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Abstract

The analysis of sensor range data and its application to mobile robot navigation are of
crucial importance in the field of mobile robotic research.

We analyze the range data produced by an amplitude-modulated continuous wave (AMCW)
light detection and ranging sensor and show that by physically modeling such sensors, we not
only can produce reliable range estimates, but can also quantify our certainty in each range
data point. We discuss the noise in the sensor and show the importance of using both phase
and intensity data for calibration and data interpretation.

We consider in detail the phenomenon of “mized pizel points” whereby false range mea-
surements occur when the light beam transmitted is split between two or more surfaces of
differing range and/or reflectivity. We describe a new algorithm capable of detecting sudden
changes in surface reflectance and/or range in order to identify these “spurious” data points.
We quantify the regions over which the detection method will work, as we consider its sen-
sitivity to changes in range and surface reflectance, while also quantifying the possibility of
falsely predicting a discontinuity.

1 Introduction

In the field of mobile robotics, range sensing is a crucial component of any autonomous system.
Mobile robot navigation using simple planar depth maps produced from ranging sensors is still
in its infancy. Manipulating the range data robustly in the presence of range uncertainty is still
a problem, even with simple sensors, as will be demonstrated in this article.

The type of sensor considered here is a time-of-flight range finder that greatly reduces the
correspondence problems associated with stereo vision and removes the disparity problem as-
sociated with triangulation systems by keeping the transmitted and received beams coaxial.
This type of sensor consists of a transmitter that illuminates a target with a collimated beam
and a receiver capable of detecting the component of light which is essentially coaxial with the
transmitted beam. Often referred to as optical radars or lidars (light detection and ranging),
these devices produce a range estimate from the time needed for the light to reach the target
and return. A mechanical mechanism sweeps the light beam to cover the required scene.

It is possible to determine the time of flight of the light beam using a pulsed laser, thus
measuring the elapsed time directly (Johnston A. R. 73). Electronics capable of resolution in
picoseconds are required in such devices, and the devices are therefore often very expensive.
A second method is to measure the beat frequency between a frequency-modulated continuous
wave (FMCW) and its reflection. A survey of such devices and their application to obstacle
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surface reconstruction is covered in (Besl P. J. 88). For close-range applications, a simple
means of determining the time of flight of the light is by measuring the phase shift between
an amplitude-modulated continuous wave (AMCW) and its received reflection. Measuring phase
shift to produce range estimation is technically easier than the above two methods. This is
shown by the fact that AMCW range finders are beginning to become commercially available
(Cox I. J. 88; Hebert M. et al. 89; Krotkov E. 90).

The purpose of this article is to develop a model of an AMCW optical radar in such a way
that we can use the data to guide a mobile vehicle locally. We scan the environment with a
rotating plane mirror so that a two-dimensional planar depth map of a mobile’s surroundings is
created. While it is true that humans perceive their surroundings by both vertical and horizontal
scanning, the amount of information in scanning in a horizontal plane in itself can be sufficient
for path planning in an indoor office/laboratory-type environment. We therefore restrict our
research to horizontal scanning scene analysis only.

In Section 2 we will explain the range estimation technique employed in an AMCW optical
range finder. Knowledge of this method is essential when modeling sensor defects.

In Section 3 the sources of noise in the electronic signal produced by the photo diode are
explored. The propagation of these noise sources through the sensor to the range estimate is
also considered. We then derive a relationship between the expected range variance and the
detected signal amplitude.

Section 4 shows some initial results from the AMCW infrared sensor and also shows some of
the problems associated with the particular sensor used. In Section 4.3 we note another defect
of the AMCW ranging technique, caused by sudden changes in range and/or surface reflectance.
While this effect has been observed in previous literature (Hebert M. and Krotkov E. 91; Hinkel
R. and Weidmann M. 89), no efforts have been made to solve the problem. Our measurements
demonstrate that even in an optical sensor, the finite width of the light beam can be a significant
problem.

In Section 5 we consider, in detail, the effect of splitting the light beam between surfaces
of differing ranges and reflectivity. Section 5.1 describes the applications of the sensor as a
discontinuity detector capable of detecting sudden changes in surface reflectance and/or range
in order to identify “spurious” data points (often referred to as mixed pixel points [(Hebert M.
and Krotkov E. 91; Nitzan D. et al. 77)]). We quantify the regions over which the detection
method will work as we consider its sensitivity to changes in range and surface reflectance, while
also quantifying the possibility of falsely predicting a discontinuity.

The particular sensor used was developed at AT&T Bell Laboratories in the United States.
Section 5.5 demonstrates the discontinuity detector using data from the sensor.

2 Infrared Phase Estimation

Near infrared light (from a light-emitting diode [LED]) is collimated and transmitted from the
transmitter T in Figure 1 and hits a point P in the environment. For surfaces having a roughness
greater than the wavelength of the incident light, diffuse reflection will occur, meaning that the
light is reflected almost isotropically. The wavelength of the infrared light emitted is 824 nm,
meaning that most surfaces, with the exception of only highly polished reflecting objects, will
be diffuse reflectors. The component of the infrared light that falls within the receiving aperture
of the sensor will, for distant objects, return almost parallel to the transmitted beam.

