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Convergent Smoothing and Segmentation of Noisy Range
Data in Multiscale Space

Martin Adams, Tang Fan, Wijerupage Sardha Wijesoma,
and Chhay Sok

Abstract—With few exceptions, most of the existing noise reduction
and data segmentation algorithms are only suited to image data. There-
fore, an adaptive smoothing algorithm, with model-based masks, within a
scale space framework is proposed for range data in this paper. This algo-
rithm smoothes range data that conform to predefined, geometric models,
while leaving other data points unaffected. The convergence of the algo-
rithm in yielding dominant features is shown based on its compliance with
the anisotropic diffusion concept. The weights of the smoothing masks
are adaptively calculated according to the Mahalanobis distances between
range data and model-based predictions. These behave as the diffusion
coefficient in the anisotropic diffusion equation, thus satisfying the require-
ments of the causality criterion that no new features are introduced from
fine to coarse scales. The computational complexity of this algorithm is
examined and compared to that of the well-known RANSAC feature ex-
traction algorithm. Unlike RANSAC, it has the advantage that the compu-
tational complexity is less affected by increasing the order of the model, and
is independent of the number of model outliers. The proposed algorithm can
be used to smooth range data in multiscale space by increasing the number
of smoothing iterations. Robust, robot-occlusion-invariant features are then
easily extracted from the smoothed data by least squares fitting algorithms.

Index Terms—Adaptive smoothing, anisotropic diffusion, feature extrac-
tion, scale space.
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I. INTRODUCTION

Due to their reliability and accuracy, laser range finders are com-
monly used in mobile robotics. For autonomous navigation, it is nec-
essary to automatically, and continuously, detect a consistent set of
landmarks (features) from progressive range-bearing data sets, for data
association, and ultimately localization and mapping purposes. Fea-
ture detection must be reliable in the presence of sensor noise and data
outliers so that false alarms and missed detections are minimized.

In this paper, an adaptive smoothing algorithm, using model-based
masks, is proposed to smooth model-compliant range data, while pre-
serving discontinuities. The masks use geometric models to predict
range values for each scan point in the observation space by using
neighboring measurements. A theoretical justification for the smooth-
ing algorithm is based on its compliance with the anisotropic diffusion
concept, originally proposed by Perona and Malik [1]. In vision, this
concept utilizes a diffusion coefficient to effectively stop diffusion, or
smoothing, across large intensity variations, so that edges are sharp-
ened. The model-based mask proposed here calculates weights accord-
ing to the Mahalanobis distance between a predicted range value and its
measured value. While in vision, the diffusion coefficient is a nonneg-
ative function of the magnitude of the local intensity gradient (or, put
another way, the “noncompliance” of the pixel intensities to a constant,
smooth value), it is suggested here that, for range data, this coefficient
should be a function of the Mahalanobis distance, since this is a posi-
tive number indicating the “noncompliance” of the data to a selected
geometric model. The mask weights become the diffusion coefficient,
and will adaptively reflect the suitability of the geometric models used
for segmenting range data. However, smoothing only once can fail to
find the correct, dominant features due to the difficulty of defining suit-
able model noise variances and a Mahalanobis distance threshold. The
mask can therefore, be used to smooth range data iteratively, in mul-
tiscale space. With increase of iteration number, the smoothed range
data is represented in a coarse scale, where measurement noise is highly
reduced but the dominant features are still preserved.

In this work, all range data predictions, corrections, and error rep-
resentations are carried out in the observation space. The resulting
prediction equations are nonlinear, as would also be the case for most
models (except straight line) in Cartesian space. The advantage offered,
however, is that range variance calculations can be based on known
sensor range variances, and that these values, as well as Mahalanobis
distances, need not be transformed into other (e.g., Cartesian) spaces.

II. PREVIOUS WORK

Many algorithms formulated for smoothing and segmentation in
vision research are general enough to be adapted to range data. This
section, therefore, describes some of the literature that has adapted
these methods to range data segmentation, and then explains some
methods that have been specifically developed for range data only.

The Hough transform is a tool that identifies global patterns in an
image space, by recognition of local patterns (ideally a point) in a
transformed parameter space [2]. Forsberg et al. introduced a range
weighted version in which a window based on the estimated shortest
distance between the sensor and the line is defined to improve the effi-
ciency of the computations [3]. Chan and Tam, apply the transform to
a predefined grid map and attempt to match cells between a currently
sensed local map and the global map [4]. These articles, have collec-
tively demonstrated that its advantages are: 1) it is tolerant to gaps in
feature boundary descriptions; 2) it is relatively unaffected by range
noise; 3) it is useful for computing a global description of a feature,
given local measurements; and 4) The number of features need not be
known a priori. Its disadvantages are: 1) it is computationally intensive

1552-3098/$25.00 © 2008 IEEE
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because of the transformation of each point to, and the quantization
of the Hough Space and 2) as the number of parameters of the fea-
ture model increases, the processing increases exponentially due to the
increase in the dimension of the Hough space.

