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Abstract

This paper discusses the problem of feature detection for semi-structured outdoor
environments such as campuses and parks using laser range sensors. In these envi-
ronments, commonly encountered natural features that can be very useful for mobile
robot navigation include edges (large discontinuity) and circles (eg, trees, pillars).
The term feature is used to denote objects which are “likely” to be detectable when
the sensor is moved to new locations. Note that there has been no systematic ap-
proach for feature detection in outdoor environments. In this paper, we present an
algorithm for feature detection. The algorithm consists of data segmentation and
parameter acquisition. A modified Gauss-Newton method is proposed for fitting
circular parameters iteratively. Experimental results show that the proposed algo-
rithm is efficient in detecting features for semi-structured outdoor environments and
is applicable to real time simultaneous localization and mapping.

Key words: Semi-structured outdoor environments; Feature extraction; Data
association; Optimization; Mobile Robot

1 Introduction

Navigation is one of the basic problems for autonomous mobile robots. Its
history can be traced back to 4000 years ago. Today, navigation is a well-
understood quantitative science, used routinely in maritime and aviation ap-
plications [15,2,12]. Given this, the question must be asked as to why robust
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and reliable autonomous mobile robot navigation remains such a difficult prob-
lem. The core of the problem is the reliable acquisition or extraction of infor-
mation about navigation beacons from sensor information and the automatic
correlation or correspondence of these with some navigation map [11].

Many navigation systems use artificial beacons to realize their navigation task,
but the approach may not be realistic in applications such as exploration of
jungles or other unknown environments. In this situation, one needs to utilize
naturally occurring structure of typical environments to achieve a similar per-
formance. Hence, fast and reliable algorithms capable of extracting features
from a large set of noisy data are important in such applications. Some of
the early efforts in this direction have focused on extracting line features in an
indoor environment based on the information provided by sonar and laser sen-
sors. In [5], a least-squares line fitting technique was applied to extract edges
from ultrasonic sensor data. In [18], a recursive line fitting system is used to
extract line segments under polar coordinates and an ellipse fitting method is
also implemented for data from a laser sensor. In [19], line segments are de-
tected using a regression least-squares parameter estimation method whereas
the center and radius of a circle feature are estimated based on the average
value of the measurements of the circle from a 2D range scanner. Instead
of fitting straight line segments after a full scan has been recorded, Adams
presented an on-line edge extraction approach employing a Kalman filter in
[3]. Later, based on this method, a two-layer Kalman filter was used to cal-
culate the parameters of a line by an on-line method in [17]. Observe that
the aforementioned articles are focused on indoor applications and are mainly
concerned with line extraction.

For an outdoor environment, the problem of feature selection and detection
is more challenging. In our view, in most typical semi-structured outdoor en-
vironments, such as campuses, parks and suburbs, tree trunks and tree-like
objects, such as pillars, are relatively stable, regular and naturally occurring
features that can provide very useful information for mobile robot navigation.
Recently, some research on the use of these kinds of geometrical features has
been carried out in [10,20]. Also, [10,4] addressed the problem of extracting
tree trunks from laser scan data where the centre and radius of a circle are
estimated by averaging the measurements. This method can be susceptible to
outliers which can significantly affect the accuracy of the center and radius
estimates. Other relevant works include graphics for circle detection, see, for
example, Philippe Dosch et. al [9] where an arc detection algorithm for vision
data is presented. The approach is based on recursive splitting to segment
a curve into a set of arcs and segments via least-squares minimization. Also
Doris proposed a vector-based arc segmentation in [8]. There are however some
unknown parameters are required and the computational requirement of these
algorithms is high although they give a robust solution.
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In this paper, we shall address the problem of extracting edge and circle fea-
tures for semi-structured outdoor mobile robot navigation. We classify features
into edges, circles and random clutter and propose an approach for their ex-
traction. First, a model based data segmentation method is applied which
divides the collected data into groups that are possibly associated with differ-
ent features of the environment. The extended Kalman filter or other filtering
techniques can be applied for segmentation. Edges are also detected during
segmentation. We then give a procedure to identify the type of features with
which a given group of data is associated. For a circle feature, a modified
Gauss-Newton optimization is proposed to obtain estimates of its centre and
radius. Several experiments are carried out to demonstrate the feasibility and
effectiveness of the proposed feature extraction method. In the experiments,
the data association method proposed in [21] is used to enhance the robust-
ness of features. The results show that our method for feature extraction is
implementable in real-time and outperforms existing methods such as that in
[4].

