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A Random-Finite-Set Approach to Bayesian SLAM
John Mullane, Ba-Ngu Vo, Martin D. Adams, and Ba-Tuong Vo

Abstract—This paper proposes an integrated Bayesian frame-
work for feature-based simultaneous localization and map build-
ing (SLAM) in the general case of uncertain feature number and
data association. By modeling the measurements and feature map
as random finite sets (RFSs), a formulation of the feature-based
SLAM problem is presented that jointly estimates the number and
location of the features, as well as the vehicle trajectory. More con-
cisely, the joint posterior distribution of the set-valued map and
vehicle trajectory is propagated forward in time as measurements
arrive, thereby incorporating both data association and feature
management into a single recursion. Furthermore, the Bayes opti-
mality of the proposed approach is established.

A first-order solution, which is coined as the probability hypoth-
esis density (PHD) SLAM filter, is derived, which jointly propagates
the posterior PHD of the map and the posterior distribution of the
vehicle trajectory. A Rao–Blackwellized (RB) implementation of
the PHD–SLAM filter is proposed based on the Gaussian-mixture
PHD filter (for the map) and a particle filter (for the vehicle trajec-
tory). Simulated and experimental results demonstrate the merits
of the proposed approach, particularly in situations of high clutter
and data association ambiguity.

Index Terms—Bayesian simultaneous localization and mapping
(SLAM), feature-based map, point process, probability hypothesis
density (PHD), random finite set (RFS).

NOMENCLATURE

k Current time index.
Mk Feature-map random vector.
M̂k Estimate of Mk.

Xk Vehicle-pose random vector at k.
X0:k Vehicle-trajectory random vector.
X̂0:k Estimate of X0:k.

M Feature-map RFS.
Mk Explored-map RFS up to k.
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M̂k Estimate of Mk.

Zk RFS sensor measurement.
Z0:k History of RFS measurements.
Dk Feature-measurement RFS.
Ck Clutter-measurement RFS.
Bk RFS of the new features.
pk |k (Mk ,X0:k |·) Conditional pdf of RFS–SLAM.
pk |k (Mk |·) Conditional pdf of Mk .
pk |k−1(Mk |·) Predicted conditional pdf of Mk.

gk (Zk |·) Conditional pdf of Zk .
fM(·|Mk−1) Transition density of the map RFS.
fX (·|Xk−1) Vehicle transition density.
fD(·) Density of the feature-measurement RFS.
fC(·) Density of the clutter-measurement RFS.
fB(·) Density of the new feature RFS.
vk |k (m|·) PHD of the explored map RFS, i.e., Mk.

vk |k−1(m|·) PHD of the predicted map, i.e., Mk |k−1.

ck (z|·) PHD of Ck .
bk (m|·) PHD of Bk .
mk Number of features in Mk .
m̂k Estimated number of features in Mk .
mi ith feature in Mk .
zk Number of measurements in Zk .
zi ith measurement in Zk .
gk (z|m) Likelihood of z given feature m.
PD (m) Detection probability of feature m.
N Number of particles.
X

(i)
0:k ith sample trajectory.

w
(i)
k Weight of ith sample trajectory.

v
(i)
k (m|X(i)

0:k ) ith trajectory-conditioned PHD of Mk .

J
(i)
k Number of Gaussian components in the

ith trajectory-conditioned PHD of Mk .
η

(i,j )
k Weight of the jth Gaussian component

of the ith trajectory-conditioned PHD of
Mk .

μ
(i,j )
k Mean of the jth Gaussian component

of the ith trajectory-conditioned PHD of
Mk .

P
(i,j )
k Covariance of the jth Gaussian com-

ponent of the ith trajectory-conditioned
PHD of Mk .

d̄(c)(M̂k ,Mk ) Error between M̂k and Mk , with cutoff
parameter c.

I. INTRODUCTION

FOLLOWING seminal developments in autonomous
robotics [1], the problem of simultaneous localization and

mapping (SLAM) gained widespread interest, with numerous
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potential applications ranging from robotic planetary explo-
ration to intelligent surveillance. This paper focusses on the
feature-based approach that decomposes physical environmen-
tal landmarks into parametric representations such as points,
lines, circles, corners, etc., which are known as features. Feature-
based maps are comprised of an unknown number of features at
unknown spatial locations [2] and are widely used in the SLAM
literature [3]– [7]. Estimating a feature map thus requires the
joint estimation of the number and location of the features that
have been covered by the sensor’s field-of-view (FoV).

In the Bayesian paradigm, the feature-based SLAM problem
(henceforth referred to as SLAM for compactness) amounts to
jointly propagating the posterior distribution of the map and ve-
hicle trajectory. Current state-of-the-art SLAM solutions com-
prise two separate steps [6]:

1) Determine the measurement (to feature) associations.
2) Given the associations, estimate the feature locations and

vehicle pose via stochastic filtering.
This two-tiered approach is efficient and works well for a

wide range of applications [4], [6], [7] but is sensitive to data
association (DA) uncertainty [8]. A SLAM solution that is robust
to DA uncertainty under high clutter and measurement noise
requires a framework that fully integrates DA uncertainty into
the estimation of the map (and vehicle trajectory).

This paper advocates a fully integrated Bayesian framework
for SLAM under DA uncertainty and unknown feature number.
The key to this formulation is the representation of the map as a
finite set of features. Indeed, from an estimation viewpoint, it is
argued in Section II-A that the map should be represented by a
finite set. Using random-finite-set (RFS) theory, SLAM is then
posed as a Bayesian filtering problem in which the joint posterior
distribution of the vehicle trajectory and set-valued map are
propagated forward in time as measurements arrive. This so-
called RFS–SLAM framework allows for the joint recursive
estimation of the vehicle trajectory, the feature locations, and
the number of features in the map. Moreover, it is shown that
the proposed RFS approach is Bayes optimal.

The RFS formulation for SLAM was first proposed in [9],
with preliminary studies using “brute force” implementations
also appearing in [10]. The approach modeled the joint vehi-
cle trajectory and map as a single RFS and recursively propa-
gates its first-order moment. In this paper, however, a tractable
first-order approximation, which is coined as the probability
hypothesis density (PHD)–SLAM filter, is derived, which first
factorizes the RFS–SLAM density and then propagates the pos-
terior PHDs of multiple trajectory-conditioned maps and the
posterior distribution of the vehicle trajectory. The PHD is the
first-order moment of the RFS of the map and is closely re-
lated to the occupancy grid representation, as discussed later in
Section IV-B. Furthermore, as presented in this paper, the RFS
approach to SLAM admits the concept of an “expected” map
via the PHD construct, which is not available in existing SLAM
approaches.

This factorized approach to SLAM was established in the,
now well known, FastSLAM concept [6]. However, it will be
shown that the same factorization method applied to vectors in
FastSLAM cannot be applied to sets, since it results in invalid

densities in the feature space. Therefore, one of the main con-
tributions of this paper is a technique that allows such a factor-
ization to be applied to sets in a principled manner. Preliminary
results have been announced in [6], and this paper presents a
more rigorous analysis of the RFS approach to SLAM, an im-
proved version of the PHD–SLAM filter, a discussion of Bayes
optimality, as well as simulated and real experimental results.
The merits of the RFS approach are demonstrated, particularly
in situations of high clutter and DA ambiguity.

The paper is organized as follows. Section II demonstrates
that the feature map can be represented as a finite set of features
and proposes a corresponding Bayesian filtering framework for
SLAM. Given the joint posterior density of the random-vector-
vehicle trajectory and RFS feature map, optimal estimators are
introduced and discussed in Section III. The PHD–SLAM filter,
which propagates the first-order-moment of the RFS map, is pre-
sented in Section IV. Section V outlines a Rao–Blackwellized
(RB) implementation of the PHD–SLAM filter, with Section VI
presenting and discussing its performance. Extensions of the
approach to incorporate other useful RFS representations are
also presented.

