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Abstract— The classical occupancy grid formulation requires
the use of a priori known measurement likelihoods whose values
are typically either assumed, or learned from training data.
Furthermore in previous approaches, the likelihoods used to
propagate the occupancy map variables are in fact independent
of the state of interest and are derived from the spatial
uncertainty of the detected point. This allows for the use of a
discrete Bayes filter as a solution to the problem, as discrete
occupancy measurement likelihoods are used. In this paper,
it is firstly shown that once the measurement space is re-
defined, theoretically accurate and state dependant measurement
likelihoods can be obtained and used in the propagation of
the occupancy random variable. The required measurement
likelihoods for occupancy filtering are in fact those commonly
encountered in both the landmark detection and data association
hypotheses decisions. However, the required likelihoods are gen-
erally a priori unknown as they are a highly non-linear function
of the landmark’s signal-to-noise ratio and the surrounding
environment.

The probabilistic occupancy mapping problem is therefore
reformulated as a continuous joint estimation problem where
the measurement likelihoods are treated as continuous random
states which must be jointly estimated with the map. In particu-
lar, this work explicitly considers the sensors detection and false
alarm probabilities in the occupancy mapping formulation. A
particle solution is proposed which recursively estimates both the
posterior on the map and the measurement likelihoods. The ideas
presented in this paper are demonstrated in the field robotics
domain using a millimeter wave radar sensor and comparisons
with previous approaches, using constant discrete measurement
likelihoods, are shown. A manually constructed ground-truth
map and satellite imagery are also provided for map validation.

Index Terms— Radar target detection, Occupancy grid, Mea-
surement likelihoods

I. INTRODUCTION

Autonomous outdoor navigation is still a very active topic
of research due to the presence of unstructured objects and
rough terrain in realistic situations. One of the core reasons
for failure is the difficulty in the consistent detection and
association of landmarks present in the environment. Mobile
robot navigation is typically formulated as a dynamic state
estimation process where predicted vehicle and landmark
locations are fused with sensor readings. Reliable landmark
detection from noisy sensor data is critical to the success-
ful convergence of any such algorithm. Most methods are
concerned only in the location of detected landmarks, thus
the noise in the sensor readings is typically 2 dimensional
i.e. in range, r, and bearing, θ. For range/bearing sensors
commonly used in robot navigation, such as the polaroid

sonar or SICK laser, the landmark detection algorithm is
performed internally resulting in a single (r, θ) output to
the first signal considered detected. No other information is
returned about the world along the bearing angle θ however
it is typical, in the case of most sensor models, to assume
empty space up to range r [Leonard and Durrant-Whyte,
1990]. This signal may correspond to a landmark or may be
a noise or multipath signal, depending on the environmental
properties. These ambiguities are typically resolved in the
data association stage by applying a threshold to a statistical
distance metric, based on the covariance of the predicted and
observed landmark locations [Kirubarajan and Bar-Shalom,
2001].

Sensor noise in range/bearing measuring sensors however
is in fact 3 dimensional, since an added uncertainty exists in
the detection process itself. Most localisation algorithms will
disregard this uncertainty and assume an ideal detector, where
every detection is treated as a valid landmark and added to
the map after passing some heuristic landmark initialisation
requirements. Using this assumption, the distribution of the
landmark’s spatial coordinates can be conveniently modeled
with probability density functions (typically Gaussian), where
the probabilistic sum under the distribution is unity. That is,
complete certainty is assumed that a landmark exists some-
where within that area, thus readily allowing for numerous
stochastic filtering techniques to be applied. For most occu-
pancy grid maps, the occupancy is distributed in a Gaussian
manner as a function of the returned range, the intensity of
the returned signal is rarely considered, resulting in discrete
observations of occupancy in each cell. The discrete Bayes
filter is then used as a solution, which is possible as it subtly
assumes a completely known occupancy measurement model
to update the posterior occupancy probability.

For most sensors, users do not have access to the signal
detection parameters, however this is not the case for sensors
such as the frequency modulated continuous wave (FMCW)
radar1 and certain underwater sonar devices [Ribas et al.,
2007] where the output data is a complete signal power profile
along the direction of beam projection, without any signal
detection being performed. At each range bin, a power value
is returned thus giving information at multiple ranges for
a single bearing angle. FMCW radar sensors are typically

1Due to the modulating techniques, a Fast Fourier Transform can be
used to return a power value at discrete range increments. Range resolution,
beamwidth, and maximum range are dependant on the particular sensor.



applied to outdoor sensing applications as they can operate
under various environmental conditions where other sensors
will fail. This is due to the radar’s ability to penetrate dust,
fog, and rain [Brooker et al., 2001].

II. RELATED WORK

In cluttered outdoor or underwater environments where
there can be numerous false alarms (incorrectly declared
landmarks) and/or outliers (infrequent spurious returns), so
called ‘landmark management’ techniques are often used to
identify ‘unreliable’ landmarks and delete them from the map.
This is in order to reduce the possibility of false data associ-
ation decisions. From the literature, two common methods of
identifying true landmarks from noisy measurements are the
discrete Bayes filter [Montemerlo et al., 2003], [Thrun, 2003],
which propagates a landmark existence variable obtained from
a sensor model and the ‘geometric landmark track quality’
measure [Dissanayake et al., 2001], [Makarsov and Durrant-
Whyte, 1995] which is a function of the innovation for
that landmark. The discrete Bayes filter approach is more
commonly used in an occupancy grid framework for map
building applications.

Signal processing problems are not new to the field of
autonomous mapping and landmark detection but are gen-
erally treated in a simplified manner. In the underwater
domain, sonars also return a power versus range vector which
is difficult to interpret. In his thesis [Williams, 2001], S.
Williams outlined a simple landmark detection technique
for autonomous navigation in a coral reef environment. The
maximum signal to noise ratio exceeding an a priori constant
threshold is chosen as the point target. Clearly this method of
extraction results in a large loss of information, as the power
information at all other ranges except that which is declared
a landmark is disregarded. This can compromise the amount
of information present in the map. In [Majumder, 2001] S.
Majumder attempts to overcome this loss by fitting sum of
Gaussian probability density functions to the raw sensor data
(in the form of a power vs range spectrum), however this
represents a likelihood distribution in range of a single point
landmark which is misleading as the data can be the result
of multiple landmarks, leading to the association of non-
corresponding landmarks.

In field robotics, standard noise power thresholding2 was
again used by S. Clark [Clark and Durrant-Whyte, 1998] us-
ing an FMCW radar. The range and bearing measurements of
the detected point were then propagated through an extended
Kalman Filter framework to perform navigation and mapping.
The method was shown to work in an environment containing
a small number of well separated, highly reflective beacons.
The method was extended slightly in [Clark and Dissanayake,
1999] where, even bounce specularities were used to extract
pose invariant landmarks. Again the environment contained
reflective, metallic containers. A. Foessel [Foessel et al.,

2Fixed threshold detection is indeed the optimal detector in the case
of spatially uncorrelated and homogenous noise distributions of known
moments.

