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Abstract

Range measuring sensors can play an extremely important role in robot navigation. All range measuring devices rely on a ‘detection criterion’
made in the presence of noise, to determine when the transmitted signal is considered detected and hence a range reading is obtained. In commonly
used sensors, such as laser range finders and polaroid sonars, the criterion under which successful detection is assumed, is kept hidden from the
user. However, ‘detection decisions’ on the presence of noise still take place within the sensor. This paper integrates signal detection probabilities
into the map building process which provides the most accurate interpretation of such sensor data. To facilitate range detection analysis, map
building with a frequency modulated continuous wave millimetre wave radar (FMCW MMWR), which is able to provide complete received
power-range spectra for multiple targets down range is considered. This allows user intervention in the detection process and although not directly
applicable to the commonly used ‘black-box’ type range sensors, provides insight as to how not only range values, but received signal strength
values should be incorporated into the map building process.

This paper presents two separate methods of map building with sensors which return both range and received signal power information. The
first is an algorithm which uses received signal-to-noise power to make an estimates of the range to multiple targets down range, without any
signal distribution assumptions. We refer to this as feature detection based on target presence probability (TPP). In contrast to the first method, the
second method does use assumptions on the statistics of the signal in target presence and absence scenarios to formulate a probabilistic likelihood
detector. This allows for an increased rate of convergence to ground truth. Evidence theory is then introduced to model and update successive
observations in a recursive fashion. Both methods are then compared using real MMWR data sets from indoor and outdoor experiments.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Autonomous outdoor navigation is still a very active topic of
research due to the presence of unstructured objects and rough
terrain in realistic situations. One of the core reasons for failure
is the difficulty in the consistent detection and association of
unstructured targets present in the environment. Mobile robot
navigation is typically formulated as a dynamic state estimation
process where predicted vehicle and target locations are fused
with sensor readings. Reliable target detection from noisy
sensor data is critical to the successful convergence of any such
algorithm. Most methods are concerned only in the location
of detected targets thus, the noise in the sensor readings are
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typically two-dimensional, i.e. in range and bearing. For range
sensors commonly used in robot navigation such as the polaroid
sonar or SICK laser, the target detection algorithm is performed
internally resulting in a single (r, θ) output to the first signal
considered detected. No other information is returned about the
world along bearing angle θ , however it is typical in the case of
most sensor models to assume empty space up to range r [1].
This signal may or may not correspond to a target, depending on
the environmental properties, and such ambiguities can only be
resolved by fusing range data from multiple vehicle locations.

In a SLAM framework, reliable target detection from the raw
sensor data is of critical importance in any vehicle and map
state estimation algorithm, and most SLAM methods assume
targets can be consistently detected. Feature extraction is then
the problem of grouping or fitting models to the detected targets
so that they can readily be associated from consecutive vehicle
poses. However, sensor noise in range/bearing measuring
sensors is in fact three- dimensional as an added uncertainty
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Fig. 1. Single power-range spectrum returned by the RADAR sensor.

exists in the detection process. Most navigation algorithms
discard this probability and assume an ideal detector. Using
this assumption, the distribution of the target co-ordinates can
be conveniently modelled with probability density functions,
where the probabilistic sum under the distribution is unity. That
is, complete certainty that a target exists somewhere within
that area. For occupancy based map building, the occupancy
values are distributed under the constraint that the sum of the
occupancy for all affected cells is unity (guaranteed from the
normalization factor in Bayes rule).

Signal detectors are generally analyzed based on their
receiver operation characteristics (ROC). This is simply a
function of the probability of correct signal detection versus
the probability of false alarm. Thus every detector has a non-
unity value of signal detection and a nonzero probability of
false alarm. For most sensors, users do not have access to the
signal detection parameters, however this is not the case for
sensors such as the Frequency Modulated Continuous Wave
(FMCW) radar1 and underwater Sonar, where the output data
is a complete signal power profile along the direction of
beam projection, without any signal detection being performed.
At each range bin k, a power value is returned thus giving
information at multiple ranges for a single bearing angle. A
sample power vs. range spectrum for a fixed bearing angle is
shown in Fig. 1.

These data are clearly poorly characterized and highly
ambiguous as they contain correlated (in range) system noise,
environmental clutter and potentially one or more targets.
FMCW radar sensors are typically applied in outdoor SLAM
as they can operate in hazardous environments where other
sensors will fail due to its ability penetrate dust, fog, and
rain [2] and harbouring their rich information can increase the
speed of construction of navigational maps. Due to the often
significant beamwidth of the these sensors, the wave footprint
increases with range allowing for propagation passed objects
thus returning range readings of multiple, partially occluded,
down range targets at a single bearing angle. However, they
are also very susceptible to signal noise (as can be seen in
Fig. 1), target surface properties and multipath effects. The
target detection problem is therefore to hypothesize whether

1 Due to the modulating techniques, FFTs can be used to return a power value
at discrete range steps. Range resolution, beamwidth, and maximum range are
dependant on the particular sensor.
the power at a certain range is reflected from a target, or is
simply due to noise (no target). This work aims to develop a
fusion framework where the confidence in target presence or
absence hypotheses is recursively updated at each vehicle pose
in a statistically correct manner.

