
Tracking Naturally Occuring Indoor Features in �D and �D with

Lidar Range�Amplitude Data

M�D� Adams� A� Kerstensy

Institute of Robotics

Swiss Federal Institute of Technology

Z�urich� Switzerland

September ��� ����

Abstract

Sensor Data Processing for the interpretation of a mobile robot�s indoor environment� and
the manipulation of this data for reliable localisation� are still some of the most important
issues in robotics� This article presents algorithms which determine the true position of a
mobile robot� based on real �D and �D optical range and intensity data� We start with the
physics of the particular type of sensor used so that the extraction of reliable� and repeatable
information �namely edge coordinates� can be determined taking into account the noise as�
sociated with each range sample and the possibility of optical multiple path e	ects� Again�
applying the physical model of the sensor� the estimated positions of the mobile robot and
the uncertainty in these positions are determined� We demonstrate real experiments using
�D and �D scan data taken in indoor environments� In order to update the robot�s position
reliably� we address the problem of matching the information recorded in a scan to� 
rstly� an
a priori map and secondly� to information recorded in previous scans� eliminating the need
for an a priori map�

� Introduction

An approach to navigation which uni�es the extraction of local information� from a vehicle�s
immediate �D surroundings� with the application of a simple� mobile robot kinematic� model
based localisation algorithm is presented� We begin by analysing �D and �D optical range and
intensity data from a newly developed lidar �light detection and ranging� sensor� In recent years
these sensors have been used more and more in robotics �Johnston A� R� 	�
 Krotkov E� ��

Miller G� L� and Wagner E� R� 
	
 Nitzan D� et al� 		� and our experience with purchased
sensors has led us to develop our own lidar �Adams ���� By considering the physics involved in
this sensing process we brie�y show in section � the e�ect of electronic noise and optical multiple
path e�ects upon the sensor data� This is done in order to produce� in section �� an informed
answer to the question �What information should a mobile robot localisation algorithm look for�
within the sensor data�� A physical model which statistically relates the noise associated with
individual range readings to the expected coordinates of points along indoor line segments is
derived� We present and quantify the resulting edge detector using real lidar data and show that
the edge detection method is an on line process� This means that the algorithm does not wait
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for full scans and then determine edges� but instead determines their coordinates immediately
after they are sensed�

In section �� we demonstrate a simple mobile robot kinematic model which relates the true
position of the robot to the �D and �D detected edge coordinates found in section �� Under
the framework of the extended Kalman �lter �EKF� we determine the estimated position and
positional uncertainty of the robot immediately after each scan� We show two localisation
examples� Firstly the positions of the mobile robot are determined using a simple a priori map
of the environment� Exactly how this a priori map is formed is also explained� In the second
example� the positions of the mobile robot are determined without any a priori map where new
edges are compared and matched to those extracted from previous scans� We also comment on
the general problem of mobile robot localisation without an a priori map�

Finally in section 	� edge coordinates from �D scans are used to localise a mobile robot�
We demonstrate the generality of the algorithms as we match edges determined at di�erent
scanning azimuth angles between �D range scans� Future research issues in the area of �D robot
localisation will also be discussed�

� Optical Range and Intensity Data

In order to place our work into perspective� we will brie�y present here the results of single �D
and �D lidar �light Detection and Ranging� scans recorded in an indoor laboratory environment�
The particular sensor used is a lidar� developed by the �rst author� employing a low powered
�mW� eye safe LED which can measure ranges from almost all types of surface between � and
�� m �Adams ��
 Borenstein et al� ���� A comparison of this and other commercially available
optical range sensors is given in �Adams ��
 Borenstein et al� ��
 Hebert M� and Krotkov E� ����
A photograph of the �D scanning sensor used throughout this article is shown in �gure �� It
can be seen in the photo that the mirror can be scanned about two axes� namely the horizontal
and vertical axes� thus allowing the �D columnated LED light beam incidence upon the regions
of interest within the local environment� The component of the light re�ected parallel to the
incident beam is then received by the sensor and a range��intensity data pair is produced at the
sensor�s outputs� Using the scanning mechanism shown in �gure � then produces either a �D or
�D scan of the environment as required�

��� �D Data Production

Figure � shows a �D range �top� and relative received light intensity �bottom� scan recorded
within a laboratory environment� The actual environment is shown as the dotted lines and the
range data is shown as the larger dots� In the bottom scan� the relative received signal amplitude
as a function of scanning angle can be seen� The larger this signal is the more �trustworthy� the
corresponding range data point is� This will be explained further in section ������

����� Spurious data � mixed pixels

Close examination of �gure � shows that spurious data points sometimes result immediately
before or after detected edges and surface re�ectance changes� Between regions A and B in
�gure � for example� the actual range suddenly jumps from ���� metres �corresponding to the
edge at A� to ���� metres at B� The observed range� according to the sensor� changes from ����
metres to only ���	 metres �point C in �gure ��� This e�ect occurs when the transmitted light

�The sensor employs the amplitude modulated continuous wave �AMCW� method for range estimation �Boren�
stein et al� ���
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Figure �� A photograph showing the �D scanning lidar sensor�

beam is split between two surfaces of di�ering range and�or re�ectivity� Each surface produces
its own re�ection and the output range reading from the sensor is made up of both re�ected
signals�

In �Adams ��� we have considered in detail the e�ect of splitting the light beam between two
targets� In previous work the cause of the spurious points has not received much attention� and
it has simply been stated that they are inherent in any A�M�C�W� optical system and cannot
be removed �Hebert M� and Krotkov E� ���� In response to this we have built a detector which
has a high success rate at identifying such points when they are caused by either re�ectance
or range changes or both simultaneously �Adams and Probert ���� In this article� we use this
detector on all range data scans �unless otherwise speci�ed� before further processing the data�

����� Range Uncertainty � Determining the Range Variance

The bottom scan in �gure � shows the amplitude of the received signal throughout the full
���o scan� This information is very useful as it tells us the uncertainty associated with each
corresponding range reading� To derive a relationship between the amplitude of the received
light signal� Vr and the range uncertainty or more precisely the range variance� ��r � it is necessary
to gain an understanding of the physics involved when the light is re�ected from a point in the
environment and converted into a range voltage by the sensor�s receiver� An explanation of the
propagation of noise within the sensor and a derivation of the relationship between ��r � the range
variance and Vr� the signal amplitude is given in �Adams and Probert ��
 Adams ��
 Connor
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Figure �� �D range �top� and received signal amplitude �bottom� scans recorded within a lab�
oratory environment� The triangle represents the sensor�s position and the dotted lines in the
top scan represent the actual environment� The top scan shows range as a function of scanning
angle �larger dots� and the bottom scan shows the relative received signal amplitude as a function
of scanning angle�

F� R� 
��� We repeat the relationship here as it will be very useful in sections ��� and � where
we process the range data according to its variance to �nd edges and localise a mobile robot
respectively� From �Adams and Probert ����

��r �

�
��n

��

�� � �

Vr

��

� ��e ���

where � is the signal modulation wavelength� ��n is the constant variance of the initial electronic
noise source before phase detection and ��e is the additive electronic noise e�ect due to the
constant noise variance within the reference signal�

Tests with the sensor gave the numerical relationship between ��r and Vr as�

��r �
	������

V �
r

� 
����� ���

where Vr is measured in volts and ��r is the variance ����� m�� By direct comparison with
equation � we see that for � � �� metres�

��n � ����� � ���� �volts��� ��e � 
����� � ���� �metres�� ���

Therefore� for each observed range estimate we now have an approximate estimate of the range
variance�
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��� �D Data Production

With the scanning system shown in �gure � it is possible to represent the �D range data from
the sensor in Cartesian form as in �gure �� In this representation one can clearly see the local
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Figure �� A �D range map showing the immediate surroundings of the sensor�

environment surrounding the sensor �each point shown corresponds to a single range data point��
Another representation of the same scan �this time with a person standing in front of the

sensor� is shown in the top two scans in �gure ��
Each pixel in the top scan of �gure � is illuminated proportional to the albedo� of each point

in the environment� The top row of pixels corresponds to a single ���o revolution of the sensor�s
mirror �see the photo in �gure ��� The mirror is then automatically tilted downwards about
its horizontal axis through ���o and the next row of pixel values is recorded� This process is
repeated 	� times to give the full �wrap around geometry� scan shown� The similarity to a
black and white photo of the full environment is evident�

�which is shown in �M� J� Brownlow �	� to equal the signal amplitude Vr multiplied by the square of the range�
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The second image in �gure � shows the result of illuminating each pixel proportional to the
range output generated during the same scan� The darker the pixel� the closer the object is to
the sensor� This range image is important for AGV navigation� as a robot can immediately see
which objects are in its vicinity� Note that one no longer sees the posters on the walls since they
are equidistant from the sensor as the walls themselves� This shows the linearity of the sensor as
it is able to produce accurate range estimates for almost all re�ectivities� The lower two scans
in �gure � show the same type of data but in a more complex environment� Notice that in the
albedo scan �third from the top� one can distinguish the bricks from the cement in the wall �left
part of the scan� and one can see the poster �and text� on the wall� In the range image �bottom
image� the bricks and cement are indistinguishable as is the poster from the wall since they are
equidistant from the sensor�

Now that we have brie�y explained the sensing modality itself� we proceed by explaining
algorithms for processing the data to extract information from �D and �D scans in order to
localise the mobile robot carrying the sensor�

� Feature Extraction � Edge Detection

In this section we determine how to segment the range data during a �D scan� or a �D section
from a �D scan� which remain after the removal of spurious points �Adams ��
 Adams and
Probert ���� to �nd discontinuities in range which can be used in mobile robot localisation�

In the literature� �Crowley 
�� applies a �least squares� line �t to data from ultrasonic sensors
in order to �nd edges� The method minimises the mean squared error between a set of noisy
data and its best line �t� provided data points are used which actually should belong to that
line� Line �tting takes place only after a complete ���o scan has been recorded� Further� all of
the recorded range data has equal in�uence on the equation of the resulting line segment� since
no range variance is used when forming the line� When the squared error between a range value
and the computed line segment reaches a certain threshold� a new line segment is initiated�

Vision based approaches to edge detection also exist based upon the analysis of complete
images �Canny J� 
�
 Besl P� J� 

��

Instead of attempting to �t straight line segments to sensor data after a full scan has been
recorded and then �nding the edges� we attempt an alternative approach� As the sensor data
arrives� we continuously update a �lter which provides a prediction of the coordinates of the
next sensor data point� based on previous data� assuming it lies within the same planar surface�

As explained in section �� we know the approximate range variance associated with each
sensed range value� The contribution of each range estimate to the next range prediction is
therefore weighted according to its variance� In forming our prediction of �what range value
we next expect� we take more notice of data with small range variance ��r and less notice of
that with higher uncertainty� A validation gate equation is then used to decide whether or not
the next observed data point is a close enough match to the predicted data point to continue
the �lter update� and hence the search for an edge� If the observed �sensed� point lies outside
of the validation region� a possible edge has been detected and the �lter is reinitialised �see
�Adams ��
 Bozic 
���� The advantage of this technique is that edge detection is an on line
process� occurring as the data arrives� This means that a possible edge coordinate is determined
immediately after it is sensed� We do not wait for a complete ���o scan� and then calculate the
coordinates of the intersection of line segments to determine edge coordinates�

We now introduce a mathematical framework� namely the extended Kalman �lter �EKF��
for the optimum production of planar edges�

	



��� Edge Detection � The Extended Kalman Filter

Consider the general planar surface shown in �gure � and the corresponding sensed data points
which would result from a perfect �D line of sight sensor� Application of the sine and cosine

id

i+2d
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Mobile Robot

Environmental 
planar surface
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mobile robot’s 
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γ γ
α
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C