The structure of the paper is as follows: Section 2 presents our feature ex-
traction algorithm, and section 3 shows the experimental results using the
proposed algorithm in several outdoor environments. Conclusions are drawn
in Section 4.

2 Feature Extraction Algorithm

We observe that in many semi-structured outdoor environments, planes such
as building walls and cylindrical surfaces such as tree trunks or tree-like ob-
jects are often encountered. We consider two kinds of features for these semi-
structured environments. Observe that in most outdoor environments, trees or
tree trunks can be very useful features for mobile robot navigation. In [11,4],
the problem of extracting circle features was addressed by averaging their
measurements. Here, we shall propose an algorithm which is able to extract
edges and tree trunks with a higher accuracy. The essential components of
this algorithm include two parts: the first is the segmentation of the scan data
and the second is the parameter acquisition.

2.1 Data Segmentation and Edge Detection

Segmentation is a process of aiming to classify a set of scan data into several
groups, each of which possibly associates with different structures of the sur-
roundings. The segmentation process is realized through the EKF [3] or other
filtering techniques. At each time instant the range estimate is compared to
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the range measurement based on their statistics in order to decide if an edge
has been detected. When the difference between the measured range and the
predicted range is beyond a certain threshold, we consider that an edge has
been detected. This can be achieved by using a validation gate during the
prediction process with the EKF.

2.1.1 Planar Model

Let us first introduce a mathematical framework for a planar surface. Consider
a vertical plane shown in Fig. 1 and the corresponding sensed data points from
a perfect 3D line of the sight sensor. Similar to the description in [2,3], we have:

di+2 =
didi+1

2di cos γ − di+1
(1)

where γ is the constant angle between successive samples of the sensor as it
rotates about its vertical axis. Note that the relationship given in equation (1)
is independent of the elevation angle α.

Fig. 1. The relationship between successive range readings when scanning a planar
surface
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2.1.2 System Model

Equation (1) is clearly a second order difference equation with respect to time.
We define x1(k + 1) = di+2 and x2(k + 1) = x1(k) = di+1, where x1(k) and
x2(k) are the state variables at time instant k. Therefore equation (1) can be
fully defined by the state space equations:

x(k + 1) = f1(x(k)) + v(k) (2)

where x(k + 1) = [x1(k + 1) x2(k + 1)]T ,

f1(x(k)) =

[
x1(k)x2(k)

(2x2(k) cos γ−x1(k))

x1(k)

]

and v(k) is the process noise which reflects possible imperfection of the surface.
We assume that v(k) is a white noise process with covariance Q(k). Clearly,
a small covariance Q(k) implies that the surface is close to perfect. In the
experiments in this paper, we set Q(k) = 10−4I. Equation (2) represents a
system model which will be used to predict the next range value from the
sensor before the actual range measurement is recorded.

Similar to [2], our observation model is:

z(k) = H1

[
x1(k)
x2(k)

]
+ w(k) (3)

where H1 = [ 1 0 ] and w(k) is a zero mean Gaussian noise with a known
variance σ2

r . The EKF is used to realize the prediction and validation process.

Note that if the degenerate case (almost parallel) is detected, we suggest that
these measurements can be rejected.

2.1.3 Extended Kalman Filter and Validation Gate

Based on the above system model, an extended Kalman filter is used to im-
plement the prediction and update. In order to identify if a measurement is
associated with a new edge (large discontinuity), a certain criterion needs to
be established. The innovation ν(k + 1) and the innovation variance s(k + 1)
is used to define:

d(k + 1) = νT (k + 1)s−1(k + 1)ν(k + 1) (4)

where s(k + 1) is the observation innovation variance. Note that since ν is a
Gaussian random variable, d is a random variable following the χ2 distribution.
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The smaller d(k + 1) is, the higher the probability that the measurement
z(k + 1) is obtained from the same planar surface. Thus, a validation gate, δ,
is used to decide whether the measurement z(k + 1) is a close enough match
to the predicted data point to continue the filter update. If the measurement
is such that d(k + 1) > δ, a discontinuity is found. From the χ2 distribution
table, we know that if the observation is from the same planar surface, then
d(k + 1) < 6.63 with a probability of 0.99. If a small δ is selected, there will
be more edges found. Here we set δ = 6.63.