RANSAC is an algorithm for the robust fitting of models in the
presence of data outliers [5]. As well as its extensive use in vision, it
has been successfully applied to range data [6], [7], where it has been
demonstrated that the advantages of this algorithm are: 1) it has a good
tolerance to outliers and 2) it is generic for many types of features once
a feature model is defined. There are, however, some disadvantages:
1) it is a randomized estimator—successive runs on the same data set
can produce different results and 2) if the threshold on the minimum
required number of inliers is set too low (to speed up the algorithm),
the estimate can be very poor.

Horowitz and Pavlidis introduced a recursive Split-and-Merge al-
gorithm for both image and range data segmentation [8]. The algo-
rithm first constructs a straight line between the data end-points, and
measures the deviation of all points from that line. If that deviation
exceeds a threshold, the line is split, and two new lines are formed. The
algorithm proceeds until all points have small enough deviations, but
it only segments data based on a predefined threshold and does not use
any noise reduction.

Mahalanobis distance, recursive,1 line-model-based methods for
range point segmentation were introduced by Adams in [9]. Later,
this method was adopted by Sen et al. [10] in a Gauss–Newton least
squares line detection approach, and Roumeliotis [11] in which differ-
ent Mahalanobis distance thresholds were applied for feature detection
and filter initialization. The Mahalanobis distance represents how close
an estimated scan point is to the line defined by its predecessors. Here,
the aforesaid work is generalized by providing a smoothing technique
based on general geometric masks, which utilize a range point’s neigh-
bors. The new algorithm can be iterated in multiscale space,2 and is
proven to converge under the concept of anisotropic diffusion, to find-
ing the dominant geometric features within an environment.

A. Anisotropic Diffusion

Methods to smooth camera images, without removing detail include
the bilateral filter [12] and the Mean Shift Algorithm [13]. These algo-
rithms filter data, based on both the spatial and intensity relationships
between pixels, to reduce noise, but preserve image detail. Anisotropic
diffusion, is also a useful tool for the multiscale description of images
and image segmentation, [1]. Anisotropic diffusion offers the advan-
tage over the aforesaid techniques in that a nonnegative monotonically
decreasing function g() of the differential of the image intensity can
be chosen to control the smoothing [14]. It is this flexibility that we
exploit to adapt it in a useful manner, to range data. The anisotropic
diffusion equation is given by

∂I(x, y, t)
∂t

= div[g(‖∇I(x, y, t)‖)∇I(x, y, t)] (1)

where I(x, y, t) is the image intensity at pixel location (x, y), and t
represents the scale. To apply anisotropic diffusion to range data, it is
necessary to choose the appropriate decreasing function g() and ∇I ,
the differential function of I with respect to x, y. In the vision literature,
this decreasing function is often a Gaussian. The predicted measure-

1The term “recursive” is used to differentiate this work from other published
methods, which first record complete data scans, and then perform smooth-
ing/segmentation on the data as a batch. In contrast, this paper estimates whether
points are model-compliant as the data is received.

2In this paper the scale space corresponds to the iteration number.

Fig. 1. Geometric smoothing at a particular scale (iteration number) t. The
black filled circles represent range data, and the light shaded circles represent
model-based predictions at the central mask point. (a) Line model [see (2) and
(3)]. (b) Circular model smoothing.

ment (pixel intensity) is the variable and the actual measurement, or
previously smoothed value, is the mean value of the variable.

III. ADAPTIVE SMOOTHING OF RANGE DATA

This section is divided into six parts. In Sections III-A and
III-B, geometric model based masks are derived. The weights of the
masks will be adaptively calculated in Section III-C according to the
Mahalanobis distance between measured and predicted range data from
the models. In Section III-D, it is shown that the masks can be used to
smooth range data in multiscale space by translating them iteratively
over a scan. Section III-E explains how the necessary, associated vari-
ances of each range point can be updated and Section III-F provides
proof of convergence of the algorithm, by demonstrating its analogy
with anisotropic diffusion.

In an image, the difference between neighboring pixel intensities
can be a function of many parameters, such as the direction of the local
illumination, the reflectivity of objects in the environment, as well as
their shape. For range data acquired from an active sensor, the rela-
tionship of adjacent range points is, however, totally dependent on the
shape of the scanned environment. Hence, any smoothing mask for
range data should reflect the geometric properties of the environment.
Simply smoothing range data with a Gaussian mask, based on range
changes, results in undesirable regions of constant range, which does
not necessarily reflect the true environment. A smoothing mask can
be formulated for any chosen surface representation, within an envi-
ronment, using the method which follows. For demonstration purposes
here, masks are derived, which attempt to smooth line and circular seg-
ments only, while automatically leaving other parts of the scan intact.

