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Abstract

Smultaneous Localization and Map Building (SLAM) and Map
Aided Localization (MAL) are very effective techniques employed
extensively in robot navigation tasks. However, biases and driftsin
both exteroceptive and proprioceptive sensors adversely impair cor-
rect localization (in MAL) and also impair map building (in SLAM).
More specifically, accumulated errors as a result of biases in the
sensors cause the algorithms to diverge and produce inconsistent
and inaccurate results. Although offline calibration of these sensors
can reduce the effects to some extent, the process results in longer
setup and processing times. Moreover, during operation, the sen-
sors calibration may often be subject to changes or drifts requiring
regular resetting and initialization. A convenient, appropriate and
effective approach to overcome problems associated with biasesin
sensors has been to explicitly model and estimate the bias parame-
ters concurrently with the vehicle state online using an augmented
state space approach. This paper investigates the properties of the
concurrent bias estimation in MAL using an augmented, estimation
theoretic state space approach for the localization of a large class
of mobile robots, consisting of autonomous ground vehicles. This
involves a rigorous theoretical study of the issues of observability
and convergence, their interrelations and effects on the algorithm's
performance. This paper shows analytically that if sensor biasesare
estimated jointly with the vehicle pose in a MAL framework: 1) The
uncertainties of the estimated errorsin the bias parameters of both
proprioceptive and exteroceptive sensorsdiminish in each update. 2)
A derived lower bound is reached in each of these estimates. 3) The
rate of convergence to this lower bound is also derived. 4) Although
often neglected in the literature, observability isa major issue. From
the analysisit is derived that in order to guarantee observability in
MAL with bias estimation, it is necessary to observe simultaneously
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at least two distinct landmarks, which are not on a straight line with
the vehicle position. Extensive simulations are provided toillustrate
the theoretical results established for the general case of nonlinear
dynamics and slowly varying sensor biases. The results are further
exemplified and verified experimentally using a sophisticated MAL
algorithm, utilizing a low cost inertial navigation sensor suite.
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1. Introduction