The sensor transmits 85% amplitude modulated light at a known frequency and measures
the phase shift between the transmitted and reflected signals. The wavelength of the modulating
signal obeys the equation:

c=fA (1)
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Figure 1: Infrared light sensing by modulated signal transmission. The transmitted beam is split
so that most of it illuminates the target and a small part of it reaches the phase sensor, to act
as a reference signal.

where ¢ is the speed of infrared light and f the modulating frequency. For f = 5 MHz (as in
the AT&T sensor), A = 60 m. The total distance covered by the emitted light is D', where:

0
D' =L+2D =L+ ), (2)
2T
where D and L are the distances defined in Figure 1. The required distance D, between the
beam splitter and the target, is therefore given by:

A

0 is the electronically measured phase difference between the transmitted and reflected light
beams, and A the known modulating wavelength. It can be seen that the transmission of a
single amplitude-modulated wave can theoretically result in ambiguous range estimates, since
for A = 60 m, a target at a range of 5 m would give an indistinguishable phase measurement
from a target at 20 m, since each phase angle would be 180° apart.! We therefore define an
“ambiguity interval” of \/2, but in practice we note that the range of the sensor is much lower
than A/2 due to the attenuation of infrared light in air.

3 Noise Propagation Within the Sensor

In reality the phase estimate produced by such a sensor becomes more useful when it is combined
with the amplitude or strength of the returned light signal. The returned light incident on the
sensor’s receiving photodiode is the result of the emission of photons from the illuminated target.
The “mean value effect” of this emission produces a signal having the form of the transmitted
modulated carrier, but the overall effect is known to be approximately governed by a Poisson
process (Nitzan D. et al. 77).

!This depends on the phase discriminator used. A simple exclusive OR gate (as used in our sensor) can only
measure phase differences up to 180° apart, but more elaborate phase measuring techniques can measure phase
differences up to 360° without ambiguity.



The photodiode acts as a current source that produces a time-varying current at the fre-
quency of the modulating signal. However, in a diode the emission of electrons from the cathode
that produces the current has random properties that gives rise to a mean square shot noise
current (Connor F. R. 82). This means that the voltage waveform produced electronically from
the photodiode current, is made up of two components. First, the signal voltage V), given by

Vp =V cos(wt + ), (4)

where the amplitude V, is proportional to the amplitude of the modulating wave, ¢ is the modu-
lation phase relative to the transmitted wave, and w is the angular frequency of the modulating
signal. Superimposed on this signal we have an electronic noise voltage V;,, having a variance
< 02 >. This noise term is made up primarily of shot noise from the photodiode and thermal
noise from the resistors used in the electronic circuits.?

At the phase comparator the range is estimated from the phase difference shown in Figure 2.
The relationship between the standard deviation in the absolute phase of the received signal oy

\Y
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Figure 2: Phase estimation in the presence of noise. The finite width of the sinusoidal waves
demonstrates the method of electrical noise propagation through to the range estimate at the
sensor output.

to the combined electronic and photon noise standard deviation oy, received by the receiver
electronics can be seen graphically as a noise triangle (Miller G. L. and Wagner E. R. 87) which,
from Figure 2, gives

ota oV,
Uttl:‘ p (5)

O¢ a(wt)

Vp=0
where ‘%‘V o is the magnitude of the change of received signal voltage with phase at the
=

zero crossing (i.e. when the wave cuts the wt axis). From equations (4) and (5), (Adams M. D.

2Photon noise also contributes to the total noise voltage. A more exact analysis that takes this into account
is given in (Adams M. D. 92).



92) shows that an approximate relationship between the range variance < o2 > and the received
signal amplitude V,. is given by

AN /1?2
< o2 >r< ai><4—> <7> + <o >, (6)
™ r

where ) is the modulation wavelength, < o2 > is the total electronic noise variance, and < o2 >
is the variance of any noise sources introduced after phase comparison.

The relationship derived in equation (6) will be used in Section 4 to establish the experimental
values of < 02 > and < 02 > and, hence, the numerical relationship between < 02 > and V.

4 Calibrating the Sensor: Results

To be able to quantify the certainty of each range reading produced by the sensor, we need to
determine the parameters in equation (6). To find these parameters, simple experiments were
done in which a thousand independent range measurements were made of a fixed target with
the sensor stationary.