II. BAYESIAN RANDOM FINITE-SET (FEATURE-BASED)
SIMULTANEOUS LOCALIZATION AND MAPPING

This section discusses the mathematical representation of the
map and presents a Bayesian formulation of the SLAM problem
subject to uncertainty in DA and the number of features. In
particular, it is argued that fundamentally, the map should be
represented as a finite set, and thus, the concept of an RFS is
required for a Bayesian SLAM formulation.

A. Mathematical Representation of the Feature Map

This section demonstrates that, in the context of jointly esti-
mating the number of features and their locations, the collection
of features, which is referred to as the feature map, is naturally
represented by a finite set. The rationale behind this represen-
tation traces back to a fundamental consideration in estimation
theory—estimation error. Without a meaningful notion of esti-
mation error, estimation has very little meaning. Despite the fact
that mapping error is equally as important as localization error,
its formal treatment has been largely neglected. To illustrate
this point, recall that in existing SLAM formulations, the map is
constructed by stacking features into a vector and consider the
simplistic scenarios depicted in Fig. 1.

Fig. 1(a) depicts a scenario in which there are two true features
at coordinates (0, 0) and (1, 1). The true map M is then repre-
sented by the vector M =[0 0 1 1]T . If features are stacked into
a vector in order of appearance then, given a vehicle trajectory
X0:k (e.g., as shown in the figure) and perfect measurements,
the estimated map may be given by the vector M̂ =[1 1 0 0]T .
Despite a seemingly perfect estimate of the map, the Euclidean
error of the estimated map ‖M − M̂‖ is 2. This inconsistency
arises because the ordering of the features in the representa-
tion of the map should not be relevant. A vector representation,
however, imposes a mathematically strict arrangement of fea-
tures in the estimated map based on the order in which they
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Fig. 1. Hypothetical scenario showing a fundamental inconsistency with vec-
tor representations of feature maps. If M is the true map, how should the error
be assigned when the number of features in the map estimate M̂ is incorrect?

were detected [1], [5]. Intuitively, the elements of M̂ could be
permuted to obtain a zero error; however, the representation of
all possible permutations of the elements of a vector is, by def-
inition, a set. Hence, such a permuting operation implies that
the resulting error distance is no longer a distance for vectors
but a distance for sets, and thus, this paper derives a set-based
approach to SLAM. Another problem is depicted in Fig. 1(b), in
which there are again two features at (0,0) and (1,1), but due to
a missed detection (for instance), the estimated map comprises
only one feature at (1,1). In such a situation, it is difficult to
define a mathematically consistent error metric, i.e., Euclidean
error and mean-squared error (MSE), between the vectors M
and M̂ since they contain a different number of elements. It is
evident from these examples that stacking individual features
into a single vector does not lead to a natural notion of mapping
error, in general.

A finite set representation of the map Mk = {m1
k , . . . ,

mmk

k }, where m1
k , . . . ,mmk

k are the mk features present at time
k, admits a natural notion of estimation error since the “dis-
tance,” or error between sets, is a well-understood concept, for
example, the Hausdorff, optimal mass transfer (OMAT) [12],
and optimal subpattern assignment (OSPA) [13], distances.

It should be noted that, while finite sets naturally capture
the intrinsic properties of a feature map, a finite set map repre-
sentation for grid-based frameworks [14], is unnecessary since
the number of grid cells is known (a priori tessellation), and
the order of the map states signifies their spatial location in
the grid. As such, grid-map-estimation errors can be readily
defined via Euclidean, mean squared, or sum of squared er-
ror metrics [15]. Due to the fundamentally different estima-
tion state space of grid maps, being in occupancy space, it is
difficult to draw comparison between grid-based SLAM algo-
rithms and the RFS feature-based framework proposed in this
paper.

For most sensor models considered in SLAM, the order in
which sensor readings are recorded at each sampling instance
simply depends on the direction in which the vehicle/sensor
points and has no significance on the state of the map, which
typically evolves in a globally defined coordinate system, inde-
pendent of the vehicle’s pose. Moreover, the number of mea-
surements zk at any given time is not fixed due to detection
uncertainty, spurious measurements, and unknown number of
features. Thus, this type of measurement may also be naturally
represented by a finite set of readings Zk = {z1

k , z2
k , . . . , zzk

k }.

B. Random Finite Set–Simultaneous Localization and Mapping

This section outlines the RFS–SLAM model followed by the
Bayesian RFS–SLAM filter.

1) Random Finite Set–Simultaneous Localization and Map-
ping Model: In the Bayesian estimation paradigm, the
states/parameters and measurements are treated as realizations
of random variables. Since the map (and the measurement) is
more appropriately represented by a finite set, in such a frame-
work, the concept of an RFS is required for Bayesian map es-
timation, [9]. Similar to a random vector being a vector-valued
random variable (vehicle trajectory for instance), an RFS is
simply a finite-set-valued random variable. Moreover, similar
to random vectors, the probability density (if it exists) is a very
useful descriptor of an RFS, especially in filtering and estima-
tion. However, the space of finite sets does not inherit the usual
Euclidean notion of integration and density. Hence, standard
tools for random vectors are not appropriate for RFSs. Mahler’s
finite-set statistics (FISST) provide practical mathematical tools
to deal with RFSs [16], [17], which is based on a notion of
integration and density that is consistent with point-process the-
ory [18]. This approach has attracted substantial research in-
terest in the multitarget tracking community [19], with a more
comprehensive list of applications appearing in [15]. An infor-
mal introduction to RFS estimation can be found in [20], with
a detailed description of the latest advances available in [21]
and [22].

Letting M be the RFS representing the entire unknown and
unexplored static map and Mk−1 be the RFS representing the
subset of that map that has been explored, i.e., that has passed
through the FoV of the vehicle mounted sensor, i.e.,

Mk−1 = M∩ FoV(X0:k−1). (1)

Note that FoV(X0:k−1)=FoV(X0) ∪ FoV(X1) ∪ . . . ∪
FoV(Xk−1). Mk−1 , therefore, represents the set on the space
of features that intersects with the union of individual FoVs,
over the vehicle trajectory up to and including time k−1. Given
this representation, the explored map Mk−1 evolves in time
according to

Mk = Mk−1 ∪ (FoV(Xk ) ∩ M̄k−1) (2)

where M̄k−1 = M−Mk−1 (note the difference operator used
here is the set difference), i.e., the set of features that are not
in Mk−1 . Letting the new features that have entered the FoV,
i.e., the second term of (2), be modeled by the independent RFS
Bk (Xk ), in this case, the RFS map-transition density is given
by,

fM(Mk |Mk−1 ,Xk )=
∑

W⊆Mk

fM(W|Mk−1)fB(Mk −W|Xk )

(3)

where fM(W|Mk−1) is the transition density of the set of fea-
tures that are in the FoV(X0:k−1) at time k − 1 to time k, and
fB(Mk−W|Xk ) is the density of the RFS B(Xk ) of the new
features that pass within the FoV at time k. Modeling the ve-
hicle dynamics by the standard Markov process with transition
density fX (Xk |Xk−1 , Uk ), where Uk denotes the control input
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at time k, the joint transition density of the map and the vehicle
pose can be written as

fk |k−1(Mk ,Xk |Mk−1 ,Xk−1 , Uk )

= fM(Mk |Mk−1 ,Xk )fX (Xk |Xk−1 , Uk ). (4)

The measurement Zk received by the vehicle with pose Xk ,
at time k, can be modeled by

Zk =
⋃

m∈Mk

Dk (m,Xk ) ∪ Ck (Xk ) (5)

where Dk (m,Xk ) is the RFS of measurements generated by a
feature at m and Ck (Xk ) is the RFS of the spurious measure-
ments at time k, which may depend on the vehicle pose Xk .
Therefore, Zk consists of a random number, zk , of measure-
ments, whose order of appearance has no physical significance
with respect to the estimated map of features. It is also assumed
that all Dk (m,Xk ), and Ck (Xk ) are independent RFSs when
conditioned on Xk .