This paper is organized as follows: Section 2 introduces
related work in the field of radar mapping, while Section 3
gives an in-depth analysis of the signal statistics of the radar for
use in the probabilistic mapping algorithms. Section 4 outlines
a method of stochastic mapping which is independent of the
signal statistics. An evidential mapping approach, based on a
priori signal assumptions, is then developed in Section 5. Both
methods are compared in Section 6 using real data acquired
from outdoor tests.

2. Related work

A significant body of work exists on using Time-Of-Flight
(TOF) sensors (namely laser) to perform outdoor SLAM, [3–5].
These use geometric feature extraction and scan correlation
techniques to provide localization and map building. However,
research into navigation using power versus range sensors is
less mature.

In the underwater domain, sonars also return a power
versus range vector which is difficult to interpret. In his thesis
[6], Williams outlined a simple target detection technique for
autonomous navigation in a coral reef environment. A constant
noise power threshold is used and the maximum signal to
noise ratio is chosen as the point target. Clearly this method
of extraction results in a large loss of information, which is not
desirable for the construction of well defined maps. Majumder
attempts to overcome this loss by fitting a sum of Gaussian
probability density function to the raw sensor data [7]; however,
this represents a likely distribution in range of a single point
target which is misleading as the data can contain multiple
targets, leading to the association of noncorresponding points.

In field robotics, standard noise power thresholding was
again used by Clark [8] using a frequency modulated
continuous wave (FMCW) radar. The range and bearing
covariances were then modelled and propagated through an
Extended Kalman Filter framework to perform SLAM. The
method was shown to work in an environment containing a
small number of well separated, highly reflective beacons.
The method was extended slightly in [9] where, even bounce
peculiarities were used to extract pose invariant features.
Again the environment contained reflective metallic containers.
However, this conservative method of target detection limits the
usefulness of the sensor since, given K range bins, only the
information contained in a single bin is used. The remaining
sensor data is discarded resulting in an extremely sparse
map. Furthermore, as is common in most sensor models,
an assumption that the noise thresholding is ideal is used,
(probability of detection is one, and probability of false alarm
is zero) thus there is an assumed certainty that there is a
target somewhere at range r [10]. This sets a constraint on
the occupancy distribution at that range.2 However, in this

2 Modelled with a pdf which integrates to unity.
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(a) Multiple range spectra plotted for the same azimuth.

(b) Multiple range spectra plotted for the same azimuth. The power
has been linearized.

Fig. 2. Multiple range spectra plotted together for the same bearing angle.
Fig. 2(a) shows the full power spectra (200 m) in dB. Fig. 2(b) shows the same
power spectra with linearized power values.

work, this assumption is violated due to a variable detection
probability and a nonzero false alarm probability. Ignoring
this fact results in the association of ‘ghost’ targets and the
divergence of the navigation algorithm.

Stochastic detection models are preferable for power-range
measuring sensors such as the FMCW radar used in this work,
as the reliability of any detection algorithm is nonideal. In
Foessel’s paper [11], a sensor model is developed based on
empirical and intuitive rules. The signal to noise ratio returned
from the signal to noise likelihood is used to determine the
cell occupancy probability. A Log-Odds formulation of Bayes
rule is used to update the cell values in a common occupancy
grid framework. Whilst this work showed promising scene
modelling with the radar, it requires the use of a priori assigned
constants to model the occupancy and its application to mobile
robotics was not examined.

3. Interpretation of radar noise

MMWR noise is the unwanted power that impedes the
performance of the MMWR. It is therefore the aim of this
section to determine the type of noise distributions in the
actual received power and range values to determine how the
predicted power-range spectra can be used correctly in a robot
navigation formulation. This will be needed later to justify the
noise distribution assumptions used to describe the stochastic
Fig. 3. Experimental histogram of noise in the range for an object at 10 m.

sensor model of Section 5. The two main noise components are
thermal and phase noise.

3.1. Thermal noise

The power in the beat frequency signal (found from the FFT
of this signal) is affected by the thermal noise power aR(t − τ),
which contributes to A′ in:

vbeat(t, τ ) =
A′

2
cos

{[
ωc − Ab

(τ

2
− t

)]
τ + 1φ(t, τ )

}
(1)

where A′
= [AT + aT (t)] [AR + aR(t − τ)] is the signal

amplitude along with the noise affecting the amplitude. This
then represents the output of the intrinsic low pass filter at the
radar receiver.

