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Adaptive Motor Control to Aid Mobile
Robot Trajectory Execution in the

Presence of Changing System Parameters
Martin D. Adams,Associate Member, IEEE

Abstract—Most of the mobile robot path planning algorithms
presented to date, generate intermediate goal coordinates for
a mobile robot to pursue, based upon the local environment
and the position of the global target. In response to this, we
present a general controller for any vehicle which is driven by
changing target vectors and show that the restricted speed (or
torque) capabilities of the vehicle can be modeled with a nonlinear
saturation element.

Although the goal attraction path parameters can be optimized
so that a vehicle tracks its target in a near time optimal sense,
the effect of motor parameter changes or disturbances to the
controlled system upon the path of the robot is noted. When the
process gain of the robot’s motors change, due to temperature
changes, run-in time etc., we will show that the trajectory of
the mobile robot is momentarily affected, before the closed loop
control system again places the robot back on to its correct course.

In this article, a novel method is presented, which manipulates
the effective nonlinear speed saturation element, which models
the actual speed or torque limitations of any vehicle, in order
to remove this problem. Simple modifications can be applied to
the derived control system, so that mobile robot adaptive target
tracking can take place. The conditions necessary, which can be
exploited to allow the response of a mobile robot to be insensitive
to changes in motoring parameters will be presented, and the
method will be demonstrated by purposely inducing process gain
changes on a real mobile robot.

Index Terms—Adaptive control, dual input describing function,
limit cycle, mobile robot, parameter estimation, potential field,
self-oscillating adaptive system, time optimal trajectory.

I. INTRODUCTION

M ANY of the mobile robot path planning algorithms pre-
sented in the literature, produce changing intermediate

target coordinates for a mobile robot to pursue, based upon
local sensor information and the position of the global target
[1]–[4].

The control aspects of forcing a mobile robot to track chang-
ing target coordinates is therefore considered. In particular, the
problem of changing motor parameters and their effect upon
the trajectory of a mobile robot is addressed. A novel control
adaptation technique is presented which is capable of removing
unwanted path changes caused by motor process gain changes.
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It was shown in [5] that any real vehicle under the influence
of a simple goal seeking algorithm will inherit a nonlinear
control system. The general form of this control system is
addressed in Section II.

In order to apply the general control algorithm to par-
ticular vehicles, an estimate of the system parameters or
motor process gains is necessary. Section III shows that these
parameters can vary with running time and temperature and
can also be considered to vary due to system disturbances
(changes in friction, system’s mass etc.) and can ultimately
cause a noticeable disturbance on the path of the mobile robot.

It appears that trajectory tracking errors which result from
system parameter changes, have been noted in the literature
regarding manipulator control, but seldom in any literature
on mobile vehicle control. Adaptive robot trajectory control,
using adaptive, robust controllers to compensate for the fact
that a system’s mass properties are, in general, not knowna-
priori , is a major current research issue [6]–[9]. In the work by
Erlic and Lu [10] for example, an adaptive velocity observer
was proposed for reducing the positional and velocity tracking
errors of a Puma-560 robot manipulator. Tracking errors in the
joint angles and speeds were recorded. An adaptive velocity
observer was successfully implemented which was capable of
reducing these errors, after a certain adaptation time.

In the mobile robot literature, errors in the path of an
autonomous vehicle platform have been analyzed by Nelson
and Cox [11], where the driven and steering angles of a
three-dimensional (3-D) wheeled vehicle are controlled. It was
noted that the errors in the steering angle of the mobile robot
used, were more difficult to compensate than the errors in the
distance driven. Achieving high gain error control, without
causing an undesirable or even unstable response, required
specialized pole-zero compensating filters, after which small
errors in the robot’s trajectory were still observed.

By analyzing a general, nonlinear, goal seeking controller
using describing functions, Section IV demonstrates that the
nonlinearity can cause limit cycle oscillations in the path of
the mobile robot. The conditions to prevent such oscillations
were examined in [5], [4] where it was further shown that
targets could be reached time optimally by adjusting the gain
of the nonlinearity.