The RFS of the measurements generated by a feature at m can
be modeled by a Bernoulli RFS1 [17] given by Dk (m,Xk )=∅
with probability 1−pD (m|Xk ) and Dk (m,Xk )={z} with prob-
ability density pD (m|Xk )gk (z|m,Xk ). For a given robot pose
Xk, pD (m|Xk ) is the probability of the sensor detecting a fea-
ture at m. Given a detection, gk (z|m,Xk ) is then the likelihood
that a feature at m generates the measurement z. The assumed
Poisson RFS Ck (Xk ) represents the spurious measurements,
which may be dependent on the vehicle pose Xk .

Using finite-set statistics [9], the likelihood of the measure-
ment Zk is then given by

gk (Zk |Xk,Mk ) =
∑

W⊆Zk

fD(W|Mk ,Xk )fC(Zk −W|Xk )

(6)

with fD(W|Mk ,Xk ) denoting the density of the RFS of ob-
servations, and fC(Zk −W|Xk ) denoting the density of the
clutter RFS, i.e., Ck (Xk ). It can be seen that this likelihood di-
rectly encapsulates the inherent measurement uncertainty, with
fD(W|Mk ,Xk ) considering detection uncertainty and mea-
surement noises, and fC(Zk −W|Xk ) modeling the spurious
measurements. This density is typically a priori given as Poisson
in number and uniform in space [3]. The Bayesian RFS–SLAM
filter is outlined next.

2) Random Finite Set–Simultaneous Localization and Map-
ping Filter: Letting the joint posterior density of the map Mk

be denoted by pk (Mk ,X1:k |Z1:k , U1:k ,X0) and the vehicle
trajectory by X0:k , for clarity of exposition, the following ab-
breviations shall be adhered to:

pk |k−1(Mk ,X1:k ) = pk |k−1(Mk ,X1:k |Z0:k , U0:k−1 ,X0)

pk (Mk ,X1:k ) = pk (Mk ,X1:k |Z0:k , U0:k−1 ,X0).

1The Bernoulli RFS is empty with a probability 1 − ε and is distributed
according to a density π with probability ε.

The recursion for a static feature map is then given as follows:

pk |k−1(Mk ,X1:k ) = fX (Xk |Xk−1 , Uk )

×
∫

fM(Mk |Mk−1 ,Xk )pk−1(Mk−1 ,X1:k−1)δMk−1 (7)

pk (Mk ,X1:k ) =
gk (Zk |Xk,Mk )pk |k−1(Mk ,X1:k )

gk (Zk |Z0:k−1 ,X0)
(8)

where the δ denotes a set integral.2

The joint posterior density encapsulates all statistical infor-
mation about the map and vehicle pose, that can be inferred
from the measurements and control history up to time k. The
RFS–SLAM recursion (8) integrates uncertainty in DA and the
number of features into a single Bayesian filter and does not
require a separate DA step or any form of feature management,
as is classically required [5], [6], [8].

The outputs of a SLAM algorithm are the estimate of the
vehicle trajectory and the map. In a Bayesian approach, these are
computed from the joint posterior density in (8). The following
section establishes Bayes optimality for various RFS–SLAM
estimators, while Section IV presents a tractable solution of the
RFS–SLAM recursion.

III. BAYES OPTIMAL RANDOM FINITE SET–SIMULTANEOUS

LOCALIZATION AND MAPPING ESTIMATORS

This section discusses various Bayes estimators for the SLAM
problem and their optimality, which are based on a vector rep-
resentation of the vehicles trajectory, and a finite-set represen-
tation of the map. The notion of Bayes optimal estimators is
fundamental to the Bayesian-estimation paradigm. In general,
if the function θ̂ : z �→ θ̂(z) is an estimator of a parameter θ,
which is based on a measurement z, and C(θ̂(z), θ) is the cost
for using θ̂(z) to estimate θ, then the Bayes risk R(θ̂) is the
expected cost over all possible realizations of the measurement
and parameter, i.e.,

R(θ̂) =
∫ ∫

C(θ̂(z), θ)p(z, θ)dθdz (9)

where p(z, θ) is the joint probability density of the measure-
ment z and the parameter θ. A Bayes optimal estimator is any
estimator that minimizes the Bayes risk [23], [24].

In the SLAM context, relevant Bayes optimal estima-
tors are those for the vehicle trajectory and the map. The

posterior densities pk (X1:k )


=pk (X1:k |Z0:k , U0:k−1 ,X0), and

pk (Mk )


=pk (Mk |Z0:k , U0:k−1 ,X0) for the vehicle trajectory

and map, can be obtained by marginalizing the joint posterior
density pk (Mk ,X1:k |Z0:k , U0:k−1 ,X0). For the vehicle trajec-
tory, the posterior mean, which minimizes the MSE, is a widely
used Bayes optimal estimator. However, since the map is more
appropriately represented as a finite set, the notion of MSE does
not apply. Moreover, standard Bayes optimal estimators are de-
fined for vectors and, subsequently, do not apply to finite-set

2Since the integration variable (the map) is a finite set, the usual definition of
integration for vectors does not apply. In this case, a set integral is required. For
more details, see [17] and [18].
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feature maps. To the best of the authors’ knowledge, there is
no work which establishes Bayes optimality of estimators for
finite-set feature maps (and, consequently, feature-based SLAM
in terms of taking the estimated number of features into account).

A. Optimal Feature-Map Estimation

In the following, as before, letting Mk denote the feature-
based map state at time k comprising mk features, and pk (Mk )
denote its posterior spatial density. If M̂k : Z1:k �→ M̂k (Z1:k )
is an estimator of the feature map Mk , and C(M̂k (Z1:k ),Mk )
is the cost for using M̂k (Z1:k ) to estimate Mk , then the Bayes
risk for mapping is given by

R(M̂k ) =
∫ ∫

C(M̂k (Z1:k ),Mk )pk (Mk , Z1:k )δMk δZ1:k

(10)
where pk (Mk , Z1:k ) is the joint density of the map and mea-
surement history. Since, due to the arguments presented in Sec-
tion II-A, the map and measurements are more appropriately
represented as sets, the Bayes risk above is defined in terms
of set integrals. Several principled solutions to performing fea-
ture map estimation such as the joint multiobject estimator or
marginal multiobject estimator [17] can be applied, as can the
PHD estimator, which is next described and adopted in this
paper.

B. Probability Hypothesis Density Estimator

An intuitive approach to RFS state estimation is to exploit
the physical interpretation of the first moment of an RFS, which
is its PHD, i.e., vk [17]. For a map RFS Mk , the PHD is a
nonnegative function v, such that for each region S in the space
of features

∫

S

vk (m)dm = E[|Mk ∩ S|]. (11)

The mass of the PHD gives the expected number of features
m̂k in the map Mk , and its peaks indicate locations with high
probability of feature existence. A discussion on the optimal-
ity/suboptimality of the PHD estimator is provided in [22].

If the RFSMk is Poisson, i.e., the number of points is Poisson
distributed and the points themselves are independently and
identically distributed (iid), then the probability density of Mk

can be constructed exactly from the PHD,

p(Mk ) =

∏
m∈Mk

vk (m)
exp(

∫
vk (m)dm)

. (12)

In this sense, the PHD can be thought of as a first-moment
approximation of the probability density of an RFS.

IV. PROBABILITY HYPOTHESIS DENSITY–SIMULTANEOUS

LOCALIZATION AND MAPPING FILTER

Since the full RFS–SLAM filter is numerically intractable, it
is necessary to look for tractable but principled approximations.
The PHD approach which propagates the first-order moment of
the posterior multitarget RFS has proven to be both powerful and
effective in multitarget filtering [17]. However, this technique

cannot be directly applied to SLAM that propagates the joint
posterior density of the map and the vehicle trajectory.

This section derives a recursion that jointly propagates the
posterior PHD of the map and the posterior density of the vehi-
cle trajectory. Analogous to FastSLAM, the RFS–SLAM recur-
sion can be factorized as shown in Section IV-A. Section IV-B
discusses the PHD estimator in the context of this factorized
recursion. Section IV-D presents a trajectory-conditioned map-
ping algorithm based on the PHD, while Section IV-E extends
this mapping algorithm to perform SLAM.