3.2. Phase noise

Another source of noise which affects the range spectra is
the phase noise. This is shown in Eq. (1), where a band of noise
frequencies with different phase components, 1φ(t, τ ) affects
the desired signal frequency. It is obtained from 1φ(t, τ ) =

φ(t) − φ(t − τ) and is due to the leakage of transmitted signals
into the mixer [12], resulting in a spectrum of frequencies with
finite bandwidth. This introduces noise into the range estimate
itself. Experimental data provides insight into the phase noise
distribution.

To demonstrate and estimate the phase noise effect, multiple
superimposed range spectra obtained for the same radar swash
plate bearing angle are plotted together as shown in Fig. 2.
Fig. 2(a) shows the entire range spectrum with the returned
power in dB, while Fig. 2(b) shows the same set of range spectra
with the power axis linearized. Noise analysis is carried out on
the range spectra with the linearized power (Fig. 2(b)). Figs. 3
and 4 show histograms obtained from two different objects
(having different RCSs) at different ranges. The distributions
show only the maximum power values recorded from a given
target, with the radar swash plate fixed. It is apparent from
Figs. 3 and 4 that the noise variance is of the order of the range
resolution (25 cm).

3.3. Noise analysis during target absence and presence

The noise statistics at the radar receiver outputs during target
absence and presence will now be derived. Due to the unknown
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Fig. 4. Experimental histogram of range noise measured for an object at 137 m.

Fig. 5. Superimposed range spectra, for a constant radar swash plate bearing
angle, with no targets present (swash plate pointing to the open sky).

nature of the exact internal components within the radar used
in this work [13], an experimental determination of the noise
power distributions is used here. Knowledge of the noise
statistics is essential for automatic target detection methods
such as Constant False Alarm Rate (CFAR) processors, that is
explained further in Section 5.

3.3.1. Noise estimation in target absence
To determine the power bias and variance of the range

spectra with no targets present, Fig. 5 shows superimposed
range spectra, obtained at a particular radar bearing angle,
recorded by pointing the radar towards the open sky. Noise
analysis is carried out in the power spectra. Examination of the
power distributions obtained at different ranges during target
absence (derived from Fig. 5, after linearization of the spectral
power values), suggests that a suitable approximation to the
distributions is the exponential distribution [14]. This can be
seen in Fig. 6, where power distributions at arbitrary ranges
of 25 m and 100 m are shown. The exponential probability
distribution function can be written as:

fX (x) =
1
µ

e−(x/µ), ∀x > 0 (2)

where X is the random variable, the mean of the samples x is
µ, which is the average power and its variance is µ2 [14].

At a range of 25 m (Fig. 6(a)), mean value, µ for an
equivalent exponential distribution3 is 1.1 × 10−7. For a range

3 This value is obtained using Matlab to fit Eq. (2) to the experimentally
obtained distribution of Fig. 6(a).
(a) Experimental estimation of the noise distribution obtained from a
25 m distance.

(b) Experimental estimation of the noise distribution obtained from a
100 m distance.

Fig. 6. Experimental estimation of noise power distributions, obtained at
different ranges, with no targets in the environment.

of 100 m (Fig. 6(b)), suitable exponential mean value have
been obtained as µ = 4.76 × 10−7. The two distributions
obtained from different ranges indicate that the statistics
are exponential throughout the range. The variance of the
exponential distributions, however, are different. The interest at
this stage in the analysis lies in the form of the distributions, not
the variance, as knowledge of the distributions can be applied
in feature detection based on CFAR processors.

3.3.2. Noise estimation in target presence

The receiver noise will also affect the signal when there is
a target present. The resultant distribution is the convolution of
the signal and noise distributions. A targets signal distribution is
a complex function of the radar modulation type, target surface
properties and radar viewing aspect. Obtaining experimental
quantification of the signal distributions for the vast array of
targets present in a typical outdoor navigation environment is
clearly unfeasible. Therefore, the Swerling class of fluctuation
models [15], commonly referred to and used in radar signal
processing literature, and are also adopted in this work. With
exponentially distributed noise, the joint distribution of signal
and noise is assumed to be Ricean distributed. Thus, in the case
of target presence, the resulting amplitude pdf is assumed to
be [16]:

p(x |H1) =
1
µ

exp{(−x/µ) + s}.I0

(
2
√

sx

µ

)
(3)
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where I0 is the modified Bessel function of order zero, and s
is the signal to noise ratio (SNR) sampled from the Swerling I
model with mean SNR s̄,

fS(s) =

{2s

s̄
exp−s2/s̄ if s > 0

0 Otherwise.
(4)

4. Feature detection based on target presence probability
(TPP)

For typical outdoor environments, the radar cross section
of objects may be low, and buried in noise. For reducing the
noise and extracting smaller signal returns along with the higher
power returns, a method is now introduced which uses the
probability of target presence [17] for feature detection [13].
This method is appealing compared to CFAR and constant
threshold methods at ground level, as a threshold can be applied
to the TPP, and any bias in the power-range spectrum does
not need to be removed first, meaning that the received power
values from actual targets are unaltered, leaving them range
independent, assuming ideal high pass filter operation.

