhf@nt
on an expectedP;,, available from the chosen detectioture number uncertaintpf the map, introduced by detection
method. uncertainty, spurious measurements and vehicle manewagers
- well as the feature location uncertainty introduced by igpat
E. RFS Map Prediction Model measurement noise. Features are not rigidly placed in a map
Let M be the RFS representing the entire unknown agéctor, nor are measurements simply a direct function of the
unexplored static map. The explored m&fy._; then evolves map state, due to the explicit modelling of false measurésnen
in time according to,
IV. FINITE SET STATISTICS (FISST)

= — FoV(Xy A - . .

AA,E &]i_lz - <M n M 1) Finite Set Statistic§FISST), are necessary to implement the
Current Previous Sensor(s) map component of the factored SLAM solution in Equation
Map Set Map Set FoV 8. As in the set based measurements and map representations,

(") the ith trajectory map posteriasy, (MHZ’“, (X’“)(i)) is a

where M, - the set of features not it 1. Hwat%lti-feature PDF which encompasses all the possibilities

This map state transition equation describes the fact t
the set of map features grows monotonically as a vehicle?k‘k (Mk|Zk (X;g)(i)> — Drjk (@|Zk (Xk)(i)) .

sensor(s) FoV(s) cover more of the unexplored environment. A ) L v NG
F. Bayesian SLAM with a Finite Set Feature Map

L mm | 2R, (XK “))
An RFS can be represented by a discrete distribution that Pk ({m T 2R, (XF)

characterizes the time varying number of featureg, in the ag in vector based SLAM, as a consequence of the above
set and a family of joint distributions which characteribeit myti-feature PDF, the general RFS Bayes recursion of Equa-
spatial distributions. Therefore, an RFS Feature Based-(Ffyn g is mathematically intractable since multiple intggron
SLAM state can be described by its PDR. (X", My = the space of features would be required.

{mt,m2 ... m™}|ZF U1 X,), whereZ* represents the

set of all measurements from tindeto k&, U*~! represents all A, The PHD Filter

inputs from time0 to £ — 1 and X, is the initial pose of the
vehicle.

Similarly to the FastSLAM concept [12], the PHD-SLA
joint posterior can be factorized using a Rao-Blackwetliz

RB) implementation, in which the map is represented . : mbe
ot ’ P o features occurring at that point. The strategy of thiefilt

a conditional PDF, conditioned on an entire vehicle traj ite o that of tional tor based h
tory X* [13]. Under an RB implementation, the vehiclg® OPPOS*e 10 hat of conventional vector based approaches

i i . i) which require external methods to fix the number of ma
trajectory X* is represented as vector partlcléé(k)(), q p

h of which maintain their own set based m timf atures, and then attempt to optimize their location ezt
each o ¢ amnta €Ir own set base ap es e PHD Filter tracks only the overall feature map behavior,

() k k) (@) i ;
Pk (Mk|z (X ) )-_ The Bayesian recursion of the Mapang then attempts to detect and track individual features as
per trajectory particle, is then new measurements are made.
(1) _ i)\ A PHD functionv, must have the following two properties:
Pk|k (Mk|Zk7 (Xk) ) X Pklk—1 (Mk|Zk 1’ (Xk) ' ) .k . J prop
1) The mass (integral of the density over the volume) of the

An approximation to set-based estimation which is traetabl

o exploit the physical intuition of the first moment of an RFS
nown as its PHDy;. Also known as thentensity function
e PHD at a point, gives th@ensityof the expected number

Map posterior cond'd predicted map conditioned PHD within a given spatial regiof, gives the expected
on trajectory particle on trajectory particle number of features ir$. o
X g (Zk|MIm (Xk)(l)), 2) As a consequence, the _peaks of the P_HD indicate
locations with high probability of feature existence.
Measurement
likelihood V. RFS SLAMWITH THE PHD HLTER

