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D
uring the past decade, challenging applications 
for autonomous robots have been identifi ed in 
the areas of servicing crowded, built-up areas; 
mining; search and rescue operations; under-

water exploration; and airborne surveillance. Autonomous 
navigation arguably remains the key enabling issue behind 
any realistic commercial success in these areas. Consequently, 
autonomous robotic research has focused on large-scale and 
long-term navigation algorithms, sensing technologies, robust 
sensor data interpretation, and map building.

The most successful robot navigation algorithms to-date 
have been derived from a probabilistic perspective, which 
takes into account vehicle motion, terrain uncertainty, and 
sensor noise [1]. During the past decade, an explosion of 
interest in the estimation of an autonomous robot’s location 
state and that of its surroundings, known as simultaneous 
localization and map building 
(SLAM), is evident. The goal 
of an autonomous vehicle per-
forming SLAM is to build a map 
(consisting of environmental 
features) incrementally by us-
ing the uncertain information 
extracted from its sensors, while 
simultaneously using that map 
to localize itself with respect to 
a reference coordinate frame [2]. 
New algorithms that represent 
uncertain information based 
on particle fi lters and Gaussian 
mixture models, as well as the 
more classical Kalman fi lter–based techniques, are advancing 
the progress of a robot’s long-term navigation abilities. This 
has been significantly aided by recently affordable sensor 
technologies, including GPS and inertial measurement units 
(IMUs) as well as fast and reliable laser range fi nders.

To demonstrate the state of the art in autonomous naviga-
tion, this article focuses on outdoor research work within 
complex, semi-structured environments with an array of 
vehicles, using RADAR and laser range fi nders. Two classes 
of sensors that we use to get information are proprioceptive 
sensors and exteroceptive sensors. Proprioceptive sensors 
make measurements of the internal state of the vehicle (e.g., 
its speed, relative displacement, etc.) by using motor encod-
ers or on-board accelerometers, IMUs, etc. These sensors do 
not interact with the world beyond the autonomous guided 
vehicle (AGV) at all.

Exteroceptive sensors make measurements of the external 
state surrounding the vehicle (e.g., distances to obstacles). 
These sensors interact with the world beyond the AGV by 
transmitting laser light or receiving images beyond the ve-
hicle. Even GPS is an exteroceptive device, as it is needed to 
communicate with satellites to infer the state of the vehicle. 

Autonomous navigation is completely dependent on 
◗ the successful extraction of useful information from ex-

teroceptive sensors 

◗ the correct association of that information from different 
vehicle positions 

◗ algorithms that can fuse this information with proprio-
ceptive sensor data estimates. 

In this article, we summarize our research that addresses 
these issues.

The Key Role of Sensing: 
A Proprioceptive Sensor Interpretation
Reliable localization ability is essential for an autonomous ve-
hicle to perform any function. For ground vehicles operating 
outdoors, the localization task becomes much more diffi cult, 
because wheel encoder measurements are unable to take into 
account wheel slippage or uneven terrain. In urban or forest 
environments where high buildings or tall trees exist, GPS 
sensors also fail easily. A robust localization method therefore 

needs to be found. In this article, 
the term “pose” means both 
position and the heading of the 
vehicle. The pose of a vehicle 
traveling on a two-dimension-
al (2D) plane would be given 
by the coordinates (x,y, θ). The 
word “position” usually only 
implies the coordinates (x, y).

IMUs are non-jammable and 
self-contained and can provide 
pose estimation in three-dimen-
sion (3D) because of a triad of or-
thogonal accelerometers (trans-
latory rate sensors) as well as 

gyroscopes (angular rate sensors). Low-cost IMUs, such as the 
Inertial Sciences D-MARS IMU used in this work and shown 
in Figure 1(a), are increasingly being made commercially avail-
able, and their use in automotive applications has increased 
in the past decade. Since rate information must be integrated 
with respect to time to produce velocity, position, and attitude, 
the small errors in the rate measurements will cause accumu-
lated unbounded errors in the integrated measurements. This 
is demonstrated in Figure 1(b), where the dashed red curve 
represents the true path of a vehicle executing a 1.1-km path 
within the Nanyang Technological University (NTU) Singa-
pore campus. The dark blue trajectory represents the estimated 
path after integration of the IMU data. The path estimated by 
the integration of the raw IMU data quickly diverges from the 
true path because of the time integration of biases and noise. 
Hence, IMUs are usually combined with external sensors and 
aiding algorithms to produce an inertial navigation system 
(INS) to improve the effective vehicle pose information.

INSs that bound the errors of IMUs exist in the literature. 
Barshan et al. modeled the biases and drifts of inertial sen-
sors as exponential growth parameters and augmented the 
estimated robot state (typically its 2D pose) to include these 
parameters [3]. In [4], a method was presented for combining 
odometer and inertial information to provide an estimate of 
the six degrees of freedom of a rough terrain rover. A limita-
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tion of these methods is that the position and attitude are not 
directly observable and the imposed constraints are often 
violated.