4.1. The target presence probability algorithm

The detection problem described here can be stated formally
as a binary hypothesis testing problem [18]. Feature detection
can be achieved by estimating the noise power contained in
the range spectra, by averaging past spectral power values and
using a smoothing parameter. This smoothing parameter is
adjusted by the TPP in the range spectra. The TPP is obtained
by taking the ratio between the local power value of range
spectra containing noise and its minimum value. The noise
power thus estimated can then be subtracted from the range
spectra to give a reduced noise range spectra.

Let the power of the noisy range spectra be smoothed by a
w-point window function b(i) whose length is 2w + 1

P̌(k, l) =

w∑
i=−w

b(i) P̌(k − i, l) (5)

where P̌(k, l) is the kth power value of lth range spectra.
Smoothing is then performed by a first order recursive

averaging technique:

P̌(k, l) = αs P̌(k, l − 1) + (1 − αs)P̌(k, l) (6)

where αs is a weighting parameter (0 ≤ αs ≤ 1). First
the minimum and temporary values of the local power are
initialized to Pmin(k, 0) = Ptmp(k, 0) = P̌(k, 0). Then a
range spectrum wise comparison is performed with the present
spectrum l and the previous spectrum l − 1.

Pmin(k, l) = min {Pmin (k, l − 1), P̌ (k, l)} (7)

Ptmp(k, l) = min{Ptmp (k, l − 1), P̌ (k, l)}. (8)

When a predefined number of range spectra have been
recorded at the same vehicle location, and the same sensor
azimuth, the temporary variable, Ptmp is reinitialized as:

Pmin(k, l) = min{Ptmp (k, l − 1), P̌ (k, l)} (9)

Ptmp(k, l) = P̌ (k, l). (10)

Let the signal-to-noise power, PSNP (k, l) =
P̌ (k,l)

Pmin(k,l) be the
ratio between the linear, local noisy power value and its derived
minimum.

In the Neyman–Pearson test [19], the optimal decision (i.e.
whether a target is present or absent) is made by minimizing
the probability of the type II error, subject to a maximum
probability of type I error as follows.

The test, based on the likelihood ratio, is:

p(PSNP|H1)

p(PSNP| H0)

H1
≷
H0

δ (11)

where δ is a threshold and H0 and H1 designate hypothetical
target absence and presence. p(PSNP|H0) and p(PSNP|H1) are
the conditional probability density functions. The decision rule
of Eq. (11) can be expressed as:

PSNP (k, l)
H1
≷
H0

δ. (12)

An indicator function, I (k, l) is defined where, I (k, l) = 1 for
PSNP > δ and I (k, l) = 0 otherwise.

The estimate of the conditional TPP,4 p̂′(k, l) is

p̂′(k, l) = αp p̂′(k, l − 1) + (1 − αp) I (k, l). (13)

This TPP can be used as a target likelihood within mobile
robot navigation formulations. αp is a smoothing parameter
(0 ≤ αp ≤ 1). The value of αp is chosen in such a way that the
probability of target presence in the previous range spectrum
has very small correlation with the next range spectrum.

It is of interest to note that, as a consequence of the above
analysis, the noise power, λ̂d(k, l) in kth range spectrum is
given by:

λ̂d(k, l) = α̃d(k, l)λ̂d(k, l − 1) + [(1 − α̃d(k, l))]P̌ (k, l) (14)

where

α̃d(k, l) = αd + (1 − αd)p′(k, l) (15)

and αd is a smoothing parameter (0 ≤ αd ≤ 1). This can be
used to obtain a noise reduced spectrum, P̂N R(k, l) using the
method of power spectral subtraction [21]. In the basic spectral
subtraction algorithm, the average noise power, λ̂d(k, l) is
subtracted from the noisy range spectrum. To overcome the
inaccuracies in the noise power estimate, and to keep the power
estimate within the working range of the radar, the following
method can be used [22]:

P̂N R(k, l) =


P̌(k, l) − c × λ̂d(k, l)

if P̌(k, l) > c × λ̂d(k, l)
d × λ̂d(k, l) otherwise

(16)

4 Conditioned on the indicator function I (k, l) [20].
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where c, is an over-subtraction factor (c ≥ 1) and d is
spectral floor parameter (0 < d < 1). The values of c and
d are empirically determined for obtaining an optimal noise
subtraction level at all ranges and here are set to be 4 and 0.001.
The performance of this algorithm will be demonstrated further
in the results in Section 6.