After the data segmentation process, we need to decide if each segment of data
is associated with a line or a circle (note that the laser sensor data points only
form an arc which is part of a circle, here we call it a circle feature) or clutter.
For a line, the average error between the observation and the EKF prediction
at each point should be very small. Note that the prediction error (innovation)
sequence {ν} of equation (5) follows a Gaussian white noise and its covariance
is given by s(k). Assume that the number of points of the segment is M . Then
the sequence {ν} is of the length M − 2 (note that the first two pints are
used to initialize the filter). The average prediction error and its covariance
are then given by

ν̄ =

M∑
k=3

ν(k)

M − 2
, s̄ =

M∑
k=3

s(k)

(M − 2)2
(5)

Hence, P
{
|ν̄| ≤ 3

√
s̄
}

= 0.997. A threshold for the average prediction error

can be chosen as 3
√

s̄. The threshold is used to distinguish a line from a circle
or clutter. If the average prediction error is smaller than the threshold, we
consider that this segment of data is associated with a line, otherwise, it is
associated with a circle or clutter. Note that if a circular shaped clutter is
detected as a circle feature after several successive scans, the circular shaped
clutter is considered to be the same as a circle feature. If after several successive
scans, we can not detect the circle feature that was found in the previous scans,
the feature detected should be a circular shape clutter.

For a circle, we need to estimate its parameters such as the center and the
radius of the circle so that future measurements of the circle may be used for
robot navigation. In the following, the modified Gauss-Newton method [16,6]
is applied.

2.2 Parameter Acquisition

A circle can be defined by the equation (x−x0)
2+(y−y0)

2 = r2 where (x0, y0)
and r are the center and the radius of the circle, respectively. For fitting a circle,
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a known data set (x, y) is determined and the circle parameters (x0, y0, r) need
to be estimated. Assume that we have obtained M measurements (xm, ym),
m = 1, 2, . . .M , of the circle. Our objective is to find p = (x0, y0, r) that
minimizes

E(p) = E(x0, y0, r) =
M∑

m=1

[(xm − x0)
2 + (ym − y0)

2 − r2]2 (6)

This is equivalent to performing the least-squares process using the equations

gm(x0, y0, r) = (xm − x0)
2 + (ym − y0)

2 − r2 = 0, m = 1, 2, . . . , M (7)

The equation (7) is not linear about the unknown parameters x0, y0, and
r, therefore it is a nonlinear least-squares problem. We propose to use the
modified Gauss-Newton optimization method [16,6] to solve the problem.

Remark 2.1 Note that the Hough transform is commonly used for parameter
acquisition and segmentation [13]. The transform is implemented by quantiz-
ing the Hough parameter space into a finite number of accumulator cells. As
the algorithm runs, each point is transformed into a discretized curve and the
number of intersections of the accumulator cells is counted. However, the prob-
lem of how to decide the number of the cells in the parameter space remains
unsolved. If the Hough transform is applied for fitting a circle, the parameter
space is of three dimensions, which makes the problem more difficult. And with
the increased dimension of the parameter space, the Hough transform method
becomes more complex and slower. Hence, we use the modified Gauss-Newton
method instead of the Hough transform for parameter acquisition.

In our case the Jacobian matrix for the modified Gauss-Newton algorithm is

A =

⎡
⎢⎢⎢⎢⎢⎣

∂g1

∂x0

∂g1

∂y0

∂g1

∂r
∂g2

∂x0

∂g2

∂y0

∂g2

∂r
...

...
...

∂gM

∂x0

∂gM

∂y0

∂gM

∂r

⎤
⎥⎥⎥⎥⎥⎦ (8)

Let ḡ = (g1 g2 . . . gM)T with gm as defined in (7).

At the k-th step, the modified Gauss-Newton method is applied to search for
the solution according to the following equation:

(AT
k Ak + λkI)�pk = −AT

k ḡk (9)

where �pk = pk+1 −pk and pk is the estimate of p = [ x0 y0 r ]T at the k-th
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iteration. We set the initial value λ0 = 0.01 (by estimation) and carry out the
following iterations for calculating a suboptimal p:

Step 1: Calculate �pk using equation (9);

Step 2: Calculate the sum error E(pk + �pk) by equation (6);

Step 3: Compare E(pk +�pk) with the sum error of last step E(pk). If E(pk +
�pk) > E(pk), increase λk by a factor of 10, and go back to Step 1;

Step 4: If E(pk +�pk) < E(pk), decrease λk by a factor of 10, update the trial
solution, i.e. replace pk by pk +�pk and go back to Step 1 until the algorithm
converges.