If a range scan can be received as a batch,3 each scan point in a
segment can be predicted by its neighboring scan points, assuming
they belong to a predefined segment model.

A. Line-Model-Based Mask

In the proposed line-based mask,4 two pairs of neighboring points
(A, B) and (D, E) in Fig. 1(a) are used to calculate two predicted
range values OĈ−1 and OĈ+1 for smoothing the observed range value
OC . During smoothing, an estimate of the range OC is updated, based

3As with the data recorded from the commonly used Sick LADARs.
4This mask is a modification of the algorithm originally presented by the first

author in [9], in which predictions based only on (2) were made for sequentially
recorded range points, at a single scale.
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on the other mask values, and the mask is shifted from the first to
the last scan point. The current, central mask range value will be re-
ferred to as dt

0 (nθ )(= OC) and the predicted mask range values as
d̂t
−1 (nθ )(= OĈ−1 ) and d̂t

+1 (nθ )(= OĈ+1 ).5 The superscript t indi-
cates the iteration number, and when t = 0, the range points are the
direct outputs of the range measuring sensor. Weights will be deter-
mined for the predicted range values d̂t

−1 (nθ ) and d̂t
+1 (nθ ), based on

the straight line compliance of point C with the two range values coun-
terclockwise (A and B) and clockwise (D and E) of it, respectively.

It should be noted that any two points within the mask of Fig. 1(a)
can be used to predict a third, colinear one along ray OC—e.g. points B
and D could be used to predict another point that intersects ray OC , as
was considered in [15]. However, only dt

±1 (nθ ) are used here, for two
reasons: 1) This will be shown to comply with the concept of anisotropic
diffusion in Section III-F, so that dominant line detection is guaranteed
and 2) Each range point is used only once in the predictions and the
correlations between the final estimates can be handled correctly.

The two prediction equations based on the line model are

d̂t
−1 (nθ ) = d̂t

O C−1
=

dt
O A dt

O B

2dt
O A cos γ − dt

O B

(2)

d̂t
+1 (nθ ) = d̂t

O C + 1
=

dt
O E dt

O D

2dt
O E cos γ − dt

O D

(3)

where dt
O A = the range from O to A at iteration t, etc., and γ is the

assumed constant angular scanning increment. dt
O A , dt

O B and dt
O D ,

dt
O E (and, in fact, dt

O C ) are the previously smoothed range values6 and

d̂t
O C±1

are the predicted range values at iteration t. Predictions (2) and
(3) can be considered to be the expected values of a dynamic, nonlinear
state transition equation, relating the predicted state at scale t, to the
previously smoothed state at scale t—i.e.,

dt
−1 (nθ ) = FL (dt

O A , dt
O B , γ) + νt

L ,

dt
+1 (nθ ) = FL (dt

O E , dt
O D , γ) + νt

L (4)

where FL is the nonlinear, line transition function, defined by (2) or
(3). νt

L can be considered to be the system model noise, in this case
indicating any unmodelled deviation which we may choose to allow,
from the strictly straight line model. Here, νt

L will be considered to
represent zero mean, Normally distributed noise with variance inde-
pendent of the scale t, and hence will be referred to as νL . Its use will
be explained further in Section III-C.

B. Circular-Model-Based Mask

A circular model can also be derived for the smoothing of scan points
belonging to circular objects. Fig. 1(b) shows that two triplets of neigh-
boring range points (F, G, H) and (K , L, M ) can be used to calculate
two predicted range values dt

−1 (nθ ) = OĴ−1 and dt
+1 (nθ ) = OĴ+1

for smoothing the previously smoothed/observed range value OJ .
Again, the prediction equations for d̂t

±1 (nθ ) can be considered to be
the expected values of the nonlinear equations

dt
−1 (nθ ) = FC (dt

O F , dt
O G , dt

O H , γ) + νt
C

dt
+1 (nθ ) = FC (dt

O M , dt
O L , dt

O K , γ) + νt
C (5)

where FC is a nonlinear, circular transition function,7 and νt
C is a

system model noise term, analogous to νt
L .

5For example, if a complete 360◦ scan is taken with 720 points, then 0 ≤
nθ < 720, and each range sample is separated by an angle γ = 0.5◦.

6Or on the first iteration (t = 0), the recorded range data points themselves.
7For brevity, this function is omitted here, but the reader may refer to [10].

