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Abstract—In robotic mapping and simultaneous localization and
mapping, the ability to assess the quality of estimated maps is cru-
cial. While concepts exist for quantifying the error in the estimated
trajectory of a robot, or a subset of the estimated feature locations,
the difference between all current estimated and ground-truth
features is rarely considered jointly. In contrast to many current
methods, this paper analyzes metrics, which automatically evaluate
maps based on their joint detection and description uncertainty. In
the tracking literature, the optimal subpattern assignment (OSPA)
metric provided a solution to the problem of assessing target track-
ing algorithms and has recently been applied to the assessment of
robotic maps. Despite its advantages over other metrics, the OSPA
metric can saturate to a limiting value irrespective of the cardi-
nality errors and it penalizes missed detections and false alarms in
an unequal manner. This paper therefore introduces the cardinal-
ized optimal linear assignment (COLA) metric, as a complement to
the OSPA metric, for feature map evaluation. Their combination
is shown to provide a robust solution for the evaluation of map
estimation errors in an intuitive manner.

Index Terms—Map metric, simultaneous localization and map-
ping, mobile robots.

I. INTRODUCTION

FUNDAMENTAL to any state estimation problem is the
concept of estimation error. Solutions to robotic mapping

and simultaneous localization and mapping (SLAM), in which
usually the location of an unknown number of features should
be estimated, are numerous offering various degrees of per-
formance. Examples include classical methods such as recur-
sive EKF SLAM [1], [2], multihypothesis (MH) FastSLAM [3],
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Fig. 1. Hypothetical scenario showing a fundamental inconsistency with vec-
tor representations of feature maps. If m is the GT map (blue circles), how
should the error be assigned when the number of features in the map estimate,
m̂, (red cross) is incorrect?

batch estimation methods such as GraphSLAM [4] and iSAM
[5], [6] and random finite set (RFS) methods [7], [8]. Irrespec-
tive of the estimation methods used, while clear concepts exist
for quantifying the error in the estimated pose or trajectory of a
robotic vehicle [9] and/or a subset of the estimated feature loca-
tions within a single reference frame [2], the absolute difference
between all currently estimated and ground-truth (GT) features
in the map is rarely considered jointly. In SLAM, this is of equal
importance to the vehicle trajectory estimate.

Previous methods, which have been used to compare esti-
mated and GT maps, include the root mean squared (RMS) and
normalized estimation error squared (NEES) metrics [10]–[13].
These metrics are only defined if the number of estimated and
GT features are the same. In realistic scenarios, these numbers
will differ, meaning that a subset of at least one of the map’s
features must be used.

To illustrate the dilemma in map quality estimation, recall that
in vector-based SLAM formulations, the map is constructed by
stacking features into a vector, and consider the simplistic sce-
nario depicted in Fig. 1. There are two true features at (0,0) and
(1,1) (blue circles), but due to a missed detection, the estimated
map (red cross) comprises only one feature at (1,1). In such
a situation, it is difficult to define a mathematically consistent
error metric (Euclidean error, RMS, NEES) between the vectors
m and m̂ since they contain a different number of features.

Examining the spatial errors between subsets of the estimated
and GT features, for example, by “pruning” the vector with the
higher dimensionality using map management heuristics, fol-
lowed by data association (DA), then allows standard error met-
rics such as the average Euclidean, RMS, or NEES errors to be
evaluated. This technique may illustrate the consistency of the
spatial state of the selected features, but gives no indication of
the quality of the estimate of the actual multifeature map
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state. The primary difficulty in mathematically defining map
estimation error is caused by the differences between the
estimated and true number of features, and the need to satisfy
the four metric axioms [14].1

The quality of the estimated map is important in the robotic
global planning phase. Missed detections could cause the robot
to plan paths through a space that it believes is obstacle free.
When the robot reaches a point near to the formerly missed
detection, if it is then detected, it would be forced to replan its
path, which in the worst case could require global replanning.
If it still remains undetected, a collision may result. On the
other hand, false alarms could prevent the robot from computing
an optimal path, or in fact any path, which reaches its goal.
Therefore, this paper suggests that a concise map estimation
metric, which penalizes estimators for both feature detection as
well as description (of which location is an example) errors, is
important, but lacking in the literature.

In [15], it is noted that many robotic mapping performance
measures are not true metrics, since in order to obtain such a
measure, which is intuitive, at least one of the metric axioms is
violated. To demonstrate the basic problem of precisely quanti-
fying feature-based mapping error, Fig. 2 shows posterior map
estimates from two different feature-based SLAM filters, re-
ferred to as SLAM Algorithms 1 and 2, respectively. A natural
question is: Which estimate is closer to GT? Visual intuition
is difficult due to the combination of missed detections, false
alarms and spatial errors. Metrics to answer this fundamental
question are addressed in this paper.

In the target tracking literature, a similar dilemma exists in
which the performance of trackers must be assessed, which led
to the development of multiobject2 metrics, based on sets. It will
be shown, that multiobject metrics developed in the target track-
ing community, which consider both multitarget state estima-
tion cardinality as well as state errors and which obey the metric
axioms, provide a basis for gauging feature-based maps in an
intuitive manner. Set-based metrics are analyzed and compared
for the evaluation of feature-based maps, and a new method,
called the cardinalized optimal linear assignment (COLA) met-
ric, is introduced, and compared to its optimal subpattern as-
signment (OSPA) counterpart. This paper demonstrates various
mathematical properties of each metric, and their consequences
on their “meaningful physical interpretations,” when comparing
maps under a common reference frame.

It should be noted that the metrics presented in this paper are
not, in their current form, suitable for evaluating nonfeature-
based maps, such as those produced by some SLAM algo-
rithms. They are designed to evaluate estimated-to-estimated
or estimated-to-GT maps, in the same frame of reference, con-
taining any features, which can be defined in terms of their
attributes/descriptions (e.g., geometric, color, semantic) in both
maps under comparison.

1The four metric axioms can be defined as follows. LetX be an arbitrary, non-
empty set. Then the function d is a metric iff: 1) d(x, y) ≥ 0, for all x, y ∈ X ; 2)
d(x, y) = 0 iff x = y, for all x ∈ X (identity axiom); 3) d(x, y) = d(y, x),
for all x, y ∈ X (symmetry axiom); 4) d(x, y) ≤ d(x, z) + d(z, y), for all
x, y, z ∈ X (triangle inequality axiom).

2In the tracking community, a vector-based estimator is often referred to as
a single-object estimator, whereas the RFS form is referred to as a multiobject
estimator.

This paper is an extension of [16], in which the COLA metric
was first presented. It extends the analysis by deriving the COLA
metric from the Wasserstein construction; providing a theoret-
ical comparison of the way in which false alarms and missed
detections are quantified by the OSPA and COLA metrics; de-
riving the map conditions which can cause them to differ; and
providing more in depth results and conclusions demonstrating
the complementary nature of the OSPA and COLA metrics for
useful robotic map evaluation.

Section II discusses related work and Section III provides the
mathematical definitions necessary to quantify feature maps, for
metric-based evaluation. Section IV overviews the state-of-the-
art OSPA metric and Section V introduces the COLA metric.
Section VI, analyzes the two metrics under different theoretical
conditions. Section VII discusses the applicability of mapping
metrics when no GT is available, and finally, Section VIII ana-
lyzes various metrics under real-world mapping scenarios.

II. RELATED WORK

Contrary to feature-based mapping approaches, occupancy
grid methods use a predefined quantity of occupancy values and
do not need to encapsulate cardinality estimation error—i.e., an
estimated grid map with N cells is typically compared with a
GT grid map, also with N cells. In these cases, error metrics for
fixed dimension problems, such as a sum of the squared error
[17], [18], or more complex errors such as “brokenness,” [19]
can be applied. Other work provides methods to gauge grid-
based SLAM or mapping performance in robotic competitions
such as search and rescue and RoboCup [20], [21].

In other mapping approaches, [22] presented the concept of
assessing map quality through a binary classification of point
cloud data by automatically labeling sections as plausible or
suspicious, through the use of conditional random fields, but
without relating the data to GT.

Various dataset websites such as [23] can compare SLAM
algorithms based on the error in the corrected SLAM trajectory
component, without analyzing the corresponding map. A metric
based on the energy required to deform the estimated trajectory
to its GT value was defined in [9]. This metric is based on an
intuitive concept for comparing estimated and GT trajectories,
and complies with the metric axioms. Two further trajectory-
based error metrics, which gauge visual SLAM and odometry
systems based on RGB-D camera data were presented in [24].
It will, however, be shown in this paper that these metrics can
contradict principled multiobject metrics that evaluate the map
accuracy of the SLAM algorithm, which produced both the
trajectory and the map.