5. Mapping based on detection evidence

Section 4 outlined a method to represent targets in a
probabilistic manner, based on several recorded scans from a
single robot position. However, to make a real-time tractable
SLAM system, target information must be extracted from a
single MMWR scan at each vehicle pose. Data returned by the
MMWR is poorly characterized and can be difficult to interpret
due to internal system noise and clutter masking the signal
returned by the target. Furthermore, the reflected power from a
target is a function of the sensors viewing aspect and fluctuates
giving a nonconstant probability of detection. Therefore,
SLAM using MMWR presents an extremely challenging
situation of multi-target tracking with ambiguous data and
variable detection probabilities. Target detection from a single
realization is usually performed with likelihood tests, where the
ratio of an estimated signal distribution to the noise distribution
is compared to a threshold. These methods usually use some
assumptions of the noise and signal distributions, whilst the
moments of the distribution remain unknown and are estimated
by the algorithm. Null hypothesis modelling is generally done
using an exponential post-envelope noise assumption (and
confirmed through experimentation in Section 3, Fig. 6) to
derive a detector with constant probability of false alarm [23].

5.1. Single spectrum target detection

One of the most popular methods of detecting signals from
FMCW MMWR data is through the formulation of a one-
sided generalized likelihood ratio test. A single scan from
pose number, n, can be written as an array of power spectra,
Sn = [Pφ1 Pφ2 · · · Pφm ]

T where m is the number of vectors per
360◦ revolution. For a given spectrum, Pφ , its elements, p1,...,K

φ

are modelled as K independently distributed random variables,
[X1, X2, . . . , X K ]. The sensor model must initially decide on
the binary hypothesis at each range bin k, ∀xk = pk

φ, k ∈

{1, 2, . . . , K }, ∀Pφ ∈ Sn . This is generally done by formulating
a likelihood ratio test,

L(xk) =
p(x |H1)

p(x |H0)
=

∫
p(x |91, H1)p(91)d91∫
p(x |90, H0)p(90)d90

> Tk (17)

where 91 and 90 are the unknown parameters of the known
(or assumed) distributions given target present and absent
hypotheses, and x is a continuous form of the sample xk . Note
the φ notation is dropped as just a single power spectrum
is being considered here. L(xk) is then compared against a
decision threshold, Tk . The hypotheses in this case being:

H0 : xk = {No Target in range bin k}

H1 : xk = {Target in range bin k}
Fig. 7. Signal classification at range bin k. Here 4 probabilities are present
giving the probability of correct detection of noise Pn , signal Pd , and both type
I (false alarm), P f a and type II (missed detection), Pmd errors.

where xk is a single realization of Xk . Using an IID assumption,
as well as the null and alternate hypotheses signal distributions
outlined previously in Section 3 we can form a likelihood test
for each range bin k for a given radar power spectrum. A
graphical representation of this detection problem is shown in
Fig. 7.

The mean noise power µ is assumed unknown and must be
locally estimated from the data in the spectrum, Pφ , using a
moving window of width N bins.5 From the literature [24],
detectors can generally vary in their methods of generating
local estimates of the noise distribution. An ordered-statistics
approach has been shown to be most robust in situations of
high clutter, as is commonly encountered in a field robotics
environment, and is therefore adopted in this work. The
decision threshold for each bin is set as normal as:

Tk = τ zk (18)

where, zk is a local estimate of the average noise power µ and
τ is a scaling factor to achieve a desired false alarm probability,
P f a , given by:

P f a =

∫
∞

0
P[xk ≥ τ zk |H0] fZ (z)dz (19)

which can be shown to be:

P f a = n

(
N

n

)
(n − 1)!(τ + N − n)!

(τ + N )!
(20)

where fZ (z) is the pdf of the noise estimate zk [25]. The
ordered statistic noise estimate, zk , is chosen as zk = xn ,
where xn is the nth element of the N ordered (according to
amplitude) samples [x1, . . . , xN ] in the moving window. This
class of signal detector is commonly referred to a constant
false alarm rate (CFAR) detector, and is favourable in this
work as it provides theoretically derived values to be used in
the sensor model. The output of an OS-CFAR detector with
parameters N/2 = 20, P f a = 1 × 10−6, G = 2, and
n = 3N/4 on real MMWR data from a particular test, is shown
in Fig. 8. A high RCS radar reflector was placed at 10 m,
with a building at approximately 135 m. The detector correctly

5 Typically, to account for spectral spreading, guard cells (denoted G) are
included on each side of the cell under test and so the window is split into a
lead and lag section.