2001] also demonstrated radar mapping capability through the
use of a log odds approach using a heuristic scoring scheme.
Impressive results were produced however, detection statistics
were not considered and mathematical justification for the
model was also not provided.

This paper further explores the problem of signal detection
within a robotics framework to perform mapping. It is shown
that by using signal detection theory, the occupancy random
variable has a precise (but unknown) measurement likelihood,
and that previous occupancy approaches in fact use a the-
oretically incorrect likelihood which is independent of the
state of interest. Furthermore, it is shown that the discrete
Bayes filter is no longer applicable to the propagation of this
variable, as the measurement likelihood itself is not discrete.
A new particle filter based method is therefore developed to
estimate the posterior distribution of the occupancy variable
and perform map building.

The paper is organized as follows: Section III outlines
the general occupancy grid problem, showing how the exact
occupancy variable measurement likelihood can be used when
signal detection theory is considered. The problems with a
discrete Bayes filter solution are also discussed. Section IV
presents the problem formulation while section V discusses a
particle filter solution to the occupancy variable estimation
recursion. Section VI then presents some results of the
proposed method using real radar data collected from outdoor
field experiments and comparisons with previous approaches
as well as images and occupancy maps generated by SICK
laser range finders for map validation.

III. THE GRID-BASED ROBOTIC MAPPING PROBLEM

Probabilistic robotic mapping (RM) comprises stochastic
methods of estimating the posterior density on the map,
when at each time instance, the vehicle trajectory, Xk =
[X0, . . . , Xk], is assumed a priori known. The posterior
density of interest for the RM problem is therefore,

pk|k(Mk|Zk, Xk).

This density encapsulates all the relevant statistical infor-
mation of the map Mk, where Zk = [Z0, . . . , Zk] denotes
the history of all measurements, up to and including the
measurement at time k. Each measurement, Zk =[z1

k, . . . , zz
k],

with z being the number of measurements at time, k. The
density can be recursively propagated, with the standard
conditional independence assumptions [Thrun et al., 2005],
via the well known Bayesian update,

pk|k(Mk|Zk, Xk) =
p(Zk|Mk, Xk)pk|k−1(Mk|Zk−1, Xk)∫

p(Zk|Mk, Xk)pk|k−1(Mk|Zk−1, Xk)dMk
. (1)

Since a static map is commonly assumed,

pk|k−1(Mk|Zk−1, Xk) =

pk−1|k−1(Mk−1|Zk−1, Xk−1) (2)



that is, the time update density in the Bayes recursion is
simply the posterior density at time k−1. Note that in general,
a static map assumption does not necessarily imply that
eqn.(2) is valid. This is due to occlusions which may result
in corrupted segments of Mk, which consequently cannot be
observed by the sensor, nor represented by the likelihood
p(Zk|Mk, Xk). To model this added uncertainty, an extended
formulation is required with vehicle state dependant Markov
Transition matrices, or state dependant detection probabilities
incorporated into the measurement likelihood. Although not
explicitly formulated in this manner, this observation was
considered in the seminal scan-matching paper of Lu and
Milios [Lu and Milios, 1997]. Two methods of metric map
representation dominate the autonomous robotics community,
namely a feature-based map which consists of dimensionally
reduced representations of the environment [Smith et al.,
1987], and grid-based maps [Elfes, 1989]. The latter grid-
based mapping framework is addressed in this paper.

A grid-based map discretises the naturally continuous
cartesian spatial state space into a fixed number of fixed
sized cells. The map is therefore represented by, Mk =
[m1

k, . . . ,mq
k], where q is the number of a priori assigned

grid cells, at predefined discrete spatial cartesian coordinates
[Moravec and Elfes, 1985], [Grisetti et al., 2007]. As the
cartesian location of the ith cell, mi

k, is a priori assigned,
the grid-based map state, mi

k, comprises an estimate of the
probability of a landmark existing in that discrete cell, at time
k. In this paper, this is referred to as the occupancy state
space, and is the filtering state space of any grid-based RM
algorithm. Here mi

k ∈ Θ, with the constraint,
∑

θ∈Θ

θ = 1. (3)

The set Θ can consist of an arbitrary number of hypotheses
but usually contains {O, E} in the case of a Bayesian
approach [Thrun, 2003] and {O, E, U} in the case of a
Dempster-Shafer approach [Mullane et al., 2006], where
O, E, U represent ‘Occupied’, ‘Empty’ and ‘Unknown’
respectively. In this work, the classical Bayesian approach is
examined, and Mk then represents the estimate of Occupancy
in each cell at time, k. The Emptiness estimate is denoted,
M̄k = [m̄1

k, . . . , m̄q
k]. The true state of the ith cell is denoted,

mi, for occupied, and m̄i for empty.
The most popular method of evaluating the recursion of

eqn.(1) is by modeling the map Mk as a zero order Markov
Random field so that each occupancy state, mi

k can be
independently estimated, i.e,

pk|k(Mk|Zk, Xk) =
i=q∏

i=1

pk|k(mi
k|Zk, Xk).

and the update becomes,

pk|k(Mk|Zk, Xk) =
j=z,i=q∏

j=1,i=1

p(zj
k|mi

k, Xk)pk|k−1(mi
k|zj,k−1, Xk−1)∫

p(zj
k|mi

k, Xk)pk|k−1(mi
k|zj,k−1, Xk−1)dmi

k

. (4)

Note that for the grid-based RM problem, the number of
measurements, z, equals the number of map cells, q. This
is because map cells which are not observed (do not interact
with sensor beam), are assigned a dummy, non-informative
measurement3. Furthermore, since the trajectory, Xk, is as-
sumed known, the map cell-measurement correspondence is
assumed known and thus i=j ∀ i=[1, . . . , q].

The RM state space filtering problem can then be written
as,

Mk = Mk−1 (5)
Zk = h(Mk) + Vk (6)

which indicates a static time-update and where the measure-
ment is a function h(·) of the state, with Vk being sampled
from an assumed a priori known noise distribution. Recall
that the state in the grid-based RM problem is an estimate of
the existence of a landmark at a given discrete location, i.e
filtering in the occupancy state space.