A. Factorized RFS-SLAM

Using standard conditional probability, the joint posterior
RFS–SLAM density of (8) can be decomposed as

pk (Mk ,X1:k |Z0:k , U0:k−1 ,X0)

= pk (X1:k |Z0:k , U0:k−1 ,X0)pk (Mk |Z0:k ,X0:k ). (13)

Thus, the recursion for the joint RFS map-trajectory posterior
density according to (8) is equivalent to jointly propagating the
posterior density of the map conditioned on the trajectory and
the posterior density of the trajectory. In this section, as before,
for compactness

pk |k−1(Mk |X0:k ) = pk |k−1(Mk |Z0:k−1 ,X0:k )

pk (Mk |X0:k ) = pk (Mk |Z0:k ,X0:k )

pk (X1:k ) = pk (X1:k |Z0:k , U0:k−1 ,X0)

and it follows that

pk |k−1(Mk |X0:k ) =
∫

fM(Mk |Mk−1 ,Xk )

× pk−1(Mk−1 |X0:k−1)δMk−1 (14)

pk (Mk |X0:k ) =
gk (Zk |Mk ,Xk )pk |k−1(Mk |X0:k )

gk (Zk |Z0:k−1 ,X0:k )
(15)

pk (X1:k ) = gk (Zk |Z0:k−1 ,X0:k )

× fX (Xk |Xk−1 , Uk−1)pk−1(X1:k−1)
gk (Zk |Z0:k−1)

. (16)

Apart from adopting RFS likelihoods for the measurement
and map, the recursion defined by (14)–(16) is similar to that
in FastSLAM [6], [25]. However, the use of RFS likelihoods
has important consequences in the evaluation of (16), as shown
later in Section IV-E. In FastSLAM, it should be noted that the
map recursion of (15) is further decomposed into the product
of K independent densities for each of the K features assumed
to exist in the map. Furthermore, FastSLAM is conditioned
on the inherently unknown DA assignments. In contrast, RFS–
SLAM is not conditioned on any DA hypotheses to determine
the number of features to estimate, and the recursion of (15) is
that of an RFS feature map. Consequently, the propagation of the
map involves probability densities of RFS s and marginalization
over the map involves set integrals. Similar to FastSLAM, the
effect of the trajectory conditioning on RFS–SLAM is to render
each feature estimate conditionally independent, and thus, the
map correlations, which are critical to EKF–SLAM [5], are not
required.
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B. PHD in RFS-SLAM

Recall from Section III-A, that an optimal estimator for a ran-
dom vector is the conditional expectation. Many state-of-the-art
SLAM algorithms adopt sequential Monte Carlo (SMC) meth-
ods. It is well known that SMC techniques are more amenable to
expectation operations than maximization operations, since if p
is approximated by a set of weighted samples {w(i) ,X(i)}N

i=1 ,
then [26], [27]

N∑

i=1

w(i)X(i) → E[X] (17)

as N→∞. However, in FastSLAM [6], it is common to choose
the trajectory sample with the highest weight as the estimate of
the vehicle path, and its corresponding map, as the estimate of
the map. It is easier to establish convergence in SMC implemen-
tations if we use the expected path and expected map. However,
it is not clear how the expected map is interpreted.

The PHD construct allows an alternative notion of expectation
for maps, thereby fully exploiting the advantage of an SMC
approximation. The PHD v is a function defined on the feature
space satisfying (11). The value of the PHD at a point gives
the expected number of features at that point, while the integral
over any given region gives the expected number of features
in that region. A salient property of the PHD construct in map
estimation is that the posterior PHD of the map is indeed the
expectation of the trajectory-conditioned PHDs. More concisely

vk (m) = E [vk (m|X1:k )] (18)

where the expectation is taken over the vehicle trajectory X1:k .
This result follows from standard properties of the PHD (in-
tensity function) of an RFS; see, for example, classical texts
such as [28] and [29]. Thus, the PHD construct provides a nat-
ural framework to average feature-map estimates, while incor-
porating both unknown associations and different feature num-
bers. This differs dramatically from vector-based map-averaging
methods which require feature identification tracking and rule-
based combinations [30]. In contrast, map averaging for grid-
based maps is straightforward due to both known grid align-
ments and number of cells. While the practical merits of an
expected feature map estimate for SLAM using a single sen-
sor may be unclear at this time, related operations such as
“feature-map addition” may be of use in sensor fusion and mul-
tirobot SLAM applications. Furthermore, the PHD construct
admits a Bayes optimal estimator for the map, as discussed in
Section III-A.

C. Evidence Grids and the Probability Hypothesis Density

As mentioned in Section I, the PHD of a map is closely re-
lated to the occupancy-grid representation. Intuitively, the PHD
can be interpreted as a limiting case of the occupancy probabil-
ity. Following [31], considering a grid system, and letting mi ,
B(mi) denote the center and region defined by the boundaries
of the ith grid cell. Let P (occ)(B(mi)) and λ(B(mi)) denote the
occupancy probability and the area of the ith grid cell. Assum-
ing that the grid is sufficiently fine so that each grid cell contains
at most one feature, then the expected number of features over

the region SJ =
⋃

i∈J B(mi) is given by

E [|M ∩ SJ |] =
∑

i∈J

P (occ)(B(mi))

=
∑

i∈J

v(mi)λ(B(mi))

where v(mi) = P ( o c c ) (B (mi ))
λ(B (mi ))

. Intuitively, as the grid cell area

tends to zero (or for an infinitesimally small cell), any region S
can be approximated by

⋃
i∈J B(mi) for some J . The sum then

becomes an integral and the expected number of features in S
becomes

E [|M ∩ S|] =
∫

S

v(m)dm. (19)

Hence, the PHD v(m) can be interpreted as the occupancy
probability density at the point m. The recursive propagation of
the PHD is discussed in the following section.

D. Probability Hypothesis Density Mapping

This section details the trajectory-conditioned PHD-mapping
recursion of (15), as was first proposed in [10]. The predicted
and posterior RFS maps are approximated by Poisson RFSs with
PHDs vk |k−1(m|X0:k ) and vk (m|X0:k ), respectively

pk |k−1(Mk |X0:k ) ≈

∏
m∈Mk

vk |k−1(m|X0:k )

exp
(∫

vk |k−1(m|X0:k )dm
) (20)

pk (Mk |X0:k ) ≈

∏
m∈Mk

vk (m|X0:k )

exp
(∫

vk (m|X0:k )dm
) . (21)

In essence, this approximation assumes that features are iid
and the number of features is Poisson distributed. This PHD
approximation has been proven to be powerful and effective
in multitarget tracking [17]. Poisson approximations for the
number of new features have also been adopted in certain SLAM
solutions [3].

Under these approximations, it has been shown [3] that, sim-
ilar to standard recursive estimators, the PHD recursion has a
predictor–corrector form. The PHD predictor equation is

vk |k−1(m|X0:k ) = vk−1(m|X0:k−1) + b(m|Xk ) (22)

where b(m|Xk ) is the PHD of the new feature RFS, i.e., B(Xk ),
as discussed previously in Section II-B. The PHD corrector
equation is then

vk (m|X0:k ) = vk |k−1(m|X0:k )
[
1 − PD (m|Xk )

+
∑

z∈Zk

Λ(m|Xk )
ck (z|Xk ) +

∫
Λ(ζ|Xk )vk |k−1(ζ|X0:k )dζ

]
(23)

where Λ(m|Xk )=PD (m|Xk )gk (z|m,Xk ), and

PD (m|Xk ) = the probability of detecting a feature at
m, from vehicle pose Xk

ck (z|Xk ) = PHD of the clutter RFS Ck in (5)
at time k.
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Fig. 2. Sample map PHD at time k−1, with the true map represented by
black crosses. The measurement at k−1 is represented by the yellow dashed
lines. The peaks of the PHD represent locations with highest concentration of
expected number of features. The local PHD mass in the region of most features
is 1, thus indicating the presence of one feature. The local mass close to some
unresolved features (for instance at (5,–8)) is closer to 2, thereby demonstrating
the unique ability of the PHD function to jointly capture the number of features.