78 J. Mullane et al. / Robotics and Autonomous Systems 55 (2007) 72–85
Fig. 8. OS-CFAR detector output on a single power spectrum. Numerous false
alarms occur due to violation of the IID assumption.

identifies the 2 reflected target signals, with an added multipath
return. However, some false alarms also occur, even in a clutter
free (open air) environment. This is due to violations of the
IID noise assumption, thus biased estimates of the mean noise
power result in frequent false alarms.

Given the assumed signal statistics in the presence of noise
and signal, as shown in Fig. 7, the four following probabilities
for any CFAR process can be determined for each range bin k:

Pd =

∫
∞

0
P[xk ≥ τ zk |H1] fZ (z)dz (21)

Pn =

∫
∞

0
P[xk < τ zk |H0] fZ (z)dz (22)

Pmd =

∫
∞

0
P[xk < τ zk |H1] fZ (z)dz (23)

P f a =

∫
∞

0
P[xk ≥ τ zk |H0] fZ (z)dz. (24)

Clearly for a given target, Pd and Pmd will be a function
of the mean SNR, s̄. However, given only a single realization
of Xk , we make the assumption that s̄ = E{s} ≈ xk/zk
(reasonable with a signal of low variance), allowing the
probabilities to be readily calculated.

5.2. Detector output interpretation

The resulting set of K probability sets ({Pd , P f a} or
{Pmd , Pn}) are then put in an evidential framework for fusion
and map building. They represent evidence in support of the
frame of discernment:

Θ = {M f , Me}

containing fullness and emptiness beliefs, where the subsets,
denoted 2Θ , are known as the power set:

2Θ
= {M∅, M f , Me, M f ∪e}

with ∅, f , e, and f ∪ e representing the null, full, empty and
unknown sets respectively. Thus, when the observation Z t is
made the beliefs are assigned as:

m(M f |Z t ) = Pd
m(Me|Z t ) = P f a
m(Mu |Z t ) = 1 − Pd − P f a

 for x = H1 (25)
m(M f |Z t ) = Pmd
m(Me|Z t ) = Pn
m(Mu |Z t ) = 1 − Pn − Pmd

 for x = H0 (26)

m(M∅|Z t ) = 0 for x = H0, H1

where m(A|B) is the mass distribution on A given B. Here,
m(Mu |Z t ) represents the unknown or ‘ignorance’ evidence
given sensor data at time t . Clearly in the case of hypothesis
H0 being chosen, to calculate Pmd , a mean SNR s̄ is required.
Thus, as with the H1 hypothesis, s̄ is calculated using xk , as
if it were from a target. This then allows for an evidence of
occupancy to be assigned, even though the detector declared a
no target hypothesis.

To satisfy the normalizing constraint:∑
A⊂2Θ

m(A|Z t ) = 1 (27)

we therefore set,

m(M f ∪e|Z t ) = m(Mu |Z t ) = 1 − m(M f |Z t ) − m(Me|Z t ).

(28)

The resulting triplet {m(M f |Z t ), m(Me|Z t ), m(Mu |Z t )} is
known as the body of evidence. Thus for a single power vector
Pφ , there will be K such triplets generated. However, with the
above constraint, clearly only m(M f |Z t ) and m(Me|Z t ) need
to be stored to maintain a full description of the map.

5.3. Data fusion

Fusion equations for uncertain beliefs were developed by
Dempster [26]. These state that given two mutually independent
bodies of evidence, i.e. a sensor reading and a map, mk(A) and
mm(B), then for any possibility C (posterior) the combined
evidence provided by the two sources is given by:

m(C) =

∑
A∩B=C

mk(A)mm(B)

1 −
∑

A∩B=∅

mk(A)mm(B)
(29)

where A, B, C ⊂ 2Θ . Thus, by discretizing the previous
distributions onto a fixed grid, the beliefs on the map can be
recursively updated. The numerator represents the aspects of
the sensor data that confirm the map data and can be separated
into the ‘fullness confirmation’ and ‘emptiness confirmation’,
denoted m(λ f |Z t ) and m(λe|Z t ). The denominator is a measure
of the conflict between the new sensor data and the map data,
and will be denoted m(κ|Z t ). Thus, as with the Bayesian
update, Dempsters rule of combination can fuse independent
bodies of evidence, to recursively update the state of the map.
Expanding the equation to determine the posteriors for map
‘fullness’, m(M f |Z t ) and ‘emptiness’, m(Me|Z t ), where Z t

represents all observations taken up until time t we get:

m(M f |Z
t ) =

m(λ f |Z t )

m(κ|Z t )

m(Me|Z
t ) =

m(λe|Z t )

m(κ|Z t )
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Fig. 9. Multiple fixed bearing MMWR observation.