The problem of positioning or localization is still consid-
ered to be one of the key challenges in achieving a truly
autonomous navigation capability for mobile robots. Local-
ization information is of paramount importance for any au-
tonomous agent to plan missions, tasks or paths and execute
any form of vehicle control (Durrant-Whyte 2001). In map
aided localization (MAL), an a priori stored terrain map of
some form is utilized in the localization algorithm. The plat-
form with its onboard sensors, senses its surroundings, ex-
tracts salient features and compares them with the features in
the stored map to find its current position. Application areas of
MAL include reconnaissance and surveillance missions, guid-
ance of weapons, mining, and cargo handling among many
others. TERCOM (Hicks 1993), used in Cruise missile navi-
gation, and TERPROM (Hosteler and Andreas 1983), used in
low altitude aircraft navigation and collision avoidance, are
two of the fully operational MAL systems currently available.
These systems use an a priori digital terrain elevation map and
data sensed by radar altimeters to provide corrections to an
inertial navigation system (Hosteler and Andreas 1983). Al-
though GPS-based location systems are very effective in open
space, sea and air, they are affected by radio signal blockages
and multi-path reflections off the ground and/or surrounding
structures (buildings, canyon walls, etc.), partial satellite oc-
clusion and active RF jamming. In such situations MAL can
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complement or substitute GPS-based location systems. Té¢tance be conditionally independent, which is not strictly true
rich corpus of MAL literature contains several estimation alin MAL. Furthermore, it is not straightforward to evaluate the
gorithms including extended Kalman filters (EKF; Leonarabservability, convergence and other algorithmic properties
and Durrant-Whyte 1991), particle filters (Fox et al. 1999)of probabilistic occupancy grid based estimators. For mobile
and transformation based filtering methods, which use onigbots, Stroinger and Stone (2005) described a method to si-
bearing information (Betke and Gurvits 1997; Briechle anchultaneously learn the action and sensor models including
Hanebeck 2004). their biases using linear regression techniques. However, the
In this paper a rigorous theoretical investigation is carriedpplication of learning sensor and action models in MAL is
outto understand the effects and implications of exteroceptivet detailed.
and proprioceptive sensor biases on map aided mobile robotThe indirect approach to state estimation (Roumeliotis,
localization in an estimation theoretic localization frameworkSukhatme, and Bekey 1999; Kim and Sukkarieh, 2004) is
In MAL, the propagation of sensor uncertainties due to sysiso a popular way of dealing with inertial navigation biases
tematic and nonsystematic errors may result in inconsistesutd drifts. The main advantage of the indirect formulation
and inaccurate localization results. Persistent and slowly varig-that it gives a lesser number of predictions and linearized
ing biases due to modeling errors, sensor biases and imperfexidels. However, due to the inherent low dimensionality of
calibrations may compromise performance. Use of linearizetle MAL problem, there is no definite computational or other
approximations of the nonlinear motion and sensor modedglvantage in the indirect form as compared with the direct
and Gaussian assumptions in the measurement and prodess.
models also impair accurate and robust localization. Thus, In this work an augmented state vector approach is used
biases in the sensors and modeling offsets and their cunfar sensor bias estimation and compensation because of its
lative effects can cause significant localization errors, espgimplicity and low complexity when applied to the low di-
cially over long operating hours and in large-scale outdoanensional MAL problem. The paper is organized as follows.
MAL implementations. In Section 2, MAL and the estimation theoretic bias correction
There are several bias estimation methods proposed in fhr@blem in MAL are presented and discussed. In Section 3,
literature such as those of Krishnan and Grobert (1970), Fatite properties of the concurrent bias estimation and MAL
and Wan (1996), Friedland (1969), and Ignagni (2000). Kristalgorithm are rigorously investigated and analyzed. In Sec-
nan and Grobert (1970) and Fang and Wan (1996) used off-litien 4 extensive simulation results and experimental results
inertial sensor calibration and error modeling approaches &we presented and discussed to validate the theoretical results
offset the bias errors in the sensors. Friedland (1969) aedtablished. Section 5 concludes the paper with a summary of
Igangni (2000) presented effective techniques for separdte theoretical results and its implications on MAL.
bias estimation that are most suitable when the number of
bias terms in the estimation process is high compared wi . . . .
the bias-free state vector. Huster and Rock (2003) describs%ap.r Opl’_l oceptiveand Exteroceptive Sensor Bias
relative position sensing strategy based on the nonlinear stimation
scented Kalman Filter that fuses bearing information fro'%ection 2.1 gives an overview of the now standard EKF for-

monocular vision, with inertial rate-sensor measurements Oulation Lsed to estimate a vehicle’s pose in MAL . For those
estimate relative velocity position and orientation. Althoug - . . . : P -
%mlllar with this analysis, Section 2.1 can be skipped.

they explicitly accounted for the biases and random noises |
the gyro (rate sensor) and accelerometers, a rigorous analysis
of the properties and behavior of the estimator was difficuft-1- The Standard EKF/MAL

due to the nonlinear unscented transform utilized. The basic EKF MAL framework represents the vehicle pose

Martinelli et al. (2003) presented the theory and experije oy in absolute coordinates with reference to a global co-
mental results (using a differential drive robot) of S'mu“ane()rdinate frame. That is, the state vector denoteckby) in
ous estimation of the robot configuration and the odometer 8his case consists only ;)f the vehicle pasgk) at timek.