The histograms in Figure 3 have horizontal axes showing the measured range r, produced
from the sensor’s phase estimate and vertical axes showing the number of readings that have a
particular range reading r. Note that the curves show distributions that are normalized, since
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Figure 3: Histograms showing the effect of different coloured targets at a given range. All targets
were at a range of 1.17 m from the sensor, but were changed from white to orange, orange to
green and green to grey running from the top left graph to the bottom right graph respectively.
The signal strength values (marked as ‘A.G.C’), sample means a and sample variances v x107°
m? are shown with each graph. The continuous curves show calculated Gaussian distributions

with the same mean and variance as the discrete data.



the sum of the heights of all the range measurements is constant (one thousand in our case).
All of the histograms in Figure 3 were produced from different targets at a fixed range (1.17 m)
from the sensor. Each histogram is labeled with the received signal strength, the sample mean
7, and the sample variance < o2 >, found by entering all 1000 data points into the equations:

1 n
dYor, <op>==3 (r;—7)?% n=1000 (7)

i=1 [

Hence, as expected, different signal strength values correspond to different variances within the
range values and the histograms show that as the returned signal strength decreases, the range
measurements have a greater spread as the variance increases. Note that the distributions are
approximately Gaussian. Figure 3 also shows the significant changes in the sample mean of the
ranges for different signal strengths. These large shifts in the sample means are simply modeled
as systematic errors to be accounted for when modeling the sensor.

4.1 Range Variance: Calibration

Equation (6) in Section 3 suggested an inverse square relationship between < o2 > and V2.
We applied a least squares inverse square function fit using only data (recorded to produce the
histograms of Figure 3) with (1/V;)? < 15 (volts) 2, since the rest of the data will corrupt the
least squares fit.3

The top graph in Figure 4 shows the resulting function with the used data. The function
(shown as a continuous line in Figure 4) that matches the data in the least squares sense is:

, _ 106.301

r

+169.541, (8)

2

where V. is measured in volts and o2 is the variance x107% m2. By direct comparison with

equation (6) we see that for A = 60 m:
<02 >x4.663 x 107 (volts)?, < 02 >=169.541 x 10~ (m)? (9)

Therefore, for each observed range estimate, we now have an approximate estimate of the range
variance.

The bottom curve in Figure 4 shows the electronic systematic phase errors as a function of
the returned amplitude. The two curves provide a complete calibration of the sensor.

4.2 Range Measurement: Results

We are now able to use the sensor data (returned signal strength and range estimate) to the
full. Figure 5 shows a 360° scan taken in Oxford’s AGV laboratory, using all eight bits of the
range analogue to digital converter to focus on ranges between 0.0 and 2.5 m only. The left scan
in Figure 5 shows the scan result following calibration using the lower graph in Figure 4.

With the top calibration curve of Figure 4 it is also possible to estimate the uncertainty in
each range estimate. The right plot in Figure 5 shows the same scan result except that it also
shows lines, centered on the corrected range observations, of length 20, (i.e. twice the standard

3This is because the range variance cannot increase without limit, since the phase measurement of an AMCW
range finder is defined modulo 27 only. Therefore, the range is defined modulo A/2, which is the ambiguity
interval discussed in Section 2. When V, — 0, the range distribution tends toward a rectangle between ranges
of 0 and A\/2 m and a height of 2000/ (giving our normalized distribution of 1000 range readings). The range
variance therefore tends toward the second moment of the area of this rectangular range distribution.
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Figure 4: Least squares function fits to the experimental data (shown as crosses) of range vari-
ance x1078 (top curve) and phase shift (bottom curve) versus signal strength.

deviation associated with the returned signal strength from equation (8)) in order to show the
certainty. We can see that the standard deviation associated with the spurious points (points
that do not correspond to any point within the environment) E and F is extremely large due to
low signal amplitude from these data points.

4.3 Other Sensor Defects

Close examination of Figure 5 shows that spurious data points sometimes result immediately
before or after detected edges and surface reflectance changes. Between regions D and F in
Figure 5 for example, the actual range suddenly jumps from 1.26 m (corresponding to the edge
at D on surface AD) to 2.50 m (the first detected range on surface FG, the maximum range of
the sensor in this case). The observed range, according to the sensor, changes from 1.26 m to
only 1.61 m (point E in Figure 5).

To quantify this effect, we consider in the next section the problem of receiving two amplitude-
modulated signals, one from each illuminated surface.

5 Simultaneous Reflection of Signals From Two Surfaces

In order to identify spurious data points, the effects of simultaneous reflection from two targets
warrant further investigation. In (Hebert M. and Krotkov E. 91), an AMCW lidar is used to
form two-dimensional pixel images. In this work the above effect is noted and referred to as the
phenomenon of mized pizels. It is stated that it is a problem inherent to direct detection AMCW
laser radars and that it cannot be completely eliminated with such sensors. One approach to
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Figure 5: The sensor is positioned at the center of the triangle shown. In the left hand plot the
data has been corrected according to the lower calibration curve above. In the right hand scan,
lines are centered on the corrected range observations having lengths equal to twice the standard
deviation associated with the returned signal strength.

the problem offered in (Hebert M. and Krotkov E. 91) is the application of a median filter to
the scan which orders a batch of range data in values of increasing range and selects the median
value (i.e. this method has the effect of removing “outliers” from a batch of data). In our case
the median value that would then be selected to represent the data could well be the spurious
point we are trying to remove. (Adams M. D. 92) shows that in this respect the median filter
can fail catastrophically. An alternative approach would be to examine the change in range with
respect to sensor angle or time. This technique can, under certain conditions, offer a solution to
identifying such points, but is not fool-proof since certain environmental orientations can provide
large range gradients with respect to sensor angle or time. Before considering any particular
method for identifying these points, we will analyze the physics involved when an infrared beam
is split between two surfaces.