In [25], a method for comparing maps suggested the use of
the Hausdorff metric. Although this metric has been success-
fully applied in numerous vision applications for gauging the
similarity between pixelated images, it suffers various problems
in the way it penalizes cardinality errors between estimated and
GT maps, as will be demonstrated in this paper.

A feature-based map quality assessment method, based on
searching for nearest neighbor (NN) equivalent features between
an estimated and GT map was given in [26]. Map quality was
assigned according to the number of associated point to point
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Fig. 2. GT and estimated trajectories from SLAM Algorithms 1(a) and 2(b). The GT feature locations (blue stars) are superimposed onto a satellite image of the
park. The estimated maps produced by SLAM Algorithms 1(a) and 2(b) are shown as red “3-sigma” confidence interval ellipses. The dashed line in each figure
represents the Hausdorff distance between each map set. “FA” = no. false alarms, “MD” = no. missed detections, “DE” = no. detection errors (= MD + FA) and
Ecard = || ̂M|− |M||. ATE‡ and dTrans

Energy give the trajectory-based RMS ATE and energy metric values respectively.

feature matches, however, no penalties for false alarms and
missed detections were considered.

The need for feature map metrics has also been identified
in publicly available datasets, such as the European Union’s
FP6 Rawseeds project [27], where corner-based performance
metrics are suggested for comparing estimated and GT maps.

Since the direct comparison of vectors of features, estimated
by SLAM algorithms, is meaningless, recent work in SLAM
has suggested that a collection of map features can and should
be modeled as a set, rather than a vector [7], [8]. Indeed the
mathematical definitions of the four metric axioms apply to a
set of vectors and it will be demonstrated in this paper that if a
GT set-based map Mk and its set-based estimate ̂Mk , which
vary with discrete time k, are modeled as finite sets of feature
location vectors, then a mathematically consistent notion of
estimation error is possible, even when the number of estimated
and GT features differ. This is because, the “distance,” or error
between sets, is a well understood concept. Examples include
the Hausdorff distance and more recent metrics defined in the
multitarget tracking literature, such as the optimal mass transfer
(OMAT) [28] and OSPA [14] distances.

The pioneering work by [14] introduced the OSPA metric,
based on the concepts that it should:

1) be a metric on the space of finite sets;
2) have a natural (meaningful) physical interpretation;
3) capture cardinality errors and state errors meaningfully;
4) be easily computed.
This philosophy is continued in this paper, by analyzing cur-

rent as well as the proposed COLA set-based metrics.

III. MAP SET DEFINITIONS

Modeling a robotic feature map as a set Mk , provides a gen-
eral model, since the vectors within each set can contain any
(spatial and/or description) information of relevance to the type
of feature to be estimated. Throughout this paper, the GT map

set Mk is considered to contain mk vectors mi
k , 1 ≤ i ≤ mk .

For ease of notation and explanation, and without loss of gen-
erality, m will be referred to as a spatial variable and the time
index k is now dropped. Therefore, the GT map M is the set
{m1 ,m2 , . . . ,mm}, where mi ∈ RN ∀i : 1 ≤ i ≤ m. The es-
timated map ̂M is considered to contain m̂ vectors modeling the
location of map objects, i.e., ̂M = {m̂1 , m̂2 , . . . , m̂m̂}, where
m̂i ∈ RN ∀i : 1 ≤ i ≤ m̂. N is the dimension of the general
feature space. Note that m̂ is itself an estimate of m, and there-
fore, in general, m̂ �= m (|̂M| �= |M|).

IV. OSPA METRIC

In 2008, Schuhmacher et al. [14] introduced the OSPA met-
ric, which obeys the metric axioms and improves most of the
problems of the OMAT metric, as will be shown in Section
VI. It has recently gained popularity in gauging target tracking
[29]–[32] as well as robotic mapping performance [7], [8].

A. Definition of the OSPA Metric

The OSPA metric is based on the inner metric

d(c)(mi , m̂σ (i)) = min(c, d(mi , m̂σ (i))) (1)

where d(mi , m̂σ (i)) is any metric distance (e.g., Euclidean,
Mahalanobis, Hellinger) between mi , m̂σ (i) and c > 0 is the
cutoff parameter. The assignment σ(i) can be determined via
an optimal assignment method, such as the Hungarian method,
[33], [34]. Then, the OSPA metric d

(c,p)
OSPA(M, ̂M) with power p,

for m̂ > m, is defined as

d
(c,p)
OSPA(M, ̂M) =

(

1
m̂

min
σ

m̂
∑

i=1

d(c)(mi , m̂σ (i))p

)1/p

(2)

=

(

1
m̂

(

min
σ

m
∑

i=1

d(c)(mi , m̂σ (i))p + cp(m̂ − m)

))1/p

.(3)
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σ is a permutation of the set {1, . . . ,m} which minimizes
(
∑m

i=1 d(c)(mi , m̂σ (i))p) and 1 ≤ p < ∞. If both sets are

empty, m = m̂ = 0, d(c,p)
OSPA(M, ̂M) = 0. For m > m̂, the metric

is defined as d
(c,p)
OSPA(̂M,M).

From (3), the OSPA metric yields a measure of the differ-
ence between ̂M and M in units of distance. From (3) and
(1), d

(c,p)
OSPA(M, ̂M) has minimum value zero and saturates to a

maximum value c for all M and ̂M. The effect of, and concepts
for selecting c and p are discussed in [14].

V. COLA METRIC

The OSPA metric saturates to c when all of the localization
errors are larger than c, and is then, insensitive to the size of the
map cardinality error. Further, it will be shown that it penalizes
missed detections and false alarms in an unequal manner and
that its evaluations of mapping errors can be very sensitive to the
choice of c. Due to the above limitations, this section explains a
new set-based metric for feature map evaluation.

A. Definition of the COLA Metric

The COLA metric can be derived from the Wasserstein con-
struction as shown in Appendix A. For m̂ ≥ m, it is defined
as

d
(c,p)
COLA(M, ̂M) =

(

min
σ

m̂
∑

i=1

(

d(c)(mi , m̂σ (i))
c

)p
)1/p

(4)

=

(

min
σ

m
∑

i=1

(

d(c)(mi , m̂σ (i))
c

)p

+ (m̂ − m)

)1/p

(5)

where, σ, p, and c carry the same definitions and ranges as in the
OSPA metric and d(c)(mi , m̂σ (i)) is defined in (1). For m > m̂,
the metric is defined as d

(c,p)
COLA(̂M,M). Appendix B proves that

d
(c,p)
COLA(M, ̂M) is a true metric.

B. Intuitive Explanation of the COLA Metric

Whereas the OSPA metric has the units of localization error
(i.e., distance), the COLA metric has the units of the cardinal-
ity error (i.e., no units). In contrast to the OSPA metric, when
the distance between an assigned feature i and feature σ(i) de-
creases to c it changes from a cardinality error to a fractional
cardinality error (d(c)(mi , m̂σ (i))/c)p . Although the difference
between the OSPA and COLA metrics may seem trivial, Sec-
tions VI and VIII will demonstrate significant differences in the
intuitive behavior of the COLA metric over its OSPA counter-
part, when evaluating feature maps.

As in the OSPA metric, for m̂ > m, the first term of the right-
hand side (RHS) of (5) again determines individual assignments
between all m of the feature location vectors within M and a
subset of dimension m of the feature vectors within ̂M. Now,
however, due to (1), this term is fractional if d(mi , m̂σ (i)) < c
or unity otherwise, in which case it is effectively added as a
single cardinality error on to the pure cardinality error (m̂ − m)
on the RHS of (5). In contrast to the OSPA metric, it can be seen

from (5) and (1) that d
(c,p)
COLA(M, ̂M) has minimum value zero

and maximum value (m̂)1/p if m̂ > m or (m)1/p otherwise.
1) Interpreting the Components of the COLA Metric: In

[14], it was shown that the OSPA error contains two compo-
nents, which separately account for localization and cardinality
errors. This also applies to the COLA metric with individual
components d

(c,p)
LOC (M, ̂M) and d

(c,p)
CARD(M, ̂M) as

d
(c,p)
LOC (M, ̂M) =

(

min
σ

m
∑

i=1

(

d(c)(mi , m̂σ (i))
c

)p
)1/p

(6)

d
(c,p)
CARD(M, ̂M) = (m̂ − m)1/p . (7)

Similarly to the note in [14], the functions d
(c,p)
LOC (M, ̂M) and

d
(c,p)
CARD(M, ̂M) themselves are not strict metrics on the space

of finite subsets and the decomposition of the metrics should
not usually be necessary for gauging mapping performance.
Equations (6) and (7), however, can be evaluated to provide
extra information regarding the contributions of description and
cardinality mapping errors.