The work is extended, by analyzing the undesirable tra-
jectory changes caused by changing motoring parameters and
by analyzing the possibility of using to advantage a small
propagating limit cycle oscillation. It will be shown in Section
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V that it is trivial to adjust the controller derived in [4] and
shown in Section II, to produce a self-oscillating adaptive
system (S.O.A.S.) [12] which automatically adapts to these
undesirable parameter changes. It is capable of automatically
changing the effective gain of the nonlinearity to input target
signals in order to maintain a constant loop gain in the event
of the process gain changing. The price paid for this form of
adaptation is the presence of an oscillation, the amplitude, and
frequency of which can change when the process gain changes.
By ensuring that the amplitude of the allowed oscillation
is small enough, the gear boxes on a mobile robot will be
unable to respond to it, implying the possibility of anadaptive
asymptotically stable system.

II. NON-LINEAR MOBILE ROBOT POTENTIAL ATTRACTION

In [4] and [5], it was shown that any real mobile robot
which is controlled to track a target coordinatebased upon
a desired coordinate , will automatically inherit a nonlinear
control system, since the speeds (or torques) provided by its
motors will, in reality, be restricted.

Koditschek [13] and Adams [4] considered the kinetic en-
ergy and an imaginary potential energyof a mobile robot,
when operating under an artificial potential field algorithm,
in order to derive a control algorithm. The kinetic energy is
given by

(1)

where represents the total mass of the mobile robot and
its velocity vector within the plane. To arrive at a linear

control law, a quadratic Hooke’s law function can be used for
as suggested by Volpe and Khosla [14]

(2)

where can be referred to as an attractive force constant.
All nonconservative (dissipative) forces which act on

the mobile robot are given by the Lagrange equation [15], [16]

(3)

which results in

(4)

In (3), is by definition dissipative [16]. This can be
implemented with a Rayleigh damping term

(5)

the negative sign indicatingdissipation, the velocity vector
of the mobile robot and a positive dissipative force
constant. By equating (5) with (4), applying the operator

and rearranging, the velocity of the robot can be
determined as

(6)

Hence by considering the total energy of a mobile robot,
when under the influence of an artificial potential field, it is

Fig. 1. A realistic control system for any vehicle with its own speed
controller, under the influence of an artificial potential field.

possible to arrive at a control law, namely that the desired
velocity signal to the motors should be dependent upon
both position andacceleration feedback of the robot. This
control law, along with the speed restriction of any real robot
mentioned above, is implemented by the block diagram in
Fig. 1.1

In Fig. 1, the desired speed signal for the vehicle’s closed
loop controller is derived from the error signal between the
actual and desired positions generated from the mobile robot’s
path planner. Note that the derived, desired speed signal
is restricted to m/s to take into account the finite speed
capabilities of the motors. is the mobile robot’s on
board speed controller and represents the vehicle’s motor
dynamics.

To ease the algebra, the vehicle’s closed loop controller
block in Fig. 1 can be represented as a single transfer function

where

(7)

will be referred to as the process gain, since this contains
the vehicle’s controller and motoring parameters.

Before considering adaptive target tracking, two mobile
robots which differ from each other greatly in their size and
weight are introduced, along with an estimate of their motoring
parameters.

III. PARAMETER ESTIMATION

In the experimental analyses, the smaller of the two mobile
robots was used. This robot (named Eric) weighs only 4.8
kg and was built using two permanent magnet d.c. motors
[17], and is controlled by anintegral speed controller (i.e.

). Each motor takes a voltage signal which directly
drives each wheel, hence translation of the mobile robot is
related to the sum of the two signals and rotation is provided by
the difference of the voltage levels applied to each motor. The
second vehicle is tracked and was initially built for military
purposes and weighs 62 kg. Again, it is driven by d.c. motors,
but its speed controller is aproportionalone (i.e., ).
Results of experiments using the first vehicle under the overall
position control system in Fig. 1 will be demonstrated.