A. Grid-Based RM with Range Measurements
This section details the standard method of evaluating the

recursion of eqn.(4). For clarity of exposition, the case of
the single map cell, mi, is outlined with the i, j cell and
measurement indices being discarded. Since the trajectory,
Xk, is assumed known, it is also discarded from the density
functions. The measurement likelihood may therefore be
written as, p(zk|mk), and assuming it to be discrete, it can
be shown that [Thrun, 2003]

log
P (mk|zk)

1− P (mk|zk)
= log

P (mk|zk)
1− P (mk|zk)

+ log
1− P (m0)

P (m0)
+ log

P (mk−1|zk−1)
1− P (mk−1|zk−1)

(7)

where m0 is the initial estimate on landmark occupancy
in the given cell and is typically set at 0.5 [Moravec and
Elfes, 1985]. Note that P (mk|zk) inversely maps from the
measurement at time k to the occupancy state, mk. These so
called ‘inverse’ models are also required by Dempsters update
rule,

m(θ3) =

∑
θ1∩θ2=θ3

mz(θ1)mm(θ2)

1− ∑
θ1∩θ2=∅

mz(θ1)mm(θ2)
. (8)

Here mz(·) and mm(·) represent mass functions respectively
containing the sensor and prior map evidences in support
of each hypothesis, {θ1, θ2, θ3} that is, a direct mapping
from the sensor measurement to the evidence in support of
each hypothesis. However, these approaches require ‘intuitive’
models which lack mathematical justification and are contrary
to the way in which range measuring sensors operate. This
may result in inconsistent maps as shown in [Thrun, 2003].

Approaches using the ‘forward’ sensor model, p(zk|mk),
are also proposed [Konolige, 1997], [Thrun, 2003]. These

3Note that in the commonly considered spatial state space feature-based
approaches [Smith et al., 1987], the number of measurements typically does
not equal the number of elements in the map state.



more theoretically founded approaches attempt to obtain the
likelihood of a measurement, given the state mk. For previous
grid-based RM algorithms, the measurement zk, used for the
evaluation of the likelihood, p(zk|mk), comprises a range
reading reported by the exteroceptive range measurement
unit, assuming a 1D reading. A range reading corrupted by a
Gaussian distributed noise signal of variance, σ2, results in a
measurement likelihood,

P (zk|mk) =
1√

2πσ2
e

(zk−r)2

2σ2 . (9)

where r is the true range to the cell. When considering
the spatial state, i.e. the location of a given cell m, the
measurement equation for the likelihood of eqn.(9) becomes,

zk = h(m,Xk) + vk (10)

where vk∼N (0, σ2) and h is a function relating the spatial
state of m, to the range reading, zk. However, for the
grid-based RM problem, since the spatial state space is a
priori discretised into cells of fixed location, filtering occurs
in the occupancy state space. Previous approaches use a
discrete interpretation of the likelihood of eqn.(9), and use
the evaluation of the likelihood at discrete locations as the
occupancy measurement, as depicted in figure 1.
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Fig. 1. This figure shows the indirect generation of occupancy mea-
surements from standard range-based algorithms. The evaluation of
the Gaussian range likelihood in the surrounding discrete cells with
spatial states, r−4, . . . , r+4, are used as occupancy measurements.

From an occupancy state-space perspective, taking the
arbitrary case of the range reading reported by the sensor to
be zk = r−2, the resulting occupancy measurement becomes,

1√
2πσ2

e
(r−2−r)2

2σ2 .

This measurement is a function of the range reading, r−2,
and the range measurement noise, σ2. However, with respect
to the filtering state of interest, mk, it can be seen that
such a measurement has no dependance on the occupancy
state. Therefore, this shows that range-based approaches
adopt a state-independent measurement for propagation of
the occupancy state estimate. Furthermore, the occupancy
measurement is discrete, which allows for the subsequent
discrete Bayes filter implementation proposed in the literature
[Konolige, 1997], [Thrun, 2003], [Moravec and Elfes, 1985].

The range at which a sensor reports the presence of a
landmark can be used in the filtering of its spatial estimate.

However, whilst this may be correlated with the sensor’s
ability to correctly detect the landmark, the reported range at
which the landmark is hypothesised to exist does not provide a
measurement of m (the occupancy state) but only a measure-
ment of its location. To correctly formulate the grid-based RM
problem from a Bayesian perspective, and have a truly state
dependant measurement, the measurement, zk, should be re-
defined as a binary set with zk∈{Detection,No Detection}.
Therefore, through using a range reading as the measurement,
previous occupancy sensor models subtly assume complete
knowledge of the sensors’ detection characteristics, namely
p(zk|m) (probability of detection) and p(zk|m̄) (probability
of false alarm), and the occupancy measurements become
discrete. That is p(zk|m) (and p(zk|m̄)) are assumed com-
pletely known. Note this is typically the case for most
likelihood calculations including data association [Wijesoma
et al., 2006] and particle filter SLAM solutions [Grisetti et al.,
2007], where landmark detection likelihoods are assumed
known or ignored completely. The following section outlines
the reformulation of the discrete grid-based RM filter.

B. Grid-Based RM with Detection Measurements

Once the occupancy measurement, zk, is defined in detec-
tion space rather than range-bearing space, the measurement
likelihoods (for both detection and non-detection) become
real signal processing parameters. A simple expansion of the
occupancy posterior where the measurements are detections
and non-detections, shows how the occupancy measurement
likelihoods can be obtained when the signal processing stage
is considered. Consider the probability of occupancy given a
history of measurements,

P (mk|zk).

The measurement history zk is now considered to be a series
of binary hypothesis decisions on the presence or absence of
a landmark (derived through some function of the measured
signal intensity) given by the measurement model. Thus each
measurement, zk, is the output of a likelihood ratio test and
can be denoted D if a detection was made, or D̄ if no detection
was made. We can then expand about both measurement
hypotheses to get,

P (mk|zk=D, zk−1) = γ−1
D P (zk=D|mk)P (mk|zk−1) (11)

γD = P (zk=D|mk)P (mk|zk−1)+

P (zk=D|m̄k)P (m̄k|zk−1) (12)

P (mk|zk=D̄, zk−1) = γ−1
D̄ P (zk=D̄|mk)P (mk|zk−1) (13)

γD̄ = P (zk=D̄|mk)P (mk|zk−1)+

P (zk=D̄|m̄k)P (m̄k|zk−1) (14)

These equations calculate, in closed form, a statistically
correct posterior of the occupancy random variable, where
the measurement likelihoods P (zk =D|mk), P (zk =D|m̄k),
P (zk = D̄|mk) and P (zk = D̄|m̄k) are those frequently



encountered in landmark detection algorithms. A graphical
representation of the landmark detection hypothesis is shown
in figure 2 where,
• Hm̄ : no landmark signal present

si ∼ p(s|m̄,Ωm̄)
• Hm : landmark signal present

si ∼ p(s|m,Ωm)
Here, si is the power intensity measurement (i.e. a sample)

by the sensor, p(s|m,Ωm) and p(s|m̄,Ωm̄) represent the
received signal fluctuation densities under both landmark
presence, m, and landmark absence, m̄, respectively and are
further discussed in section IV-D. A likelihood ratio is then
defined by [Kay, 1998],

L(s) =
p(s|m,Ωm)
p(s|m̄,Ωm̄)

(15)

and,

zk =

{
D if L(s) ≥ T

D̄ otherwise.