(a) Output of TPP algorithm after 30 iterations.

(b) Output of TPP algorithm after 40 iterations.

(c) Output of TPP algorithm after 50 iterations.

Fig. 10. Posterior occupancy on the map at differing iteration numbers based
on the TPP algorithm.

where:

m(λ f |Z
t ) = m(M f |Z

t−1)m(M f |Z t )

+ m(Mu |Z t−1)m(M f |Z t ) + m(M f |Z
t−1)m(Mu |Z t ) (30)

m(λe|Z
t ) = m(Me|Z

t−1)m(Me|Z t )

+ m(Mu |Z t−1)m(Me|Z t ) + m(Me|Z
t−1)m(Mu |Z t ) (31)

m(κ|Z t ) = 1 − m(Me|Z
t−1)m(M f |Z t )

− m(M f |Z
t−1)m(Me|Z t ). (32)
Fig. 11. Corresponding output based on the evidential sensor model after 5
iterations.

Fig. 12. Corresponding output based on the evidential sensor model after 10
iterations.

Using this formulation, both the sensor and map data are
trusted equally (analogous to an equally weighted Kalman
filter update). This presents a framework to identify missed
detections (due to occlusion or RCS fluctuation) when the
sensor indicates empty space in a previously occupied cell.
This formulation also allows for unknown areas to be assigned
complete ignorance.

6. Experimental results

Setting a constant threshold is clearly nonintuitive and
binary CFAR techniques fail to quantify the confidence in
target detection. Therefore, in this section, a comparison of
the proposed TPP and evidential mapping techniques will be
shown. Algorithms are run on real data collected from field
experiments.

The first experiment is performed on fixed bearing power-
range spectra observations obtained by disabling the rotation
mechanism of the MMWR. A reflector was kept at 10 m,
and multiple MMWR returns were recorded. Fig. 9 shows the
raw data (i.e. multiple realizations on the underlying series
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(a) Power versus range of a two-dimensional MMWR scan from an indoor environment.

(b) TPP versus range of a two-dimensional MMWR scan in an indoor environment. The probability
of the detected targets (i.e. walls) are shown in the figure.

Fig. 13. Raw MMWR data and corresponding target presence probability plots obtained from an indoor sports hall.
of (assumed independent) probability density functions). Due
to the large difference in the signal variance under null and
alternative hypotheses, the three reflections can be readily
identified by visual inspection. Using these data, the TPP
algorithm is used to detect the reflections. Due to no a priori
assumptions being made on the signal statistics, the algorithm
requires numerous samples (spectra) to converge. The output
probability on target presence can be seen after 30, 40 and 50
iterations in Fig. 10.

In Fig. 9, the range bins contain three distinct reflections
of differing power values, whereas the TPP plot shows the
three peaks with a more uniform range width and similar
probabilistic values. The second peak is from a building lying
beyond the reflector, whilst the third is most likely a multi-path
reflection. Such multi-path ambiguities can only be resolved
by running the algorithm on a moving platform with scans
from varying vehicle positions. Thus the methods presented
in this paper should be interpreted as echo detectors, as the
extraction of reliable environmental features requires further
data processing. This result shows that, although the returned
power values vary from different objects, the corresponding
TPP values are similar.

The evidential model also detects the signals due to a well-
tuned detector operating with a low probability of false alarm in
an ‘ideal’ (clutter free) environment. Fig. 11 shows the output
after five iterations. As the a priori assumptions have been
made, a belief of occupancy can be obtained after just a single
observation from a single spectrum. The probability of the third
reflection is slightly less due to the occurrence of some missed
detections. Increasing the false alarm probability Eq. (24) of
the detector would reduce the missed detections at the expense
a higher convergence rate. After 10 updates, the occupancy
probability has approached unity for all three reflections, as can
be seen from Fig. 12.

Tests are next performed on a full 360◦ scan from an
indoor court. The purpose of the test is to see how well both
algorithms extract the four court walls. The TPP-based feature
detector is easier to interpret than the raw power spectra as
shown in Fig. 13 where TPP plots are shown along with the
corresponding raw MMWR data.