The predictor of (22) comprises the sum of the previous PHD
and the PHD of the set of static features hypothesized to enter
the sensor’s FoV due to vehicle motion. The corrector of (23) is
governed by the following sensor characteristics [17].

1) PD (m|Xk ). If a feature at m is not in FoV(Xk ), it could
not have been observed; thus, PD (m|Xk )=0. From (23)

vk (m|X0:k ) = vk |k−1(m|X0:k )[1 − 0 + 0]

i.e., the updated PHD equals the predicted PHD, as no
new information is available. On the other hand, if m
is in FoV(Xk ) and PD (m|Xk ) ≈ 1, the summation over
all measurements tends to dominate. Then, the predicted
PHD is modified by the sum of terms dependent on the
measurement likelihood and clutter PHD.

2) ck (z|Xk ). A particular measurement could have orig-
inated from a feature or a false alarm. Assuming
PD (m|Xk ) is constant and the number of false alarms is
large and uniformly distributed in the region FoV(Xk ), the
summation term of (23) is then dominated by ck (z|Xk ).
Since the measurement is likely to be a false alarm, it
contributes little to the total posterior feature count, as
it should. On the other hand, if the number of false
alarms is low, ck (z|Xk ) dominates less, and the mea-
surement contributes more to the value of the posterior
PHD.

3) gk (z|m,Xk ). Let us assume that the sensor model is accu-
rate, thus gk (z|m,Xk ) is large for the m, which produces
z. If z is consistent with prior information (the observa-
tion model), the numerator will dominate the summation
of (23). Conversely, if gk (z|m,Xk ) is small, and the mea-
surement is unlikely to be from m, its corresponding term
in the summation will have little influence.

A graphical depiction of a the posterior PHD after two con-
secutive measurements, approximated by a Gaussian mixture
(GM), is shown, respectively, in Figs. 2 and 3.

The PHD recursion is far more numerically tractable than
propagating the RFS map densities of (15). In addition, the
recursion can be readily extended to incorporate multiple sen-

Fig. 3. Map PHD from Fig. 2 and the measurement at time k. Note that the
features at (5,–8) are resolved due to well-separated measurements, while at
(–1,–4), a lone false alarm close to the feature measurement contributes to the
local PHD mass. At (–5,–4), a small likelihood over all measurements, coupled
with a moderate ck (z|Xk ), results in a reduced local mass.

sors/vehicles by sequentially updating the map PHD with the
measurement from each robot.

E. Probability Hypothesis Density–Simultaneous Localization
and Mapping

This section extends the trajectory-conditioned PHD mapping
recursion to the SLAM problem. With the hindsight of Fast-
SLAM [6], the most obvious extension of PHD mapping [10]
to SLAM is to exploit the factorization (14)–(16), e.g., PHD for
mapping and particle filtering for localization. This technique
requires the computation of the posterior density of the vehicle
trajectory in (16), in particular, the term gk (Zk |Z0:k−1 ,X0:k ),
which requires set integration

gk (Zk |Z0:k−1 ,X0:k ) =
∫

p(Zk ,Mk |Z0:k−1 ,X0:k )δMk .

(24)
This set integral is numerically intractable and a naive approach
is to directly apply the EKF approximation proposed for Fast-
SLAM [32]. However, an EKF approximation cannot be used
since the likelihood (24), which is defined on the space of finite
sets, and its FastSLAM counterpart, which is defined on a Eu-
clidean space, are two fundamentally different quantities and it
is not known how they are even related. Therefore, in this case, it
is fundamentally incorrect to use the EKF approximation in [6],
as it will not result in a valid density, and thus, its product with
(15) cannot give the joint posterior of the map and pose.

Fortunately, by rearranging (15), it can be seen that
gk (Zk |Z0:k−1 ,X0:k ) is merely the normalizing constant

gk (Zk |Z0:k−1 ,X0:k ) =
gk (Zk |Mk ,Xk )pk |k−1(Mk |X0:k )

pk (Mk |X0:k )
.

(25)
Note in the above, that the LHS does not contain the variable
Mk , while the RHS has Mk in both the denominator and nu-
merator. In essence, Mk in (25) is a dummy variable, and thus,
(25) holds for any arbitrary choice of Mk . This allows the sub-
stitution of any choice of Mk to evaluate gk (Zk |Z0:k−1 ,X0:k ).
This is an important result, which allows for the likelihood
of the measurement-conditioned on the trajectory (but not the
map), to be calculated in closed-form, as opposed to using the
EKF approximations in [6]. The following considers two simple
choices.
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1) Empty Map: SettingMk = ∅, and using the Poisson RFS
approximations, i.e., (20) and (21), as well as the RFS measure-
ment likelihood, i.e., (6), it follows that (see Appendix A)

gk (Zk |Z0:k−1 ,X0:k ) ≈ κZk

k

× exp
(

m̂k − m̂k |k−1 −
∫

ck (z|Xk )dz

)
(26)

where κZk

k =
∏

z∈Zk

ck (z|Xk ), with ck (z|Xk ) being the PHD

of the measurement clutter RFS Ck (Xk ). In addition, m̂k =∫
vk (m|X0:k )dm, and m̂k |k−1 =

∫
vk |k−1(m|X0:k )dm.

2) Single-Feature Map: In a similar manner, to evaluate the
normalizing constant for the case of Mk = {m̄}, again using
(6), (20), and (21)

gk (Zk |Z0:k−1 ,X0:k ) ≈ 1
Γ

[(
(1 − PD (m̄|Xk ))κZk

k

+ PD (m̄|Xk )
∑

z∈Zk

κ
Zk −{z}
k gk (z|m̄,Xk )

)
vk |k−1(m̄|X0:k )

]

(27)

with

Γ = exp
(

m̂k |k−1 − m̂k +
∫

ck (z)dz

)
vk (m̄|X0:k ). (28)

For this choice ofMk , m̄ can be, for instance, the feature with
the least uncertainty or the maximum measurement likelihood.
It is possible to choose Mk with multiple features; however,
this will increase the computational burden. Due to the presence
of the measurement likelihood term gk (z|m̄,Xk ), it is expected
that, in general, the single-feature map update will outperform
that of the empty-map update. Note that in (25), every choice
of Mk would give the same result; however, (26) and (27)
use different approximations of pk (Mk |X0:k ), thus yielding
slightly different results. The following section presents an RB
implementation of the proposed PHD–SLAM filter.

V. RAO–BLACKWELLIZED IMPLEMENTATION OF THE

PHD-SLAM FILTER

Following the description of the PHD–SLAM filter in the
previous section, an RB implementation is detailed in this sec-
tion. In essence, a particle filter is used to propagate the vehicle
trajectory in (16), and a GM PHD filter is used to propagate
each trajectory-conditioned map PHD in (15). As such, letting
the PHD–SLAM density at time k−1 be represented by a set of
N particles

{
w

(i)
k−1 ,X

(i)
0:k−1 , v

(i)
k−1(m|X(i)

0:k−1)
}N

i=1

where X
(i)
0:k−1 = [X0 ,X

(i)
1 ,X

(i)
2 , . . . , X

(i)
k−1 ] is the ith hypoth-

esized vehicle trajectory, and v
(i)
k−1(m|X(i)

0:k−1) is its map PHD.
The filter then proceeds to approximate the posterior density by
a new set of weighted particles

{
w

(i)
k ,X

(i)
0:k , v

(i)
k (m|X(i)

0:k )
}N

i=1

as follows.