The four probabilities present in the detection hypothesis
problem, which are also required by eqns. (11) and (13), are
typically referred to as,

P (zk=D|m)− Landmark detection likelihood (DL)
P (zk=D|m̄)− False alarm likelihood (FAL)
P (zk=D̄|m)−Missed detection likelihood (MDL)
P (zk=D̄|m̄)− “Noise” detection likelihood (NDL).
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Fig. 2. A graphical representation of the received signal classifica-
tion problem in a given map cell at time k. T represents the decision
threshold, µ is the mean noise power and <̄ is the mean landmark
signal-to-noise ratio. The hypothesis decisions are Hm̄: Landmark
absent, and Hm: Landmark present. The measurement likelihoods
required to calculate the posterior probability of occupancy are also
indicated.

As a result of this subtlety, previous occupancy sensor
models typically assume complete knowledge of the sensors’
detection characteristics (detection and false alarm likeli-
hoods), and the occupancy measurements become discrete.
The signal processing and measurement intensity information
that may be available, are usually ignored. Consequently,
this assumption allows for each cell to contain a discrete
occupancy measurement which can be updated using the
discrete log-odds equation (or Dempsters equation in the case

of evidential measurements). This is in contrast to the land-
marks’ spatial estimates which use continuous measurement
likelihoods and are propagated in a Kalman or particle filter
framework.

Given a binary measurement space, discrete measurement
likelihoods can be used to calculate the occupancy posterior,
through the update equations (11) and (13) which in turn re-
quire completely known measurement likelihoods. However,
these likelihoods can generally only be calculated exactly
when two a priori assumptions are made, these are - a known
mean landmark signal to noise ratio (SNR), <̄, and known
landmark power fluctuation likelihood, p(s|m,Ωm) [Gandhi
and Kassam, 1989]. Under the further assumption of identical
and independently distributed (IID) noise power samples, a
suitable power threshold can be calculated which will exactly
obtain the theoretically derived measurement (and hence oc-
cupancy) likelihoods. In this case, the measurements required
to calculate the posterior occupancy probability, P (mk|zk),
are deterministic and a discrete Bayes filter implementation
is valid.

However, when these assumptions are relaxed (the primary
assumption being the known <̄), the above measurement
likelihoods become continuous and thus the propagation of
the occupancy random variable estimate must be carried out
using continuous filtering methods (EKF, Particle Filter) as
opposed to a discrete filter. As the measurement likelihoods
are two complimentary sets, {P (zk=D|mk), P (zk=D̄|mk)}
and {P (zk = D|m̄k), P (zk = D̄|m̄k)}, only one likelihood
from each set needs to be estimated. Furthermore a discrete
filtering approach, which disregards the uncertainty of the
measurement likelihood estimate, will equally weight both
the measurement and the prior as they are considered to
have equal covariances. Occupancy measurements are in fact
highly correlated with the vehicle location and structure of the
environment, and should not be treated equally. For example,
specular reflections are likely to occur at high angles of
incidences, and clutter free observations should be treated
with greater confidence than those with interfering signals.

C. Detection vs. Range Measurement Models

In this section, the occupancy posterior is propagated for
a set of simulated data, illustrating that optimal performance
(in terms of estimating the correct number of landmarks) can
be achieved when the actual measurement likelihoods are
used, as opposed to a priori assigned values as is typically
done in autonomous mapping algorithms. Figure 3 shows a
simulated data set with the resulting detection matrix after
the application of the detection algorithm. A landmark exists
in range bin 11, with other cells empty. The fluctuating
signal models the change in power from a landmark with
changing vehicle pose. The signal amplitude in empty cells
fluctuates according to an assumed noise model (in this
case an exponential model). In this example, the false alarm
likelihood is set high at 0.1, due to the small sample window
(21x20 cells) to ensure some false alarms fall within the
surveillance region.
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Fig. 3. Sample data and the resulting detection matrix. Note
numerous false alarms within the surveillance region as the false
alarm likelihood is set to 0.1. For the simulated sample data, the
darker the shade of gray, the higher the measured power intensity in
that range bin. The detection matrix output shows black for zk=D
in that cell and white for zk=D̄.

Using eqns.(11) and (13), the occupancy posterior at each
time step is evaluated. Both the range measurement approach
and detection measurement approach are compared in this
simulated test. Both methods use the detection sequence
depicted in figure 3, however the values of the measurement
likelihoods are different. The true likelihoods for this sample
set (obtained theoretically from the detection algorithm) are
DL = 0.80663 and FAL = 0.1. Using the range measurement
model outlined in section III-A [Thrun, 2003] [Konolige,
1997], detection measurement likelihoods are essentially a
priori assumed and the statistics of the detection algorithm
used are ignored. The results in figure 4 show the estimated
number of landmarks in the region after 20 measurement
updates, where cells with an occupancy probability greater
than 0.51 are deemed occupied, and cells with values less
than 0.49 are deemed empty.

The figure on the left plots the results from the detection
measurement model, using the theoretically true false alarm
likelihood and varying the detection likelihood whilst the
figure on the right uses the true detection likelihood and varies
the false alarm likelihood. Also plotted on both graphs is the
estimated number of landmarks from the range measurement
model. As the range measurement model does not consider
the statistics of the detection algorithm, the estimated number
of landmarks in the region remains at 8 for each test as can be
seen in the figure. This is due to overly pessimistic a priori
assignment of the likelihoods (from the Gaussian model of
equation 9) the estimated number of landmarks far exceeds
the true number. Naturally this value can be tuned or scaled
to improve mapping performance for a particular case, how-
ever with multiple landmarks having varying measurement
likelihoods, optimal performance cannot be obtained.

For the detection measurement model, where the detection
likelihoods (independent of range) are used, the values of the
likelihoods are varied from 0→1 (plotted along the x-axis) for
each test. Note there is large error at low assumed detection
likelihoods and high estimated false alarm likelihoods, how-
ever as the assumed likelihoods approach the true value, the
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Fig. 4. Comparison of the estimated number of landmarks in the data
set after 20 updates using the range measurement model, and the
detection measurement model where the true number of landmarks
is one. As the range measurement model ignores the statistics of the
detection algorithm, a priori assignment may cause inaccuracies.
The figure also plots the sensitivity of the occupancy propagation
equations to incorrect measurement likelihood estimates.

estimated landmark number converges on the true case (i.e.
one landmark present). Thus, as optimal performance can be
achieved by having the actual measurement likelihoods, these
(state dependant) likelihoods must be jointly estimated with
the occupancy posterior.