Consider a transmitted reference signal Vj cos wt that is incident on an edge (Figure 6). An
area Ap is illuminated on the closer of the two surfaces returning a signal V; cos(wt + ¢1), while
an area Aj is illuminated on the further surface, yielding a signal V5 cos(wt + ¢3). The signal
returned to the sensor will actually be the result of many modulated signals "7 ; V; cos(wt+ ¢;),
each being emitted from a small area dA; within the infrared beam cross section. For a small
beam cross-sectional area, the analysis is simplified if we assume that during the time the beam
traverses the edge, ¢; and ¢ remain constant and V; and V5 change only with changes in A; and
As. Changes in ¢ as the beam moves across areas A; or Ay individually are therefore assumed
to be negligible. Hence the returned signal Y is given by

Y = Vi cos(wt + ¢1) + Vo cos(wt + ¢2), (10)

so that
Y = [V cos ¢1 + Vi cos o] cos wt — [Vi sin ¢y + Va sin o] sin wt, (11)

which can be written as a single sinusoid:
Y =V cos¢pcoswt — Vsingsinwt =V cos(wt + ¢), (12)
8
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Figure 6: The transmitted signal is split into two returned signals of differing phase by an edge.
As the beam traverses the edge the illuminated areas and hence returned signal amplitudes will
vary with traversal time.

which is the form that is estimated at the sensor outputs (i.e. V is the output signal strength
produced by both targets and ¢ the resulting phase shift).

To quantify the “spurious point” effect, we need to find V' and ¢ as functions of time, as the
beam crosses the edge. From equations (11) and (12) we see that

cos ¢ = %cos o1+ %cos b2 (13)
and Vi v
sin ¢ = Vlsinqﬁl + 72sin¢2, (14)
giving two simultaneous equations in V' and ¢. Eliminating ¢ gives
V2 =VE +2ViVacos(¢r — o) + Vi (15)

Before we can proceed further, we need to determine, as generally as possible, the relationship
between each returned voltage, the sensor-to-target range and the illuminated area. We make
the assumption that the emitted power is uniformly distributed over the cross-sectional area of
the beam. Therefore
V12:K12£3 (16)
’ “F(R2)
where the subscripts 1 and 2 refer the reflected signals 1 and 2, K2 are constants for each
surface and incorporate surface reflectances and beam-to-target angles of incidence, and F'(R; 2)
represents a function of the sensor to target ranges Ry .
To establish a relationship between K; and K5 in equations (16), we consider the magnitude
of the returned signal strengths when each surface is illuminated independently. We denote these

as Vg1 and Veo. We will call these the end conditions and in general
Ki  VaF(Ry)

Vo = nV. L 17
e2 77 el K2 V;ZF(RQ) ( )
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Hence, by substituting of equations (16) and (17) into equation (15) we get

2
= [F(KTII)P[A% + 29 A1 Az cos(¢y — ¢2) + n° A3 (18)

When the beam is equally divided between the two surfaces, A; = Ay = (7b?/2), where b is
the optical beam radius, we see that
K1 b271'

V= 2F(Ry) [(1 +1?) + 29 cos(pr — ¢2)]'/2, 9

which is the returned signal amplitude. Substitution into equation (13) then yields

COS ¢1 + 1 oS P2
[(1+92) + 2y cos(¢1 — pa)]1/?

For the particular case when n =1 (i.e. when each surface individually returns the same signal
strength)

cos ¢ = (20)

K\b*w 1 — @2
- 72 21
|4 F(R) oS < 5 ) , (21)
and the phase is simply averaged:
b= $1 -2|r ¢z (22)

The above theory can be used for the detection of range readings such as points E and F in
Figure 5. We will show in the following section that the motion of the infrared beam across an
edge is only a particular case to which the above theory can be applied. The estimated phase
and amplitude of any single reading can be considered to be the result of the addition of two
signals from any two arbitrary “end” conditions, that do not have to lie either side of an edge.
By generalizing this theory to any range and amplitude estimate, we will derive a method for
the detection of spurious data such as points E and F in Figure 5 and, just as importantly, we
will quantify the possibility of false detection. By “false detection” we mean the false labelling
of a correct data point as spurious.