C. Calculation of the Mahalanobis Distance

Two predictions and a previously smoothed/recorded point are now
available for further smoothing. These three points, are to be weighted
to produce a more “smoothed” range value. Many ways of calculating
these weights exist. In this paper, a weighting method, is devised that:

1) is able to correctly take into account individual range variance
values, with each recorded range point;

2) makes use of the variance of the innovation,8 which is a measure
of the “appropriateness” of the model fit to neighboring range
data; and

3) provably conforms to the anisotropic diffusion equations, pro-
posed by Perona and Malik [1], so that smoothing takes place
only with model inliers, and does not affect the outliers in an
adverse way.

The variances of the line and circle predictions, Σt
±1 (nθ ), can be

found by linearizing (4) and (5) about their current, smoothed values
e.g., in the case of the line model

Σt
−1 (nθ ) =

(
∂FL

∂dt
O A

)2

Σt
O A (nθ ) + 2

(
∂FL

∂dt
O A

)

×
(

∂FL

∂dt
O B

)
Σt

O A ,O B (nθ )+

(
∂FL

∂dt
O B

)2

Σt
O B (nθ ) + QL

(6)

where Σt
−1 (nθ )9 is the predicted variance of dt

−1 (nθ ) at iteration t
with a model variance QL = E[(νL )2 ], which is a design parameter
controlling the flexibility of the line model. E[·] is the expectation op-
erator. In general, a low value of QL/C means that the line/circle model
is expected to be strictly adhered to by the data. A high value produces
a more tolerant system to model outliers. The effects of QL/C will be
discussed in Section VI. Σt

O A (nθ ) and Σt
O B (nθ ) are the previously

calculated variances of range values dt
O A and dt

O B , and Σt
O A ,O B (nθ )

is the cross correlation between range dt
O A and dt

O B . For the laser
range finder used here, a starting (t = 0) range standard deviation of
4 cm is assumed (Σ0

O A /O B (nθ ) = 0.016 m2 )10, and Σ0
O A ,O B (nθ ) =

0, since the initial range measurements are assumed independent.
Innovation values vt

±1 (nθ ) can be derived, which represent the dif-
ferences between the model-based predicted ranges E[dt

±1 (nθ )] [from
(4) or (5)] and the smoothed range values from the previous iteration
dt

0 (nθ )
vt
±1 (nθ ) = E[dt

±1 (nθ )] − dt
0 (nθ ). (7)

The variances of these innovations, Σt
v±1

(nθ ), are simply

Σt
v±1

(nθ ) = Σt
±1 (nθ ) − 2Σt

±1 ,0 (nθ ) + Σt
0 (nθ ) (8)

where Σt
±1 ,0 (nθ ) are the correlations between d̂t

±1 (nθ ) and dt
0 (nθ ),

assumed zero when t = 0, to be updated at each iteration. The
Mahalanobis distance (variance of the innovation)

εt
±1 (nθ ) =

(
vt
±1 (nθ )

)2
/Σt

v±1
(nθ ) (9)

is used as a measure of how well the previously smoothed points
conform to each model.

8The difference between the model-based predicted range values, and the
smoothed range values from the previous iteration.

9A dual equation can be derived to find Σt
+1 (nθ ).

10Note that individual range variances for each scan point could be incorpo-
rated into Σ0

O A (nθ ) and Σ0
O B (nθ ), etc., if they can be estimated [9].
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D. Adaptive Smoothing in Multiscale Space

In vision, the anisotropic diffusion coefficient is a nonnegative func-
tion of the divergence of the pixel intensities. It is proposed here, for
range data, that this coefficient can be a function of the aforesaid Ma-
halanobis distance, which is a direct function of the difference between
the predicted and central mask range values, since this is a positive
number indicating the divergence of the data from the selected model.

Weights are now formed in order to smooth the predicted range
points at scale t + 1. These weights behave as the diffusion coefficient,
g(‖∇I‖), in (1). They should be a decreasing function of the Maha-
lanobis distance and obey the conditions for well-posed anisotropic
diffusion, discussed in [16].11 Here the weights wt

i (nθ ) will conform
to the diffusion coefficient suggested by Perona and Malik [1]12

wt
i (nθ ) = exp

(
− εt

i (nθ )
2t2

)
, for i = ±1, wt

0 (nθ ) = 1 (10)

where t is the scale (iteration number). It should be noted that with
this choice of function, well-posed anisotropic diffusion is guaranteed
if t ≥

√
εt
i (nθ )/2.