In order to analyze the response of each vehicle, a complete
estimate of the robots’ motoring parameters is necessary. A full

1For a mobile robot which controls thetorque of its motors, the block
diagram is similar and is explained in [4].
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TABLE I
MOTORING PARAMETERS MEASURED AT VARIOUS TIMES AFTER THE MOTORS

WERE FIRST SWITCHED ON. A SINGLE VALUE FOR EACH PARAMETER INDICATES

THAT THE MEASURED PARAMETER WAS TIME INVARIANT . THE POSSIBLE

OSCILLATION FREQUENCIES ANDPROCESS(MOTOR) GAINS H(j!0) ARE

ALSO SHOWN AT EACH TIME. KT IS THE MOTOR TORQUE CONSTANT,
M IS THE SYSTEM MASS, L THE ARMATURE INDUCTANCE, Ra THE

ARMATURE RESISTANCE, CF THE (ASSUMED LINEAR) RELATIONSHIP

BETWEEN SPEED AND FRICTIONAL TORQUE, KV IS THE MOTOR’S SPEED

CONSTANT, AND P IS THE VELOCITY FEEDBACK GAIN (SEE FIG. 1)

discussion on how this can be carried out is given in [4] and
here, for brevity, the estimated parameters for each vehicle
are given in Table I, where the parameters are explained in
the caption.

The estimation of the motoring parameters for each of the
vehicles tested have shown that changes in temperature (as
a consequence of the running time for each vehicle) can
slightly influence the process gain , as indeed can a
disturbance, such as a change in the robot’s mass or the friction
between its wheels and the surface upon which it maneuverers.
A high gain in the speed controller accompanied by feedback
should reduce the effects of changing parameters further.
However a change in for one or both of the motors
causes a sudden undesirable change in the output angular and
Cartesian position of the robot as will be demonstrated in
Section V. The closed loop system eventually removes the
effect so that the mobile robot again positions itself on target,
but an undesirable instantaneous response to any changes is
still observable.

In control systems where parameter adaptation is crucial (for
example in the pitch control of high speed aircraft), S.O.A.S.
have been documented. [18], [19] explain two S.O.A.S.
implementations for the pitch control of the X-15 aircraft,
where large parametric changes occurred within the controlled
process gain. This work demonstrates the effect of controlling

Fig. 2. Output waveform produced by the nonlinear saturation in response to
the signalw(t) = a sin!t+q for a > UK

K
+q. In the figureK = K1=K2.

either the amplitude or frequency of a propagating oscillation
in order to allow parametric adaptation. The philosophy behind
this technique is that provided the frequency is high enough,
or the amplitude small enough, the pilot should be unable to
detect the presence of the oscillation in the aircraft’s pitch
angle.

In [5], the aim was to analyze the derived control system of
Fig. 1 to avoid any limit cycle in the mobile robot’s motion. In
this article, the backlash which is inherent in most gear boxes
is used to advantage. It is possible to exploit an oscillation
with an amplitude small enough to be unable to propagate
through such a gear box so that the wheels of the mobile
robot do not respond to it. It can also be arranged however,
that the oscillation is able to propagate around the control loop
to allow adaptation to take place.

IV. DESCRIBING FUNCTION ANALYSIS

It was noted in [5], that before any particular vehicle’s
controller or dynamics is considered, the nonlinear element
in Fig. 1 can cause a limit cycle oscillation to propagate
around the derived block diagram. This is demonstrated in
Fig. 2, where the output waveform of the nonlinear element in
response to an oscillatory input and a slowly moving
or “dc” input caused by the error signal is considered.
The complete input signal at the nonlinearity is defined as

.
To obtain an approximate transfer function for the nonlinear

element, thedescribing functionmethod can be applied to the
system [20].

The output waveform can be represented as a Fourier Series

(8)

The signal at the output of the linear motor dynamics will be
the sum of these components, after each has been multiplied
by (the transfer function of the vehicle’s closed loop
speed controller) in Fig. 1. In most real motor control systems,
the harmonics of the signal will be greatly attenuated
by . is therefore approximated by its fundamental
component only.

In Fig. 2(b), the values of and at the discontinuities
in the output oscillation are given by

(9)
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(10)

where and and a new
variable has been introduced to simplify
the equations.