The selection of the COLA metric’s parameters c and p, and
their physical interpretation, must also be addressed.

2) Effect of p: In a similar manner to the OSPA metric [14],
as p increases, the emphasis on localization errors diminishes.
Therefore, the COLA metric also becomes more unforgiving to
cardinality errors for higher values of p. Based on the COLA
metric form, given in (4), Appendix C shows that for the same
value of c, the COLA metric is also ordered with respect to p,
however, contrary to the OSPA metric

d
(c,p1 )
COLA (M, ̂M) ≥ d

(c,p2 )
COLA (M, ̂M) for 1 ≤ p1 < p2 < ∞.

(8)
Choosing p = 1 also makes the COLA metric behave in a rel-
atively simple manner, in that it is then composed of the sum
of cardinality and localization errors, which can be interpreted
as fractional cardinality errors. Selecting p = 2 also makes the
COLA metric more in-line with other metrics, which are often
L2-norms, and this value will be used throughout this paper.

3) Effect of c: Analysis of the COLA metric form in (5)
shows that as c → ∞, the COLA metric becomes only sensitive
to cardinality errors. Therefore, as in the OSPA metric, increas-
ing c emphasizes the cardinality errors. However, contrary to
the OSPA metric, from (5)

d
(c1 ,p)
COLA (M, ̂M) ≥ d

(c2 ,p)
COLA (M, ̂M) for 1 ≤ c1 < c2 < ∞. (9)

Similarly to the OSPA metric [14], c should be chosen based
on “What distance (e.g., how many meters) the designer wants
to penalize a false or missing estimate,” which in any applica-
tion should significantly aid its practical choice. It should also
be noted that the single object metric d(c)(mi , m̂σ (i)) does not
have to be a distance (e.g., Euclidean) metric—but could be the
Mahalanobis (statistical) distance. In this case, c could be cho-
sen as a validation gate, corresponding to a probability interval
within a chi-square test, within which an estimated feature is
considered to correspond to a GT feature. Note the link here
with classical DA methods. c can be thought of as a gate. If the
“distance” between an estimated and its assigned GT feature is
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more than c, it contributes maximum value (a single cardinality
error) to (5), equivalent to being “unassociated.”

4) Setting a Threshold for the COLA Metric: A natural ques-
tion which arises in the use of the COLA metric is: What thresh-
old should be used to establish whether or not an estimated map
is good? In contrast to the OSPA metric, the COLA metric does
not saturate to a limiting value (c). In the case of p = 1, the
COLA metric yields the total cardinality error between two set-
based maps, which can be made up of fractional cardinality
errors (assigned features which do not exactly coincide in terms
of their attributes) and integer cardinality errors, due to a differ-
ence in the number of estimated and GT features. Therefore, a
threshold to determine the difference between a good and bad
map can be determined in terms of the number of effective car-
dinality errors, or outliers, one is willing to tolerate for a given
application.

C. Computational Complexity of the COLA Metric

Since metrics are often determined offline, after experiments
have terminated, during the testing phases of mapping or SLAM
algorithms, their computational complexity is usually not of
major concern. During the normal online use of such an algo-
rithm, a GT (or other reference) map would typically not be
available, and a metric would not be required. However, if in a
particular application, the metric is to continuously gauge map-
ping/SLAM performance during algorithm execution, its com-
plexity is important. For the COLA and OSPA metrics, their
computational complexities are equivalent and dependent on
the assignment method used to determine σ(i). The Jonker and
Volgenant algorithm is an efficient assignment method, which
is, in general, faster than the Hungarian method, and has worst
case cubic complexity in the dimension of the distance ma-
trix d(c)(mi , m̂σ (i))p , yielding a computational complexity of
O(max(m, m̂)3) [14], [34], [35]. Other computational speed-
ups of the Hungarian method are available, which are reported
to reduce the execution time in linear assignment problems by
up to 90% [36]. Recently, further optimizations of the Jonker
and Volgenant algorithm have been reported [37].

VI. ANALYSES OF EACH METRIC’S INTERPRETATION

The physical interpretation of the OSPA and COLA met-
rics is now analyzed and compared for particular and general
cases of the maps M and ̂M, to highlight the usefulness of
each metric in assigning a meaningful score to map estimators.
Schuhmacher et al. [14] demonstrated theoretical map scenar-
ios, which showed that the Hausdorff and OMAT metrics, al-
though sensitive to spatial errors in the estimated map, are both
insensitive to the cardinality error between M and ̂M. In those
theoretical scenarios, it was shown that the OSPA metric pro-
vides intuitive results in terms of its sensitivity to both spatial
and cardinality errors, and in [16], it was shown that the COLA
metric provides intuitive results also. Therefore, in this section,
in order to highlight differences between the OSPA and COLA
metrics, and to study realistic mapping results, scenarios will
be analyzed in which at least one of the maps is empty; one of

the maps contains multiple features which are imbalanced3 with
respect to the other map; and one of the maps contains outliers.
An analysis of their penalizations of false alarms and missed
detections will be provided as well as the theoretical conditions
under which they can disagree in their comparisons of mapping
performance.

To simplify the ensuing analyses here, d(mi , m̂σ (i)) will be
the Euclidean distance metric. To demonstrate their generality,
actual SLAM performance evaluations in Section VIII will ap-
ply the COLA and OSPA metrics, in which d(mi , m̂σ (i)) is the
Mahalanobis distance, allowing the incorporation of estimated
feature covariance information, as often provided by SLAM
algorithms.

A. Non Empty Set Versus Empty Set

Consider a GT map M = ∅ and its estimate ̂M =
{m̂1 , . . . , m̂m̂} or vice versa. This corresponds to either a region
containing no GT features or an empty estimated map, which
could occur when no features are detected. The Euclidean, Haus-
dorff, and OMAT metrics are all undefined in this case, since
both sets must be nonempty. Meanwhile, the OSPA metric is
given by

d
(c,p)
OSPA(M, ̂M) =

(

1
m̂

cp(m̂ − 0)
)1/p

= c (10)

and in this case, the COLA metric yields

d
(c,p)
COLA(M, ̂M) = (m̂ − 0)1/p = m̂1/p . (11)

Both metrics demonstrate a desirable asset since a metric should
be defined when one of the sets is empty. However, the COLA
metric can be considered to provide a more intuitive result.
Irrespective of the difference in cardinality, the OSPA metric
gives the same score (c) and is insensitive to this difference,
whereas the COLA metric increases with m̂. For p = 1, the
COLA metric increases linearly with m̂ which is the true value
of the cardinality error in this case.

B. Multiple GT and Estimated Features

Consider the COLA metric’s performance with GT mapM =
{m1 , . . . ,mm} and estimated map

̂M = {m̂1,1 , . . . , m̂1,q , . . . , m̂m−1,1 , . . . , m̂m−1,q ,

m̂m,1 , . . . , m̂m,q−s} (12)

(i.e., the GT landmarks m1 to m(m−1) have in their neighbor-
hoods q estimates whereas GT landmark mm has in its neigh-
borhood q − s estimates, making the estimated map imbalanced

3The concept balanced and imbalanced maps was addressed in [14]. The term
“balanced” map refers to each feature in the GT map having in its proximity
the same number of estimated (possibly > 1) features. Although an exactly
balanced map is unlikely to occur in practice, it demonstrates the effect of
an estimator producing multiple feature estimates per true feature, which is
possible in high clutter scenarios, under which map management routines can
initiate false features. The ability of a metric to provide intuitive assessments
in such situations is therefore important. The term “imbalanced” is defined
in Section VI-B.
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Fig. 3. Metric performances when cardinality errors exist. (a) and (c) are
balanced maps while (b) and (d) are imbalanced. The distance between the
center of each GT landmark (blue circles) and its neighboring estimates (red
crosses) is 1 m. For calculating dOSPA and dCOLA, c = 3.00 m and p = 2.

[14]). The subset M′ = {m1 , . . . ,mm−1} ∈ M is balanced
and

d(mi , m̂i,l) = d ≤ c, 1 ≤ i ≤ m − 1, 1 ≤ l ≤ q

d(mi , m̂j,l) > d ∀ i �= j, l

d(mm, m̂m,l) = d ≤ c, 1 ≤ l ≤ q − s

d(mi ,mj ) > 2d ∀ i �= j. (13)

The general imbalanced scenario described in (12) yields a
COLA metric value

d
(c,p)
COLA:imbal(M, ̂M)p =

(

m

(

d

c

)p

+ (m(q − 1) − s)
)1/p

.