Fig. 13(a) shows the raw MMWR data and the correspond-
ing TPP is shown in Fig. 13(b). The four walls of the stadium
are clearly extracted by the proposed algorithm. The other prob-
ability values at longer range values arise due to multi-path ef-
fects. Results from the evidential model are shown in Fig. 14.
Due to a minimum range of operation of the sensor (5 m), there
is an ‘unknown’ section around the sensor origin. The occupied
plot clearly shows large evidence of the four walls. False alarms
are also evident due to multi-path effects and large noise con-
tributions. Due to the strong signal generally returned by the
walls (high RCS), there is little residual unknown belief after
the reflection has been detected. Due to bearing encoder data
acquisition problems with this particular radar, some nonuni-
form increases in bearing angle occur. This naturally will result
in an increase in the unknown belief as seen in Fig. 14(c), as
portions of the map are not scanned by the sensor.

Tests performed in an outdoor carpark are presented
next. Fig. 15 shows an overview of the testing ground for
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(a) Occupied map from the evidential model.

(b) Empty map from the evidential model.

(c) Unknown map from the evidential model.

Fig. 14. Occupied, empty and unknown maps from the evidential model.
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Fig. 15. Overview of testing ground (the cars were absent at the time of the
scan).

comparison, as the map ground truth is difficult to obtain.
Fig. 16, 17 and 18 respectively show the occupied, empty and
unknown probabilities extracted from a single 360◦ scan from
a fixed location. Objects with large RCSs return strong signals
and hence leave little residual unknown probabilities, however,
null hypothesis decisions, and reflections from low RCS targets
leave some unknown information as can be seen from the green
areas of Fig. 18.

Finally the fusion of multiple scans from a moving platform
is presented. A vehicle with a mounted MMWR was driven
around the carpark, recording multiple scans. Localization was
performed using a scan-matching approach based on the IDC
algorithm [27]. The CFAR detector selected a single point from
the radar power spectrum at each bearing angle, then estimated
the vehicle pose and covariance. Probabilistic occupied and
empty scans were then extracted and fused in a recursive
fashion. To include the noise variances in the sensor, each
bin represents the peak of a bivariate Gaussian distribution
in evidence. This allows for the positional covariance to be
included through the standard SLAM Jacobian methods. Fig. 19
shows the occupied belief on the map from the fusion of 10
successive scans. The vehicle position is shown by black dots
in the centre. Targets such as the walls, which are consistently
detected, quickly approach a unity value of occupancy and can
be readily identified in the figure. Fluctuating targets such as the
tree and lamp post also remain in the map. This is as a result of
assigning an occupied likelihood from the sensor model, when
a missed detection has occurred. The evidence of multipath
effects (particularly behind the wall in the region bounded by
(50, 80) to (30, 0)) have been reduced to low occupancy belief,
as has the region around the vehicle origin.

7. Conclusion

This paper considered the problem of signal detection and
map building with range sensors for autonomous vehicles.
Signal detection is rarely considered in mapping algorithms, as
it is usually an internal function of the sensor and inaccessible
to the user. Two methods of integrating the detection process
into map building were presented and the theory was then
applied to a MMWR sensor. The first method presented was
the TPP algorithm which does not rely on adaptive threshold
techniques, but estimates the probability of target presence
based on local signal to noise power estimates, found from
several successive power-range spectra. No prior assumptions
need to be made on the signal statistics under target presence
and absence hypothesis giving a robust detection technique.
Fig. 16. Occupied map from the evidential model.
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Fig. 17. Empty map from the evidential model.

Fig. 18. Unknown map from the evidential model.
The results show that the algorithm can detect features well,
however numerous iterations are required for convergence. End
results however compare well with the true state.

A second model was introduced taking a different approach
of using experimentally justified a priori assumptions on the
signal statistics and using it to derive a general likelihood
detector. The adaptive thresholding approach is attractive in
that it can be executed given a single power-range spectrum.
The classification probabilities were then integrated into an
evidential framework for data fusion. It is argued that evidence
theory is best suited for the fusion of such ambiguous
data, especially with the fallacy of the cell-averaging
maximum likelihood estimates in cluttered environments. This
approach has attractive properties such as rigorous probabilistic
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Fig. 19. Occupied plot from 10 successive scan fusions from the carpark. The estimated vehicle pose is shown by black dots along a 30 m trajectory. Dotted ellipses
show regions of suppressed false detections behind the wall. Missed detection hypotheses around the vehicle location (seen in Fig. 16) have also been confirmed
empty.
formulation and quantification of false alarms and missed
detections. Both algorithms were tested on real MMWR data
from indoor and outdoor datasets. Results were presented for
the successive fusion of scans showing the merits of the second
algorithm. Targets were consistently detected and their presence
probability increased accordingly. Even with fluctuating RCS,
the accommodation for missed detections in the model allowed
for the occupancy to be maintained. False alarms were quickly
eliminated as the missed detection probability for a false alarm
remained low.

Occlusions and sensor model variances need to be derived
and integrated into the update equations for an improved map
building process. Interesting work also remains in formulating
these mapping techniques into a navigation framework suitable
to field robotic applications.
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