Close examination of Figure 5 reveals that some of the spurious points (such as those at E and
F in the Figure) lie closer than the true discontinuity and not between the true range readings as
predicted by the preceding theory. This is the result of an electronic problem with the particular
sensor used and occurs due to direct cross-talk between the high-frequency transmitter circuit
and the receiver. At a discontinuity, the amplitude measurements are very low, and any small
amount of cross-talk directly between the transmitter and the receiver will distort the measured
phase and, hence, the range estimate produced by the sensor.

5.1 Discontinuity Detection: The Physics

Before proceeding, we make a distinction between what we will refer to as a discontinuity and an
edge. We will use the term discontinuity to refer to an abrupt change in the signal amplitude. We
label an edge as an abrupt change in the sensor-to-target range (i.e. a real change in range in the
world recorded by the sensor), as humans would perceive a true edge. Note that a discontinuity
is a change in the sensor’s output amplitude signal and can be the result of an edge and/or a
change in surface reflectance, as the sensor head rotates.

We also now clarify the constraints on our end conditions. Equation (18) is valid only if the
sum of the components of the areas normal to the optical beam, that illuminates each end point,
is constant; i.e.

AL+ Ay = A, (23)
10



where A is the cross-sectional area of the beam. This means that the chosen end conditions
must be spatially joined in the plane of the scanning infrared beam. This is shown in Figure 7.
We assume that there is a vertical boundary across which there is a possible change in range or

End Conditions
|

Invalid end conditions

Valid end conditions

Valid end conditions

\ optical beam cross sections

boundary

Figure 7: The relationship between chosen end conditions.

surface reflectance. Due to the small optical beam diameter (2 cm in our case), we make the
approximation that an “end condition” is not just restricted to the circular beam cross section,
but occupies the arched region marked ABCD in Figure 7. This means that equation (23) is
valid in equation (18). Within the arched region ABCD, the actual values of R; and K; can
change, but the sensed values of R; and K; will remain constant.

Eliminating A, in equation (18) from equation (23), and differentiating V2 with respect to
variable A1 shows that there is always a position between the end points at which V' is stationary
with respect to A;. The second derivative of the square of the signal amplitude with respect to
Ay is given by:

9*(V?)  2K%
0A?  F(Ry)?

[1+n” — 2ncos(pr — ¢2)] (24)

which is independent of A;. 0?(V?2)/0A? is therefore constant as the beam traverses from one
end condition to the other, the value of this constant being dependent on the end conditions
only (i.e, ¢1, ¢2, n and K7). From equation (24) we can find the nature of the stationary value
of V2 versus A;. Simple analysis shows that for all values of ¢1, ¢2 and 1, 92(V2)/9A? is always
positive (meaning that V2 has a minimum with respect to A1) and approaches zero as n — 1
and ¢ — ¢o (i.e. if the end conditions are similar, 92(V?)/9A? — 0). This is demonstrated by
the experimental results shown in Figure 8 where V is plotted against time. We can therefore
conclude that the numerical value of §?(V2)/0A? across two end conditions gives us an indication
of how “different”, in terms of either sensor-to-target range and/or surface reflectance, the end
conditions are. 0%(V?2)/0A? will rarely actually be zero in practice, since two end conditions
will rarely be identical, even when the beam does not pass a discontinuity. It therefore remains
for us to determine a value for 02(V?2)/9A%, beyond which we assume a discontinuity has been
passed, possibly resulting in spurious data such as E and F in Figure 5.

We also need to note that the reflected infrared light from a target contains two compo-
nents, one being a specular component that follows Fresnel’s equations and the other a diffuse
component that is approximately described by Lambert’s cosine law (Moon P. 61). Because of

11
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Figure 8: Graphs of signal amplitude versus time as the infrared beam traverses different end
conditions.

the coaxial design of the sensor, specular reflections can be received only at very near normal
incidence and in practice are noticed only with extremely reflective targets. Therefore, except
for these rather rare cases, only the diffuse component need be considered.

We now consider in more detail the value of 9?(V?2)/0A? when the beam traverses a dis-
continuity. Consider the right hand diagram in Figure 7. Ry and Ry are two successive range
estimates that we will choose as arbitrary end conditions. According to Lambert’s cosine law,
the amplitude of the returned signal in each case is given by

p1Acos 6 v _ p2Acos(0 + )

Ver =
2 ) e2 2 )
Rl R2

(25)
where p; o are the surface reflectance constants from points A and B and v is the angle between
resulting data points. In general, between end points A and B in Figure 7, p1 # p2. Hence, from
the figure

Vo _ paR}cos(0+7) P2 (&)3
~ Va pR3cos®  py \Rp
Applying the sine rule to triangle OAB in Figure 7 and from equations (25) and (26) we define
S as

> (V?) o R} sin? y p2\% (R1\° p2\ (Ri\?
GV ) gt B Yy (P2 (Mo (P2 (1 K (R, — 2
5 0A? PL d?R} * <Pl> <R2> (,01> <R2> cos|K (F1 — Ry)] (27)

(26)

where K is a constant relating phase shift to actual range and R; and Ry are related by the
cosine rule:

d?> = R? + R2 — 2R, Ry cos . (28)
12



Between equations (27) and (28), it is possible to eliminate d and determine a relationship
between S, R, Ro, p1 and po.