A. Self-Oscillating Adaptive Target Tracking

The principle behind a S.O.A.S. can be explained by con-
sidering the d.c. value in (8) of the output waveform in
Fig. 2. This is given by

(11)

where is the d.c. offset in the signal produced by the
nonlinearity and is the oscillation amplitude at entry to the
nonlinearity. For large gradients , the nonlinearity
tends toward a perfect relay, so that

(12)

The dual input describing function represents the gain
of the nonlinear element to “dc” or slowly changing signals
and is defined as

Amplitude of dc component of
Amplitude of dc component of input

(13)

For small values of it can be seen from (12) that

(14)

It can therefore be seen that the gain presented by the non-
linearity to slowly varying signals is dependent upon the
amplitude of the sinusoidal oscillation. Similarly, the de-
scribing function representing the transmission of the oscilla-
tion through the nonlinearity is defined as [20]

(15)

where

Amplitude of fundamental component of
Amplitude of fundamental component of

(16)

and

Phase angle by which fundamental of

leads fundamental of (17)

For large is given by [4]

(18)

so that the gain presented to the oscillation is approximately
inversely proportional to the oscillation amplitude. If
is defined as

(19)

then since represents the transfer function of the non-
linearity to oscillations, it can be seen from Fig. 1, that when
an oscillation occurs

(20)

meaning that the amplitude of the oscillationautomatically
adjustsso that the loop gain is unity at the frequency. Thus
if the process gain and hence change with time,
the oscillation amplitude will be forced to change such that
(20) is still true. For the slowly varying signal (14) and (18)
show that

(21)

This yields the possibility of turning the control system into a
S.O.A.S. [21], the result of which can be described as follows.
The nonlinearity acts as a variable gain to slow signals.
The magnitude of this gain depends on the amplitude of the
sinusoidal signal at the input to the nonlinearity. This gain
is therefore automatically set by the limit cycle oscillation to
such a value that the loop gain presented to reference signals,
from (21), is 0.5 at the limit cycle frequency .

A problem now results. It has just been shown that provided
a limit cycle oscillation is maintained within the control loop,
the problem of a varying process gain to the desired input
vectors can be overcome. In [5] however, it was shown
that in order for asymptotic stability, limit cycles at the output
of the system must be avoided. Mathematically this meant that
values for and had to be used to ensure that

(22)

where is the frequency at which 180 .
In the following section, a new method is proposed for com-

bining the better qualities of both techniques in maintaining
a stable limit cycle oscillation within the feedback cycle,and
asymptotic stability at the output.

B. Artificial Production of the Feedback Signal

The method relies on the backlash which is inherent in most
gear boxes and requires an oscillation small enough not to
affect the wheel position (due to the backlash) but large enough
to be measurable elsewhere within the system.

The direct source of the position estimate on board a
mobile vehicle can take several forms (without the use of
more elaborate localization algorithms [22], [23]) including
the following.



898 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 14, NO. 6, DECEMBER 1998

1) For d.c. motors, as used on Eric and the tracked vehicle,
it is possible to integrate an estimate of the back e.m.f.
of each motor to provide the position vectorof the
vehicle. If the back e.m.f. is electronically integrated
with respect to time to yield a position estimate, drift
inevitably occurs as the integrators will integrate the
slightest voltage offsets between their amplifier inputs.
Hence accurate position feedback for a mobile vehicle
will, in practice, not be feasible using back e.m.f.
estimates.

2) The motors themselves can have an encoder attached to
their rotors so that any motion of each rotor is recorded,
before backlash is encountered within the gear boxes.

3) An encoder measures the rotation of each wheel directly
at the wheel, as is the case with Eric and the tracked
vehicle.

Clearly of these methods, the most reliable position estimate
results from the third technique, since only the motion of the
vehicle is recorded rather than that of the motor shaft.