For example, for the line model, either of the points Ĉ±1 , with
predicted ranges d̂t

±1 (nθ ), will have weights wt
±1 (nθ ) according to

(10). Hence, these are the two weights that must satisfy the anisotropic
diffusion (1). There is still the central mask range value dt

0 (nθ ), and
its weight wt

0 (nθ ) will be equal to 1. The smoothed range value for
this iteration dt+1

0 (nθ ) will be the weighted sum of the two predicted
values and the previously smoothed value

dt+1
0 (nθ ) =

∑+1
i=−1 wt

i (nθ )dt
i (nθ )∑+1

i=−1 wt
i (nθ )

=
+1∑

i=−1

wt
i (nθ )dt

i (nθ ) (11)

+1∑
i=−1

wt
i (nθ ) = 1 (12)

where wt
i (nθ ) is a normalized weight. For simplicity, only wt

i (nθ ) is
used in the following analysis.

E. Range Data Variance Update

To continue the smoothing iterations, the updated variance of each
smoothed point Σt+1

0 (nθ ) must be determined, which, from (11), is
given by

Σt+1
0 (nθ )=

+1∑
i=−1

(wt
i (nθ ))2Σt

i (nθ ) + 2(wt
−1 (nθ )wt

+1 (nθ )

×Σt
−1 ,+1 (nθ )) + 2

0∑
i=−1

wt
i (nθ )wt

i+1 (nθ )Σt
i , i+1 (nθ )

(13)

where changes in (11), w.r.t. the weights have been ignored, since it can
be shown that these terms are negligible, particularly as t increases. The
recursive computation of the necessary correlation terms (

∑t

−1 ,+1 (nθ )
and

∑t

i , i+1 (nθ ) in (13) is possible, if (4) and (5) are reduced to first
order vector-matrix system form, and linearized about their predicted
values, followed by the prediction of the full system error covariance

11The condition given in [16] is that if φ(‖∇I‖) = ‖∇I‖g(‖∇I‖), then
well-posed anisotropic is attained if φ′(‖∇I‖) ≥ 0.

12For a discussion of other possible functions, see [16].

matrix, as shown in [9]. Note that the full matrix, is maintained, to
ensure that information is not reused either within a particular, or at
different scales.

F. Proof of Convergence

According to (11), the change in range w.r.t. scale is

dt+1
0 (nθ ) − dt

0 (nθ ) = wt
−1 (nθ )(dt

−1 (nθ ) − dt
0 (nθ ))

+ wt
+1 (nθ )(dt

+1 (nθ ) − dt
0 (nθ )). (14)

In [1], Perona and Malik proposed the anisotropic diffusion equation
(15), which they proved satisfied the requirements of the causality
criterion that no new features are introduced from fine to coarse scales
in the scale-space

∂dt
0 (nθ )
∂t

= ∇[wt
±1 (nθ )∇dt

0 (nθ )]

= ∇wt
±1 (nθ )∇dt

0 (nθ ) + wt
±1 (nθ )∇2dt

0 (nθ ). (15)

For the smoothing models proposed in this paper, ∇dt
0 (nθ ) is the

change in predicted range at scale t w.r.t. index nθ and ∇wt
±1 (nθ ) is

the change in weight w.r.t. nθ . When considering the recorded scan in
the clockwise direction (range dt

−1 (nθ ) predicted before range dt
0 (nθ )

is considered), wt
±1 (nθ ) must be replaced by wt

−1 (nθ ) in (15), and

∂dt
0 (nθ )
∂t



= dt+1

0 (nθ ) − dt
0 (nθ ) (16)

∇dt
0 (nθ )



= d̂t

+1 (nθ ) − dt
0 (nθ ) (17)

∇wt
±1 (nθ )



= wt

+1 (nθ ) − wt
−1 (nθ ) (18)

∇2dt
0 (nθ ) = dt

+1 (nθ ) − 2dt
0 (nθ ) + dt

−1 (nθ ). (19)

If the scan is considered in the anticlockwise direction (range dt
0 (nθ )

considered after dt
+1 (nθ ) is predicted), then wt

±1 (nθ ) must be replaced
by wt

+1 (nθ ) in (15), and

∇dt
0 (nθ )



= d̂t

−1 (nθ ) − dt
0 (nθ ) (20)

∇wt
±1 (nθ )



= wt

−1 (nθ ) − wt
+1 (nθ ). (21)

Note that wt
0 (nθ ) is not used as the function g() in the anisotropic dif-

fusion equation or in the expression for∇wt
±1 (nθ ), as it is only weights

wt
±1 (nθ ) which are the required functions of the model Mahalanobis

distances.
If the aforesaid equations are substituted into (15), it can be seen

that the model mask (11) conforms to the anisotropic diffusion concept,
meaning that the same causality criterion will apply to the smoothing
of the range data also.