5.2 Discontinuity Detection: An Algorithm

The method used to detect discontinuities (which produce mixed points at the sensor’s range
output) reduces to that of estimating the value of S = §?(V2)/0A? numerically from successive
data batches, as the sensor scans the environment. The larger S is, the more likely it is that we
have crossed a discontinuity. We compare the experimentally calculated value of S to a theo-
retical value that we predict from equation (27). We now explain how we compute a theoretical
threshold for S, above which we assume we have detected a discontinuity and explain in Section
5.5 how we experimentally measure S with the sensor data.

Let us choose a value S = Sy, above which we assume we have detected a discontinuity
between end points. If we choose a value for Sy, to be small, the detector will be extremely
sensitive to small changes in end conditions. It will not only detect discontinuities, but may also
give false detection. If Sy, is set too large, then the sensitivity of the filter will be diminished,
resulting in undetected discontinuities. The best solution would be to minimize the possibility
for false detection and maximize the sensitivity simultaneously thus producing limiting values
for Ry and Ry beyond which detection occurs. How to optimize these parameters simultaneously
is in general an ill-defined problem, since we have no information on how to combine them.

Canny describes in his work (Canny J. 86) that in order to optimize edge detection with
passive vision intensity data, the signal-to-noise ratio and the localization* of the edge can be
optimized simultaneously. Canny then goes on to maximize the product of these two criteria
but does not offer any general method by which the two effects can be optimized. In our case,
S is minimized when R; = Ry and p; = p9, maximizing the detector’s sensitivity. However,
this condition also maximizes the probability of false detection. Forming a product of these two
criteria will therefore not work in this case.

We therefore quantify the possibility of false detection and the detector’s sensitivity in terms
of both changes in range and surface reflectance, thus providing the conditions for success and
failure of the detection method.

5.3 False Detection and Range Sensitivity

Let us first consider the properties of the detector-to-range discontinuities (edges) only. Figure 9
shows how S/p? in equation (27) varies with Ry for different values of Ry when py/p; = 1. Tt can
be seen that when Ry = Ry, S = 0 as expected. We require a value for S = Sy, beyond which
the detector indicates a discontinuity. Each curve shows that as Ry — 5.0 m (maximum sensor
range), S is minimized (excluding the minimum at Ry = R;) for any R; within the sensor’s
range. If the detector is to be sensitive to changes in depth, which range from any initial R;
to Ry = 5.0 m, Sy, must be set below this minimum value (shown as the dashed lines in each
graph in Figure 9).

On the other hand, in setting Sy, toward 0 it can be seen from the curves that the ranges of
R, that will go undetected for a given R; become extremely small, meaning that false detection
may result. To satisfy both of these “conflicting” criteria, we choose Sy, to be a function of
R, the sensed range estimate from the first end condition, and set Ry to 5.0 m, the maximum
sensor range. This means that the detector will be sensitive enough to detect all changes in R;
and Ry, that rise above the value of S which occurs when Ry = 5.0 m. The only values of §

“the reciprocal of the distance between detected and true edges
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Figure 9: Second derivative T = S/p? x 10® in equation (27) versus range Ry for various values
of Ry. The dashed lines show the chosen threshold values for each value of R;.

that are lower than this, occur within the vicinity of Ry = R; below each dashed line in Figure
9.

The top left hand graph in Figure 10 shows this value of Sy, as a function of Ry. This is
obtained from equation (27) with p2/p; =1 to give:

‘2 6 3

i—%" = 52;‘% [1 + <%> —2 (%) cos[K (R; — 5)]] (29)
where d is found from equation (28) with Ry set to 5.0 m. Once this value has been set, the
top right hand graph in Figure 10 shows the range values of Ry that will escape detection for
a given R;. For example, at Ry = 3.5 m, provided 3.43 < Ry < 3.58 m, and p2/p; = 1, no
detection will occur. For the value of Sy, chosen above, the top right hand graph shows that any
(R1, R) coordinate that lies outside of the envelope will result in a detection, no matter what
the reason. The coordinate R; = 3.5 m and Ry = 3.58 m lies on the envelope. These values
of Ry and Ry correspond to a beam-to-surface angle of incidence 6, defined in Figure 7, of 80°.
Objects giving a beam-to-surface angle of incidence higher than 80° will give false detection.

5.4 Surface Reflectance Sensitivity

We now analyze the response of the detector to changes in surface reflectivity between end
conditions. If p; # p2, we have seen in Figure 5 that spurious data can also result. Under these
conditions we require that S > Sy, in order for detection. From equations (27) and (29) it can

be seen tha..t S > Sth On].y lf
P1 P
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Figure 10: The top left hand graph shows the value of Sy, /p? x 103 versus Ry that is used as a
threshold beyond which a discontinuity is predicted. The top right hand graph shows an ‘envelope’
that contains pairs of values of Ry and Ro that will go undetected by the algorithm. The lower
graph shows an envelope within which values of pa/p1 will go undetected, when Ry = Ry. The
vertical azis Q) represents pa/p1 and the lines plotted are Q = « and Q = 3 (see text).

where a and ( are both functions of R; and Ry only. If pa/p; lies between « and S, then
detection will not occur.