(14)
Comparing the COLA metric values for the cases of bal-
anced (s = 0) and imbalanced maps, it can be seen that
d

(c,p)
COLA:bal(M, ̂M)p ≥ d

(c,p)
COLA:imbal(M, ̂M)p for s ≥ 0 and vice

versa for s < 0, which complies with intuition. This can be seen
in Fig. 3 since the estimates in Fig. 3(b) and (d) are better than
those of Fig. 3(a) and (c) because they have less cardinality er-
rors but the same spatial errors. In general, and in the examples
portrayed in Fig. 3, these cases are not reflected intuitively in
the Hausdorff and OMAT metric values.

It should also be noted that, in contrast to the OSPA metric,
true to its nature of having units of cardinality error, for p =
1, d

(c,p)
COLA:bal(M, ̂M)p − d

(c,p)
COLA:imbal(M, ̂M)p = s, yielding the

exact cardinality error between the maps.

C. Outliers

Consider an estimated map with one outlier, i.e., M =
{m1 , . . . ,mm} and ̂M = {m̂1 , . . . , m̂m+1}, and assume that
every single GT landmark has a perfect estimate, i.e.,
d(mi , m̂i) = 0 for 1 ≤ i ≤ m. From (3), the OSPA metric is

d
(c,p)
OSPA(M, ̂M)p = c

(

1
m + 1

)1/p

. (15)

If m → ∞, the OSPA metric d
(c,p)
OSPA(M, ̂M)p → 0 distance

units, giving an intuitive result.
In the case of the COLA metric,

d
(c,p)
COLA(M, ̂M)p = 1 (16)

which, since this metric yields cardinality, as opposed to average
distance units, can also be considered to be intuitive. In this case,
there is a single outlier, and the COLA metric correctly reports
it. It should be noted here that the COLA metric is somewhat
unforgiving to cardinality errors. For example, if a mapping al-
gorithm estimates a large number of perfectly located estimates,
with just one false alarm, the COLA metric always penalizes the
algorithm, even though as m → ∞, the algorithm can be argued
to be approaching perfection. In this sense, the OSPA metric
behaves more intuitively. It should be noted, however, that this
does not cause any problems in the use of the COLA metric,
when estimated maps are compared to the same GT, or other
algorithm’s map, as carried out at the end of mapping/SLAM
tasks, since the same strict penalization of cardinality errors
is applied to all estimates. However, when assessing mapping
performance during SLAM execution, as more of the GT map
passes through the field(s) of view of the sensor(s), the COLA
metric would never lower its value due to previous outliers, even
if the map estimator approaches perfection later on. This would
not allow a useful online evaluation of mapping performance.
In this case, due to the per feature averaged distance nature of
the OSPA metric, it provides the most intuitive evaluation of the
time varying estimated map.

D. Penalization of False Alarms and Missed Detections

A theoretical analysis will now demonstrate that the OSPA
and COLA metrics penalize over and underestimated cardinality
errors (false alarms and missed detections) in a significantly
different manner. Consider a GT map M = {m1 , . . . ,mm},
and two map estimates, ̂M1 = {m̂1 , . . . , m̂m−a} and ̂M2 =
{n̂1 , . . . , n̂m+a}, where m ≥ a. Estimate ̂M1 underestimates
the map size by a and estimate ̂M2 overestimates it by the
same amount, a. Suppose also that ̂M1 and a subset of ̂M2 ,
have no localization errors, i.e., m̂σ (i) = mi for 1 ≤ i ≤ m − a
and n̂π (i) = mi for 1 ≤ i ≤ m, where σ(i) and π(i) are the
assignments used in comparing maps ̂M1 with M and ̂M2
with M, respectively. The OSPA errors for both cases are

d
(c,p)
OSPA(M, ̂M1) = c

( a

m

)1/p

(17)

d
(c,p)
OSPA(M, ̂M2) = c

(

a

m + a

)1/p

(18)

implying that, independent of parameters c and p, the OSPA
metric penalizes the estimate with the missed detections more
than the estimate with the same number of false alarms.

On the other hand, the COLA metric for both cases yields

d
(c,p)
COLA(M, ̂M1) = d

(c,p)
COLA(M, ̂M2) = a1/p (19)

implying that the COLA metric penalizes both estimates by the
same amount. Arguably, the COLA metric can be considered to
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provide a more intuitive error estimate of both mapping errors,
since neither the OSPA nor the COLA metrics are designed to
judge them in an unequal manner. The consequences of missed
detections and false alarms on robot navigation are application
specific, and judging one type of error to be worse than the other
is beyond the scope of these metrics alone.

E. Can the COLA and OSPA Metrics Differ?

This section demonstrates the conditions under which the
COLA and OSPA metrics disagree. Consider a GT map M with
cardinality m and its estimates ̂M1 and ̂M2 with cardinalities
m̂1 and m̂2 , respectively, where

m̂1 ≤ m < m̂2 (20)

and d
(c,p)
OSPA(̂M1 ,M) ≥ d

(c,p)
OSPA(M, ̂M2). (21)

The COLA metric values for both cases are then

d
(c,p)
COLA(̂M1 ,M) =

m1/p

c
d

(c,p)
OSPA(̂M1 ,M) (22)

d
(c,p)
COLA(M, ̂M2) =

m̂
1/p
2

c
d

(c,p)
OSPA(M, ̂M2). (23)

For the metrics to disagree, it is necessary that

d
(c,p)
COLA(̂M1 ,M) < d

(c,p)
COLA(M, ̂M2) (24)

which requires that

d
(c,p)
OSPA(̂M1 ,M)

d
(c,p)
OSPA(M, ̂M2)

<

(

m̂2

m

)1/p

. (25)

A similar analysis shows that if

m ≤ m̂1 < m̂2 (26)

and d
(c,p)
OSPA(M, ̂M1) ≥ d

(c,p)
OSPA(M, ̂M2) (27)

the metrics can also disagree if

d
(c,p)
OSPA(M, ̂M1)

d
(c,p)
OSPA(M, ̂M2)

<

(

m̂2

m̂1

)1/p

. (28)

Hence, disagreement between both metrics is only possible if
(20), (21) and (25) or (26), (27), and (28) are simultaneously
satisfied, as will be demonstrated in Section VIII-C.

Note that if m̂1 , m̂2 ≤ m, both metrics always agree.

VII. WHEN GT IS UNAVAILABLE

There are cases in SLAM in which reliable GT maps are
unavailable or incomplete, such as dense visual-based maps.
This paper therefore analyzes metrics which compare all of
the features estimated by a mapping or SLAM algorithm, either
with those produced by another algorithm, or GT. In the absence
of GT, a possibility for evaluation is to select the most robust
known algorithm X , and then, if the mapping performance of
algorithms Y and Z are to be compared, determine which is
closer to X . Further, when GT is unavailable, the triangular
inequality can be exploited under certain conditions, to at least
provide bounds for the mapping error between estimated and

GT maps. Assume that two estimated maps ̂M1 and ̂M2 are
available and that the GT map isM. If it is known that estimated
map ̂M2 is closer to GT than estimated map ̂M1 then

d(̂M2 ,M) = αd(̂M1 ,M) where 0 ≤ α < 1. (29)

Any chosen true metric d(̂M1 , ̂M2), which compares sets ̂M1

and ̂M2 can then be used to determine upper bounds on the
error between ̂M1 and M and ̂M2 and M. From the triangular
inequality

d(̂M1 ,M) ≤ d(̂M1 , ̂M2) + d(̂M2 ,M). (30)

From (29) and (30)

d(̂M1 ,M) and d(̂M2 ,M) ≤
(

1
1 − α

)

d(̂M1 , ̂M2) (31)

meaning that upper bounds on the mapping error between ̂M1

and M and ̂M2 and M can be determined in terms of the error
between the map estimates of the two algorithms.

If a third map estimation algorithm is introduced which yields
̂M3 , the above analysis can be extended to give

d(̂M3 ,M) ≤ d(̂M3 , ̂M1) +
(

1
1 − α

)

d(̂M1 , ̂M2). (32)

Note that since a GT map M is not required in the RHS of
(31) and (32), the map feature representations are not restricted
to ones knowledge of GT, and can include dense (e.g., visual)
feature representations. Note here the importance of the chosen
map metric being a true metric, such that the 4 axioms are
obeyed. It is also desirable that α be as small as possible.

From here on, comparisons will be referred to as being be-
tween estimated and GT maps, although the concepts equally
apply to comparisons of multiple map estimates.

VIII. RESULTS—EVALUATIONS WITH REAL SLAM MAPS

In this section, the performance of the Hausdorff, OMAT,
OSPA, and COLA metrics, as well as the SLAM trajectory
energy metric of [9] and absolute trajectory error (ATE) metric
of [24], will be analyzed by comparing their ability to score real
estimated SLAM results in a physically meaningful manner. The
effect of varying c will also be further elucidated.