IV. MAPPING WITH UNKNOWN MEASUREMENT
LIKELIHOODS: PROBLEM FORMULATION

This section outlines the proposed algorithm to jointly
estimate both the occupancy random variable and the cor-
responding measurement likelihoods.

A. Data Format

From a radar perspective, the environment can be consid-
ered to consist of an unknown number of spatially distributed
signal pdfs of both unknown distribution with unknown
moments. Figure 2 previously illustrated a noise signal pdf
in a given cell, p(s|m̄,Ωm̄), and a landmark signal pdf,
p(s|m,Ωm). A single sensor sweep therefore acquires sam-
ples from these underlying environmental pdfs and returns
them in the form of a power-range spectrum at each bearing
angle. The data in a single spectrum then contains R samples
at discrete range increments (0.25m in this case) along each
bearing angle. The data is generally modeled by an R
dimensional joint pdf,

fS1,...,SR(s1, . . . , sR)

where [s1, . . . , sR] are R individual samples from (assumed
independent) signal pdfs observed by the sensor. Each range
at which an intensity sample is acquired by the sensor is
referred to as a range bin. Thus fS1 , . . . , fSR represent the
intensity pdf in each range bin. An example of such a
spectrum, collected from an outdoor field test, can be seen
in figure 5. A complete scan therefore contains spectra at
bearing angles {φ1, . . . , φ|Φ|} ∈Φ and the complete set of
measurement samples can be denoted, sΦR. As before, let
p(sr|m,Ωm) be the landmark signal pdf and p(sr|m̄,Ωm̄) be
the noise signal pdf, in the rth range bin where Ωm and Ωm̄
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respectively.

are the unknown distribution moments. The noise samples,
si

r ∼ p(sr|m̄,Ωm̄), are assumed IID, ∀ r ∈ [1, . . . , R], and
the moments of p(sr|m,Ωm) are a function of the landmark’s
mean SNR, <̄. The spatial distributions are typically modeled
by point spread Gaussian functions using the sensor’s range
and bearing covariances. Adaptive threshold techniques are
common in radar signal processing, which use noise samples
from surrounding sliding windows to generate a noise esti-
mate and set the threshold, T seen in figure 2 [Gandhi and
Kassam, 1989].

B. Mapping Algorithm Overview

Figure 6 shows a block diagram of the estimation problem
under consideration. A single power-range spectrum, sφ1

R , is
considered here which can then be easily generalised to model
the complete 360o set of measurements, sΦR. The system input
is the true map state, M =[m1, . . . ,mR], which is a vector
of R binary numbers indicating the presence, mr = 1 (also
denoted m), or absence, mr = 0, (also denoted m̄) of a
landmark in each range bin. The corresponding <̄, for each
landmark is also required, as are modeled in the vector of
measurement likelihoods, Λ=[λ1, . . . , λR]. The sensor model
block then uses the landmarks range, <̄, and p(sr|m,Ωm)
to generate a noise free power-range spectrum, which is in
turn corrupted by noise samples taken from p(sr|m̄,Ωm̄) ∀
r to construct S(M) (for example, figure 5), the collection
of power samples comprising a sensor scan. Note that unlike
most filtering formulations which assume an a priori known
noise distribution and moments, here the moments remain
unknown and must be locally estimated.

C. Constant False Alarm Rate (CFAR) Detector

This block contains the signal detection algorithm which
has a constant false alarm rate property. Its input is S(M),
and its output, Zk = [z1

k, . . . , zR
k ], is a vector of R binary

hypotheses, with zr
k∈{D, D̄}. Using the assumed noise model

(with unknown moments), p(sr|m̄,Ωm̄), sliding window tech-
niques are used to generate a local estimate of the noise

M

Noise

+

S(M)

 M
CFAR DetectorEstimator

Λ
 z

Sensor Model
Λ

k

k

Fig. 6. A block diagram of the proposed algorithm. The aim is to
estimate the posterior on the occupancy vector, M . This however
requires estimates of the measurement likelihoods Λ̂. Note the
additive noise in radar signal processing is typically non-Gaussian.

distributions moments in each range bin. These are then used
in the likelihood ratio test of eqn.(15) to generate the D or
D̄ hypothesis decision. A more in-depth explanation of this
block can be seen in [Mullane et al., 2007].

D. Estimator

The estimation problem is therefore to evaluate the joint
likelihood on the occupancy and measurement likelihood
random variables at each time k,

p(mk, λk|zk)

where the measurement, zk consists of a history of all raw
measurements, and λ, contains the measurement likelihoods
(detection and non-detection). This can be expanded to,

p(mk, λk|zk) = p(mk|λk, zk)p(λk|zk) (16)

Since occupancy is a discrete binary random variable,

p(mk = 0|λk, zk) = 1− p(mk = 1|λk, zk). (17)

As previously stated, λ contains both the detection and non-
detection likelihoods, however,

p(λ=D|m=1, zk) = Pd

p(λ=D|m=0, zk) = Pfa

p(λ=D̄|m=1, zk) = 1− Pd

p(λ=D̄|m=0, zk) = 1− Pfa

representing a complimentary set of measurement likelihoods.
Thus we only need maintain an estimate of p(λ=D|zk) which
will be denoted p(λk|zk) unless explicitly stated otherwise,
whose true value is p(λ|zk) ∈ {Pfa, . . . , 1}.

As the vehicle traverses the environment, landmarks may
randomly appear/disappear in the data due to occlusions as
well as falling in and out of the senors’ perception field.
Contrary to standard occupancy grip mapping algorithms, a
non-static time update is used here (i.e. p(mk|mk−1, z

k−1) 6=
p(mk−1|zk−1). That is, cells can randomly change from
occupied to empty or vice-versa during vehicle motion. Thus
the process is modeled as a Hidden Markov Model (HMM)
where the transition matrix is given by,

Π =
[

Poo Peo

Poe Pee

]
.



Poo is the probability of an occupied cell remaining occupied
(a stationary landmark remaining within the sensors field of
view), Peo being the probability of an empty cell becoming
occupied (possibly due to occlusion effects) with Poe being
the opposite. Pee is the probability of an empty cell remaining
empty. Using Bayes rule on the first term of eqn.(16) we get,

p(mk|λk, zk) ∝ p(λk, zk|m′)p(m′|zk−1) (18)

where m′ is the predicted occupancy obtained from the
Markov transition matrix. As λk is not dependant the oc-
cupancy variable,

p(mk|λk, zk) ∝ λkp(zk|m′)p(m′|zk−1) (19)

The second term of 16 is a sensor specific representation of
the detection likelihood density where a detection may mean
range readings in terms of laser, sonar and radar sensors, or
feature detections if feature extraction methods are applied
to the raw sensor data. As this work uses a radar sensor
the density is obtained from examination of CFAR detection
theory [Rohling and Mende, 1996].