In inequality (22) there is a whole range of values for
and capable of producing a large gradient and an
oscillation at the input to the motors which has an amplitude
small enough to be undetectable at the gear box output. It
is an oscillation of this nature that needs to be exploited to
produce an adaptive system. For undistorted propagation of
this oscillation around the control loop in Fig. 1, a method
for feeding back the actual position of the vehicle, with the
signal superimposed upon it is needed. Initially this
appears to be a disadvantage, since the third technique above,
which provides by far the most accurate update of the vehicle’s
location, cannot be used in the feedback loop as the oscillation
is not to be observable at the wheels. Instead of trading off
accuracy in position for the sake of a propagating oscillation
and hence an adaptive controller, a method which combines
the advantages of both techniques now follows.

1) The back e.m.f. from each motor is integrated with
respect to time to produce an estimate of the vehicle’s
position. This signal will reproduce most small stable
oscillations superimposed upon a “crude d.c. estimate”
of position.

2) Encoder measurements are taken directly from the
wheels. These signals will vary relatively slowly,
showing no oscillations if is small enough.

3) The “d.c. signal” in 1 is removed from the integrated
back e.m.f. signal and replaced with the better “d.c.
estimate” produced in 2.

4) The new artificially produced signal is injected into
the feedback element, ready for propagation around the
system.

Fig. 3 shows the above scheme. The above method theoreti-
cally satisfies the requirements for no observable oscillations
at the motor output, and allows the propagation of a stable
oscillation around the control system.

It should be noted, that this method is applicable to any
control system having the form of Fig. 1, provided at least
two motoring outputs are available. It is then necessary that
a certain range of oscillatory amplitudes exist which will be

Fig. 3. Artificial production of the feedback signal allows the oscillation
along with a reliable position estimate to propagate within the system.

small enough for the actual outputnot to reproduce it, but
large enough to be recorded faithfully at another output within
the system.

V. ADAPTIVE TARGET TRACKING: RESULTS

Before describing the experiments, it should be noted that
if a high gradient is used in the nonlinearity, and
if the individual values of and violate inequality (22)
then at oscillation, from (18), (20) in Section IV-A and the
model of the motoring dynamics given in [4]

(23)

This equation relates the oscillatory amplitudeto Eric’s mo-
toring parameters. [4] also shows that the oscillatory frequency

when

(24)

is given by

(25)

Using the parametric values from Table I the result obtained
from (23) is

(26)

provided .
A simple experiment was carried out in which new targets

were injected into Eric’s control system at times 0, 3
and 8 s in order to examine the response of the vehicle.
At time 4.5 s, the process gain of one of the motors
was purposely reduced by almost a factor of two in order to
exaggerate the effect of changes in the motor gains. At time

6.5 s the gain of the other motor was also decreased by a
factor of two. This change was brought about by increasing the
time constants, , of the integral controllers by almost a
factor of two, thus changing the process gains . Note
that if is reduced from its initial value of 67 s to

35 s , (23) then gives the oscillation amplitude as

(27)
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(a) (b)

Fig. 4. Input speed curves and angular output curves for Eric. The left hand
curves show a theoretically perfect bang bang control system response. The
right hand graphs show the actual response with constants set toK1 = 20
and K2 = 0.01 in order to obtain no oscillations. At timest = 4.5 and
t = 6.5 s the process gain of each motor was halved. Notice that the vehicle
momentarily responds to the changes and in each case moves off course.

The left hand graphs in Fig. 4 show the variation of the
differential input voltage supplied to the motors and the output
angle with time that would be expected with a perfect system,
unaffected by process gain changes. When the difference in
the voltages applied to each motor reaches zero in the top
left hand graph, the mobile robot is facing its target and then
proceeds in a straight line to it.

The right hand graphs show the actual response when
20.0 and 0.01 obeying inequality (22) for no oscillations
(Note: the fully derived form of inequality (22) in terms of
and is given in [4]). The graphs show that the mobile robot
is forced off target by each change. The overall closed loop
system is able to adjust to the angular position of the vehicle
such that it is once again on target. The path of the vehicle is
affected for about 0.5 s in each case, as it recovers from an
unwanted 3 rotation from its course.