Fig. 2 shows the SLAM estimates from two different SLAM
algorithms,4 which were designed to estimate 2-D vehicle tra-
jectories and maps corresponding to the x, y location of the
centers of tree trunks. Each algorithm is referred to as “SLAM
Algorithm 1” and “SLAM Algorithm 2” and each result is super-
imposed onto a satellite image of the area5 to show the tree cover-
age and spacing corresponding to the vehicle’s “eight-shaped”
trajectory. The GT trajectories (blue lines) were obtained via
manual scan-matching6 due to the lack of reliable GPS in the

4The estimated SLAM solutions are based on MH-FastSLAM [3] and Rao–
Blackwellized-PHD-SLAM [7].

5The experiments were carried out in Parque O’Higgins, Santiago, Chile.
6This corresponds to manually identifying points in successive scans from

identifiable tree trunks, and determining the corresponding vehicle displacement
to align such points within the global coordinate system.
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environment, and the red dashed lines represent the estimated
trajectories from each SLAM algorithm. The blue stars repre-
sent the GT features (tree trunk center locations), again obtained
through independent, manual scan matching procedures.7 The
red ellipses are centered at the estimated feature locations and
represent the covariances for each estimated feature. The el-
lipses shown correspond to “three-Sigma ellipses,” which from
two degree-of-freedom Chi-squared tables, correspond to a the-
oretical probability mass within each ellipse of 0.99. Hence,
d(c)(mi , m̂σ (i)) in (3) can be the Mahalanobis distance such
that

d(c)(mi , m̂σ (i)) = (33)

min
(

c,

√

(mi − m̂σ (i))T (Pi)−1 (mi − m̂σ (i))
)

where c = 3.00 and Pi is the sum of the error covariance subma-
trices corresponding to estimated feature m̂σ (i) and GT feature
mi . In this analysis, it is assumed that the error associated with
all GT features is zero8 and that the estimated feature covari-
ance values are available from the SLAM estimator. In each
figure, the Hausdorff (dHAUS), OMAT (dOMAT), OSPA (dOSPA),
COLA (dCOLA), numbers of false alarms (FA), missed detec-
tions (MD), detection errors (DE = FA + MD), and estimated
cardinality errors (Ecard = ||̂M|− |M||) are provided. In all of
the experiments, p = 2, which according to [14], yields smooth
distance curves, and is commonly used in other metrics, such as
the L2 distance.

A. Performance of the Trajectory Energy Metric

The energy metric proposed in [9], which calculates the en-
ergy required to deform the estimated (red dashed) trajectory
̂X0:k to the GT (blue solid) trajectory X0:k , can be calcu-
lated based on the trajectories shown in Fig. 2. In Fig. 4, the
values of the translational component of the energy metric,
dTrans

Energy(X0:k , ̂X0:k ) over time, given the GT trajectory, during
each SLAM run are shown. The metric is evaluated based on
the average energy needed to deform adjacent components of
nearby poses between the estimated and GT trajectories, to de-
termine the local consistency of each trajectory as suggested
in [9]. The final values of dTrans

Energy(X0:k , ̂X0:k ), and in fact the
ATE metric, for SLAM Algorithms 1 and 2 suggests that SLAM
Algorithm 2 slightly outperforms SLAM Algorithm 1. Interest-
ingly, this contradicts the final OSPA, COLA, and Hausdorff
metric evaluations, shown in Fig. 2 and also contradicts most
of the time varying OSPA and COLA metric values recorded
during the SLAM runs, shown in Fig. 5 for two different values
of c. This demonstrates the necessity of gauging mapping as
well as trajectory performance.

7The GT map is also of limited precision since the laser data, used for scan
matching, is prone to range errors of up to 5 cm, and more importantly, the
determination of the centers of the trees was prone to errors of up to 20 cm.
Importantly, these distance errors are significantly less than the average mapping
distance errors and the GT map is guaranteed to contain all circular objects
detectable by the algorithm used here.

8In the target tracking literature, [32] applied the OSPA metric based on a
Hellinger distance metric, in which the GT target covariances were replaced
with their Cramer–Rao lower bound values.

Fig. 4. Translational component of the energy metric applied to SLAM
Algorithm 1 (Red line) and SLAM Algorithm 2 (Green dashed line).

B. Performance of the Multiobject Metrics

Referring to Fig. 5, it is important to note that both the OSPA
and COLA map error evaluations are based on the time varying
number of features which have theoretically been covered by the
vehicle’s sensor’s field of view (GT) and those which have been
estimated at each time. Setting the Mahalanobis distance-based
cutoff parameter c = 0.25 in both metrics, Fig. 5(a) shows that
during most of the SLAM trial, the OSPA metric for both algo-
rithms saturates to its maximum value c = 0.25. This indicates
that most of the estimated spatial errors are larger than 0.25 m
within both SLAM estimates. It should be noted, however, that
under these circumstances, the OSPA metric fails to give any
indication as to which algorithm is superior, even in terms of
the detection (map cardinality) errors. Conversely, however, the
corresponding COLA metric plots [see Fig. 5(b)] show that al-
though the first 8 min of each SLAM trial perform similarly,
after this time, it is possible to define which algorithm performs
better (usually SLAM Algorithm 1) despite most estimates hav-
ing Mahalanobis distances larger than c = 0.25. This is due
to the COLA metric’s ability to continue gauging cardinality
errors, even when the OSPA metric saturates.

In Fig. 5(c) and (d), the OSPA and COLA metrics are again
plotted versus time, during the same SLAM experiments, but this
time with a cutoff parameter c = 3.0. Now, as shown in [14], the
values of the OSPA metric increase for both SLAM algorithms.
However, now that more features are assigned to (gated with) GT
values, the curves in Fig. 5(c) remain unsaturated, and provide a
significant difference in their judgment of SLAM Algorithms 1
and 2, at all times. Note that as time increases, the effective field
of view of the sensed area has increased. The COLA metric, in
Fig. 5(d), shows its tendency to increase as it is unforgiving to
an increase in cardinality error. On the other hand, the OSPA
metric, in Fig. 5(c) shows its averaging nature as the number
of erroneous feature estimates increases with increasing sensor
coverage.

Table I shows the number of gated features (Gtd.), Missed
Detections (MD) and False Alarms (FA) and dCOLA and dOSPA

based on a validation gate c = 3.00. dHAUS, dOMAT, the NEES
mapping error and the trajectory dTrans

Energy, and ATE errors are also
given. The NEES metric, undefined for the full estimated and
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Fig. 5. OSPA and COLA metrics versus time for SLAM Algorithms 1 and 2, with differing values of c. (a) OSPA metric versus time (c = 0.25 and p = 2).
(b) COLA metric versus time (c = 0.25 and p = 2). (c) OSPA metric versus time (c = 3.00 and p = 2). (d) COLA metric versus time (c = 3.00 and p = 2).

TABLE I
DETECTION ERRORS AND MAP METRIC RESULTS FOR SLAM ALGORITHMS 1 AND 2 (c = 3.00 AND p = 2)

Alg. m̂ Gtd. MD FA dCOLA dOSPA [m] dHAUS [m] dOMAT [m] NEES∗ NEES† dTrans
Energy [m2 ] ATE‡ [m]

1 263 72 101 191 14.69 (1) 2.72 (1) 15.74 (1) 30.49 (2) 231.33 (2) 3.213(2) 42.45 (2) 0.464 (2)
2 272 59 114 213 15.32 (2) 2.79 (2) 16.28 (2) 29.02 (1) 159.34 (1) 2.701(1) 42.35 (1) 0.285 (1)

m̂ = number of estimated features, “Gated” = number of gated features, “MD” = number of Missed Detections, “FA” = number of False Alarms. ∗The
NEES metric was calculated only based on the number of gated features, ignoring detection errors. †The NEES metric averaged per gated feature. ‡RMS
values were used for the ATE metric. The bracketed numbers give the ranking by each metric.

GT maps since their cardinalities are different, has been cal-
culated based purely on the gated features (for c = 3.00). The
NEES metric can only be calculated for the 59 gated, out of
the 272 estimated, features in SLAM Algorithm 2, and ignores
the remaining estimates, even though they constitute detection
errors. For SLAM Algorithm 1, the NEES metric gave a higher
value, purely because more features were gated (72). Note that
both dTrans

Energy, the NEES and ATE metrics, often used in gaug-
ing SLAM performance, favor SLAM Algorithm 2, disagreeing
with the multiobject metrics dCOLA, dOSPA, and dHAUS.

In light of Table I, SLAM Algorithm 1 has less detection
errors and more gated features and dCOLA, dOSPA, and even dHAUS

all confirm its mapping superiority over SLAM Algorithm 2.