IV. SEGMENTATION AND FITTING

Segmentation is also possible, based on the Mahalanobis distance,
as shown in a previous paper [9]. For the masks considered here, each
smoothed range point will have two associated Mahalanobis distances
εt
±1 (nθ ) (9). Both of these can be compared with a threshold based on a

χ2 distribution to determine whether the center point Ct or Jt (Fig. 1)
is a model outlier w.r.t. each neighboring data set. Here, a threshold
of 5.02 was chosen theoretically giving a probability of 97.5% correct,
model-compliant segmentation. Each segment should then be fitted
with its geometric model. The intersections of the lines, or centers and
radii of the circles, are then used as occlusion-invariant features.
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Fig. 2. Schematic diagram showing the feature extraction methods used and
compared with the proposed anisotropic diffuser and RANSAC.

V. COMPUTATIONAL COMPLEXITY

The computational complexity is defined in terms of the number of
range points per scan N , the number of points W needed to initiate
the model (two for lines, three for circles), and the scale t. At each
iteration, (4) [or (5)] and the predicted variances [two lots of (6), or its
equivalent] must be calculated. This requires the calculation and storage
of 2 × W (W −1)

2 cross-correlation terms [e.g., Σt
O A ,O B (nθ ) in (6) per

range point N , as well as the updated variance of each range point
(13)]. Irrespective of the chosen model, only two Mahalanobis distances
are calculated per range point. Therefore, the remaining number of
calculations are constant (independent of W ). In the worst case (for
large W ), O(NW 2 t) calculations are required, as well as the model
fitting complexity after segmentation.

Comparing this complexity with RANSAC or the Hough trans-
form is not completely informative, since, they perform different
tasks. Hough transform calculations increase exponentially when us-
ing higher order models [2]. In RANSAC, the computational complex-
ity per feature is approximately O(NK) + model fitting complexity,
where K is the number of trials per feature. An advantage of RANSAC
is that K can be chosen as

K = log Pfa il/(log(1 − P W
good )) (22)

where Pfa il is the probability that the algorithm will fail without finding
a successful fit, if one exists, and Pgood is the probability of a randomly
selected point fitting the model. K increases drastically with higher
order models, and with a higher probability of data outliers [17]. In the
proposed algorithm, the number of iterations t, necessary to achieve a
certain level of smoothing can be crudely compared with LK/W 2 in
RANSAC, where L is the number of sought features per scan. Contrary
to RANSAC, the anisotropic diffuser complexity is independent of the
number of model outliers and less sensitive to the model complexity
(W ).

VI. EXPERIMENTAL RESULTS

As an initial demonstration of the algorithm, a simulated range
scan, calculated from a simple, simulated environment containing
four line segments and two circles, is used. This is to verify the
extracted lines and circles, against known ground truth. The data is
simulated by adding zero mean, Gaussian noise, with a constant range
variance of 1.6 × 10−3 m2 to the theoretical range values produced
by a ray tracing algorithm. The simulated line intersections and the
centers of the two circles (taken as ground truth) are sought as robot
occlusion-invariant features. First, the line-model mask smoothing
algorithm is used to smooth the range scan and fit lines, as shown
schematically in Fig. 2. The results of the line based smoothing are

Fig. 3. Smoothing algorithm is applied once to a simulated range scan. The
robot is located at the triangle (�). Detected model outliers are marked as stars
(∗). Lines and their intersections (squares (�)) are extracted, followed by circles
and their centers (black crosses (+)), labeled “extracted circles.”

shown in Fig. 3. For the remaining points, which are rejected by the
segmentation method, explained in Section IV, the circular smoothing
model is applied to extract circles.13 When smoothing for just one
iteration (Fig. 3), many edge points, shown as stars (∗) are detected
(Mahalanobis distance exceeds the threshold explained in Section IV)
due to the measurement noise, which can result in oversegmentation
(one true line segment being subdivided into many detected ones).
Similarly, too many circles are fitted to the remaining data.

After 20 anisotropic smoothing iterations (Fig. 4), only the dominant
line intersection points (A, B, C, and D) are extracted. The fitted lines
and extracted intersection points match the expected result from the
environment (see lower inset for line intersection C). The corrected
range data within the segments, is also smoothed (as can be seen
in the left inset figure), and the nonlinear segments (e.g., the upper-
right circular segment—see upper right inset figure) are left almost
unsmoothed by the line based algorithm, but are then smoothed by the
circular model, which demonstrates the usefulness of the masks. Close
analysis of Fig. 3 shows that after only one iteration, some points within
the circular sections are considered not to obey the circular model due to
the noisy range data (in the upper-right circular section, too many small
circles have been extracted within the true circular region). However,
after 20 scale-space iterations (Fig. 4), further smoothing by the circular
model removes these points, and the circular segment centers (+ signs)
and end points (stars) are successfully determined.