If the threshold Sy, were set to zero, then all values of pa/p1 # 1 would be detected, since
S is always greater than zero under these conditions. However, because of the false detection
criterion above, the detector allows values of R; slightly different from Rs to go undetected. As
R; and Rj; begin to differ, we will see that there is interaction between range and reflectance
sensitivity, since some values of pa/p; # 1 will also remain undetected. Hence, limiting the
possibility of false detection degrades the sensitivity of the detector not only to range changes,
but also to surface reflectance changes.

This is demonstrated in the bottom graph of Figure 10. This shows the values of « and 3 in
inequality (30) versus R, when R; = Ry. If py/p;1 lies within the region shown, detection will
not occur. This curve shows the sensitivity of the detector to changes in surface reflectivity only,
since Ry = Ry. The region is symmetrical about the line QQ = p3/p; = 1. For example, when
Ry = Ry = 2.5 m, surface reflectance ratios pa/p; between 0.97 and 1.03 will go undetected.

Finally, Figure 11 shows plots of p2/p1 = @ and py/p1 =  when R; # Ry. The interaction
between range and surface reflectance ratio is evident. If pa/p; lies within the regions shown,
no detection occurs, even when R; and Ry are significantly different. The larger the value of
R5, the larger the undetectable zones become.

If p2/p1 = 1, the detector is very sensitive to changes in range, and if R; = Ry, the detector is
sensitive to changes in surface reflectivity. If both reflectance and range change simultaneously,
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Figure 11: Surface reflectance ratio Q = pa/p1 versus Ry for various values of Ry as given with
each graph. At certain values for Ry and Ra, if Q = p2/p1 lies between the curves shown, no
detection will occur.

however, interaction can occur, this interaction being governed by values for Ry, Ry, and p2/p1
in the graphs of Figure 11. It can be seen that as the recorded range R; is increased toward
maximum range, then the area of the undetectable zone also increases (i.e. the detector becomes
less sensitive to changes in surface reflectivity).

5.5 Practical Implementation and Results

Figure 12 shows two scans after systematic phase error correction. The left hand scan shows a
dense 360° plot of the environment, each sample taken at a time interval of 0.1 ms. Between
points J and K on the lower pillar, a colored target was positioned, causing a change in surface
reflectivity. The effects of the discontinuity can be seen at J and K, and also at the pillar edges.

In this first scan we used all eight bits of the analogue-to-digital converter to convert ranges
up to 2.5 m only. The scan is made up of 13,474 samples, and every 18 of these were used to
form a single data point on the right hand range map. Along with each new data point, a value
for S was established and compared with Sy, in equation (29). Note that before this comparison
can be done, an estimate for p; is necessary in equation (29). This was estimated from a few
range and signal strength pairs and the use of equation (25). The values of S at the resulting
spurious points in the right hand scan of Figure 12 are very much larger than values of S caused
by “normal” points.

In Figure 13 the top curve shows the variation of signal strength with angle, during the scan
of Figure 12. Notice the dip at an angle of approximately 85° due to region JK in Figure 12.
The lower graph shows the estimated value of S for each data point in the right hand plot of
the scan. The large spikes occur at both range and reflectance discontinuities. Superimposed on
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Figure 12: Discontinuity detection using 13,47} samples from a single scan. In the right hand
scan detected discontinuities are plotted as circles, and points with zero returned signal amplitude
are shown as squares.

this plot is a curve of Sy, versus sensor angle. Notice how S, adapts to the changes in range at
angles of approximately 70°, 115°, 240° and 290°. Only the spikes produced in the estimation
of S rise above Si,. These points are plotted as circles in the right hand scan of Figure 12, see
for example point L in the figure.

We now have enough information from the sensor to be able to produce the scans shown in
Figure 14. The left hand scan shows “filtered” or trustworthy data. Each data point in this scan
has passed through the discontinuity detector successfully and has an associated range variance
estimate. The right hand plot shows the points that failed the discontinuity test. Point M
(shown as a square in Figures 12 and 14) has occurred as a result of the sensor estimating that
all 18 data samples from the left hand scan of Figure 12 have a signal amplitude of 0 volts. This
is an example of an undesirable feature of the particular sensor used, namely, its inability to
always estimate a finite signal amplitude when the actual signal amplitude falls below a certain
value. Because of this, S cannot be estimated, and we cannot place any confidence in this data
point.