o (8,) The aforementioned Rao-Blackwellized (RB) SLAM imple-
It is important to note that the measurement likelientation is adopted, which uses a PHD approximation for
hood g¢ (Zk|Mk,(Xk)(’) and the predicted SLAM statethe set based map, conditioned on the vehicle trajectory. A
Prjk—1(XF, M| 271 UM X)), are finite set statistic weighted sum-of-Gaussians is used as the PHD function, and
(FISST) densities representing the RFSs, which, contmarytlhe mapping recursion is approximated by a GM-PHD Filter.
the vector based implementation of Bayes theordm,not The trajectory recursion adopts a Particle Filter [3]. Tisis
have to be of compatible dimensioriBhis means that thereferred to as RB-PHD-SLAM.
feature number in the predicted SLAM map does not haVee map is predicted with a GM form of the PHD predictor,
to equal that corresponding to the measurement likelihotlde implementation of which will be explained in the next
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section. 2) Correction — Implementing Equation 18ased on the pre-

- xky — o xk—1 blmlX dicted GM-PHD, if the measurement likelihoggd(z|m, X})
o1 (m|X7) Ok 1k () ) + M is also of Gaussian form, it follows from Equation 10 that
Predicted PHD Prior PHD Birth PHD the posterior map PHDu;j)k(m\X,S)) is also a GM. Figure

(9) 4 shows the per trajectory particle update implementation
wherevy, 1,1 (m|X*~!) is the previous GM estimate of theprocedure of Equation 10.

PHﬁ’ Uk\kfl(m|Xk]2 ii its prﬁdiction at timek andb(rln\ﬁ(k) Note that in the “Filtering actions” block “Update GM-PHD
is the GM-PHD of the birth RFS, used to model the NeWissed det. components”, the means and covariance of all the

fe_atures predicted to enter the FoV of the vehicle’s sea};orj,klki1 predicted Gaussians are simply copied into the poste-
- i.e. the bracketed term on the RHS of Equatiom(7u| X)) rior GM-PHD map estimate, but with their weights reduced

is similar to the proposal function used in particle filtexad - . . )
is used to give soma priori information to the filter about by the probability of missed detection ¢ Fp (m‘Xklk*))'

where features are likely to appear in the map. In SLAI\)I-hiS takes_ into account the possibility tha_lt they may not be
with no a priori information, b(m|X;), may be uniformly qbserved in the new measuren‘_nentggt This represents the
distributed in a non-informative manner about the space figpt term on the RHS of Equation 10.

features. However, in this work, the feature birth proposEP implement the second term on the RHS of Equation 10,
at time k is chosen to be a GM containing, ;, Gaussian €ach of theJy,_, predicted Gaussian component’s spatial
components, representing the set of measurements at-time Means and covariances are corrected by each ofjthe

Zi_1 [7]. measurements. This can be achieved by the stareaetided
The PHD corrector equation is [2]: Kalman filter (EKF) equations, as shown in Figure 4. The
N . weights of each of thes#,|;,_, x 3, new Gaussian components
Ol (M| X®) = w1 (m|X®)(1 = Pp(m|Xy))  +  are updated based on the probability of detection of each
Posterior All predicted features weighted predicted Gaussiqn, the Mghalanobis distance between that
PHD by their probs. missed detection component’s predicted spatial measurement and each actual

i A(m|Xy) measurement and the false alarm variabléz). The false
Vkk—1(m|X") Z r(2) + [ MEXR)0 (E[XF)dé alarm PHD ¢ (z) represents the prior knowledge of the
zez), F M k) Pklk—1 probability of false alarmP;,. In a scan, in whichV, feature
All pred. features, updated by the spatial locations of affetection hypotheses are made (whether determined to be

the new measurements, and their probabilities of detectf§ffections or not), an average of = Py, Ny false mea-
(10) surements will result. Thereforey(z) = n.VU(z), where

where vy, (m|X*) is the new GM estimate of the PHD atle is the false alarm rate per sca,is the volume (or area

time k, A(m|X) = Pp(m|Xy)gr(z|lm, X;) and, in the 2D experiments presented here) corresponding to the
- ] FoV of the sensor(s) antl(z) is a uniform distribution over
Pp(m|Xy) = the probability of detecting a land-  the measurement space. The missed detection and weighted
mark atm, from vehicle poseX. prediction Gaussian components are then merged to form the
cx(2) = PHD of the clutter RFE}, in Jitk—1 + (Jue_1 x 31) Gaussians forming the updated GM-