For comparison purposes, Fig. 5 shows the results of running
RANSAC on the same data set, again, initially searching for lines,
and then using the rejected data to search for circles (see the right-
hand column of Fig. 2). To make the comparison as fair as possible,
once lines and circles were accepted by the RANSAC algorithm, they
were recomputed based on all the accepted inlier data. In this paper,

13“When” to apply each model is an open question, and the application of the
line model, before the circular model is used for demonstration only. In fact, a
line can be considered to be a particular case of a circle (with infinite radius);
however, its representation then becomes ill-defined. Line extraction, followed
by circle extraction gave the best results, for both the proposed algorithm and
RANSAC.
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Fig. 4. Both line- and circle-based smoothers are applied to the same data set
as used in Fig. 3. The number of smoothing iterations is 20.

Fig. 5. RANSAC algorithm is used with 180 trials (Pfail = 0.16). Note that,
with more iterations, more line segments are found in general, which are highly
likely to contain the true line segments.

the RANSAC parameters used were: number of inliers necessary for
lines = 40 (for circles = 10) Pgood = 0.804/414, inlier threshold dis-
tance = 0.1 m, and Pfa il = 0.16. Note that this value of Pfa il causes the
RANSAC algorithm to run 45 times per feature [from (22)], which is
computationally approximately equivalent to 20 scale-space iterations
of the proposed anisotropic diffuser since t ≈ LK/W 2 , where L is the
number of features sought. (To favor the number RANSAC iterations,

14Since this is a simulation, it is known that 80.4% of the data points are spread
approximately equally among the four lines. For circles, Pgood = 0.114/2.
Note that calculating these values should be favorable to the performance of
RANSAC, since in reality, they would not be known.

Fig. 6. Number of extracted lines versus the number of smoothing iterations.

Fig. 7. Euclidean mean-squared error between all four extracted intersection
point locations and their respective ground truths versus the number of smooth-
ing iterations beyond those necessary to determine the correct number of lines.

we assumed the worst case value for the anisotropic diffuser of W = 3
(circles), but used L = 4 (lines)). Under these conditions, RANSAC
usually correctly finds all of the line segments, but often detects other,
spurious, incorrect lines as shown in Fig. 5. The extraction of circles
can, however, pose a problem. As can be seen, the smaller circle is
approximately correct, but the larger circle is incorrect, due to the com-
bination of the global nature of the RANSAC algorithm and the noisy
data.

In Fig. 6, the number of fitted lines is plotted with respect to the
number of anisotropic diffusion smoothing iterations. After 18 itera-
tions, the extracted line number reduces to the correct number, which is
four in this environment. With further iterations, the algorithm begins
to smooth range data in each segment to improve the accuracy of the
extracted intersection points. This is demonstrated in Fig. 7, where the
mean-squared Euclidean error between all four extracted intersection
point locations and their respective ground truths is plotted.

In the case of RANSAC, the results are quite different. The vertical
bars in Fig. 6, correspond to the variation in the number of lines ex-
tracted (indicated on the right vertical axis), as a function of the total
number of RANSAC iterations. Note that the two sets of data have been
aligned in terms of approximately equal computational complexity [e.g.
ten anisotropic smoothing iterations ≈90 total RANSAC iterations for
the four features]. Since RANSAC is a randomized estimator, it can
give different results, every time it runs on the same data set. RANSAC
was used 20 times in each case and, for example, when Pfa il was set
to give a total of 50 trials for all four line features, between one and as
many as five lines could be extracted. However, when Pfa il was set to
give at least a total of 150 trials, RANSAC always produced at least
four lines (which were usually the correct ones), but often also found
other, incorrect lines—sometimes three more. Another fundamental
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Fig. 8. Indoor laser scan, segmented after smoothing once by the line mask,
without model noise (QL set to 0). The lines show the smoothed scan. The stars
(	) indicate the points, where the calculated Mahalanobis distances are larger
than the threshold. These will be used to segment the whole scan.

difference between the two algorithms, is that with higher iteration
number (scale), the anisotropic diffuser smoothes the data, resulting in
a lower spatial error between the finally extracted lines and the true
ones. In the case of RANSAC, however, as long as the correct lines
are extracted, no improvement in their localization takes place. The
best Euclidean mean-squared error we could achieve with RANSAC
(determined when RANSAC extracted only the four correct lines) was
0.6 × 10−3 m2 , approximately four times higher than that attainable
with the proposed smoother.

In Fig. 8, a laser scan was smoothed once by the line model, with
model noise variance, QL in (6), set to zero. This means that points
are to be associated with “perfect” line segments. After smoothing, the
laser scan was segmented based on the Mahalanobis distance for each
point (Section IV). The stars indicate the detected segment edges.