A. PHD Mapping

Let the prior map PHD for the ith particle v
(i)
k−1(m|X(i)

k−1) be
a GM of the form

vk−1(m|X(i)
k−1) =

J
( i )
k −1∑

j=1

η
(i,j )
k−1 N

(
m;μ(i,j )

k−1 , P
(i,j )
k−1

)
(29)

which is a mixture of J
(i)
k−1 Gaussians, with η

(i,j )
k−1 , μ

(i,j )
k−1 , and

P
(i,j )
k−1 being the corresponding predicted weights, means, and

covariances, respectively, for the jth Gaussian component of
the map PHD of the ith trajectory. Let the new feature intensity
b(m|Zk−1 ,X

(i)
k ) for the sampled pose X

(i)
k at time k also be a

GM of the form

b(m|Zk−1 ,X
(i)
k ) =

J
( i )
b , k∑

j=1

η
(i,j )
b,k N

(
m;μ(i,j )

b,k , P
(i,j )
b,k

)
(30)

where J
(i)
b,k defines the number of Gaussians in the new fea-

ture intensity at time k, and η
(i,j )
b,k , μ

(i,j )
b,k , and P

(i,j )
b,k are the

corresponding components. This is analogous to the proposal
distribution in the particle filter and provides an initial estimate
of the new features entering the map.

The predicted intensity is therefore also a GM

vk |k−1(m|X(i)
k ) =

J
( i )
k |k −1∑

j=1

η
(i,j )
k |k−1N

(
m;μ(i,j )

k |k−1 , P
(i,j )
k |k−1

)
(31)

which consists of J
(i)
k |k−1 =J

(i)
k−1 + J

(i)
b,k Gaussians representing

the union of the prior map intensity vk−1(m|X(i)
k−1) and the

proposed new feature intensity, according to (22). Since the
measurement likelihood is also of Gaussian form, it follows
from (23) that the posterior map PHD vk (m|X(i)

k ) is then also
a GM given by

vk (m|X(i)
k ) = vk |k−1(m|X(i)

k )
[
1 − PD (m|X(i)

k )

+
∑

z∈Zk

J
( i )
k |k −1∑

j=1

v
(i,j )
G,k (z,m|X(i)

k )
]
. (32)

The components of the above equation are given by

v
(i,j )
G,k (z,m|X(i)

k ) = η
(i,j )
k (z|X(i)

k )N (m;μ(i,j )
k |k , P

(i,j )
k |k ) (33)

η
(i,j )
k (z|X(i)

k ) =
PD (m|X(i)

k )η(i,j )
k |k−1q

(i,j )(z,X
(i)
k )

c(z) +

J
( i )
k |k −1∑

	=1

PD (m|X(i)
k )η(i,	)

k |k−1q
(i,	)(z,X

(i)
k )

(34)

where q(i,j )(z,X
(i)
k ) = N

(
z;Hkμ

(i,j )
k |k−1 , S

(i,j )
k

)
. The terms

μk |k , Pk |k , and Sk can be obtained using any standard fil-
tering technique such as extended Kalman filter (EKF) or
unscented Kalman filter. In this paper, the EKF updates are
adopted.
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The clutter RFS, i.e., Ck , is assumed to be Poisson-distributed
[3] in number and is uniformly spaced over the mapping re-
gion. Therefore, the clutter intensity is given by, c(z) = λcU(z),
where λc is the average number of clutter measurements, and
U(z) denotes a uniform distribution on the measurement space.
As with other feature-based GM implementations [33], prun-
ing and merging operations are required to curb the explosive
growth in the number of Gaussian components of the posterior
map PHD. These operations are carried out as in [34].

B. Vehicle Trajectory

The proposed filter adopts a particle approximation of the pos-
terior vehicle trajectory, pk (X1:k ), which is sampled/re-sampled
as follows:

Step 1: Sampling step

1) For i = 1, ..., N , sample X̃
(i)
k ∼ fX (X̃(i)

k |X(i)
k−1 , Uk−1),

and set

w̃
(i)
k =

gk (Zk |Z0:k−1 , X̃
(i)
0:k )fX (X̃(i)

k |X(i)
k−1 , Uk−1)

fX (X̃(i)
k |X(i)

k−1 , Uk−1)
w

(i)
k−1 .

2) Normalize weights :
∑N

i=1 w̃
(i)
k = 1.

Step 2: Resampling step

1) Resample
{

w̃
(i)
k , X̃

(i)
0:k

}N

i=1
to get

{
w

(i)
k ,X

(i)
0:k

}N

i=1
.

Since the vehicle transition density is chosen as the proposal
density as with FastSLAM 1.0 [6] then

w̃
(i)
k = gk (Zk |Z0:k−1 , X̃

(i)
0:k )w(i)

k−1 (35)

which can be evaluated in closed form according to (26) or (27),
where

m̂
(i)
k |k−1 =

J
( i )
k |k −1∑

j=1

η
(i,j )
k |k−1 and m̂

(i)
k =

J
( i )
k∑

j=1

η
(i,j )
k . (36)

Note that the incorporation of the measurement-conditioned
proposal of FastSLAM 2.0 can also be accommodated in this
framework. That direction of research focuses on more efficient
SMC approximations and is an avenue for further studies.

C. State Estimation and Pseudocode

As alluded to throughout this paper, in contrast to previous
SLAM algorithms, the PHD-map representation allows for a
natural ability to average feature maps, i.e., independent-map
estimates from N independent trajectory particles can be readily
averaged into an expected estimate, even with map estimates of
different size and without having to resolve the intramap feature
associations. Consequently, in the case of the RB–PHD–SLAM
filter, both the expected vehicle trajectory and feature map can
be determined as follows.

Given the posterior set of weighted particles and correspond-
ing map PHDs

{
w

(i)
k ,X

(i)
0:k , v

(i)
k (m|X(i)

0:k )
}N

i=1

TABLE I
RB–PHD-FILTER: PREDICTION

and w̄ =
∑N

i=1 w
(i)
k , then

X̂0:k =
1
w̄

N∑

i=1

w
(i)
k X

(i)
0:k . (37)

As demonstrated previously in Section IV-B, the posterior
PHD of the map is the expectation of the trajectory-conditioned
PHDs, and thus

vk (m|X0:k ) =
1
w̄

N∑

i=1

w
(i)
k vk (m|X(i)

0:k ). (38)

If m̂k =
∫

vk (m|X0:k )dm is the mass of the posterior map PHD,
the expected map estimate can then be extracted by choosing
the m̂k highest local maxima. The pseudocode for the RB–
PHD–SLAM filter and expectation estimator are provided in
Tables I–IV. The following section presents the results and anal-
ysis of the proposed filter.

VI. RESULTS AND ANALYSIS

This section presents the results and analysis of the pro-
posed approach using both simulated and experimental datasets.
For comparative purposes, the benchmark algorithms used are
the classical FastSLAM [6] with multiple hypothesis (MH)
DA [35] and the joint compatibility branch and bound (JCBB)
EKF [8]. The “single-feature-map” trajectory weighting of (27)
is adopted for the proposed RB–PHD–SLAM filter, with an im-
plementation using the “empty map update” of (26) appearing
in [11]. While any feature can theoretically be selected to gener-
ate the trajectory weighting, in this implementation, that which
generates the maximum likelihood (ML) amongst all measure-
ments is chosen. A comprehensive study on the best-suited fea-
ture selection strategies is left for future work.

Current SLAM filters deal with clutter through “feature-
management” routines, such as the landmark’s quality [5], or
a binary Bayes filter [6]. These operations are typically inde-
pendent of the joint SLAM filter update, whereas the proposed
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TABLE II
RB–PHD-FILTER: MAP UPDATE

TABLE III
RB–PHD-FILTER: TRAJECTORY UPDATE

approach unifies feature management, DA, and state filtering
into a single Bayesian update. While these methods have been
used successfully, they generally discard the sensor’s detection
(PD ) and false alarm (PF A ) probabilities and, thus, can be er-
roneous when subject to large clutter rates and/or measurement
noise. Since the proposed approach assumes knowledge of these
probabilities, as seen in (23), a modified feature-management
routine coined the “feature existence filter” (see Appendix B)
which incorporates both PD and PF A , is used in the benchmark
algorithms.