C. Sensitivity of the OSPA and COLA Metrics With Respect
to c

To highlight the sensitivity of the OSPA and COLA metrics
to parameter c, the estimated and GT submaps in the boxes in
Fig. 2(a) and (b) are analyzed for various values of c. Comparing

the smaller submaps simplifies the assessment of the COLA
and OSPA metrics’intuitive performances. In these boxes, the
number of GT features is |M| = 4, the number of estimates
for SLAM Algorithm 1 is |̂M1 | = 3 and that for the SLAM
Algorithm 2 is |̂M2 | = 5. Under these conditions, it will be
shown that there are values of c where (20), (21), and (25)
are satisfied, meaning that the OSPA and COLA metrics can
disagree.

Fig. 6(a) and (b) shows the values of the OSPA and COLA
metrics, for the submaps within Fig. 2(a) and (b), for p = 2 and
varying c. As shown in [14], dOSPA increases with c, whereas,
as shown in (9), dCOLA decreases. The discontinuities in the
gradients of the curves in Fig. 6(a) and (b) occur when esti-
mated features become gated. The metric evaluations of SLAM
Algorithms 1 and 2, based on this submap, now follow for three
values of c.

1) Fig. 7(a) and (d) shows the performances of SLAM Algo-
rithms 1 and 2, and their metric values, when c = 0.15.
Each estimated feature, labeled f1 , f2 , etc., is sur-
rounded by its validation gate ellipsoid, corresponding
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Fig. 6. OSPA and COLA metrics versus c. The red and green curves shows
the metric values for SLAM Algorithms 1 and 2 respectively. (a) OSPA metric
versus c, for p = 2. (b) COLA metric versus c, for p = 2.

to the region in which the Mahalanobis distance
√

(mi − m̂σ (i))T (Pi)−1(mi − m̂σ (i)) < c (33). Note
that for c = 0.15, these ellipses are barely visible, but
will be for larger values of c. Since all of the GT fea-
tures, labeled g1 , g2 , etc., are ungated, the map estimation
result of SLAM Algorithm 1 constitutes four missed de-
tections (g1 , g2 , g3 and g4) and three false alarms (f1 , f2 ,
and f3), i.e., a total of seven detection errors. The result
of SLAM Algorithm 2 constitutes four missed detections
(g1 , g2 , g3 , and g4) and five false alarms (f1 , f2 , f3 , f4 ,
and f5), i.e., a total of nine detection errors. For both
SLAM Algorithms 1 and 2, OSPA saturates to its cutoff
value c = 0.15 m and is unable to differentiate between
the two. The COLA metric (intuitively) penalizes SLAM
Algorithm 2 more than SLAM Algorithm 1, showing its
dependence on the cardinality of the larger set.

2) Fig. 7(b) and (e) shows the case when c = 2.20. Note
the significantly larger validation gates, centered on each
estimate. Two feature estimates (f2 and f5) are gated by
SLAM Algorithm 2, implying a total of two missed de-
tections (g3 and g4) and three false alarms (f1 , f3 , and
f4). Interestingly, this matches the total number of detec-
tion errors exhibited by SLAM Algorithm 1 (three missed
detections (g2 , g3 , and g4) and two false alarms (f1 and
f3)). For SLAM Algorithm 1, the COLA metric has al-
most settled to a steady-state value wrt, c, as indicated by
the red curve in Fig. 6(b).

3) Fig. 7(c) and (f) show the case when c = 3.00. In the
case of SLAM Algorithm 1, its estimate f2 that was gated

when c = 2.20 becomes statistically better localized (due
to a more tolerant, larger validation gate), however, three
missed detections (g2 , g3 , and g4) and two false alarms (f1
and f3) remain. For SLAM Algorithm 2, two of its pre-
viously gated estimates (f2 and f5) become statistically
better localized as c increases, still leaving two missed
detections (g3 and g4) and three false alarms (f1 , f3 , and
f4), i.e., still the same cardinality error as SLAM Al-
gorithm 1. Interestingly, as verified in Fig. 6, the OSPA
metric now reverses its decision, favoring SLAM Algo-
rithm 2 over SLAM Algorithm 1, in contrast to the COLA
metric. Note that only in this case are (20), (21), and
(25) simultaneously satisfied, indicating disagreement be-
tween the OSPA and COLA metrics. It can be seen from
Fig. 6, that the OSPA metric decisions are very sensitive
to small changes in c, when features are gated. Initially,
for c ≤ 0.26, d

(c,p=2)
OSPA (M, ̂M) = c, and as c increases, a

small number of features start to gate, causing the OSPA
metric to only lower its value very slightly below c. Since
d

(c,p=2)
OSPA (M, ̂M1) and d

(c,p=2)
OSPA (M, ̂M2) are both very

similar, and close to c for most values of c, the slight gra-
dient changes (see Fig. 6) which occur when features gate,
result in nonintuitive changes in the mapping performance
decisions of the OSPA metric. This problem is avoided in
the COLA metric, as can be seen in Fig. 6(b).

D. Unequal Penalization of False Alarms and Missed
Detections

In the limit, as c → ∞, the three estimates in SLAM Algo-
rithm 1 will gate with three of the four GT features. Similarly,
for SLAM Algorithm 2, four of its five estimates will all gate
with the four GT features. Therefore, (3) shows that for SLAM
Algorithm 1, d

(c,p=2)
OSPA (M, ̂M1) → (1/

√
4)c and for SLAM

Algorithm 2, d(c,p=2)
OSPA (M, ̂M2) → (1/

√
5)c, demonstrating the

averaging ability of the OSPA metric, since for SLAM Algo-
rithm 1, one out of four of the GT features remains unassigned
and for SLAM Algorithm 2, one out of five of the estimated
features remains unassigned. This is also a particular case of
the analysis presented in Section VI-D, with m = 4 and a = 1,
in which (17) and (18) confirm the above values, showing the
OSPA metric’s lower penalization of false alarms compared with
missed detections.

For the COLA metric, (5) shows that as c → ∞, under a
similar analysis, d

(c,p=2)
COLA (M, ̂M1) and d

(c,p=2)
COLA (M, ̂M2) →√

1, again demonstrating the COLA metric’s nature of gauging
cardinality, rather than averaged distance error, and its ability to
equally penalize missed detections and false alarms.

The coarse dashed lines in Fig. 7 indicate the Hausdorff dis-
tances. The OMAT metric disagrees with all the other metrics.
Note that it made assignments only within the considered region.

E. Results With the “CityTrees10k” Dataset

To test the intuitive behavior of each metric with a publicly
available dataset, “CityTrees10k” was chosen, due to its avail-
able GT map [5]. This dataset comprises 10 000 simulated robot
movements and 100 GT features (simulated trees) which can be
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Fig. 7. Metric values for p = 2 and three different values of the cutoff parameter c. (a) SLAM Algorithm 1, p = 2 and c = 0.15. (b) SLAM Algorithm 1, p = 2
and c = 2.20. (c) SLAM Algorithm 1, p = 2 and c = 3.00. (d) SLAM Algorithm 2, p = 2 and c = 0.15. (e) SLAM Algorithm 2, p = 2 and c = 2.20. (f) SLAM
Algorithm 2, p = 2 and c = 3.00.

Fig. 8. “CityTrees10k” SLAM and mapping results using the g2 o solver. Results show given DA, a limited number of g2 o iterations and automatic NN DA based
on [4]. Blue lines/circles: GT trajectory/map, red lines/circles: corresponding estimates. (a) SLAM Algorithm 3: g2 o SLAM given DA. (b) SLAM Algorithm 4:
g2 o before convergence. (c) SLAM Algorithm 5: g2 o with NN DA failures. (d) SLAM Algorithm 3: Estimated and GT maps. (e) SLAM Algorithm 4: Estimated
and GT maps. (f) SLAM Algorithm 5: Estimated and GT maps.

detected within a field of view of 10 m around the robot. g2o
graph optimization SLAM solutions [38], with perfect (given)
DA (SLAM Algorithm 3), before convergence (SLAM Algo-
rithm 4) and with estimated NN DA (SLAM Algorithm 5) are
shown in Fig. 8. In Fig. 9, the results of iSAM [5], [6] with
perfect (given) DA (SLAM Algorithm 6) and NN DA failures
(SLAM Algorithm 7) are shown.

Fig. 8(a) (SLAM Algorithm 3) shows the SLAM result based
on perfect DA (provided with the dataset) using the g2o solver.