In Fig. 9, a very high line model noise variance of QL = 0.01 m2

was chosen. The obvious difference with Fig. 8 is that there are less
edge points detected. The whole laser scan was roughly segmented but
many dominant edge points (such as points A, B, C, and D in Fig. 9)
have been missed. Due to the high process model noise, the filter is
more flexible to stand for small changes in range data that disobey the
line model. However, the missed dominant edge points will seriously
affect the segmentation of the whole laser scan.

In Fig. 10, the laser scan underwent 20 smoothing iterations with the
line model mask, with the same model noise variance (equal to zero)
as Fig. 8. The scan was then segmented based on the Mahalanobis
distances. Extended line segments and their intersections (shown as
squares) have been extracted. The same effect results, as in Fig. 9, in
that the number of detected edge points was reduced. However, the
algorithm is sensitive enough to detect all of the dominant edge points
(in particular A, B, C, and D in Fig. 10), yet still smooth over the small
outliers shown in Fig. 8, as it produces only the single-line EF from this
segment (Fig. 10). It is clear that smoothing and segmentation at higher
scale, is improved. It is interesting to note that, in these experiments,
a higher number of iterations indicates that even with strict models
(QL = 0), all of the dominant features are found, and the noise terms
in (4) and (5) can be neglected, removing the necessity of parameters
QL and QC .

Fig. 9. Scan from Fig. 8, segmented after being smoothed once by the line
model mask with a high model noise variance of QL = 0.01 m2 . The dominant
edge points A, B, C, and D are all undetected.

Fig. 10. Scan from Fig. 8, segmented after smoothing 20 times by the line
model mask with QL = 0. Dominant edge points A, B, C, and D are now all
detected, yet the small outliers (Figs. 8 and 9) do not affect the detected line EF.
The extracted lines or their intersections can be used as features.

In Fig. 11, two consecutive 0.5◦ angular resolution, outdoor laser
range scans have been transformed into global coordinates according to
vehicular odometric information. The line model smoothing algorithm
has been applied 20 times to each scan and lines were extracted. The
intersection points of these lines, denoted by squares (�) in the first
scan, and inverted triangles (�) in the second, can be used as robot-
pose-invariant, point features. From a qualitative point of view, even
though there is an odometric error between the scans, resulting in the
imprecise localization of the sensor, one would expect most of the
extracted features from two consecutive scans to be matched by a
suitable data association algorithm.



IEEE TRANSACTIONS ON ROBOTICS, VOL. 24, NO. 3, JUNE 2008 753

Fig. 11. Two successive outdoor range scans, smoothed and segmented by
the line mask. The line intersection points (�) in the first scan, and inverted
triangles (�) in the second, can be used as occlusion-invariant, point features.

VII. CONCLUSION

Unlike RANSAC, the presented algorithm smoothes range data, to
produce a local description of features, which, in some circumstances,
can be more beneficial than global descriptions for robot navigation.
Also, its computational complexity is independent of the number
of model outliers, and is less affected by the use of higher order
geometric models.

The smoothing and segmentation of range data is fundamentally
different from that of image data. Structure preserving, and noise re-
duction algorithms in vision, use the local intensity gradient as a mea-
sure of noise. Range values are completely environment dependent,
and not constant between features. Therefore, in this algorithm, the
Mahalanobis distance between observed range values and their
geometric-model-based predictions is used as the “measure of noise.”
A mask weighting function of the Mahalanobis distance was derived,
which behaves as the diffusion coefficient in the anisotropic diffusion
equation, often applied in vision, which guarantees that no new fea-
tures are introduced with increase of scale. This mask can be applied
iteratively, providing smoothing at different scales. The results demon-
strated that the number of extracted features (lines or circles) converged
to the true number with increase of scale, and the error between the
extracted and true feature coordinates converged to a minimum. It has
been shown that with increase of scale, the algorithm automatically
reduces noise, only within the model-compliant regions of the range
scans, yielding superior, postsmoothing, segmentation possibilities.
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A Globally Stable PD Controller for Bilateral Teleoperators

Emmanuel Nuño, Romeo Ortega, Nikita Barabanov,
and Luis Basañez

Abstract—In a recent scheme, with delayed derivative action [Lee and
Spong, IEEE Trans. Robot., vol. 22, no. 2, pp. 269–281, Apr. 2006], it is
claimed that a simple proportional derivative (PD) scheme yields a sta-
ble operation. Unfortunately, the stability proof hinges upon unverifiable
assumptions on the human and contact environment operators, namely,
that they define L∞–stable maps from velocity to force. In this short paper,
we prove that it is indeed possible to achieve stable behavior with simple
PD-like schemes—even without the delayed derivative action—under the
classical assumption of passivity of the terminal operators.

Index Terms—Bilateral teleoperation, communication delays, passivity,
proportional derivative (PD) control.
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