λk = f(S(M)) (20)

where f(·) is a non-linear function of the raw data incor-
porating signal detection theory. As discussed previously in
section IV-A, the measurement data S(M) is assumed to
consist of a vector of R consecutive (in time or range)
independent signal intensity measurements, sr, for each bear-
ing angle, shown previously in figure 5. A priori signal
distribution assumptions are made on both p(sr|m,Ωm) and
p(sr|m̄, Ωm̄) ∀r∈ [1 . . . R], where the distribution moments
Ωm and Ωm̄ are generally assumed unknown and must be
estimated using the signal intensity information. To make
an estimate of λ, we must first estimate the mean SNR, <̄.
Taking the measured intensity in bin r, {sr|m}, as the signal +
noise measurement (assuming the existence of a landmark),
we must therefore estimate the local noise intensity at that
bin to generate an SNR estimate. Using leading and lagging
windows, W intensity measurements are used to generate
this estimate. From the signal detection literature [Gandhi
and Kassam, 1989], there are numerous adaptive methods of
generating local estimates of the unknown noise distribution
parameters. Whilst most signal processing literature considers
the probability of detection for landmarks of known SNR, this
work requires λ to be estimated from the measured intensity
information using an assumed distribution p(s|Ωm, m), but
with an unknown mean SNR. Thus, given an estimate of
the local noise intensity in bin r, {sr| m̄}, generated by the
detector, <̄r can be estimated as,

<̄r =
{sr|m} − {sr|m̄}

{sr|m̄} . (21)

An ordered-statistics approach [Rohling, 1983], which is
adopted in this work, has been shown to be most robust in
situations of high clutter and multi-landmark situations, as is
commonly encountered in a field robotics environment. Under
certain distribution assumptions, using an ordered statistic

noise estimate, closed form solutions exist for λ [Rohling
and Mende, 1996],

λ =
(

1 +
Tr{sr|m̄}
1 + <̄r

)−W

(22)

with,

p(s|Ωm̄ = µ, m̄) =
1
µ

exp(−s/µ)

p(s|Ωm = {µ,<},m) =
1
µ

exp
(
(−s/µ) + <)

)I0

(
2

√
<s

µ

)

p(<|<̄) =
2<
<̄ exp(−<2/<̄).

These equations describe the signal power fluctua-
tion models of the raw data, S(M), acquired by the
imaging sensor. For the radar sensor adopted in this
work, these well-established models describe an omni-
directional distribution of the signal intensity reflected
from a landmark with multiple scatterers. An Exponential
distribution is assumed for the radar noise signal, with
a Ricean fluctuation model, p(s|Ωm={µ,<},m), adopted
for the landmark signal. Since the intensity of the received
signal is dependant on the viewing aspect, a Swerling I
model, p(<|<̄), is adopted to model the omni-directional
density of the SNR from a given landmark [Skolnik, 1982].
The proposed framework can naturally be adopted to any
given distribution assumptions which can derive closed
form likelihood equations such as eqn.(22).

As the assumed densities for radar systems are typically
non-Gaussian as well as λ being a non-linear function of the
observed data S(M) (eqn.(22)) a particle approach is adopted
to solve the recursion. Note the measurement likelihood
estimate is valid for the radar sensor used in this work.
By deriving a similar likelihood for other range measuring
exteroceptive sensors such as underwater sonar and laser, the
proposed algorithm can be generalized for use in multiple
autonomous mapping applications.

V. PARTICLE FILTER IMPLEMENTATION

The objective of this filter is to propagate the posterior
density of the joint density, p(mk, λk|zk). Assume the prior,
p(mk−1, λk−1|zk−1) can be represented by a set of weighted
particles {x(i)

k−1, w
(i)
k−1}N

i=1 such that,

p(xk−1|zk−1) ≈
N∑

i=1

w
(i)
k−1δx

(i)
k−1

(xk−1)

where,

xk−1 =
[

mk−1

λk−1

]

is the joint state containing the estimate on the map and
the corresponding measurement likelihoods. Note that the
measurement likelihood λk exists for both mk = 1 (where
it will be the landmark detection likelihood) and mk = 0
(where it will be the false alarm likelihood).



To propagate the densities the standard particle filter recur-
sion with resampling is followed,

x
(i)
k ∼ q(xk|x(i)

k−1, zk)

w
(i)
k = w

(i)
k−1

p(zk|x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

k−1, zk)
(23)

The transition likelihood p(x(i)
k |x(i)

k−1) describes the pre-
dicted state values and consists of the Markov time update de-
scribed previously in section IV-D to propagate the occupancy
random variable. This is a random particle set sampled from
the previous posterior p(xk−1|zk−1) where the binary value
of the m component is changed or remains fixed according
to the probabilities set by the transition matrix, Π. A static
time update for the measurement likelihood estimate (as it is
assumed constant for each landmark) is used.

p(m′|zk−1) ∼ p(mk−1|zk−1,Π)

p(λ′|zk−1) = p(λk−1|zk−1) (24)

The proposal likelihood q(xk|x(i)
k−1, zk)) depends on

whether the cell continues in its same state, i.e. during
the Markov transition the cell value remains unchanged, or
whether it changes state. In the case of the state remaining
the same,

q(x(i)
k |x(i)

k−1, zk)) = p(x(i)
k |x(i)

k−1). (25)

In the case of the state changing or a new detection, the data
at time k is used to initialize the estimate on λk according
to the measurement likelihood estimate algorithm outlined in
the previous section IV-D. That is, the proposed detection
likelihood is taken to be the estimated likelihood at that
location using measurement data S(M) through eqn.(22).
Finally the likelihood used to weight the particles is obtained
from the likelihood of a landmark being present in the cell
which is also the same likelihood used by the detection
algorithm (eqn.(15)) and is given by,

p(zk|x(i)
k ) =

p(sr|m,Ωm)
p(sr|m̄,Ωm̄)

(26)

where sr is the signal intensity at particle location x(i).
The weighted particle set is then re-sampled. Estimates of
the posterior occupancy and measurement likelihood can be
extracted using the expected a posteriori,

x̂k =
N∑

i=1

w
(i)
k x(i). (27)

VI. EXPERIMENTS

This section outlines experimental comparisons, using both
real and synthetic data, of the proposed detection based RM
algorithm with previous range likelihood approaches. The
section shows superior mapping capabilities of the proposed
method using metrics such as the sum total squared error, and
quantitative comparisons of cell classification errors.