The graphs shown in Fig. 5 show the results of the same
experiment as above but this time values of and were
chosen in order to produce a stable oscillation. The gains were
once again reduced at times 4.5 s and 6.5 s. Note
the rapid adaptation as the oscillation amplitude is reduced
at 6.5 s, as predicted by (26) and (27). It can be seen
from the graphs that at both times, when each process gain
is changed, the mean value of the oscillatory signal does not
appear to deviate at all from the required pursuit angle, as the
nonlinearity is forced to automatically change its gain to the
slowly varying signals by the change in oscillation amplitude
[see (14)]. This result is requiredwithout the oscillation at the
wheels.

It is during a mobile robot’s straight line motion only that
an oscillation in its angular position can propagate, and hence
parameter adaptation can take place. This is because of the
earlier assumption leading to (14), that . It can be seen
in the graphs (Figs. 4–8), that adaptation can only occur when
very small or no changes in the desired steering angleare
input to the steering controller.

The graphs in Figs. 4 and 5 show the typical response of

Fig. 5. Input angular speed signal and output angle whenK1 = 6600 and
K2 = 0.5 chosen in order to observe oscillations. At timest = 4.5 andt =
6.5 s the process gains were again halved. Note the rapid adaptation.

Fig. 6. Output angle versus time as estimated by integrating the difference in
the motor back e.m.f.s (top graph) and estimated by the wheel shaft encoders
when forced to oscillate. (This lower graph is repeated from the lower graph
in Fig. 5 for comparison with the back e.m.f. estimate).

the mobile robot to the step change inputs (injection of new
target vectors ) shown in the top left hand graph of Fig. 4. It
can be seen that under this simple form of control, the mobile
robot spends only a small fraction of its time rotating and most
of its time moving in a straight line toward its target.

The top graph in Fig. 6 shows the output angle of the mobile
robot as estimated by electronically integrating the difference
in the back e.m.f.s from each motor. The lower graph shows
the actual output angle as measured by the odometers versus
time. Note that the oscillation is much more sinusoidal in its
appearance since sampling from the odometers is no longer
relied upon to reconstruct it. It must also be noted however,
that the d.c. level of the signal (or output angular estimate)
can slowly drift with time, due to small unavoidable voltage
offsets within the operational amplifier integrator.2

Experiments were conducted to determine the maximum
amplitude of an oscillation which could be seen from the
integrated difference in the back e.m.f.s of each motor, but

2An automatic gain control system was therefore used to reduce this effect
in the experiments.
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Fig. 7. The back e.m.f. angular estimate under the artificially created adap-
tive controller. The bottom graph shows the oscillatory component only. The
values ofK1 andK2 used to obtain these results wereK1 = 3000.0 and
K2 = 0.5 as explained in the text.

could not be observed at the output (the robot’s wheels). The
maximum permissible amplitude for Eric’s crude odometric
system was found to be 0.72of rotation, which would
correspond to a wheel displacement of almost 0.003 meters
at the point of contact between the wheel and the floor.

In Fig. 7, the integrated back e.m.f. difference is shown
along with just the oscillation (all slowly varying signals
removed) versus time, as the mobile robot pursues different
targets at times 0, 3 and 8 s, as before. In this
experiment the gains of both motor controllers were doubled
from 35 s to 70 s at 5.2 s simultaneously.
A value for was chosen in order to produce an oscillation
with an amplitude of approximately 0.001 meters when
35 s at 0, using (26). To produce an amplitude
0.001 m, the attractive force constant necessary is 3000.
To implement the control strategy of Fig. 3, any signals with
frequency lower than must be removed. The remaining
oscillation frequencies, from the integrated difference in the
back e.m.f.s, are then added onto the odometric output. This
new signal is then ready for propagation around the system.
Note the increase in amplitude by approximately a factor of
two at time 5.2 s and the corresponding increase in
frequency by approximately a factor of in the bottom
graph of Fig. 7 [see (25)]. The top graph in Fig. 8 shows
the angular estimate produced from the odometers and the
oscillation added together. Note that the oscillation cannot be
observed at the wheels since the sawtooth waveform caused
by the odometers in the top graph is larger than the amplitude
of the small oscillation present. This signal is fed to the
feedback element. Finally the bottom graph in Fig. 8 shows
the output angle measured from the wheel encoders. Note
that the sawtooth waveform with amplitude approx 0.5in
the output angle curves is not an oscillation but results from
the discretized angular space caused by the odometry. After
angular convergence, the wheels rotate at the same speed thus
causing no overall further change in the angle of the vehicle.
The linear position of the vehicle is however still changing,
and if the odometers on each wheel detect motion out of phase
with each other, the sawtooth waveform results. The desired
result has been achieved as no oscillations and no change in