The convergence condition can be defined by the sum of the squared error and
the number of iterations.

Observe that a starting guess for these parameters is required. We use the
first three points (xi, yi) i = 1, 2, 3 and equation (7) to compute an estimated
initial value of (x0, y0, r). The more accurate the initial value is, the faster the
algorithm converges.

Remark 2.2 In our algorithm, since each group of data is formed after data
segmentation, any measurement outliers have been removed since an outlier
produces a large discontinuity in segmentation. On the other hand, in complex
outdoor environments, features extracted by the above proposed method may
become unstable. These unstable features mean the features that cannot be
confirmed (used more than 3 times) during the SLAM process. In order to use
these features for navigation, the correspondence between a current feature
extracted by the above method and a feature in the map built thus far has to
be established. This is the so-called data association problem. In this paper, we
apply the data association algorithm proposed in [21] [23] where the problem
is formulated as a (0,1) integer programming one and solved by a combined
linear programming and iterative heuristic greedy rounding (IHGR) method.
The details can be found in [21] [23] and will not be repeated here.

Remark 2.3 In the present study we have assumed that there exists no an-
gular uncertainty of the sensor. In practice, however, even though for laser
range finders, the angular uncertainty does exist and can be incorporated in
the algorithm. This will be considered in the future study.
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3 Experimental Results

The laser sensor used in the following experiments is Sick PLS200. The field
of view is 180 degrees in front of the robot and it has a range measuring
capability of up to 50 meters. To obtain a 360 degree scan, we use 2 back to
back Sick sensors. The range samples are spaced every half a degree, all within
the same plane.

In the first experiment, data is collected outdoors as shown in Fig. 2(a) where
there are 10 pillars labelled from a to j, and the surroundings are building
walls and low balusters with small shrubs at a long distance. In this figure,
the six cross points (+) represent the six positions at which the robot scans
the surroundings. The laser scanner is placed on top of a mobile robot at
approximately 1.2 meters above the ground. At this level, the sensor can see
objects beyond the balusters. In Fig. 2(b), we show real data from one scan of
the environment. The robot is located at the origin. Because the distance of
some objects is very near to the sensor, the points here are not very regularly
distributed, see figure 2(b). Feature extraction has been carried out for all 6
scans. In Figures 3(a) and 4(b), we show the feature extraction results at two
different positions.

Fig. 3(a) and Fig. 3(b) show the feature extraction results at position 2 using
the proposed method of the last section. Zoomed views of the regions inside
the dashed box of Fig. 3(a) are given in Fig. 3(b) where the extracted features
can be seen clearly. In these figures, the detected edges are denoted by crosses.
Similarly, the feature detection results at position 4 are shown in Figures 4(a)
and 4(b).

(a) The place to be explored by the
robot.

−25 −20 −15 −10 −5 0 5 10
−15
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0
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(b) Data from one whole scan.

Fig. 2. The environment and the laser scan.

To give an indication of the accuracy of the algorithm, we compare our method
with some existing method. In the work by Bailey [4], navigation methods are
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(a) Circles and edges extracted from data
scanned at position 2 (the normal view).

(b) A zoomed view of the region inside box A
in Fig. 3(a).

Fig. 3. Features extracted from data scanned at position 2.

presented which use circular features from trees. We calculate the relative
errors of the estimated center coordinates and radius of each pillar as follows:

CE =

√
(xtrue − xestimate)2 + (ytrue − yestimate)2√

x2
true + y2

true

(10)

RE =
|rtrue − restimate|

rtrue

(11)

where xtrue, ytrue and rture are the actual coordinates and the actual cen-
ter of the circle feature which are obtained from hand measurements and
xestimate, yestimate and restimate are their estimated values. The results are shown
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(a) Circles and edges extracted from data
scanned at position 4 (the normal view).

(b) A zoomed view of the region inside box C
in Fig. 4(a).

Fig. 4. The features extracted from data scanned at position 4.

in Tables 1 and 2.