To quantify the map-estimation error, a metric must be
adopted that jointly evaluates the error in the feature location

TABLE IV
RB–PHD-FILTER: EAP ESTIMATOR

and number estimates. Current methods typically examine the
location estimates of a selected number of features and obtain
their MSE using ground truth [5]. As such, vector-based error
metrics are applied to feature maps and the error in the estimated
number of features is neglected. While there are several met-
rics for finite-set-valued estimation error, that of [13] has been
demonstrated to be most suitable [10], [11]. Briefly, the met-
ric optimally assigns each feature estimate to its ground truth
through the Hungarian assignment algorithm and evaluates an
error distance, while penalizing for under/over estimating the
number of features. Based on a second-order Wasserstein con-
struction, if |Mk | > |M̂k |, the feature map-estimation error is
given by

d̄(c)(M̂k ,Mk ) :=
(

1
|Mk |

(
min

j∈perm(Mk )

|M̂k |∑

i=1

d(c)(m̂i,mj (i))2 + c2(|Mk | − |M̂k |)
))1/2

(39)

where d(c)(m̂i,mj (i))=min(c, ‖m̂i − mj (i)‖) is the minimum
of the cutoff parameter c and the Euclidean distance between
the estimated feature location m̂i and the true feature location
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mj (i) . If |Mk | < |M̂k |, the metric is obtained through
d̄(c)(Mk ,M̂k ). To incorporate oriented features, for instance,
other vector distances, such as a Mahalanobis distance, could
be used. It is important to note that the error distance of (40) is
mathematically consistent, in that the metric satisfies the nec-
essary axioms and enjoys most of the properties of a Euclidean
distance. Furthermore, the metric topology is the same as the
topology of the underlying space of set-valued maps [13]. In the
following sections, this metric along with the estimated trajec-
tory RMSE and graphical comparisons are used to demonstrate
the merits of the RB–PHD–SLAM filter.

A. Simulated Dataset

Simulated trials were carried out, due to the ease of generat-
ing known ground truth (trajectories and maps) for estimation
error evaluation. The parameters for the simulated trials were
velocity input standard deviation (std.) of 2 m/s, steering input
std. of 5◦, range measurement std. of 1 m and bearing measure-
ment std. of 2◦, PD =0.95, λc =20, using a sensor with 10 m
maximum range, and a 360◦ FoV. The feature existence proba-
bility threshold is set at 0.5, and a 95% gate is used throughout.
For each SLAM filter, 50 Monte Carlo (MC) trials were carried
out in which all methods received identical sequences of control
inputs and measurements. The RB-based filters used 50 tra-
jectory particles each, while for MHT-FastSLAM a maximum
limit of 2000 particles (number of hypotheses considered prior
to resampling) was used.

Fig. 4 shows a sample of the raw input data used in the trials,
which is superimposed onto the ground-truth feature map and
path. A comparison of the average trajectory-estimation errors
for all three filters is then presented in Fig. 5. In terms of the
estimated trajectory, the first-order RB–PHD–SLAM algorithm
can be seen to outperform the vector-based FastSLAM with
robust DA but does not quite achieve the estimation accuracy
of JCBB–EKF–SLAM. This is primarily due to the fact that
JCBB is very conservative in its choice of measurement–feature
associations (jointly compatible constraint) resulting in very
few false association pairs influencing the trajectory estimation.
However, later results in Figs. 6, 7, and 9 highlight the drawbacks
of achieving such impressive localization results.

In terms of the map-estimation component of each SLAM
algorithm, Fig. 6 depicts both the true and estimated num-
ber of features as the vehicle explores the map, with the pro-
posed RB–PHD–SLAM approach seen to closely track the true
number of features in the explored map. Erroneous associa-
tions for the MHT-FastSLAM approach result in excessive fea-
ture declarations, while the conservative (only including those
that are jointly compatible) association decisions of JCBB–
EKF–SLAM reduces the number of correct associations. Since
vector-based feature-management routines are typically depen-
dant on the DA decisions, this dramatically influences the map-
estimation error.

Incorporating the estimation error in both the number and
location of features in the map, Fig. 7 plots the map er-
ror distance of (39) for each approach. Note that in order to
generate this result, the vector-based maps of FastSLAM and

Fig. 4. Simulated environment showing point features (i.e., green circles) and
true vehicle trajectory (i.e., green line). A sample measurement history plotted
from a sample noisy trajectory (i.e., red line) is also shown (i.e., black points).

Fig. 5. Mean and std. of the trajectory estimates from each filter over 50 MC
runs versus time.

Fig. 6. Average estimated number of features in the map for each filter versus
time compared with the ground-truth number of features in the explored map
Mk . The feature-number estimate of RB–PHD–SLAM can be seen to closely
track that of the ground truth.

Fig. 7. Comparative plot of the mean and std. of the map-estimation error for
each filter versus time. At any given time, for the ideal case, the mapping error
from (39) w.r.t. the explored map is zero.
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Fig. 8. Comparisons of the posterior SLAM estimates from (left, red) MHT-
FastSLAM and the proposed (right, blue) RB–PHD–SLAM. The ground-truth
trajectory and map are represented by the green line and circles, respectively.
The RB–PHD–SLAM filter demonstrates its robustness and accuracy given high
clutter and DA ambiguity.

Fig. 9. Comparison of the computation time per measurement update for
(blue) RB–PHD–SLAM, (red) MHT-FastSLAM, and (black) JCBB–EKF–
SLAM.

JCBB–EKF–SLAM are temporarily “assumed” to be sets. The
proposed method can be seen to report the least mapping error
due it is robust ability to jointly incorporate uncertainty in fea-
ture locations and numbers, while erroneous feature estimates
contribute to increased mapping error for the vector-based ap-
proaches. A qualitative depiction of the posterior estimates is
provided in Fig. 8, demonstrating the usefulness of the RFS–
SLAM framework and the proposed RB–PHD–SLAM filter.

B. Complexity and Computation Time

As seen from Section V, the computational complexity of
RB–PHD–SLAM is, O(mk zkN), i.e., linear in the number of
features (in the FoV), linear in the number of measurements,
and linear in the number of trajectory particles. Furthermore, in
contrast to DA-based methods, the proposed approach admits
numerous computational enhancements, since the map PHD
update of (23) can be segmented, executed in parallel, and sub-
sequently fused for state estimation. This is in contrast with
DA-based approaches, which are scalable.

For a single-thread implementation (without the tree-based
enhancements [6]), Fig. 9 shows that the computation time is
comparable with that of the MHT-FastSLAM algorithm, both
of which are less expensive than JCBB–EKF–SLAM as its hy-
pothesis tree grows in the presence of high clutter.

C. Experimental Dataset

This section discusses the filter’s performance in a surface-
based marine environment, using an X-band radar mounted on

Fig. 10. Overview of the test site (1◦13′ N,103◦43′ E) showing the (green
line) GPS trajectory and (green dots) GPS coordinates of the point-feature map.
The (black dots) point-feature-measurement history is also provided.

a powerboat. In order to maximize the detection of all sea-
surface-point features (comprising boats, buoys, etc.), a low
detection threshold is required, which subsequently increases
the clutter rate. GPS data are available to measure the ground-
truth trajectory, while sea charts and data from surrounding
vessels’ automatic identification systems provide the feature-
map ground truth. The test site is off the Southern coast of
Singapore, as shown in Fig. 10, where the boat was driven in
looping trajectory of 13 km. Adaptive thresholding methods
were applied to extract relative-point-measurements from the
radar data [36]. The maximum range of the radar, logging at
0.5 Hz, was limited to 1 km. While heading measurements were
available via a low-grade onboard single-axis gyroscope, due
to the lack of doppler velocity logs, the speed was estimated at
eight knots (4.1 m/s).

Fig. 11 compares the posterior SLAM estimates from MHT-
FastSLAM and RB–PHD–SLAM, with Fig. 12 comparing the
estimated map sizes. The proposed approach can be seen to
generate more accurate localization and feature-number esti-
mates; however, it can also be seen that some feature estimates
are misplaced in comparison with the ground-truth feature map.
The framework is still demonstrated to be useful for high-clutter
feature-based SLAM applications.