Hence, within the working capabilities of our discontinuity detector (outlined in Section 5.4),
we are confident that all of the range data shown in the left hand scan of Figure 14 are “true”
data. Notice also the much improved variance in the range data of the right hand scan of Figure
12 compared with that in the left scan due to the averaging of 18 samples per data point (Adams
M. D. 92).

Figure 15 shows an uncorrected scan (left hand plot) and a systematic phase-corrected scan
(right hand plot). The number of samples recorded was reduced to 5600.

Notice that the sensor is sensitive enough to resolve the small changes in the range data
in Figure 15, caused by thin vertical pipes on the wall at A and B. The graphs in Figure 16
show the variation of Sy, and S versus sensor azimuth, as the scan was recorded. Notice again
that the detector adapts its thresholding technique to the environment surrounding the sensor,
according to equation (29). Figure 17 shows the results of using the thresholding technique on
the calibrated data from Figure 15. The left hand scan shows data that have successfully passed
through the detector. The right hand scan shows the data that either carried no returned signal
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Figure 13: Signal amplitude (top graph) and S (bottom graph) versus scan angle as computed
experimentally during the previous scan. Sy, is superimposed on the data in the lower graph.

strength (plotted as squares) or failed the discontinuity test (plotted as circles).

This scan shows another poor quality of the particular sensor used. It is not always able to
produce a nonzero signal amplitude output when reporting a range estimate. It was sometimes
observed that predictable, or “reasonable” range estimates could be produced by the sensor,
while the signal amplitude gave zero output. The sensor therefore incorrectly informed us that
we had no confidence in the range estimate. This occurs at point M in Figure 17. Clearly the
data produced here and farther up the wall are not random, yet because the sensor’s signal
amplitude output gives zero volts, no values for S or < o2 > can be correctly assigned to these
points.

Therefore, a useful design criterion for such a sensor is that it should output a finite signal
amplitude for any predictable range estimate. The above model could then be used with as much
received data as possible. (Nitzan D. et al. 77), (Hebert M. and Krotkov E. 91) and (Miller
G. L. and Wagner E. R. 87) report in their work that the received signal strength has a very
large dynamic range of optical intensity. This can span several thousands to one. In response to
this problem, Nitzan et al. measured the received signal amplitude with a logarithmic amplifier
(Nitzan D. et al. 77). Signal amplitude outputs that are extremely small can then be reproduced
faithfully.

Points P and Q in Figure 17 show data resulting from a split optical beam at the edge of the
pillar close to the mobile. At point P, not enough of the pillar is illuminated to give any signal
amplitude estimate. The discontinuity detector cannot operate here, and therefore a square is
plotted at P. At Q, however, enough of the optical beam illuminates the pillar so that the net
signal amplitude with each of the four points used to create point (Q can be used to estimate S.
Q has been captured by the discontinuity detector.
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Figure 14: Range data that has successfully passed through the discontinuity detector (left scan)
and data that has failed the test (right scan). The raw data is shown in Figure 12

Points R and S in the left hand plot in Figure 17 have escaped detection, resulting from a
combination of Ry, Ry and p2/p; that falls within one of the undetectable zones in Figure 11.

6 Summary

In this article we have presented a model for an AMCW optical range finder and demonstrated
a two-dimensional edge-detecting algorithm. Gaining an understanding of both the amplitude
and range data is essential if the sensor is to be used at its best.

In particular we have examined the following issues:

1. For most returned signal amplitudes, we know that the sensor’s output range distribution is
approximately Gaussian and that the range variance of a single sample can be determined
from the signal amplitude, according to equation (8).

2. Previous work has acknowledged the existence of “spurious” or “phantom” data points,
as shown in Section 5, (Hebert M. and Krotkov E. 91). We have considered in detail
the effect of splitting the light beam between two targets. In previous work the cause of
the spurious points has not received much attention, and it has simply been stated that
they are inherent in any AMCW optical system and cannot be removed (Hebert M. and
Krotkov E. 91).

In response to this we have built a detector that has a high success rate at identifying such
points when they are caused by either reflectance or range changes. When both effects oc-
cur simultaneously, we have quantified the interaction which, under certain circumstances,
can result in no detection. The detector is not fool-proof, and we have indeed shown that
the sensitivity of the detector decreases with increasing range. An interesting possibility
for future research could be to select a different adaptive threshold function to that used
here, so that within the ranges of interest, the filter could be as sensitive as possible.

It is worth noting that decreasing the cross-sectional area of the optical beam or simply
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Figure 15: Uncorrected (left) and corrected (right) range scans using 5600 data samples.

using a laser can reduce the amount of spurious points recorded per scan, but it cannot
altogether eliminate them.

3. In the robotics field, the ultimate test of any algorithm must be in its application. We
have used the discontinuity detector and sensor model presented above, together with a
simple navigational algorithm to guide a small mobile platform using the AMCW sensor
in a cluttered indoor scene (Adams M. D. 92). The algorithms have worked consistently
over a wide variety of configurations.
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Figure 17: Accepted (left) and rejected (right) data, after filtering with the detector
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