Fig. 8(d) shows the corresponding GT and estimated maps only.
Fig. 8(b) (SLAM Algorithm 4) and (e) shows the SLAM and
mapping results, respectively, with perfect DA, but before com-
plete convergence of the g2o solver, yielding a distorted trajec-
tory. As shown in Fig. 8(e), due to perfect DA, all of the feature
locations are reasonably close to GT, since they were estimated
within the less erroneous, initial part of the trajectory. Fig. 8(c)
(SLAM Algorithm 5) and (f) shows the SLAM and mapping re-
sults, respectively, of allowing the g2o solver to converge, when
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Fig. 9. “CityTrees10k” dataset SLAM and mapping results based on iSAM. Results show given DA and NN DA based on [4]. Blue lines/circles: GT trajectory/map,
red lines/circles: corresponding estimates. (a) SLAM Algorithm 6: iSAM SLAM given DA. (b) SLAM Algorithm 7: iSAM SLAM NN DA failures. (c) SLAM
Algorithm 6: Estimated and GT maps. (d) SLAM Algorithm 7: Estimated and GT maps.

replacing the given (perfect) DAs with an automated NN DA
algorithm, based on a Euclidean gating distance of 3 m. The NN
DA routine of [4] was used in this case.

Fig. 9(a) shows the SLAM result of iSAM with given DA
and Fig. 9(c) the corresponding estimated and GT maps. When
perfect DA is replaced with the same NN DA routine of [4],
the SLAM result in Fig. 9(b) results, with its corresponding
estimated and GT maps shown in Fig. 9(d).

Table II summarizes the metric evaluations of Figs. 8 and
9. SLAM Algorithm 6 appears to perform best, as reflected by
all the metrics. Some interesting differences occur in each met-
ric’s ranking of SLAM Algorithms 4 and 5. Intuitively, SLAM
Algorithm 5 may initially appear superior than SLAM Algo-
rithm 4, since the trajectory appears to bear a closer relationship
to GT, as indicated in Fig. 8(c), and the Trajectory Energy Metric
dTrans

Energy in Table II. However, SLAM Algorithm 5 has committed
multiple DA errors, causing it to vastly overestimate the number
of map features (m̂ = 299) [compare Fig. 8(f) and (e)]. From a
mapping perspective, intuition dictates that SLAM Algorithm 5
is worse, with many more false alarms than the map produced
by SLAM Algorithm 4, and, contrary to the OSPA metric, the
COLA metric correctly reflected this. The reason that OSPA,
nonintuitively reports a lower mapping error can be seen from
(3), where the averaging nature of the OSPA metric requires
division by m̂. Since in SLAM Algorithm 4, [see Fig. 8(e)]
m̂ = 100, a higher OSPA value results than for SLAM Algo-
rithm 5 [see Fig. 8(f)], with m̂ = 299. Note that in the case of
SLAM Algorithms 4 and 5, (20), (21), and (25) are obeyed, indi-
cating that disagreement between the COLA and OSPA metrics
will result.

For comparison, and since no feature covariance information
was used, the sum of squared Euclidean errors (SSEE) values
are given in Table II which, as in the case of the NEES metric,
can only be calculated based on the number of gated features.

Although SLAM Algorithm 5 has gated more features (68) than
SLAM Algorithm 4 (35), the sum of their localization errors is
lower, resulting in a lower SSEE value. Since the SSEE metric
ignores detection errors, it disagrees with the COLA metric.

In Table III, the results of 100 comparisons of the results
of running Algorithms 4 and 5 on the CityTrees10k data set
are shown. Each entry aij in the table corresponds to the num-
ber of times each evaluated metric in row i and column j dis-
agreed. Interestingly, out of the 100 comparisons made, 55 of
the map evaluations made by the COLA metric disagreed with
the trajectory energy metric, showing that the presented results
in Fig. 8 are not an isolated case. It is also interesting to note
that, even both of the tested trajectory based metrics dTrans

Energy
and ATE, actually disagree with each other 8 times out of the
100 comparisons. Interestingly, the number of times that the
Hausdorff map metric disagreed with the dTrans

Energy or the ATE
trajectory metrics is also high (52 and 44 times respectively).
Until now, the Hausdorff metric has been widely used and ac-
cepted as a valid mapping metric for feature maps, and yet when
used to compare maps, it can disagree with trajectory based
metrics.

IX. SUMMARY

This paper suggests the following points for selecting a metric
which can intuitively gauge feature map accuracy:

1) Single object metrics, such as the Euclidean distance,
RMS, or NEES, can only gauge the error between maps, or
subsets of maps, with the same cardinality. When feature
cardinalities differ, multiobject metrics offer a solution.

2) Metrics which gauge the error in the SLAM trajectory,
do not necessarily provide intuitive assessments of the
full SLAM error. It was demonstrated that the multiob-
ject map metrics, which provide intuitive assessments of
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TABLE II
DETECTION ERRORS AND MAP METRIC RESULTS FOR SLAM ALGORITHMS 3 TO 7 (c = 3.00 AND p = 2)

Algorithm m̂ Gtd MD FA dCOLA dOSPA [m] dHAUS [m] dOMAT [m] SSEE∗ [m2 ] SSEE† [m2 ] dTrans
Energy [m2 ] ATE‡ [m]

3 100 100 0 0 2.90 (2) 0.87 (2) 1.60 (2) 0.87 (2) 75.91 (3) 0.759 (2) 1.066 (2) 0.120 (2)
4 100 35 65 65 8.95 (3) 2.69 (4) 16.87 (3) 9.28 (3) 136.54 (4) 3.901 (5) 39.214 (5) 28.550 (5)
5 299 68 32 231 15.43 (4) 2.68 (3) 18.24 (4) 11.45 (4) 64.73 (2) 0.952 (3) 10.974 (3) 7.292 (3)
6 100 100 0 0 1.22 (1) 0.37 (1) 0.64 (1) 0.37 (1) 13.47 (1) 0.135 (1) 0.893 (1) 0.093 (1)
7 975 86 14 889 30.12 (5) 2.89 (5) 34.06 (5) 13.15 (5) 162.32 (5) 1.887 (4) 16.157 (4) 11.243 (4)

∗The SSEE metric was calculated only based on the number of gated features, ignoring detection errors. †The SSEE average per gated feature. ‡RMS values were used
for the ATE metric. The bracketed numbers give the ranking by each metric.

TABLE III
TABLE SHOWING THE NUMBER OF TIMES EACH METRIC DISAGREED WITH ANOTHER METRIC WHEN COMPARING 100 DIFFERENT RESULTS FROM SLAM

ALGORITHMS 4 AND 5

mapping errors, can significantly disagree with the trajec-
tory evaluation metrics.

3) The Hausdorff and OMAT metrics are undefined when
one map set is empty and were shown in [14] to be in-
sensitive to cardinality errors, giving non-intuitive map
assessments.

4) The OSPA metric is an averaged distance metric. When
assessing mapping performance during SLAM execution,
as more of the GT map passes through the field(s) of
view of the sensor(s), this metric provides the most
intuitive evaluation of the time varying estimated map
(see Section VI-C).

5) When comparing multiple estimated maps against a fixed
GT map, the OSPA metric has some disadvantages, such
as its saturation to parameter c when no features are gated,
irrespective of the cardinality errors, and its higher penal-
ization of missed detections over false alarms.

6) When comparing multiple estimated maps with a fixed
GT map, the COLA metric solves some of the problems
associated with the OSPA metric. In particular, it is able
to distinguish between map qualities, even if no features
are gated (it does not saturate) and it equally penalizes
missed detections and false alarms.

7) Since the OSPA metric often yields values close to c, small
changes in c can result in the metric changing its decision
when comparing different maps to GT. This problem is
avoided with the COLA metric.

Multiobject metrics also have possible applications as prin-
cipled measures for point cloud registration and general DA,
which take into account data differences (e.g., object location)
and their cardinalities and, therefore, provide an interesting av-
enue for future research. For example, this could be useful in
reinitializing transformations between the reference frames of
estimated and GT submaps.

APPENDIX A
DERIVATION OF THE COLA METRIC

Consider two probability densities f(M) and g(̂M) in the
n-Euclidean space. By definition, the Wasserstein distance cal-
culates the similarity between f and g and is given by

dp
w (f, g) := min

h

(∫ ∫

d(m, m̂)p h(m, m̂)dmdm̂
)1/p

(34)
where 1 ≤ p < ∞, d(m, m̂) is any distance metric between m
and m̂, and h(m, m̂) is any joint distribution whose marginals
are f(m) and g(m̂) such that
∫

h(m, m̂)dm̂ = f(m),
∫

h(m, m̂)dm = g(m̂). (35)

Consider the marginal distributions in (35) to be

f(m) =
1
m

m
∑

i=1

δ(m − mi), g(m̂) =
1
m̂

m̂
∑

j=1

δ(m̂ − m̂j )

(36)
where δ is the Dirac delta function. This implies that the joint
distribution h(m, m̂) is given by

h(m, m̂) =
m
∑

i=1

m̂
∑

j=1

ci,j δ(m − mi)δ(m̂ − m̂j ). (37)

The derivation of the COLA metric follows a similar proce-
dure as the OSPA metric [14]. A unique assignment coefficient

ci,j = δj,σ (i)/max{m, m̂} (38)

which satisfies (37), is used where σ(i) is a permutation of the
larger set and δj,σ (i) = 1 iff j = σ(i) and 0 otherwise.