Table 1
A comparison of the error CE of the four circular features between the proposed
method and the method in [4]

pillar d pillar e pillar f pillar g

Proposed method 0.0179 0.0158 0.0136 0.0137

The method in [4] 0.0251 0.0244 0.0271 0.0166
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Table 2
A comparison of the error RE of the four circular features between the proposed
method and the method in [4]

pillar d pillar e pillar f pillar g

Proposed method 0.0373 0.0011 0.1057 0.0588

The method in [4] 0.2096 0.2326 0.2626 0.1384

From the above tables and the experiment carried out here, we can see that
the proposed method can be more accurate than the method suggested in [4].

In order to test the feature extraction method for localization, two outdoor
experiments have also been carried out on simultaneous localization and map
building using the proposed feature extraction algorithm. The first experimen-
tal environment is shown in Figure 5(b). There are 8 tall trees and building
walls and some bushes which constitute the semi-structured outdoor environ-
ment. For this semi-structured environment, the main features for localization
are tree trunks. The proposed feature extraction algorithm is applied for ex-
tracting the features. The vehicle used in the experiment is Cycab, a car-like
vehicle, as shown in Figure 5(a). It is equipped with a laser range sensor, Sick
LMS 200, with dead reckoning capabilities. There are four wheel encoders. A
DGPS with up to 2cm accuracy is used as a reference to give the ground truth
of the vehicle pose to obtain the estimation error.

In the experimental environment, the vehicle moves along the path as shown
in Figure 5(c) where the stars denote the trees of the environment which are
detected, the dashed line indicates the real pose of the vehicle and the solid line
means the estimated path using the simultaneous localization and mapping
algorithm with the proposed feature extraction method. The data association
method in the implementation is the same as that in [23]. Figure 5(d) shows
a typical laser scan from this experiment. The dashed box A indicates the
zoomed region shown in Figure 5(e). In these two figures, there are lines, arcs
and edges (point features). However, in the experiment, we only use circle
features from the tree trunks for localization. The 8 features are all detected
during the SLAM process after the continuous observation, see Figure 5(c). It
should be noted that there are false features that are detected in some scans,
but they have not been used for the SLAM for more than 3 times. Hence, we
did not draw them in the map. Here, the false features mean that the features
which has not been confirmed as useful features during SLAM process.

To make a comparison on feature extraction performance, we also implement
the method in [4]. Figure 6(a) shows the range and bearing innovations of
the measurements when we apply the feature extraction method in [4] and
our method during SLAM and their 3σ bounds. The dash-dot line in the
middle of each sub-figure is the result of the localization using our proposed
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feature detection method whereas the solid line in the middle is the result of
the localization by the feature detection method in [4]. Figure 6(b) shows the
vehicle’s position and orientation prediction errors and their 3σ error bounds.
Further, we calculate the average absolute estimation error as defined by

∆x =
Σ|∆xi|

N
; ∆y =

Σ|∆yi|
N

; ∆θ =
Σ|∆θi|

N

where ∆xi, ∆yi and ∆θi are the vehicle pose errors at each time instant and
N is the time step of the whole localization process. The comparison of the
“average absolute error” for the two methods is given in Table 3.

Table 3
The errors ∆x,∆y,∆θ of the vehicle pose when using different feature detection
methods

Proposed method Method in [4]

∆x 0.0575 0.0823

∆y 0.0571 0.0732

∆θ 0.0353 0.0528

In the table, the units for ∆x and ∆y are meters and that for ∆θ is radians.

We also examine the false feature detection rate (the ratio of the number
of false features to the total number of detected features in a scan) of the
two algorithms. The maximum false detection rates for our algorithm and the
method of [4] are respectively 0.125 and 0.111. And the average false detection
rates are compared in Table 4.

Table 4
A comparison of the average false detection rate (20 scans) between the proposed
method and the method in [4]

scan 20 to 40 scan 60 to 80 scan 100 to 120 scan 140 to 160

Proposed method 0.027 0.031 0.029 0.033

The method in [4] 0.025 0.029 0.030 0.032

From the table, we know that the false detection rate of the method in [4] is a
little lower than our method. We also note that the Bailey’s approach is more
general in detecting irregular circular features. However, the false detection
rates of both the algorithms are considered to be low.