Equation 4 at timék. PHD v, (m| (Xk_l)(z)>.
VI. IMPLEMENTING THE RB-PHD-SLAM RLTER It is important to note that, unlike in vector based SLAM
The PHD-SLAM density at timé&—1 can be represented by amplementations, feature initialization, terminationdassso-
set of N particles, each accompanied by their own GM-PHD$ation routines are unnecessary in the PHD filter implemen-
representing their belief of the map. The RB-PHD-SLANation. A reduced weight copy of the feature predictions are
filter then proceeds to approximate the posterior densita byncorporated into the final map estimate, allowing for the
new set of weighted particles according to the block diagrapossibility that the sensor(s) may have missed them. Also,
in Figures 3 to 5. all measurements are fused with all predictions, so that no
assumptions on the nature of the measurements is necessary.

Finally, to curb the explosive growth in the number of Gaus-
1) Prediction — Implementing Equation Figure 3 imple- sjans formed between the prediction and update stages of the
ments the predictor Equation 9 on a per trajectory parti®-PHD-SLAM filter, Gaussian merging and pruning can be
basis. Firstly the/, ;. birth Gaussians replicate the spatial lcadopted as shown in Figure 4. Importantly, note that althoug
cations of thelZy, ;| prior measurements (i.6, . = |Z,_1], a computational limit has to be set, in terms of the number of
using the inverse spatial measurement mo(oh?P""“aY1 (), Gaussians realizable, no feature pruning or map management
and are each assigned equal weight. Secondly each phieuristics were necessary in this implementation, and tia fi
map Gaussian is predicted forward in time yieldifg ,;,—; weights of each Gaussian maintain an estimate of the number
propagated Gaussians. For a static map (assumed here) thieEatures they represent. The equivalent computatiomét |
propagated Gaussians simply equal the prior, in terms @f tHa a vector based, multi hypothesis SLAM implementation
means, covariances and weights. Any knowledge of dynamiculd require heuristic based curbing of measurements and
map behavior would be incorporated at this point. Finally ttmap predictions, forcing each to be of the same, computation
Jyi, birth and.J;,_,|;,—, propagated Gaussians are summed aly manageable dimensions, with no such Bayesian estimate
form the Jy,—1 = Jy i + Ju—1x—1 predicted Gaussians oron the true number of features, which have intersected the
the RHS of Figure 3, thus implementing Equation 9. FoV of the vehicle’s sensor(s).

A. Per Particle PHD Mapping — Implementation



Filtering actions:

Birth Gaussians
1. For each prior measurement  z}_, to 2} do:

Per particle GM-PHD

| o birth with  Jp1 = [ 241
— tial) ~ a

pup g = (At (zk*ka—l) weighted Gaussians

a. Birth Gaussian mean:

24

b. Birth Gaussian Covariance
Py = V5 (X[, ) x R

N - T
o e x [V, X0, Per particleGM-PHD
1 i
&= — X’H\k*l predicted map with ~ Jy 1 =

° Joge + Tr-1jk-1 weighted Gaussian
* o [ ] c. Set constant weight for Gaussian X i
{ ] Wpp = ke
Particle i end for

Trajectory particles
attime k—1

Extract previous pose
estimate from particle i

Predicted Map Gaussians
2. For each of J;_y;_; prior map components, do:

Per particle GM-PHD

(Static map assumed) propagated priors with Uk (m‘ (X‘C*‘)(")) _

Per particle GM-PHD a. Predicted Gaussian mean

map prior with  J._qje 1 : )
weighted Gaussians Jr-1jk-1 Welghted Gaussian:

1= M G pl) ) e
D= = (== {ﬂwcwPk\k—vwk\kA}]:]

b. Predicted Gaussian covariance
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Fig. 3. The implementation of the PHD predictor Equation 9.