A. Dataset 1: Synthetic Data, Single Landmark

Simulated data was first generated using idealistic Gaussian
fluctuating noise and a Gaussian fluctuating landmark of
unknown mean intensity. The synthetic data is the same as
used previously in section III-C. One hundred Monte Carlo
trials were performed in which the occupancy posterior of
each cell was propagated using the proposed algorithm with
online DL estimation, and the standard occupancy algorithm
where the DL is a priori assumed. For each trial, the assumed
DL is increased by 0.01 to cover all possible values. As before
(figure 3) the FAL is set at 0.1. Cells in which the posterior
occupancy estimate is greater than 0.51 are declared occupied,
and those less than 0.49 are declared empty. Figure 7 shows
the percentage of false negatives (occupied cell declared
empty) and false positives (empty cell declared occupied) for
each trial. Note that when the assumed DL equals the false
alarm likelihood, there is no information gained by either
a detection or a non-detection thus the map remains in its
initial state of p(m0)=0.5. The percentage of false negatives
remains high as expected when the DL is less than the FAL,
but quickly drops to zero as the DL increases, thus showing
that the proposed algorithm with DL filtering has a superior
performance.
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Fig. 7. Comparison of simulated mapping results using online DL
estimation and the classical occupancy models where the likelihood
is assumed. At pessimistically assumed DLs for the classic approach,
the number of false positives and false negatives are dramatically
greater than those using the proposed approach.

B. Dataset 2: The Carpark Environment

The section outlines a real-world application of the pro-
posed method in an outdoor carpark environment. This envi-
ronment contains numerous landmarks of varying dimension
with landmark dependant detection likelihoods. Herein lies
the inability to obtain the DLs for each object offline using
training data, as the range of potential objects types (and
hence DLs) in an outdoor environment makes it infeasible.
A mobile platform, with mounted FMCW radar and LMS
sensors, was remotely driven around the carpark. Four optical
encoders record the input velocity to each wheel and a single-
axis fibre optic gyroscope mounted over the rear axle gives
estimates of the vehicle heading. With built-up surroundings,
the GPS data acquired was not accurate enough to determine
ground truth location. As the laser scans frequently obtained
returns from the ground, automatic matching techniques failed



and therefore consecutive laser scans were manually matched
to determine the true location of the vehicle at each update.

Laser data typically returns the range to the first landmark
detected along the beam. For the case of the radar, a single
beam can in fact contain information from multiple landmarks
(see fig 5 for example) mainly due to the wider beamwidth
(∼ 1.8o compared with ∼ 0.1o for the laser) and the ability
of the radar beam to penetrate some light foliage. The radar
beam can penetrate and propagate into the trees and return
information about multiple landmarks whereas the laser is
limited to one return per beam. This optimistic approach
therefore assumes that every measurement (detection and non-
detection) along the entire beam is valid. That is, for each time
step k, each peak in the data (under both the null and alternate
detection hypotheses), is treated as a potential landmark,
and no model of the sensor beam propagation properties is
assumed. Detections registered over the test by a laser sensor
and the radar sensor are shown in figure 8. Parameters for the
radar detection OS-CFAR module (section IV-C and eqn.22)
were chosen as W = 40, K = 30, and Pfa = 1×10−6. An
overview of the carpark environment is shown in figure 9.

Fig. 8. Comparison of the detections reported by the radar for the
entire carpark loop with those of the laser. Notice the high false
alarm rate for the radar detections. False alarms (ground and grass
detections) are also present in the laser data along the central region
(-45,5) to (15,5).

Using the detection sequence depicted in figure 8, both
detection and range likelihood approaches to the GBRM
problem were implemented. Approximately 300 sensor scans
were registered over the test, with the final posterior estimates
of the map shown in figure 10. This shows mapping results
from the proposed algorithm which estimates the detec-
tion likelihoods compared with previous approaches using
assumed or range-based likelihoods [Thrun, 2003]. Visual
inspection shows a reduction in false landmark declarations
and an improved posterior map estimate. However, using the
manually constructed ground truth map of the environment in
figure 11, quantitative comparisons with previous approaches
can be generated which highlight the advantages of the

Fig. 9. An overview of the testing ground from which the data
presented in figures 8 and 10 was acquired. Also indicated is the
path traversed by the vehicle. Only one car was present at time of
data acquisition.

proposed method.
The error metric adopted for this work is a modification of

the sum of the squared error [Martin and Moravec, 1996] over
the estimated grid map, Mk, and the true map, M . For outdoor
mapping applications, where there is a majority of empty cells
as opposed to occupancy cells, the sum of squared error,
which equally considers each (occupancy and empty) cell,
was seen to result in an uninformative measure, especially
in the presence of large landmark detection uncertainty. This
is as a consequence of the total number of empty cells far
exceeding the occupied cells. This paper therefore proposes
an equally weighted (for both occupied and empty cells) error
metric, referred to as the normalised averaged sum of the
squared error (NASSE),

NASSE = 0.5
(

1
qO

qO∑

i=0

(
P (mi

k|zi,k,mi =1)− 1
)2+

1
(q− qO)

q∑

i=qO+1

(
P (mi

k|zi,k,mi =0)− 0
)2

)
(28)

where, q is the total number of cells in the map, M ,
and qO is the number of ground truth occupied map cells.
This metric presents a normalised error measure for use in
environments of largely unequal numbers of occupied and
empty cells. Figure 12 shows the sequential NASSE error for
both approaches. It can be seen that the rate of monotonic
error reduction of the proposed approach exceeds that of
standard methods, with a reduced mapping error achieved in
the final posterior map estimate. Figure 13 shows an error
metric comparison, for the case of noisy vehicle control
inputs. In this case the standard SSE metric shows monotonic
error reduction where as the NASSE clearly shows mapping



inconsistency.

Fig. 10. The resulting occupancy maps produced by the proposed
algorithm (left) and previous approaches with assumed likelihoods
(right). Note the larger presence of falsely declared occupied cells
using previous methods. Also highlighted is the only car present in
the carpark during the time of the experiment.

Fig. 11. Ground truth binary representation of the carpark testing
environment. The map was manually constructed from observation
of the testing ground shown in figure 9.