ror (both systematic and nonsystematic) during mobile robot

navigation. Martinelli et al. (2003) described the notion of X (k) = X, (k). (1)
observability for a specific error model but did not investigate

the algorithm properties rigorously. Roy and Thrun (1999) forf the vehicle is assumed to be constrained to move on atwo di-
mulated the on-line self calibration problem of mobile robotgnensional (2D) plane then the pose vector can be represented
as a maximum likelihood estimation problem and presentesj x, (k) = [ x(k) yk) 0(k) ]T, wherex (k), y(k) and
experimental results in an indoor setting. The sensor and megt) denote the Cartesian coordinates and heading of the ve-
surement updates were calculated based on an occupancy gfifle with respect to the global reference coordinate frame as

based method. However, an occupancy grid based appro&giywn in Figure 1. The mid point of the rear axle of the vehi-
requires that different measurements obtained at the samedfe represents the vehicle position. In general, the kinematic
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and bearing of théth landmark, we obtain the following ob-

T L =[m ] O system (e.g., SICK LMS 290) is used to observe the range
servation model:

.-'Il .-'.r
~F _

= ok
o %;r / Vmy = x,(k)? + (m] — y,(k))?
- o\ S tan (om) — y,(k) /(m? — x,(k))) + 7 /2 — (k)
LT L1 &
L '-._l 2 = _ .
Wl vV AN W) = 060, L) + W) ®)
_3"1_#"{ -*____.---*"' ' __,ff: wherew(k) is the vector of observation noise in range and
P Sl i bearing and is assumed Gaussian with zero mean and co-
ra" T S varianceR (k). (x,(k), y,(k)) is the absolute position of the
Iy : e exteroceptive sensor mounted on the vehicle at position S as
;.«’ i X ~ shown in Figure 1 and is given by:
ik} World Coordinate Frame |: x, (k) } _ [ x(k) 4 a, cog0 (k)) } ©)
Fig. 1. The vehicle modeling and the coordinate frames. ys (k) y(k) + azsin(@(k))

wherea, is the offset of the exteroceptive sensor mounting
from the vehicle reference position as shown in Figure 1. Now
if the state covariance matrix &f(k — 1) isP(k — 1|k — 1) at

motion model of the vehicle shown in Figure 1 is nonlineagime r — 1 then the EKF predictor equations are as follows:
and can be represented in closed form as

x(k — 1) + At u,(k — 1) cog0(k — 1))
X, (k) = y(k — 1) + At u,(k — 1) sin(@ (k — 1))
Ok — 1) + At u,(k — D tan(y, (k — 1)) /a;
+v(k — 1)
=fX,(k =1, u,(k = 1), y.(k — 1) +Vv(k -1,
(2

X(klk — 1) = x,(klk — 1) =f(x,(k — 1), u(k — 1)), (7)
} P(klk — 1) = FP(k — 1}k — DFT + Q(k — 1),  (8)

2(k) = h(x,(k|k — 1), L;). 9)

HereF is the Jacobiamf /dX) of the process model evaluated
u,k—1 =utk —1) 4+u,(k—121), (3) attimek—1and

k) = (0f/o(u. y)) diag(c? . o?) (8t /9. y))" + Q, (k).
D =D D, @ W (8f/3(u, )) diag(c? ., o2) (8f /3 (u. v)) +Q((1g)

Hereu(k — 1) andy (k — 1) denote the speed and the steer-

ing angle inputs at timé — 1 respectively as measured byWhen the true observatiatk) is available at timé and after

the proprioceptive sensors (e.g., odometers, gyroscopes e@(%rect observations to map feature associations are resolved

and the lumped proprioceptive sensor input is expressed gﬂng an appropriate de:_tadassc;cil‘lattion. algorithm, the EKF up-
k=1 = [ utk=1) yk-1 ] . w0 ~NO.0? ate equations are applied as follows:

andy, (k) ~ N(O, oj”), denote the random noises @fand
y which are assumed Gaussian with zero mean. The sub-
script “a” is used to denote the actual proprioceptive sensor
inputs anda, is the vehicle wheel-base ank is the sam- X (k[k) = X (k[k — 1) + K (k)ek), (12)
pling time.v(k) ~ N(0, Q,(k)) is a temporally uncorrelated
noise sequence with covariance ma@ixk) representing the
modeling uncertainties. P(k|k) = P(k|k — 1) — K (k)S(k)K” (k), (13)