D. Future Directions

The RFS–SLAM framework proposed in this paper offers nu-
merous extensions and other solutions. For instance, the Pois-
son assumption of the PHD approach can be relaxed via the
cardinalized PHD construct [37] and the multi-Bernoulli re-
cursion [38]. As with the PHD approximation, the trajectory-
conditioned measurement likelihood can be calculated exactly
for each representation. The proposed RFS framework may also
be modified for ML-based approaches [39].

1) RB–CPHD–SLAM: Let the density of the RFS map
of (20) be approximated by an iid cluster RFS, which is
completely characterized by its cardinality distribution ρk

and PHD vk and where E[ρk ] =
∫

vk (m)dm. The trajectory-
conditioned map recursion of (15) may then be approximated by
a CPHD filter [37], and the trajectory-conditioned-measurement
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Fig. 11. (Top) Posterior (red) SLAM estimate from MHT-FastSLAM. (Bot-
tom) Posterior (blue) SLAM estimate from RB–PHD–SLAM, in comparison
with the (green) ground truth.

Fig. 12. Comparison of the number of estimated features for each approach.
The noisy estimates are likely due to deviations from the Poisson clutter as-
sumption in places.

likelihood of (25) can be evaluated as in [11]. Given that the
CPHD filter propagates the distribution of the number of fea-
tures as opposed to just its mean (for the PHD approach of
this paper), it is anticipated that the map, and subsequently, the
trajectory, estimates from RB–CPHD–SLAM would be remark-
ably improved in comparison with RB–PHD–SLAM.

2) RB–MeMBer–SLAM: A multi-Bernoulli RFS is simply a
set of Bernoulli RFSs, as mentioned previously in Section II-B,
and is completely described by the multi-Bernoulli parameter
set {(ε(i)

k , π
(i)
k )}mk

i=1 . As with RB–CPHD–SLAM, if the RFS
map density of (15) is approximated by a multi-Bernoulli RFS,
the trajectory-conditioned map recursion of (15) may be ap-
proximated by a MeMBer filter [38], and again, the trajectory-
conditioned-measurement likelihood of (25) can be evaluated,
as in [11].

Differing from RB–PHD–SLAM and RB-CPHD–SLAM,
RB–MeMBer–SLAM propagates a set of features and their cor-
responding existence probabilities. Using a Bernoulli RFS to
represent each feature allows for the joint encapsulation of its
existence probability and location in a single pdf, thus enhanc-
ing existing approaches in SLAM, which typically model the
existence probability and location as separate independent en-
tities [5], [6]. It is expected that RB–MeMBer–SLAM would
perform well in the presence of highly nonlinear process and/or
measurement models.

3) ML–RFS–SLAM: In contrast to the aforementioned
RBPF solutions, the proposed RFS–SLAM framework can also
be adapted to the popular ML approaches, which formulate
SLAM as a nonlinear stochastic optimization problem [39], [40].
Recently, methods to estimate the parameters of the measure-
ment likelihood from the PHD filter using SMC have been pro-
posed [41]. Assuming a finite-set measurement and state, the
gradient of the likelihood function was estimated and used to
determine the ML estimate of the unknown measurement param-
eters such as the clutter rate. Thus, the RFS–SLAM framework
can also admit ML-type vehicle-trajectory estimation, such as in
[40]. By formulating a suitable likelihood function and estimat-
ing the feature map using the proposed PHD/CPHD/MeMBer
methods, gradients could be evaluated to extract the ML vehicle
trajectory.

VII. CONCLUSION

This paper establishes that, from a fundamental estimation
viewpoint, a feature-based map is a finite set and subsequently
presented a Bayesian-filtering formulation, as well as a tractable
solution for the feature-based SLAM problem. The filter jointly
propagates and estimates the vehicle trajectory, the number of
features in the map, as well as their individual locations in the
presence of DA uncertainty and clutter. The key to the approach
is to adopt the natural finite-set representation of the map and to
use the tools of finite-set statistics to cast the problem into the
Bayesian paradigm. It is shown that this Bayesian formulation
admits a number of optimal Bayes estimators for SLAM. The
finite-set representation of the map admits the notion of expected
map in the form of a PHD or intensity function. The PHD
construct can also be interpreted in terms of occupancy maps.
An RB implementation of the filter was proposed, in which the
PHD of the map was propagated using a GM PHD filter, and a
particle filter propagated the vehicle trajectory density.

Analysis was carried out both in a simulated environment
through MC trials and an outdoor SLAM experimental dataset
based on an X-band marine radar sensor. Results demonstrated
the robustness of the proposed filter, particulary in the presence
of large DA uncertainty and clutter, illustrating the merits of
adopting an RFS approach to SLAM. Furthermore, the frame-
work admits numerous avenues of future research into ML ap-
proaches or enhancements via the CPHD and MeMBer filters,
which are expected to improve the performance and increase
robustness to clutter, DA difficulty and highly nonlinear pro-
cess/measurement models.

APPENDIX A

DERIVATION OF gk (Zk |Z0:k−1 ,X0:k ) FOR THE

RAO–BLACKWELLIZED–PROBABILITY HYPOTHESIS

DENSITY–SIMULTANEOUS LOCALIZATION AND

MAPPING FILTER

Recalling (15), we have

pk (Mk |X0:k ) =
gk (Zk |Mk ,Xk )pk |k−1(Mk |X0:k )

gk (Zk |Z0:k−1 ,X0:k )
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and the Poisson RFS approximations

pk |k−1(Mk |X0:k ) ≈

∏
m∈Mk

vk |k−1(m|X0:k )

exp
(∫

vk |k−1(m|X0:k )dm
)

pk (Mk |X0:k ) ≈

∏
m∈Mk

vk (m|X0:k )

exp
(∫

vk (m|X0:k )dm
) .

Rearranging and assigning Mk = ∅ gives

gk (Zk |Z0:k−1 ,X0:k ) = gk (Zk |∅,Xk )

×

∏
m∈Mk

vk |k−1(m|X0:k )
∏

m∈Mk

vk (m|X0:k )

×
exp

(∫
vk (m|X0:k )dm

)

exp
(∫

vk |k−1(m|X0:k )dm
)

Since Mk = ∅, the empty-set-measurement likelihood is that
of the clutter RFS (Poisson)

gk (Zk |∅,Xk ) =

∏
z∈Zk

ck (z|Xk )

exp(
∫

ck (z|Xk )dz)
.

Both
∏

m∈Mk
vk |k−1(m|X0:k ) and

∏
m∈Mk

vk (m|X0:k ) are
empty, thereby implying that their product is 1, m̂k |k−1 =∫

vk |k−1(m|X0:k )dm, and m̂k =
∫

vk (m|X0:k )dm, giving

gk (Zk |Z0:k−1 ,X0:k ) =
∏

z∈Zk

ck (z|Xk )

× exp
(

m̂k − m̂k |k−1 −
∫

ck (z|Xk )dz

)
.

Note that while, for the empty map choice, the likelihood
gk (Zk |Z0:k−1 ,X0:k ) does not contain a measurement likeli-
hood term gk (Zk |Mk ,Xk ), the history of measurements and
trajectories are incorporated into the predicted and updated in-
tensity terms, whose integrals appear as the terms m̂k |k−1 and
m̂k , respectively.

APPENDIX B

FASTSLAM FEATURE MANAGEMENT

This Appendix outlines the feature-management routine de-
veloped for the benchmark filters, incorporating the detection
and false-alarm probabilities for a fair comparison with the RB–
PHD–SLAM filter. As with standard approaches [5], tentative
new features are declared for unassociated measurements. The
“existence probability” of each feature P

(j )
E ,k , given a 95% con-

fidence gate and prior existence probability of P
(j )
E ,k−1 , then

evolves through a binary Bayes filter according to the routine
of Table V. This ad hoc but effective routine enhances the ro-
bustness of standard SLAM feature management when exposed
to high clutter rates. Thus, both the benchmark and proposed
approach receive the same information for each filter loop.

TABLE V
FEATURE EXISTENCE FILTER
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