Fig. 8. The fabricated signal ready for input into the feedback element (top
graph) and the resulting output angle of the vehicle assensed by the odometers
(bottom graph). Note that no deviation in angle when the process gains change
can be observed.

the angle, the angle can be observed, when the process gains
are changed.

Erlic and Lu reported in their work, manipulator joint
angle tracking errors, noted as a result of system parameter
disturbances, of 1 in joint angle position and 4/s in joint
velocity. An adaptive velocity observer was able to reduce
these errors to less than 0.3and 0.3/s, respectively, after an
adaptation time of approximately 5 s [10].

One advantage that can be noted in this work, is that
although adaptation is paid for in the form of a change in
amplitude and frequency of a propagating oscillation, the
adaptation itself is immediate, as the system requires no time
for parameter estimation as in other adaptive systems [7], [9].

VI. OVERSHOOT IN THE NONLINEAR SYSTEM

Careful inspection of the previous output angle curves will
reveal that small overshoots occur as the new angles are
reached. This is particularly noticeable at points A and B in
the graphs of Figs. 7 and 8. In a nonlinear system there is no
general method for analyzing overshoot, and the describing
function method used offers an oscillatory analysis only.

Past simulation studies of S.O.A.S. systems by Horowitz
[24] and Gelb [25], [19] have shown that system response to
signals not satisfying the initial assumptions (that is small
and that varies more slowly than ) is very sensitive
to the limit cycle phase at the instant of application of the
signal . The response can vary between extreme overshoot
and undershoot [24].

In the system described here, the application of the new step
target vector forces the system to respond to an oscillation

and a transient signal which, for an instant in time
(when the overshoot is observed), doesnot vary more slowly
than .

The describing function analysis in Section IV-A becomes
a more accurate representation of the nonlinearity, when the
desired signal suddenly changes, if is increased. This
can be seen in the graphs in Figs. 6 and 7. When the oscillation
has a higher frequency, the overshoot is reduced.
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By changing , the integral speed controller’s time constant
(Note that for Eric), it was possible to change

[see (25)] and it was possible to change the amount of
overshoot observed, as shown in Figs. 6 and 7. Unfortunately,
changing the parameters in (25) so thatis increased can also
increase the oscillation amplitude, making it large enough
to be observable at the wheels. Keepingsmall enough and

as large as possible reduced the observed overshoots when
new angular targets were reached, but it was not possible in
practice to remove overshoot altogether.

VII. CONCLUSION

It has been shown that adjusting a goal seeking control
algorithm so that it automatically adapts to motor parameter
changes can be a simple task.

Motoring parameters are difficult to estimate as it was
shown that they can change as the motors run. Modifying
the control system derived in [5] and shown in Section II so
that it can adapt to changes of motor gains is trivial. A novel
approach has been demonstrated which is very effective at
removing the problems caused by process gain changes, with
the minimum of change to the control system. The overall gain
of the system to the input target vectors is held constant,
even if the process gain changes, without any noticeable
loss in positional accuracy and without any adaptation time
requirements.

A fair criticism is that, the poorer qualities of a nonideal gear
box, in the form of backlash, is used to advantage. Most real
vehicles however rely on reduction gear boxes, which means
that any small oscillation at the motor shaft would often not
be observable at the wheels.

To carry out the experimental analysis in this section,
changes in the process gain were purposely induced on a real
mobile robot. This was done to exaggerate the effect of motor
parameter changes. It would be interesting to apply the method
to larger vehicles, where the effect of parameter variations may
be much more noticeable.
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