Therefore, one of the research fi elds at NTU is multi-aided, 
inertial-based localization to constrain the outdoor localization 
problem. The multi-aiding information is from an odometer, a 
gyroscope, and the known vehicle constraints themselves. 
Contrary to previous work, a kinematic model is developed 
to estimate the lateral velocity of the inertial sensor [5]. Figure 
2(a) shows a suite of IMUs (for comparison purposes) mount-
ed on the roof of a utility vehicle used in these experiments, 
and in Figures 1(b) and 2(b) the cyan-colored trajectories show 
the estimated vehicle path using the aided INS, which is able 
to signifi cantly reduce the drift in the position of the vehicle, 
velocity, and attitude estimates, even when the testing vehicle 
runs in outdoor uneven environments.

Exteroceptive Sensor Interpretation
Aided INS is able to signifi cantly reduce the localization error 
of a vehicle. This produces more reliable localization estimates 
for a longer period of time than odometer or integrated raw 
IMU data alone. However, the resulting pose errors are still 
unbounded with respect to time. For autonomous navigation, 
measurements from beyond the robot are therefore necessary.

Laser Detection and Ranging
Because of their reliability and accuracy, common sensors 
used in mobile robotics are laser range fi nders. To use range 
data successfully in navigation algorithms, it is often useful 
to achieve complete 360º coverage of the environment sur-
rounding a vehicle, so that extracted information from other 
robot poses can be successfully fused with new information. 
Figure 3(a) shows a 3D scanning laser detection and ranging 
(LADAR) sensor developed at NTU for 3D environmental 
scanning. The sensor can continuously scan 360º in bearing 
while simultaneously enabling elevation changes between ±25 
degrees. The sensor reliably produces range point clouds to 
distances of 260 m, as can be seen in Figure 3(b). In the fi gure, 
an outdoor courtyard has been scanned, and each white point 
corresponds to a range point.

Feature-based robot navigation relies on the extraction of 
reliable and repeatable information from such sensor data. 
Geometric methods of extracting features from raw, noisy 
range data often use the Hough Transform and the RANdom 
SAmpling Consencus (RANSAC) algorithm [6]. These two 
algorithms are robust in the presence of data outliers. How-
ever, it is necessary to define several problem-dependent 

Fig. 1. (a) An Inertial Sciences IMU and (b) raw and aided IMU estimated paths. 

Fig. 2. (a) A suite of IMUs and (b) a complete INS estimated trajectory. 
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thresholds. For example, Figure 4(a) shows the result of ap-
plying RANSAC to detect lines and circles in a simple indoor-
offi ce–type environment that has four walls and two circular 
cross-sectioned pillars from a single 2D scan. 

Although the algorithm is robust in the sense of data 
outliers, it produces a randomized result, meaning that 
each time the algorithm runs, different features can be ex-
tracted. Figure 4(a) shows that the four walls are extracted 
as required but extra features (a line and the larger circle) 
are falsely detected. We have done a great deal of research 
at NTU based on local smoothing and feature extraction. We 
have applied the concept of anisotropic diffusion and scale 
space theory for the detection of dominant features from 
noisy range data [7]. 

Figure 4(b) shows the results when again extracting lines 
and circles from the same environment. In this case, simulta-
neous smoothing in multi-scale space enables the dominant 
features (the four correct lines and the two correct circular 
sectioned pillars) to be detected. The advantage of formulating 
the algorithm under the scale space theory is 

◗ data that is considered by the algorithm to conform to 
the data model that contains the selected features are 
smoothed at multiple scales 

◗ whereas all other data remain unsmoothed by the algorithm. 
This makes the technique robust to range data noise. Only 

dominant features are extracted [in the case of Figure 4(b), line 
intersections at A, B, C, and D] as opposed to false features 
detected because of noise.

Fig. 3. (a) An in-house developed 3D LADAR for range data acquisition and (b) the resulting point cloud data, recorded within an outdoor courtyard. 

Fig. 4. Feature extraction from range data within an indoor environment. The triangle represents the position of the sensor, squares show extracted line 
intersections, and crosses (+) show the extracted centers of circles. (a) Applying RANSAC to laser range data, for the detection of lines and circles. (b) Anisotropic 
smoothing and segmentation in multi-scale space.
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Radio Detection and Ranging
Millimeter-wave RADARs (MMWR) can offer remarkable 
advantages for autonomous navigation.

◗ Their performance is less affected by dust, fog, moderate 
rain or snow, and ambient lighting conditions than other 
sensors. 

◗ MMRW differs from other range sensors as it can provide 
complete power returns for many points down range. 

◗ It has a comparatively long range that can enable a vehicle 
to localize even with sparse features.

Figure 5(a) shows one of NTU’s vehicles, equipped with 
a 77-GHz frequency modulated continuous wave scanning 
MMWR. A section of the car park environment within which a 
full 360º RADAR scan is obtained is also shown in Figure 5(b). 
Note the positions of the two lamp posts and the three trees 
along the grass verge. 