B. Updating the Vehicle Trajectory Particles — Implemeiaiat a-posteriori (MAP) map estimate This strategy could also
be used for RB-PHD-SLAM, however, in contrast to vector

The PHD-SLAM filter adopts a particle approximation of thgased SLAM algorithms, the PHD map representation yields

posterior vehicle trajectoryp,,(X"). Figure 5 shows how g natural ability to average feature maps, to give an exgecte

the trajectory particles are propagated forward in timeuA-f a-posteriori (EAP) map. Map estimates from tNeupdated
damental difference between RB-PHD-SLAM and FaStSLAMajectory partic|e<Xk)(Z) output in Figure 5 can be averaged

should be noteq. In FastSLAM, each pose particle is useddfy an expected maggven with map estimates of different
generate a predicted measurement vector. The actual meagife and without having to resolve the intra-map feature
ment vector, recorded from the unknown, true vehicle l@tati 55qciations[9]. The estimated number of features in the
is then superimposed on to each _partmle. The I|k_el|hoohaxf_t posterior map PHD, is simply the sum of the Gaussian weights
measurement vector corresponding to that particle’s ptedi j, ihe outputuy (m‘Xk)_ The expected feature based map
measurement vector is calculated to form a particle weightiimate can then be extracted by choosingiipg. highest

aoal - () : . . . .
through the measurement |lke“h0@d(Zk|Zk L (X*)™). local maxima. Pseudo-code implementation details of this
This requires the usual, fragile predicted and observeifea algorithm are given in [3], [7], [9].

management and association routines, for which there is no
concept within the RFS framework. VIl. RB-PHD-SLAM CoOMPUTATIONAL COMPLEXITY

In  RB-PHD-SLAM, the measurement likelihood isfhe computational complexity of RB-PHD-SLAM s,
g(zk|zk—17(Xk)(l) which is defined on the spacé?(mk3x/N) i.€. linear in the number of features (in the FoV),

of finite sets, unlike its FastSLAM counterpart, which jinear in the number of measurements and linear in the

defined on a Euclidean space. Therefore, alternative methBdmPer of trajectory particles. RB-PHD-SLAM simulations
are necessary to evalua@e(Z |Zk-1 (Xk)(i) and hence " [7] have shown that, the computational time is comparable
k ’ ' with that of the MH-FastSLAM algorithm. Note that due

the trajectory particle’s new weight. Mullanet al showed to the RB structure of RB-PHD-SLAM, binary tree based
that this set based measurement likelihood can be evalu%tﬁ ancements, such as those applied to’ traditional FasMSLA

in closed form, based on an arbitrary choice of map/sgt, , b dilv developed to furth duce th .
the simplest of which is the empty map strateyy;, = 0 [3]. 'Eo (]9((;2?\7 ﬁgr?n?k;)y eveloped to further reduce the conifgiex

VIIl. COMPARISONS OFPHD AND VECTORBASED
C. Estimating the Posterior Trajectory and Map - Implemen- SLAM IN A MARINE ENVIRONMENT

tation To demonstrate the robustness of PHD-SLAM in the presence

In MH-FastSLAM, the final trajectory is selected as the parf’ many false alarms and missed feature detections, SLAM

o () : . : .
.Cle.(X ) with th? h'gheSt We'_ght; and the final map eS'['.r’nate“lt should be noted that the particle with the maximum weighinigieneral,
is its corresponding map. This is known as the maximusnly an approximation of the MAP estimate [14], [15].
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algorithms, based on a commercially available X-band neariexperiments. AIS is a short range coastal tracking system
radar, are implemented on a sea kayak referred to asuaged for identifying and locating sea vessels by electedlyic
Autonomous Surface Craft (ASC). The ASC was remoéxchanging data. This enables the system to receive positio
controlled in an off-shore test site in Singapore’s southesind speed estimates from a large number of vessels present
Selat Puah marine environment. Data from the radar, GPS anthe area. Since those vessels were used as features in the
an inexpensive single-axis gyro were logged using an omebo&LAM algorithms, this source of information was used as
processing unit as the ASC traversed the environment, whigbund truth to verify and compare the features extracteh fr
comprised geographical and sea-surface vessel landnidrés.the radar data, with the position delivered by the AIS.
standard, automated OS-CFAR feature detector, introd'mce% The ASC Process Model