It should be noted that there are false features that are detected in some scans,
but they have not been used for the SLAM more than 3 times. Hence, we did
not draw them in the map. Here, the false features mean those features which
can not be confirmed as useful features (used for more than 3 times) for SLAM
process.
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The other testing site is a long pavement around Hall 7 at Nanyang Techno-
logical University. The real campus map including this pavement is shown in
Fig. 7(a). Dead reckoning sensors and the sick laser range sensor are combined
to predict the vehicle’s trajectory using the EKF and to build the map at the
same time. During SLAM, in order to improve our map accuracy, we apply two
types of features, namely point features (edges) and circular features, detected
by the proposed method and the data association algorithm in [23].

For circular features, the proposed modified Gauss-Newton optimization method
is applied to obtain their parameters. For a data group which has only 2 to 3
points, the average values of the x and y coordinates will be the parameters of
the point feature. For predominant edge features, the parameters have been
obtained during the data segmentation process. It should be noted that here a
predominant edge feature means an edge which is far away from other edges.
In our experiment, we set the Euclidean distance to be 5 meters.

Fig. 7(b) shows the part of our experimental environment. Figure 8(a) gives
a typical laser scan during the process. Figure 8(b) shows the circle features
extracted from a laser scan for the region inside Block E of Figure 8(a). Since
the environment involves a large number of edges in some places, we only
use those predominant edges on one side of the road according to the angles
between the extracted features and the robot. We also limit the distance (no
more than 15 meters) from the features and the sensor to deduce the number
of features. During SLAM, in order to reduce the number of noisy edges, we
adopt the strategy—if an edge feature is not observed in 10 successive scans,
we consider it out-of-dated and remove it from the map. Tentative features
that are not re-observed for more than 3 times are also removed from the map
after a fixed time interval has elapsed.

Fig. 8(c) shows the results of SLAM. We can see that the estimated path is
very close to the DGPS estimated path (considered to be ground truth here).
In this figure, there is a break in the DGPS data. This is because the vehicle
is under a building to make a turn where the DGPS signal is blocked. The
average position error of the entire SLAM process except the segment where
the ground truth is unavailable is smaller than 0.5 meters. The features’ map is
also shown in this figure (those denoted by stars). It is noted that the features’
map is constituted by those features that are extracted and used during SLAM
more than 3 times. Figures 8(d) and 8(e) indicate the observation innovations
and their 2σ confidence bounds during the whole process.

Remark 3.1 The second experimental results are not as good as we expected.
Some new research work which can improve SLAM process including feature
extraction is still needed in the future.
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4 Conclusions

In this paper a new algorithm for feature detection in semi-structured outdoor
environments has been presented. It can be used for the extraction of planar
surfaces, tree trunks or tree-like objects and edges in semi-structured outdoor
environments for mobile robot navigation. Experimental results show that the
proposed method can extract features for navigation purposes successfully.
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(a) The Cycab, a car-like vehicle used in
the experiment.

(b) The first SLAM experimental envi-
ronment (the whole scene).
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(c) The estimated path and the true tra-
jectory of the vehicle during the SLAM
experiment.
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(d) A complete 180 degree scan data
of the first SLAM experimental environ-
ment corresponding to figure 5(b).
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A zoomed view of the extracted features

(e) The circular features (trees) and
edges extracted from the environment in
figure 5(b) using the Gauss-Newton algo-
rithm.

Fig. 5. The vehicle, environment and SLAM results from the proposed feature de-
tection method.
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(a) A comparison on range and bearing inno-
vations during localization when using the pro-
posed method (dash-dot line) and the method
in [4] (solid line in the middle).
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(b) The error and 3σ error bounds of the vehi-
cle when using different feature detection meth-
ods. The dashed line is the result of localization
using the proposed feature detection methods.

Fig. 6. A comparison of localization results by using the proposed method and
another published method.
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(a) The map of our site. (b) The environment and the vehicle
used in the experiments.

Fig. 7. The feature extraction and SLAM experiments.
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E

(a) A typical laser scan during the vehi-
cle moving.

(b) The features (circular features and
edges) extracted from the zoomed view
of the block E in Fig. 8(a).

(c) The features’ map and the compari-
son of the estimated path and GPS read-
ings of the path during SLAM.
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(d) The range observation’s innovation
and their 95% confidence bounds in our
SLAM experiment.
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(e) The angular observation innovations
and their 95% confidence bounds in the
SLAM experiment.

Fig. 8. SLAM results using the proposed feature detection method.
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