Figure 5(c) shows a section of the full 360º RADAR scan 
along with superimposed laser range data (black dots). Within 
the RADAR data, the red regions correspond to ranges and 
bearing angles relative to the RADAR located at the origin at 

which high power returns were recorded. Yellow regions cor-
respond to medium power, and the blue areas are low power 
(considered to be noise only) returns. 

An initial comparison of the RADAR and laser range data 
reveals that the RADAR suffers from a lower angular resolu-
tion, because high power returns become spread out in bearing 
angle. This can, however, be advantageous as the trees and 
lamp posts [located in the scan along the vertical line X = –6m 
(the grass verge)], all give high power returns by the RADAR, 
but two of them are missed by the laser range fi nder (the laser 
was set to record one range sample every 0.5 degrees). Fur-
ther, this type of RADAR enables the user to defi ne at which 
received power level an object can be considered detected. 
Radio waves have the ability to penetrate certain materials. 
This provides the possibility to detect multiple targets per 
bearing angle. This property also enables the user to develop 
algorithms for the optimal extraction of multiple line of sight 
features and to build occupancy maps that label regions in a 
robot’s environment with the probability of that region being 
occupied, assuming various noise statistics.

Fig. 5. RADAR mapping on campus. (a) One of NTU’s vehicles equipped with the millimiter wave RADAR. (b) A section of a car park environment in which RADAR 
mapping experiments were carried out. (c) Corresponding occupancy grid map, estimated using the RADAR. The superimposed black dots show laser range data 
for comparison purposes.
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Research at NTU has focused on outdoor RADAR map-
ping algorithms that use an occupancy grid approach [8], [9]. 
This work has shown that the occupancy mapping problem is 
directly coupled with the received signal detection process-
ing that is necessary in such sensors and that the required 
measurement likelihoods are those commonly encountered 
in both the target detection and data association decisions. 
Furthermore, these measurement likelihoods are highly cor-
related both with the environment and the non-linear target 
detection algorithm used.

Figure 6(a) shows an aerial view of the car park with its 
occupancy map in Figure 6(b) as estimated using the MMWR 
(left) and a laser range fi nder (right). The maps are the result of 
the vehicle driving once around the road loop shown in Figure 
6(a). It can be seen in the MMWR map that occupancy values 
beyond many of the targets can be estimated because of the 
penetrating ability of the radio waves. With the laser range 
map, no information beyond the sensed targets is available, 
meaning that the occupancy of these regions remains uncer-
tain. Note that the main structures, the entrance passage and 
main building walls, in both of the maps are in agreement.

Algorithmic Issues–Data Association
Data association is one of the extremely diffi cult problems en-
countered in SLAM. Almost every state estimation algorithm 
must deal with this problem either by maximum likelihood 
assignment or maximizing the correlation correspondence 
between the elements of observations and available map 
estimates. Uncertainties in vehicle pose, variable feature 
densities, dynamic objects in the environment, and spurious 
measurements complicate data association. An effi cient data-
association scheme must aid feature or track initialization, 
maintenance, termination, and map management. 

Recently, the use of deferred logic data association ap-
proaches holds promise in overcoming most of the defi ciencies 
of the data association algorithms proposed for robot naviga-
tion applications. However, most such approaches, which are 

Fig. 7. SLAM using MDA. (a) The estimated vehicle trajectory and point feature map, around a 1.5 km road within the NTU Campus. (b) A zoomed view showing 
the associated features over 2 time frames, at a particular vehicle location.

Fig. 6. (a) An aerial view of the car park environment and (b) its estimated 
probability of occupancy map estimated by the RADAR (left) and the laser 
range fi nder (right).
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often variants of the well known nultiple hypothesis tracker 
(MHT), are still computationally intensive [10]. 

At NTU, multiple-frame multi-dimensional data asso-
ciation (MDA) algorithms using a fi nite sliding window of 
measurement frames have shown advantages over previous 
techniques in terms of computational tractability, detecting 
spurious measurements, and in support of feature initializa-
tion and management [11]. The core attribute of such algo-
rithms is the use of several measurement frames to determine 
the best associations for the current measurement frame. It is 
established that the MDA is an effective alternative to the theo-
retically optimal MHT. Compared with single-measurement 
frame methods, MDA resolves association incompatibilities 
and ambiguities more effectively and yields consistent maps, 
as shown in Figure 7. Figure 7(a) shows an entire trajectory 
(1.1 km in length) and the mapped features (blue dots) within 
the NTU campus. The current measurement associations at 
one position are shown in Figure 7(b). MDA enables data as-
sociation decisions to be reversed across a fi nite number of 
measurement frames.

Conclusions
A vehicle capable of performing SLAM using naturally oc-
curring environmental features and being able to navigate 
for hours or even days in unknown and unstructured envi-
ronments will be invaluable in several key areas of robotics: 
autonomous vehicle operation in unstructured terrain, driver 
assistance systems, mining, surveying, cargo handling, au-
tonomous underwater exploration, aviation applications, 
autonomous planetary exploration, and military applications. 
This article has provided a qualitative introduction to some of 
the key issues in these areas by focusing on sensor data inter-
pretation, information extraction, and data association.
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