Section II-A, was applied to the radar data to provide the

features to be input to the SLAM algorithms. A sea-based ASC is subject to numerous uncertain distur-
With restrictive feature modeling, and a lack of vehicletroh bances such as currents and wind, moving the ASC in any
input information, it is demonstrated that by adopting tHesSR arbitrary direction. To account for this, the following ron
concepts, and the PHD Filter, useful localization and magpiinear process modelf{*"() in Equation 3) is adopted

results can be obtained, despite an actively rolling archi . z

ASC on the sea surface. Tlliu)e vector bas)t/ad SL%\M alglgrithm Tp—1 + Vi1 ATy, C.Ob(m_l + 6dp—1) + Uf_l
MH-FastSLAM, is also implemented and compared. Yo = Yr—1+ Vi1 AT sin(dr—1 + 0¢p—1) +v_,

_ a3
A. The ASC and the Coastal Environment O = ¢k_hl + 0Pk Uy
e X, = ["Xp_1,Uk-1,0%-1) (11)

The ASC was originally developed at the Dept. of Mechanica
and Ocean Engineering, MIT for experiments in autonomowsere z;,, vy, and ¢, represent the Easting, Northing and
navigation in rivers and coastal environments [16]. For StaSC heading angle with respect to north at tile X, =
bilization, lateral buoyancy aids were added to the p|HHf0r[$k mn ¢k]T and fveh() is the vehicle motion vector function

as depicted in Figure 6. The figure shows the ASC at seacapsulating Equations 11/,_; represents a vector com-
prising the input velocity signal and the measured angular
change -i.eU;,_1 = [Vi_1 d¢r_1]T, recorded by an on board
single axis gyroscopey’_,, v}, andv,iL1 represent random
perturbations in the ASC motion due to external sea forcds an
are modeled by white Gaussian signals, encapsulated in the
noise vector, 1 = [vf_, v/, vl 7. ATy, =ty — t)

is determined from the measurement rate of the gyro. In
this experiment, for simplicity}, = Vi, and is chosen a
priori due to the lack of suitable Doppler Velocity Log (DVL)
sensors. A constant velocity model could also be assumed,
accompanied by the recursive estimation 16f, integrated

into the SLAM algorithm. This vehicle process model will be

used in both the SLAM algorithms, developed for comparison
Fig. 6. The Autonomous Surface Craft (ASC) adapted kayak. purposes, in this article.

with the X-Band radar, mounted on a 1.5m length pole aboUe Vector Based Multi-Hypothesis FastSLAM Comparison

the sea surface. The X-Band radar used was the M-1§3&tSLAM estimates the map on a per-particle basis, meaning
BlackBox Radar from Furuno and was primarily used to deteght different particles can be associated with differeatdres
buoys and ships at large distances (several kms) which Warg. This means that the FastSLAM filter has the possibility
approximated to be point features. The mechanically schnfi¢ maintain different tracks for each possible hypothesis o
beam has a width 08.9? in azimuth and20? in elevation. each detected feature, knownMsltiple Hypothesis Tracking
The large elevation beam width makes the sensor robust toa¢JT). A new particle is created for each new hypothesis
sometimes severe p|tCh and roll of the ASC. A GPS recei\(ﬂreach measurement, meaning that each partic|e is spﬂt int
(Crescent Hemisphere 110), as well as a KVH Industrigs; 2 new particles, one for each of thepossible associations,
Inc. DSP5000 single-axis gyroscope for 3D p@se, yx, #x) one particle for the non-association hypothesis and theroth
measurements were also used in the experiments. An on begajidicle for a new feature hypothesis. Particles with inectr
processing unit logged the GPS and gyro data at a rateggfa association are more likely to be eliminated than those
1Hz, with the radar data being sampled and logged at a sgich were based on correct associations. This step reduces
rate of 0.5Hz - i.e. 1 full 360 sweep of the environmentthe number of particles back to its original number. This
required 2 seconds. The radar range bin resolutdtig), vector based, MH-FastSLAM method was implemented for

was set to 7.5m, with a maximum range of 7.68Km. Adlomparison, based exactly on the methods given in [12], [17]
power values which exceeded the OS-CFAR threshold were