Figure �� The relationship between successive range readings when scanning a planar surface�

rules to the two triangles OAB and OBC in �gure �� and using the fact that the three points
A�B and C all lie within a vertical plane� it is possible to show that the relationship between
successive range readings� when the light beam is incident upon a planar surface is given by�

di�� �
didi��

��di cos �� � di��
���

where � is the constant angle �in bearing� between successive samples of the sensor as it rotates
about its vertical axis� Note that the relationship given in equation � is independent of the
elevation angle ��

����� System Model

Equation � is a second order di�erence equation with respect to time since range sample di��

is recorded one time unit after di�� which in turn is recorded one time unit after di� Hence we
de�ne the following state space equations�

x��k � �� � di�� ���

x��k � �� � x��k� � di�� ���

where x��k� and x��k� represent state scalars at discrete time k� Therefore equation � can be
fully de�ned by the state space equations�

x��k � �� �
x��k�x��k�

��x��k� cos �� � x��k�
�	�

�Note that when the light beam rotates in bearing at a constant azimuth angle �� its intersection with a planar
surface does not in general form a straight line� except for the particular case when � 
 �o�






x��k � �� � x��k� �
�

In vector form we have that x�k � �� � �x��k � �� x��k � ���T is a non�linear function of x�k��
ie�

x�k � �� � F�x�k�� ���

Equation � represents a simple system model which will be used to predict the next range
value from the sensor �provided a planar surface is being scanned� before the actual range value
is recorded� Note that equation � is a particular case of the standard system model equation�

x�k � �� � F�x�k��u�k�� � v�k� ����

but in this particular case we have no input vector u�k� and if we assume our indoor environment
to consist of perfectly planar surfaces �eg� cabinets� open doors� walls� then equation 	 is in fact
a perfect description of the state evolution� so that the system noise v�k� � ���

����� Observation Model

We now consider the e�ect of the sensor measurement or observation of the states x��k� and
x��k�� We note that with any optical range �nder� the range variance ��r can vary considerably
depending on the received signal amplitude� For example equation � shows that the standard
deviation �r can be as high as �	 cm for the smallest detectable non zero signal strength of
��� volts� For an intermediate signal strength of ��� volts� �r � � cm� For a Gaussian range
distribution� ���

�� of all detected ranges will lie between � � ��r and � � ��r� where � is the
mean range estimate �Kreysig 
��� Hence this boundary corresponds to an uncertainty in range
of �� cm for a returned signal with an intermediate ���� volts� amplitude�

Due to the small optical beam diameter �� cm� however� the absolute maximum circum�
ferential bounds upon the range estimate is only ���� cm� Hence the angular uncertainty in
a range estimate is very much smaller than the radial uncertainty� We therefore ignore this
small angular uncertainty and consider the range measurement as simply di�� �di�� being the
next predicted estimate along a planar surface� and assume that its bearing is known precisely�
Therefore our observation is simply�

z�k� � di�� �
h

� �
i � x��k�

x��k�

�
� w�k� ����

where z�k� is the observation and w�k� is a zero mean additive noise process with a known
variance ��r � We assume white �or uncorrelated� noise� since our range samples are spaced n�T

apart in time� where n�T 		 Tf � the optical sensor�s cut o� time �Adams ���� Hence the
range samples can be considered to be temporally uncorrelated� We can rewrite the observation
equation as�

z�k� � Cx�k� � w�k� ����

where C is the observation matrix� To �nd a good or �best �t� edge� we require that an obser�
vation lies outside of some validation region centred on the prediction� To form this prediction
and validation region we use the extended Kalman �lter algorithm which is described in the
appendix�

�An interesting future research directive would be to include a �nite value for v�k� to allow for imperfect
planar surfaces � ie
 surfaces which are slightly curved or contain small irregularities �door handles� pipes on the
wall etc���
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� Edge Detection� Results

In order to demonstrate the edge detection method� we will �rstly show an in depth study using
�D scans�

Because the value of � in equation � is assumed to be constant� the extended Kalman
�lter cycle expects new observations every time the sensor rotates through this angle� The
discontinuity �mixed pixel� detector in �Adams and Probert ��� will have labeled some of these
observations as �bad data�� To continue the Kalman cycle successfully� we replace such �bad
observations� with their predictions� calculated in step � of the �lter cycle �see appendix�� since
we can place no con�dence in these observations�

The normalised innovation used in the validation gate gives an estimate of the number of
standard deviations by which the observation di�ers from its prediction at a given time step� k�
Consider the e�ect of choosing a �three sigma limit� for the validation gate �ie� D�k � �� � ���
The normalised innovation is a 
� random variable� and tables show that we would be ���	�
certain that the observation lies within ��

p
s�k � �� �where s is the variance of the innovation

� see equation �
 in the appendix� of the position predicted under the assumption that it lies
on the same planar surface as its predecessors �Bar�Shalom and Fortmann 

�� Two e�ects can
yield a value for D�k � �� greater than �� Either the observation does not lie within the same
planar surface as its predecessors� or the observation should belong to the same planar surface
but happens to lie outside of the �three sigma limit�� The latter of these will occur about once
in every ��� trials�

Edge detection is very dependent upon the value of the variance associated with a given
range estimate� From equation � we see that the detection of an edge will therefore depend
upon Vr� the received signal amplitude� For an intermediate signal strength of Vr � ��� volts�
the �lter will not detect an edge when an observation lies less than approximately � cm from
its prediction� As would be expected� the �lter becomes �more lenient� with data having low
values of Vr �high values of �r�� For example when Vr � ��� volts� an edge will not be detected
only if the observation di�ers from its prediction by less than �� cm�

The scans in �gure � show the technique using range data recorded in a simple laboratory
environment� In the scans� the triangle represents the robot carrying the sensor� the simple line
model represents a plan view of the environment� and each small cross a single range data point�
In the left hand scan� once a value for the normalised innovation� D�k � �� of � or more was
estimated� a possible edge was detected �shown as the large crosses ��� in the left hand scan�
and the �lter was reinitialised� in order to begin tracking the next line segment�

Note that edges have been detected at points A and B actually corresponding to a radiator
and a vertical pipe� not shown in the simple line map� Although the �lter is correct� and shows
high sensitivity in detecting these points� the changes in depth which cause these edges are often
in practice to small to be of use as features� since it is unlikely they will be found from other
mobile robot positions �a factor which is necessary for mobile robot localisation in section ���
Note that using a single threshold value for D�k � �� also results in many false alarms between
C and D in �gure ��

In practice we were able to decrease the sensitivity of our edge detector �so that only larger
range discontinuities would be detected� by using two di�erent threshold values for the nor�
malised innovation D�k � ��� one to indicate a possible edge which we will call g� and another
lower value which is just used to reinitialise the �lter which we will call h� If we choose h to be
unity� then any observation di�ering from its prediction by more than �

p
s�k � �� �see equation

�
 in the appendix� will reinitialise the �lter so that it tracks a new line segment� This results
in better predictions� since the small range changes which now reinitialise the �lter �but are not
considered large enough to indicate an edge�� previously caused bad predictions to be made�

��



Figure �� Kalman edge detection� using data which has passed through the mixed point detector
�Adams and Probert 	�� successfully� The left hand scan shows crosses ��� at detected edges
when a �� sigma limit� is assigned to D�k � ��� The right scan shows the result of splitting
D�k � �� into two thresholds� g � � and h � � �see text��

eventually leading to the detection of edges such as those at points A and B�
The crosses ��� in the left hand scan of �gure � occur when the observation signi�cantly

di�ers from the prediction meaning that the previous observation was the last point on the
previous line segment� Hence these points should also be marked as possible edges� and these
are shown as diagonal crosses ��� in the right hand scan in �gure ��

The e�ect of setting the normalised innovation D�k � �� threshold to a single value of � is
demonstrated by the left hand graphs in �gure 	� The top left hand graph shows the observed
ranges �solid line� and the predicted ranges �dashed line� along the wall CD in �gure �� The small
range changes at points A and B �these points also corresponding to A and B in �gure �� cause
erratic predictions which then result in the �lter indicating an edge� The left hand lower graph
in �gure 	 indicates the variation of D�k � ��� the normalised innovation� with sensor azimuth
between ���o and ���o� A logarithmic scale is used �the vertical axis is log���

p
D�k � ����

because of the vast range of values of D�k � ��� For example� between C and D� D�k � �� was
mostly less than unity� but at C it rose to over ���� The horizontal dashed line shows the chosen
threshold �D�k � �� � �� beyond which the �lter indicates an edge�

The right hand scan in �gure � shows the edge detector running on the same data� this
time with the threshold h reduced to unity� g remaining at �� Note that the �lter still detects
the �important� edges at the corners of the pillars� but is now less sensitive to the small range
changes along wall CD as it now only detects one edge shown near to point C� The right hand
graphs in �gure 	 show that the predictions are a closer match to the observations� particularly
at points A and B� The reason for this is shown in the lower right hand graph� When the curve
rises above log���d� � �� D�k � �� 	 � and the �lter is reinitialised� This occurs at A and B
�and at various other points� so that the predictions at these points are based on a new line
segment� The dashed line again shows the threshold value beyond which the range points are
marked as starting a new segment and an edge is assumed� Note the degraded sensitivity� since
only � points now rise above this threshold�

The scan in �gure 
 shows the edge detecting algorithm running on data which has suc�

��
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Figure 	� Graphs of range prediction and observation versus sensor azimuth along the wall
marked CD �top graphs�� The left hand curves are the results when the threshold value for
D�k � �� has a single value �g � h � ��� The right hand curves show the closer match between
prediction and observation when g � � and h � �� The lower graphs show log���

p
D�k � ��� for

each observed data point�

cessfully passed through the discontinuity detector given in �Adams and Probert ���� recorded
within the same environment� but from a di�erent position� Once again the two thresholds for
D�k � �� were separated so that g � � and h � �� The large range discontinuities estimated
by the �lter are marked at the pillar edges where values of the normalised innovation D�k � ��
rose above �� These points may be interpreted as range discontinuities which are large enough
to represent the edges of obstacles�

The graphs in �gure � show various parameters produced in the �lter cycle� using only
the data from the right hand pillar�s lower detected edge in �gure 
� The top graph shows
the observed and predicted range estimates just before this edge is detected� Superimposed
upon these curves are curves of �x��k � � j k� � �

p
s�k � ��� labeled as the �� sigma limit� and

�x��k�� j k��
p
s�k � ��� labeled as the �� sigma limit�� where �x��k�� j k� is the �rst component

of the range prediction �equation �� in the appendix�� The � sigma limit indicates the region
within which the point is assumed collinear� but if an observation moves outside the � sigma
limit� the �lter is reinitialised� The latter occurs at point N in the top graph� It can be seen that
the corresponding point on the lower graph is the �rst to rise above �� meaning that D�k��� 	 ��
The next two observations are used to initialise the �lter �Adams ���� At these two points the
predictions equal the observations and no values can be computed for s�k� �� or D�k � �� until
the third observation is recorded� This explains the gap in the graphs of �gure ��
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Figure 
� The edge detector produces the edges shown when the threshold values for D�k��� are
split such that g � � and h � �� Edges are shown by crosses� � when the range is increasing
as the sensor rotates clockwise and � when the range is decreasing�

Point M shows the observation curve cutting the � sigma envelope as the next observation
lies outside of this limit� Hence the �lter estimates the previous observation as the end point of
the last line segment� and the current observation as the starting point of a new line segment�

Figure �� shows the results of the edge detection algorithm in a more cluttered environment�
A clear comparison can be seen between detected edges and true edges� The dotted lines
represent the actual environment� the cross ��� represents the hand measured position of the
mobile robot and the continuous line represents the actual sensor data �one point every ���o��
The small stars ��� correspond to edges detected within the scan �see section �����

The edges found in this cycle are stored and forwarded to the mobile robot localisation
algorithm which will be discussed in the next section�

� Mobile Robot Localisation

Localisation is the process of determining the position of the mobile robot with respect to a
global reference frame �Leonard and Durrant�Whyte ���� Now that we have a reliable algorithm
for the extraction of particular features during single scans� we proceed with our localisation
algorithm� We present here a mathematical model which statistically links the positions of
these detected features �relative to the robot�� the uncertainty in the range readings used to �nd
these features� and a simple model of the motion of a mobile robot in order to form an optimal
estimate of the robot�s position�
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Figure �� The top graphs show the observations� predictions� �� sigma limits� and the �sigma
limits� in the vicinity of the right hand pillar�s detected edge in �gure �� The lower graph shows
the value of log�d� � log���

p
D�k � ����

��� Mobile robot kinematics � The system model

The system model describes how the vehicle�s position x�k� changes with time in response to a
control input u�k� and a noise disturbance v�k�� It has the form�

x�k � �� � F�x�k��u�k�� � v�k� ����

where F�x�k��u�k�� is the �non�linear� state transition function� v�k� is a noise source assumed
to be zero�mean Gaussian with covariance Q�k�� The control input is u�k� �  T �k�����k�!T �
This model is based on point kinematics and consists of a rotation clockwise through the angle
���k�� followed by a translation forward through the distance T �k� in the plane of the mobile
robot ��gure ���� The translation function then has the form�

F�x�k��u�k�� �

�
�� ��k� � ���k�
x�k� � T �k� cos ��k�
y�k� � T �k� sin ��k�

�
	
 ����

��� �D Scanning� The Observation Model

After the process of feature extraction from the raw sensor data� we arrive at a set of observations

Z�k� � fzj�k� j � �� j �� nog� ����

The observation model describes how the measurements zj�k� are related to the vehicle�s
position and has the form�

zj�k� � h�x�k��pt� �wj�k�� wj�k� � N���Rj�k��� ����
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Figure ��� Edge detection with the EKF in a more cluttered environment� The dotted lines
represent the actual environment� the cross ��� represents the hand measured position of the
mobile robot and the continuous line represents the actual sensor data �one point every ���o��
The small stars ��� correspond to edges detected within the scan�

In the �D case� the target state vector has the form pt � �px� py�� �ie� the x� y coordinates of an
edge� pz being � in this case� The measurement function h�x�k��pt� expresses an observation
z�k� from the sensor to the target as a function of the robot�s location x�k� and the target
coordinates pt� In the case of a two dimensional scan �in a two dimensional plane� we see that�

h�x�k��pt� �

�
Range

Bearing

�
�

�
�
q

�px � x�k��� � �py � y�k���

tan��


Py�y�k	
Px�x�k	

�
� ��k�

�

 ��	�

Each measurement is assumed corrupted by a zero�mean� Gaussian noise disturbance wj�k�
with covariance Rj�k��

��� �D Scanning� The Observation Model

In the case of �D scanning� the system model in equation �� remains unchanged since the robot
moves in a �D plane� The observation model changes however� as we now have a di�erent rela�
tionship between our point observation coordinates �px� py� pz� and the robot�s state �position��
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Figure ��� Localisation by tracking a feature in �D space�

In this case the non�linear observation matrix h�x�k��pt� in equation �� becomes �see �gure
����

h�x�k��pt� �

�
B� Range

Bearing
Azimuth

�
CA �

�
�����

q
�px � x�k��� � �py � y�k��� � p�z

tan��


Py�y�k	
Px�x�k	

�
� ��k�

tan��

�
Pz


�Px�x�k		���Py�y�k		��
�

�

�
�
				
 ��
�

��� The Localisation Cycle

Now that we have de�ned our mobile robot kinematic model and sensor to target observation
equations� we proceed to explain the localisation cycle� The goal of this cycle is to �nd the new
a posteriori position estimate �x�k � � j k � �� and its covariance P�k � � j k � ��� given the
a priori vehicle position estimate �x�k j k� and its covariance P�k j k� at time k� the current
control input u�k� and the current set of observations Z�k � ���

Each separate step in the cycle is discussed in the appendix�

� Localisation results

We �rstly present the localisation results from �D scans �where the mirror is constrained to
scan within a single plane i�e� in bearing only�� All the �D scans are recorded in a laboratory
environment�

Two methods for localisation have been used� The �rst one makes use of a map of the
environment� This map consists of a list of edge coordinates in a global reference frame� relative
to which the mobile platform can match the edges extracted from a scan� The second method
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does not make use of a map� but uses prior scans as a reference for the matching process� Edges
found in prior scans are used for matching with edges extracted from the latest scan�

	�� Localisation with an a priori Map

Figure �� shows a single scan and position of the mobile robot during a run� The symbols used
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Figure ��� A single scan and position update during a mobile robot run� The circles ��� are
edges which have been matched to a predicted edge from an edge list in the a priori map� The
estimated position of the robot is shown by the point ��� and centred at this estimate is the
positional uncertainty ellipse�

in this �gure are the same as those used in �gure ��� The circles ��� are edges which have been
found during this particular scan and have been matched� using equation �� in the appendix� to
a predicted edge from an edge list in the a priori map� These matched edges have been labeled
m�� m�� m� and m�� The estimated position of the robot is shown by the point ��� and centred
at this estimate is the uncertainty ellipse which has major and minor axes equal in length to
the square roots of the eigenvalues of the x� y component matrix of the error covariance matrix
P �equation �
 in the appendix� in the direction of the orthogonal eigenvectors of this matrix
�Leonard and Durrant�Whyte ����
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Figure �� shows a new scan after the robot has moved �� cm to the left� The symbols used
are the same as those in �gure ��� Note that in this scan four edges have also been matched
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Figure ��� A �D scan and position update after the mobile robot has moved �
cm in the negative
x direction�

�m�� m�� m	 and m
� and used to form the predicted position of the mobile robot �marked as
the point ���� and its error covariance ellipse� The ellipsi in �gures �� and �� correspond to
regions of minimum area in the xy plane which are known to contain the robot with a constant
probability �in our case ���� �Bar�Shalom and Fortmann 

��

Figure �� shows the �rst 
 �D scans� matched edges and positional estimates as the robot
traversed its environment� In these scans only matched edges are shown �as small circles�� Figure
�� shows the next 
 scans during the run�

To demonstrate more clearly the qualities of the localisation algorithm itself� �gure �� shows
just the environment and the hand measured� odometric and EKF estimates of the mobile
robot�s position for all �� positions recorded during the run� Positions � �bottom right corner�
to �� are recorded in a laboratory of approximately �� x 	 meters �these are the positions shown
in �gure �� and ��� after which� the vehicle drove into a small storage room of � x 	 meters
next to the lab �positions �	 to ���� The crosses ��� represent the odometric estimates� the
dots ��� the EKF estimates� centred on these the uncertainty ellipsi are shown and the triangles
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Figure ��� �D scans� matched edges �circles ���� and position updates �dots ���� as the robot
traverses its environment�

��� represent the hand measured positions of the robot� Note that the odometric positional
estimates diverge well away from the actual positions� It was clearly noted that the ellipsi grew
and shrunk as less or more features were matched respectively�

Odometry errors are simulated by giving a systematic error and a small random error with
every translation�

	�� Localisation without an a priori Map

The overall result of localisation without any prior known map is shown in �gure �	� Here� the
�rst robot position is assumed given �shown as a triangle � hand measured position�� because the
edges extracted from the scan recorded at this position are used as a reference for later recorded
scans� The symbols used in �gure �	 are the same as those used in �gure ��� A dynamic edge
list is kept during this run� where edges are added and removed as they enter and leave the �eld
of view of the sensor� In this run� edges are removed from the edge list if they have not been
matched �ve times in a row� New edges are added as they come into view of the sensor� In
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Figure ��� �D scans� matched edges �circles ���� and position updates �dots ���� as the robot
continues to traverses its environment�

scans �� ��� �	 and �� no edges are matched and it was noted that the error covariance matrix
eigenvalues increased�

It can be seen that the position as measured by the odometry diverges quickly from the real
hand measured position �at the end of this localisation run� the x positional odometric error
has increased to ��� meters�� while the error in the estimated x position is almost always less
than ���� meters� If only one edge in the environment can be matched to the map and the
error between this edge and the corresponding edge in the map is large� then the error in the
estimated position increases also� The spurious edges discussed earlier in section ����� which are
sometimes undetected� are also a source of problems� because they can introduce large errors
in the estimated position of the mobile vehicle �Adams ���� This problem presents itself more
clearly in the localisation without any prior map� The chance that spurious edges are matched
against each other is much larger in this method than in the map based localisation�

Hence map based localisation o�ers a more robust method for determining the position of
a mobile robot� since this method is relatively insensitive to falsely sensed edges� A further
point noted by Leonard and Durrant�Whyte� and by Smith� Self and Cheeseman� is that if
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Figure ��� All �� positional estimates using the map�based localisation algorithm� The crosses
show the odometric estimated positions�

the observed edges are matched with previously sensed edges� having uncertain positions �i�e�
not from a �xed map�� then the position estimate produced under the E�K�F� cycle will be
correlated with the estimated edge locations �Leonard and Durrant�Whyte ��
 Smith et al� ����
This theoretically disobeys the assumptions used in deriving the E�K�F� positional estimates�
meaning that an exact solution to the problem should take into account these correlations�
Leonard and Durrant�Whyte propose a simple method for side stepping this problem� namely
that the robot chooses where it travels and where it focuses the attention of its sensors� This
is done to remove correlations� This means that the robot in our case would need to know the
positions of some edges precisely�

Hence we have shown in this section� and in �gure �	� that the mobile robot localisation
algorithm� without an a priori map� is capable of producing positional estimates which are more
reliable than odometry alone� We acknowledge however that� on a theoretical basis� the robot
still requires exactly known landmarks �i�e� some form of simple map� at regular intervals in
order to stop it becoming lost� An interesting future research directive indeed remains whereby
either an exact method which accounts for the cross correlation between uncertain positional
information and uncertain edge coordinates is de�ned �as proposed by Smith et al �Smith et al�
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Figure �	� All �� positional estimates using the localisation algorithm without any prior known
map� Again� the crosses show the odometric estimated positions�

����� or a somewhat more relaxed method which quanti�es how often exact feature information
is required in order to provide reliable positional updates for practical mobile robot navigation�

In the next section we will show some results of mobile robot localisation using three dimen�
sional scans of the environment�

	 �D Mobile Robot Localisation

In section ��� we derived an observation model to relate a detected edge� which in general lies
outside of the plane of the sensor� having coordinates �Px� Py� Pz�� to the true position of the
sensor�

A problem inherent to �D scanning is that the number of edges detected in a full scan
becomes very large� For example �gure �� in section ��� shows �
 detected edges in a single �D
scan� From a full �D scan we can therefore easily expect hundreds of edges to be detected� If
a general a priori map were then used for matching edges in �D� it would need to contain an
enormous edge list� meaning that computer memory and timing problems could result� For this
reason we do not use an a priori map for �D localisation but instead use the edges detected in
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a restricted number of prior scans as a reference for the matching process� We will show here
that reliable edge matching can� in general� only take place between �D scans which have been
recorded in close proximity of each other� This automatically restricts the number of candidate
edges which need to be recorded for matching purposes� Also� because of the large amount of
edges found in a full �D scan� we further instruct the algorithm to search for edges within a
constrained region� relative to the global coordinate system�

To demonstrate this technique we recorded a scan by rotating the sensor head �� times
�about the vertical axis� in ���o azimuth increments� To high light the detected edges� �gure �

shows a �D line model of a ���o section of the mobile robot�s environment� the position of the
robot and the edges detected between the bearing scanning angles ���o � � � ���o �marked as
stars�� �� edges were detected altogether� The scan data itself is not shown so that the detected
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Figure �
� A �D line model of a section of the mobile robot�s surroundings� The small stars
show all edges detected in a small angular region of the environment� The single cross marked
�Sensor� represents the mobile robot �basis� position�

edges are clearly visible�
This is considered to be the basis or start position where the actual position of the mobile

robot is assumed known� The detected edges in �gure �
 are used for matching purposes in later
scans�
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Figure �� shows �D scan data recorded ��
m in the y direction from the �basis� scan point
of �gure �
� For clarity� the scan is shown for bearing angles ��o � � � ���o only� This scan
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Figure ��� A section of the �D scan data after the robot has moved �
 cm in the negative y
direction from the �basis� scan point�

is shown in order to give an example of the quality of the �D data which is obtainable from
a lidar sensor� In order to show the matched edges� amongst all of this scan data� �gure ��
shows the same scan as �gure �� but viewed along the x axis� showing also the matched edges�
The matched edges ��� in all�� matched to the edges detected in �gure �
� are shown as circles
and are just visible along the line y � ��� and between z � ����
 and z � ������ The sensor
position is labeled and marked with a cross ���� In total �� successful matches were made using
equation �� in the appendix� The mobile robot was then moved ���m in the y direction taking
it ��	m to the other side of the �basis� position� A new �D scan was recorded and once again�
to give a perspective of the new position� this scan data is shown in �gure ��� In this scan ��
successful matches were made and for clarity are shown in �gure �� along with the scan data
viewed along the x axis �actually at a ��o o�set to the x axis in order to distinguish the sensor
from the edges�� Now that the sensor is nearer to the line producing the detected edges� the
data appears more dense since the distance in the z direction between each point is reduced�

The actual results of our �D scanning and matching can be seen in �gure ��� This �gure
shows a plan view of the environment and the hand measured �triangles� and EKF estimated
�points� positions of the mobile robot and the uncertainty ellipsi� The middle position just
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Figure ��� The �D scan data from �gure �	 and matched edges �small circles� viewed along the
x axis�

shows the triangle ��� �hand measured position� since this is the �basis� position used to detect
edges for future matching purposes� Note that although we have focussed the edge detection
algorithm into one region of the environment only� the positional uncertainty ellipsi in �gure ��
are smaller than those recorded at the same positions when scanning in �D only �see positions
�� in �gures �� and �	�� Although in the �D scans we had edges which resulted from a more
diverse choice of environmental objects �with respect to the sensor�s bearing angle�� in the �D
case we recorded more edges from a particular environmental object� For example in �gure
�� we see � matched edges at position ��� all from di�erent objects within the environment�
At the same position we matched �� edges from one object when scanning in �D ��gure ����
Hence focusing the attention of the edge detection and matching process to a particular object
or region within a �D scan can be more bene�cial for mobile robot localisation than attempting
to detect all edges within a �D scan and then match them�

It can be seen in �gures �� and �� that as the sensor moves away from a feature from which
edges are expected to be detected� the distance between the edges in the z direction increases�
The �D observation model presented in section ��� automatically accounts for this and mobile
robot localisation is therefore still achieved� A problem which arises from this e�ect however is
that the expected edge coordinates can leave the �eld of view of the sensor �if it moves to close
to the object producing the edges� since their z coordinate will be too high or low due to the
restricted scanning azimuth capability of the sensor� If the sensor moves to far from the object

��



0

2

4

6
2

3
4

5
6

7

−1

−0.5

0

0.5

1

X (metres)

Y (metres)

Z
 (

m
et

re
s)

Sensor

Figure ��� A section of the �D scan data recorded after the mobile robot moved �
cm to the
other side of the �basis� scan point�

producing the edges� then very few of them will be detected due to the limited resolution in
scanning azimuth ����o in our case�� Hence this �D localisation technique is very powerful for
accurately and reliably determining the position of a mobile robot� but can only be used for
robot positions near to the �basis� position� In practise we found that when the robot was more
than �m away from its �basis� position� a new set of �basis� edges had to be recorded to continue
this form of �D localisation�


 Summary

We have presented here an approach to navigation which uni�es the extraction of local infor�
mation from a mobile robot�s surroundings with the application of a kinematic model based
localisation algorithm� In particular we have addressed the following issues�

�� We have analysed �D and �D optical range and intensity scans and analysed the physics
behind the AMCW lidar sensing process in order to determine what information from
our real sensor data could be used for robot navigation� We explained the relationship
between the received signal strength recorded by these sensors and the variance in the
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Figure ��� The �D scan data from �gure �� and matched edges �small circles� viewed along the
x axis�

range readings� We also demonstrated and gave reference to the solution of the problem
of spurious data which results when the optical beam is split between objects of di�ering
range and�or surface re�ectivity�

�� We presented a novel �D edge detector capable of �nding� on line �ie� as the data arrives��
the coordinates of edges within an indoor environment� The edge detector comprises a
simple � state EKF and makes optimal predictions of edge coordinates �in the minimum
mean squared error sense� based upon each range sample and its range variance� We have
quanti�ed the e�ects of various parameters within the edge detection algorithm�

�� We derived localisation algorithms which relate both �D and �D detected edges to the true
position of a mobile robot� These algorithms also exploit the EKF in order to produce
an optimal estimate of a mobile robot�s position and a region of certainty surrounding
this estimate� which is known to contain the robot with a prede�ned probability� The
localisation techniques presented were divided into the following experiments�

�a� �D localisation with an a priori map� We demonstrated a robust localisation algo�
rithm which compared newly detected edges to an a priori map� This a priori map
was de�ned simply as a list of edge coordinates which a human would expect the
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Figure ��� A plan view of the model environment from �gure ��� showing the robot basis position
�middle triangle� and the hand measured positions �triangles�� EKF estimated positions �points�
and� centred at these points� the uncertainty ellipsi for the other two positions�

edge detection algorithm to �nd� The EKF estimated positions of the mobile robot
were much closer to the actual positions than those estimated by the mobile robot�s
odometric system�

�b� �D localisation without an a priori map� We showed the generality of the localisation
algorithms presented here as it was possible to match newly detected edges to edges
which had been found in previous scans� This is a dynamic process� as new edges
are detected they are stored for future matching purposes and as old edges are no
longer useful for matching they are eventually removed from memory� This method
is slightly more sensitive to spurious data �resulting from a split optical beam� than
the above method� but� in a limited context� also provides estimated robot positions
which are much closer to the actual positions than those estimated by the mobile
robot�s odometric system� After many moves� precisely known features �i�e� some
form of simple a priori map� are still required�

�




�c� �D localisation� Finally we demonstrated the localisation algorithms using �D range
data� We showed that �D scanning can produce much more accurate positional
estimates than �D scanning� �D localisation can be a very accurate and e"cient
technique if the edge detection algorithm is focussed to run in particular regions of
the environment so that a limited number of new edge coordinates are recorded in
each scan for future matching purposes�

��



Appendix � The Extended Kalman Filter �EKF�

We explain here the EKF algorithm for providing optimal state estimates in the least squares
sense� We also explain here how our observations can be validated�

The EKF is used to produce an �optimum� estimation of the state �x�k � � j k � �� by using
as much �sensible� sensor data as possible�� This is done in the presence of sensor measurement
noise� The algorithm or �lter cycle is explained below� whilst the derivation of the equations
used is in �Bar�Shalom and Fortmann 

��

�� Filter Initialisation� Initialise the mean square error covariance matrix P�j j j� and
predicted state �x�j j j�� for some value of j� �This is discussed in �Bozic 
����

�� Filter Prediction� Determine the predicted state and error covariance matrix using the
Kalman Predictor equations�

�x�k � � j k� � F��x�k j k��u�k�� ����

�Bar�Shalom and Fortmann 

� shows that in order to obtain the predicted error in the
states� namely the error covariance matrix P�k � � j k� � ie� the value of P at time k � �
given all observations up to and including time k� the non�linear function F has to be
linearised about the prediction x � �x�k j k�� Hence we expand F as a Taylor series about
the previous prediction �x�k j k�� F�x�k�� is therefore replaced by the Jacobian�

A � rF �

�
�������

�x��k��	
�x�

�x��k��	
�x�

� � �
�x��k��	

�x�

�x��k��	
�x�

� � �

� �

� �

� �

�
						

x
�x�kjk	

����

giving the linearised system model�


x�k � �� � A
x�k� ����

where the A matrix is to be re�evaluated at every new time step k�

The predicted error covariance matrix is� in general� given by�

P�k � � j k� � AP�k j k�AT �Q�k� ����

�� Observation� Obtain the next observation� In the case of the edge detection algorithm�
this is simply the next range reading z�k � ��� In the case of the localisation algorithm�
this observation consists of no observed edges in the environment and is given by�

Z�k � �� � fzj�k � �� j � �� j �� nog� ����

�� Measurement �observation� Prediction� Use the predicted state �x�k � � j k� to generate
�a� predicted observation�s�� For the edge detection case this is simply�

�z�k � �� � C�x�k � � j k� ����

�where �x�k � � j k � �� means the �predicted value of state x at time k � � given all observations up to and
including time k � ���

��



For the case of mobile robot localisation we need a predicted observation for each of the
np targets�

�zi�k � �� � h�pt� �x�k � � j k��� i � �� �� ���� np ����

The target locations pt are in a map or can be extracted from previous scans�

�� Innovation� Determine the innovation� the di�erence between the observation and the
predicted observation� For the edge detection case this is simply�

v�k � �� � z�k � �� �C�x�k � � j k� ����

v�k� �� can be used to validate range measurements before they are incorporated into the
�ltered estimates�

For the localisation case� for each prediction i and observation j we compute the innovation
vij�k��

vij�k � �� � zj�k � �� � �zi�k � �� ��	�

�� Variance of the Innovation� Find the variance associated with the innovation� For the
edge detector�

s�k � �� � ��r �k � �� �CP�k � � j k�CT ��
�

where ��r �k � �� denotes the range variance at time k � ��

For the localisation algorithm�

Sij�k � �� � rhiP�k � � j k�rhTi �Ri�k � �� ����

where Ri�k � �� denotes the observation error covariance matrix at time k � ��

	� Validation Gate� Use the innovation and innovation variance to form a validation gate
equation� For the edge detector�

D�k � �� � v��k � ��s���k � �� ����

and for the localisation algorithm�

D�k � �� � vij�k � ��S��
ij �k � ��vTij ����

The term D�k � �� is sometimes also referred to as the normalised innovation� In the case
of the edge detector� this simply de�nes a line of constant probability in observation space�
centred on the prediction� A threshold value for D�k� �� is then necessary so that we can
label observations which fall outside of this region or gate as possible edges�

In the localisation algorithm� this equation is used to test each observation zj�k � �� for
membership in the validation gate for each predicted measurement� Because only range
measurements are included in this validation gate� we use another test to determine if an
observation is valid or not� We use the angular uncertainty around an edge� This angular
uncertainty can be determined from the error covariance �from equation �� of an edge
��gure ����

We assume that the range variance of an edge can be extended in all directions �a circular
region� around the edge� Together with the current range to the edge� we can determine
this angular uncertainty�

�� � tan�� a

r
����

where a is the range variance and r the distance to the target in meters�

��
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Figure ��� Determining angular uncertainty from the range variance�


� De�ne W�k � �� � The Kalman Gain� In the edge detection case we de�ne a new matrix
as�

W�k � �� � P�k � � j k�CT s���k � �� ����

In the localisation case� after matching� a number of targets can be used to update the
position of the mobile robot� To achieve this� the �lter gain has to be calculated for every
matched edge j�

Wj � P�k � � j k�rThjS
��
j �k � �� ����

�� State vector update� We use W�k � �� to update the state vector and the error covariance
matrix� For the edge detector�

�x�k � � j k � �� � �x�k � � j k� �W�k � ��v�k � �� ����

P�k � � j k � �� � P�k � � j k� �W�k � ��s�k � ��WT �k � �� ����

For the localisation algorithm� the newly estimated vehicle location then follows from�

�x�k � � j k � �� � �x�k � � j k� �
X
j

Wj�k � ��vj�k � �� ��	�

where the summation is calculated over all matched edges�

The estimated covariance can be found from�

P�k � � j k � �� � P�k � � j k� �
X
j

Wj�k � ��Sj�k � ��WT
j �k � �� ��
�

��� Recalculate A� We now recalculate A based on the new prediction �x�k � � j k � �� and
then return to step � to continue the cycle�
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