Consider a GT map M′ = {m1 , . . . ,mm}, and its estimated
map ̂M = {m̂1 , . . . , m̂m̂}. The COLA metric can then be de-
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rived from (34) by replacing

d(mi , m̂j ) =
(max{m, m̂})1/p

c
d(c)(mi , m̂j ). (39)

Note that if d(c)(mi , m̂j ) is a metric, then d(mi , m̂j ) is also
guaranteed to be a metric as required in (34). For m̂ ≥ m, re-
placing ci,j in (37) with (38) and then substituting the result,
together with (39) into (34) yields a new metric

d
(c,p)
COLA(M, ̂M) =

(

min
σ

m̂
∑

i=1

(

d(c)(mi , m̂σ (i))
c

)p
)1/p

(40)

where d(c)(mi , m̂σ (i)) is defined in (1), with cutoff parameter
c. For m ≥ m̂, the metric is defined as d

(c,p)
COLA(̂M,M).

APPENDIX B
PROOF THAT d

(c,p)
COLA(M, ̂M) IS A METRIC

The proof that d
(c,p)
COLA(M, ̂M) is a metric follows a

similar procedure to the proof that d
(c,p)
OSPA(M, ̂M) is a

metric in [14]. d
(c,p)
COLA(M, ̂M) ≥ 0 for all M, ̂M be-

cause metric d(c)(mi, m̂j) ≥ 0 for all m
i

and m̂j. Simi-
larly d

(c,p)
COLA(M, ̂M) = 0 iff ̂M = M - proof: From (5), if

d
(c,p)
COLA(M, ̂M) = 0, then

min
σ

m
∑

i=1

d(c)(mi , m̂σ (i))p

cp
= −(m̂ − m) ≤ 0 (41)

since (5) is defined for m̂ ≥ m. The RHS of (41) there-
fore implies that m̂ = m (since the LHS is positive),
meaning that d(c)(mi , m̂σ (i)) = 0 ∀i. d

(c,p)
COLA(M, ̂M) =

d
(c,p)
COLA(̂M,M) because d(c)(mi, m̂j) satisfies the symmetry

property. It remains to be verified that the triangle inequality is
satisfied.

Consider the set ̂N = {n̂1 , . . . , n̂n̂}, with cardinality n̂ ∈ N0 .
Consider the following sets of dummy pointsU = {ui}i∈N0 and
V = {vj}j∈N0 in RN where

d(ui,x) ≥ c, d(vi,x) ≥ c, d(ui,vj) ≥ c ∀ x, i, j.

Case 1: (m ≤ m̂ ≤ n̂). In order to raise the cardinality of sets
M and ̂M to n̂, consider the dummy points:

mm+i = ui , 1 ≤ i ≤ n̂ − m (42)

m̂m̂+j = vj , 1 ≤ j ≤ n̂ − m̂. (43)

Then, choose σ, τ ∈ Πn̂ such that

min
π∈Π n̂

n̂
∑

i=1

(

d(c)(mi, n̂π (i))
c

)p

=
n̂
∑

i=1

(

d(c)(mi, n̂σ (i))
c

)p

(44)

min
π∈Π n̂

n̂
∑

i=1

(

d(c)(n̂i, m̂π (i))
c

)p

=
n̂
∑

i=1

(

d(c)(n̂i, m̂τ (i))
c

)p

(45)

∴ d
(c,p)
COLA(M, ̂M) =

(

min
π∈Πm

m̂
∑

i=1

(

d(c)(mi, m̂π (i))
c

)p
)1/p

(46)

≤
(

min
π∈Πm

m
∑

i=1

(

d(c)(mi, m̂π (i))
c

)p

+ (n̂ − m)

)1/p

(47)

≤
(

min
π∈Π n̂

n̂
∑

i=1

(

d(c)(mi, m̂π (i))
c

)p
)1/p

(48)

≤
(

n̂
∑

i=1

(

d(c)(mi, n̂σ (i)) + d(c)(n̂σ (i) , m̂τ (σ (i)))
c

)p
)1/p

(49)

≤
(

n̂
∑

i=1

(

d(c)(mi, n̂σ (i))
c

)p
)1/p

+

(

n̂
∑

i=1

(

d(c)(n̂σ (i) , m̂τ (σ (i)))
c

)p
)1/p

(50)

≤ d
(c,p)
COLA(M, ̂N ) + d

(c,p)
COLA( ̂N , ̂M). (51)

In (47), n̂ − m dummy points were added to the set M yield-
ing (48). In (48), the triangular inequality on the metric d(c)

and the application of (44) and (45) resulted in (49). Finally,
Minkowski’s inequality yielded (50).

Case 2: (m, n̂ ≤ m̂). In order to raise the cardinality of sets
M and ̂N to m̂, consider the dummy points

mm̂−i+1 = ui , 1 ≤ i ≤ m̂ − m (52)

n̂m̂−j+1 = uj , 1 ≤ j ≤ m̂ − n̂ (53)

where d(mi, n̂i) = 0, max(m, n̂) ≤ i ≤ m̂.
Then, choose σ, τ ∈ Πm̂ such that

min
π∈Π m∨n̂

m∨n̂
∑

i=1

(

d(c)(mi, n̂π (i))
c

)p

=

min
π∈Π m̂

m̂
∑

i=1

(

d(c)(mi, n̂π (i))
c

)p

=
m̂
∑

i=1

(

d(c)(mi, n̂σ (i))
c

)p

(54)

min
π∈Π m̂

m̂
∑

i=1

(

d(c)(n̂i, m̂π (i))
c

)p

=
m̂
∑

i=1

(

d(c)(n̂i, m̂τ (i))
c

)p

(55)

d
(c,p)
COLA(M, ̂M) =

(

min
π∈Π m̂

m̂
∑

i=1

(

d(c)(mi, m̂π (i))
c

)p
)1/p

(56)
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where m ∨ n̂ = max(m, n̂). Therefore, finally

≤
(

m̂
∑

i=1

(

d(c)(mi, n̂σ (i)) + d(c)(n̂σ (i) , m̂τ (σ (i)))
c

)p
)1/p

(57)

≤
(

m̂
∑

i=1

(

d(c)(mi, n̂σ (i))
c

)p
)1/p

+

(

m̂
∑

i=1

(

d(c)(n̂σ (i) , m̂τ (σ (i)))
c

)p
)1/p

(58)

≤ d
(c,p)
COLA(M, ̂N ) + d

(c,p)
COLA( ̂N , ̂M). (59)

In (56), the triangular inequality on the metric d(c) and the
application of (54) and (55) resulted in (57). Again, Minkowski’s
inequality yielded (58).

APPENDIX C
PROOF OF INEQUALITY (8)

For |̂M| ≥ |M|, the COLA metric is defined as

d
(c,p)
COLA(M, ̂M) =

⎛

⎝min
σ

|M|
∑

i=1

(

d(c)(mi , m̂σ (i))
c

)p
⎞

⎠

1/p

.

(60)
If π is the permutation set which achieves the minimization of
the COLA metric, then

d
(c,p)
COLA(M, ̂M) =

⎛

⎝

|M|
∑

i=1

(

d(c)(mi , m̂π (i))
c

)p
⎞

⎠

1/p

. (61)

Consider 1 ≤ p1 ≤ p2 and the substitutions

xi =
d(c)(mi , m̂π (i))

c
, s =

⎛

⎝

|M|
∑

i=1

xp1
i

⎞

⎠

1/p1

, yi =
xi

s
≤ 1

(62)

∴ yp2
i ≤ yp1

i (63)
∑|M|

i=1 xp2
i

sp2
≤
∑|M|

i=1 xp1
i

sp1
(64)

∑|M|
i=1 xp2

i
(

∑|M|
i=1 xp1

i

)p2 /p1
≤ 1 (65)

⎛

⎝

|M|
∑

i=1

xp2
i

⎞

⎠

1/p2

≤
⎛

⎝

|M|
∑

i=1

xp1
i

⎞

⎠

1/p1

(66)

and substituting for xi from (62) into (66) yields

d
(c,p2 )
COLA (M, ̂M) ≤ d

(c,p1 )
COLA (M, ̂M). (67)
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