1) Influence of Detection Module Parameters: To gener-
ate detection measurements from the raw radar data (section
IV-C), for both the range-likelihood and detection-likelihood
methods implemented, an adaptive ordered statistics (OS) is
adopted. Adaptive detectors use a sliding window of width,
W/2, which samples local power readings and generates an
estimate of the local noise in each range bin, r. Further
parameters required to set the adaptive power threshold are
the ‘K-value’, K, and the desired false alarm rate, Pfa. The
latter parameter acts as a uniform scaling of the Kth ordered
power sample in the window, and uniformly raises or lowers
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Fig. 12. Comparison of the NASSE metric between the estimated map
posterior and the ground truth map. The result shows the monotonic
reduction in the map error. For a given number of updates, the
proposed approach out-performs that of previous methods which use
range-based likelihoods.
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Fig. 13. Comparison of the error metrics for a loop with noise
injected into the location estimates. This figure shows the suscepti-
bility of the classical sum of squared error (SSE) metric, to maps
containing unequal number of occupancy and empty cells. The
NASSE error metric clearly indicates a non-converging map due
to multiple missed landmarks, whereas the standard metric shows a
monotonically decreasing error.

the adaptive power threshold calculated in the windowing
function.

To synthesise an environment consisting primarily land-
marks with low detection probability, the Pfa parameter of
the detection algorithm can be set arbitrarily low (evident
from figure 2). NASSE error plots for excessively low and
high Pfa values are shown in figure 14. At extemely low
Pfa, further advantages of the proposed algorithm are ev-
ident, since it explicitly considers the detection statistics,
specifically the missed detection likelihoods, in the mapping
recursion. For range-based methods, no range reading (as a
result of a missed-detection), results in no range likelihood
existing. Standard approaches therefore typically assign intu-



itive occupancy measurements in regions of no range reading
[Thrun, 2003], [Elfes, 1989], [Foessel et al., 2001], [Konolige,
1997]. At high rates of false alarm, an increased rate of
error reduction is evident with the proposed approach due
to the formulation incorporating the detectors false alarm
probability. This demonstrates the advantages of the proposed
approach in the presence of both landmarks with low detec-
tion probability, and high rates of spurious detections.
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Fig. 14. Comparison of the NASSE metric in the carpark environment
for very low detection probability, Pfa=1×10−30, and very high
false alarm rate, Pfa=1×10−1.

The parameters, W , K, set the upper limit on the expected
environmental landmark density along a single power-range
spectrum (such as in figure 5) in the environment. As the
estimate of the noise signal intensity is taken as the Kth

ordered sample, with W=40 and K=30 and a range resolution
of 25cm per range bin, allows for (30/4)m to comprise of
empty space and (10/4)m (at most) to comprise of landmarks
[Rohling, 1983]. The OS detection routine is quite robust to
changing window size, however increased error at excessively
small or large window sizes is evident, as shown in figure 15.

Fig. 15. NASSE for both approaches varying detection sliding
window width, W , with Pfa=1×106 and K = 0.75×W . For a
given set of detector parameters, the proposed approach outpeforms
that of range-likelihood based methods, as the detection statistics
are integrated into the mapping algorithm.

While these parameters may influcence the detections regis-
tered by the imaging radar, this is common to any application
adopting such a sensor. The results presented highlight that
given any set of detector parameters, the proposed stocastic

mapping approach outperforms that of classical approaches,
as it theorectically incorporates the resulting statistics, as a
result of a given parameter choice, into the mapping recursion.

C. Dataset 3: The Campus Environment
The second dataset comprises an outdoor semi-urban en-

vironment within the university campus. Due to the practical
challenges of obtaining a binary map ground truth from such
an extensive environment, a high resolution undistorted (1
pixel/m) plan-view satellite image shown in figure 16 is
used to provide map validation. The, approximately 500m
long, path traversed by the vehicle is also shown. Figure 16
also shows the same image with superimposed hypothesised
landmarks returned by the proposed algorithm. While quan-
tification is challenging in such an environment, the results
show good correlation with the satellite image, as numerous
trees and buildings are clearly accurately registered. From
comparison of the maps produced by the radar, using the
proposed algorithm, and the laser in figure 17, the merits of
radar as an outdoor exteroceptive sensor are evident. Due to
the multiple-landmark-per-bearing-angle detection capability
of the radar sensor, far more detail is apparent in its map than
that of the single-landmark-per-bearing-angle laser.

VII. CONCLUSION

This paper presented a mapping algorithm for jointly
estimating the occupancy variable along with its detection
measurement likelihood. It showed that the measurement
likelihood typically used in occupancy grid algorithms should
in fact be modeled as a density function as opposed to
a deterministic function, which is normally the case. By
examining the measurement model and using signal detection
theory, it is shown that the occupancy random variable can
be calculated in closed form without the need of heuristic
models. However, the measurement likelihood used in the
occupancy posterior calculation is in itself an estimated entity,
thus requiring a joint estimation frame work to propagate both
the occupancy and measurement likelihood estimates.

The standard discrete Bayes estimation framework there-
fore no longer applies to the occupancy grid problem and a
particle filter approach is proposed. Using Markov transitions,
the effects of occlusions and the appearance of new landmarks
in the region are integrated into the algorithm. Particle rep-
resentations allow for the propagation of the measurement
likelihoods (derived through a non-linear function of the sen-
sor received intensity) subject to non-Gaussian noise. Weights
for these particles are obtained from the likelihood ratio used
by the detector. The resulting set of posterior particles is then
resampled and the recursion is established.

This concept was demonstrated for an FMCW radar sensor
which is typically used in an outdoor environment. The sensor
gives access to unprocessed range data, allowing for custom
landmark detectors to be applied. The framework then allows
for the accurate assignment of map occupancy probabilities,
irrespective of the hypothesis chosen by the detector. Mapping
results were presented for loops in an outdoor carpark as



Fig. 16. A high resolution satellite image of the testing grounds within university campus. This provides some ground validation for the
proposed mapping algorithm. The estimated vehicle path (obtained from the manually matching successive scans) is superimposed in red.

Fig. 17. The final posterior map estimates from a radar and laser sensor of the outdoor campus environment. Note the increased information
content of the radar map, over that of the laser map, due to its ability to detection multiple landmarks at a single bearing angle.



well as within the university campus. Comparison with maps
produced from previous approaches, ground-truth maps, laser
occupancy maps as well as images show the merits of the
proposed approach.

However, this work focused mainly on the online esti-
mation of the detection likelihood and assumed the false
alarm likelihood to be known. Due to the detection theory,
thresholds are set using an a priori assumption on the
distribution of the noise signal (as well as being assumed
homogenous). Significant work needs to be carried out to
accurately estimate the false alarm likelihood in regions of the
map which deviate from the homogenous noise assumption,
which can have drastic results for the occupancy posterior.
Evidential modeling methods may be applied as there would
be large uncertainty as to the true false alarm probability.
This would further improve the mapping accuracy. Further
work also would integrate the estimated detection likelihoods
into data association decisions and SLAM algorithms as most
hypothesis decision algorithms include detection likelihoods,
which are again typically a priori assumed known. The
consequences of such simplifications are currently under
investigation.
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