considered as valid point features in the RB-PHD-SLAM afky A Comparison of RFS & Vector Based SLAM at Sea
MH-FastSLAM experiments. For the RB-PHD-SLAM filter, a Monte Carlo (MC) analysis
Together with the known GPS locations of the surroundimg presented based on 50 sample runs using 100 trajectory
buoys, an Automatic Identification System (AIS) receiveswaarticles in each trial. In this comparative experimeng th
used for ground truth verification of the map features in tA&SC was remote controlled to execute a curved trajectory



of approximately 13km and the maximum range of the radatAM final trajectory particle and final GM-PHD map es-
was limited to just over 1km. Multiple loops were traversetimates are the MAP values explained in Section VI-C. The
The AIS provided a quantifiable ground truth map in ternestimated map features (crosses) are the maxima of the Final
of feature number and location as time progressed. FiguréGM-PHD map estimate. It can be seen that MH-FastSLAM
shows a GPS trajectory with the entire history of all poimiver estimates the number of features due to multiple data
detections superimposed. These are shown as black poedsociation failures, as a result of many false measurement
and exhibits larger spatial errors for those features which
truly correspond to actual landmarks. Importantly, FigQre
compares the estimated map sizes. The labelled “True &eatur
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Fig. 7. Overview of the test site showing the GPS trajectory (green casurement index

line) and AIS coordinates (green dots) of the point feature map. The o comparison of the number of estimated features for each
point feature measurement history is also provided (black dots). approach. The number estimated by the MH-FastSLAM algorithm is

o _ o shown in the upper curve, and that estimated by the RB-PHD-SLAM
This is all superimposed onto a satellite image of the ar@iter is shown in the lower curve. The true feature count (based on

Many of the measured features appear close to the sea yes$el4IS) is labelled, and settles at a constant value of 21.
detected by the independent AIS (shown as green dots), which
were taken as ground truth. It is also evident that many falssunt” finally settles at 21, when all of the ships detected
alarms are present due to the sea clutter and noise. by the AIS should have entered the FoV of the ASC's radar.
Figure 8 compares the posterior SLAM estimates from Miote that the RB-PHD-SLAM feature number estimate closely
FastSLAM (top graph) and RB-PHD-SLAM (bottom graph)esembles, and on average tends to, the true feature number.
For fair comparison with MH-FastSLAM, the RB-PHD-Since the MH-FastSLAM vector based feature management
routines are typically dependant on the data associatioi de
1365 O — : : : : : : sions, this dramatically increases its map estimationrerro
* a The RB-PHD-SLAM approach can be seen to generate more
1 accurate localization and feature number estimates, hawev
it can also be seen that some feature estimates are misplaced
in comparison to the ground truth feature map. However, as
a first approximation to RFS based estimation, the PHD filter
is still demonstrated to be useful for high false alarm festu
* 1 based SLAM applications.
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13 @ Bayes optimality of the SLAM problem, which utilizes all

measurements and estimated map features, and vyields esti-
mates of the number of features which have passed through
the field(s) of view of the vehicle’'s sensor(s), as well asrthe
N location estimates, is only possible under the RFS framlewor
1 Such a framework requires recently developed Finite Set
| Statistic (FISST) tools, and the simplest of these, the PHD fi
< @ ter, was introduced. The implementation of PHD Filter SLAM
i a7 3 e e aso s 3e 3605 3o was the focus of the article. With computational complexity
Easting x10° comparable to that of a state of the art MH-FastSLAM, RB-
PHD-SLAM’s ability to jointly estimate both detected tatge

Fig. 8. Upper graph: The posterior SLAM estimate (red) from M ; ; ; ;
FastSLAM. Lower graph: The posterior SLAM estimate (blue) fr;hr#mber as well as location was shown, as it provided superior

RB-PHD-SLAM, in comparison to the ground truth (green). CrossEstimates of these quantiti.es as time_progressed.
represent the estimated landmark locations in each case and Eurther enhancements which adopt higher order FISSTs, such

circles represent their ground truth (AIS) locations. as the Cardinalized PHD (C-PHD) Filter and Multi-Bernoulli
RFS techniques are avenues for future work.
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