For simplicity, the landmarks in the environment are repre-
sented as point features. Thus the stored map is a wveobbr wheree(k), S(k), H andK (k) = P(k|k —1)HTS (k) denote
n landmark pointsl.; = [m;r m;.V]T , i =1...n,where n}, respectivelythe observationinnovation, its covariance matrix,
m}) is the (, y) coordinate pair of théth landmark. Now the Jacobianoh/9X) and the Kalman gain with the usual
if an exteroceptive sensor such as a laser range measurenmeréation.

e(k) = z(k) — 2(k), (11)
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2.2. Concurrent Bias Estimation with MAL steering angle, be, (k) andy, (k). Suppose that the extero-

. — . . . ceptive sensor’s biases in the range and bearing, égand
Although offline calibration and modeling of biases in sen; () respectively. By incorporating all of the biases of both

sors can reduce or mitigate localization errors to some exte fbprioceptive and exteroceptive sensors, we form the vector
these processes result in longer setup and processing ti $iasesc (k) as follows:
b .

Moreover, during operation, the sensors’ calibration may of-

ten pe.s.ul.:)jec.t to changes or drifts requi.ring regular reset_ting X&) =[ u,(k) yk) 1k a,(k) ]T . (16)

and initialization. A convenient, appropriate and an effective

way to overcome problems associated with biases in senséswas illustrated for the 1D case for online concurrent bias

is to explicitly model and estimate the bias parameters onlin@nd vehicle state estimation and filtering in MAL, a new com-

jointly with the vehicle state. Work described here aims tposite state vectoX is formed by concatenating the vehicle

investigate the properties of this augmented estimation thgtate vector and the vector of biases as follows:

oretic state space approach to joint estimation of biases and r

vehicle state in map aided localization for a large class of mo- X(k) = [ X, (k) X (k) ] : (17

.b"e robots, consisting of au.tonomous'ground vghlcles. ThJEne new vehicle model takes the form of (2) with changes to

includes a rigorous theoretical analysis on the issues of o “(k — 1) andy, (k — 1) as follows:

servability and convergence, their interrelations and effectd Va '

on the algorithm’s performance. uk =D =utk —1) +u,(k — D +u,(k —1), (18)
To better appreciate the joint estimation of biases in the

sensors and vehicle state in MAL, consider the problem of

one degree-of-freedom (1D) MAL. Here, a vehicle traversing Yk =1 =y (k =D +y,(k =D +yk -1. (19)

a straight line path (along the x-axis) attempts to localize itse#& . . . -
on astraightline based on the correct association of landma § assume that the biases of the proprioceptive sensors exhibit

observed on the line with those stored in an a priori maf a random walk behavior and that those of the exteroceptive

the vehicle’s proprioceptive and exteroceptive sensors’ biasgg 'S0rs are constant. Thus we have

areu,(k) ands,(k) at timek respectively, then the process wy (k) = uy(k — 1) + 1, (k — 1) (20)
(incorporating the biases) and the measurement models of ' " '
the 1D problem, when observing a single known (or stored)

landmark, are given by Yo (k) = vk — 1) + yp, (k — 1), (21)
1 1 0 utk—1

Xt =| 0 1 0 |Xtk-1+ o @ =nk-1, (22)

0 0 1 0

(k) = a,(k — 1), 23

D o) = oy (k = 1) (23)

+ 0 ; (14) whereu,, ~ N(0,07) andy,, ~ N(0,c?). Now the time

0 evolution of the concatenated bias state vector which is as-

sumed to exhibit a random walk behavior can be expressed as
zk)=[ -1 0 1]X(k)+L+wk). (15) X, (k) =%, (k = 1) + v, (k — 1) (24)

N . 2 2 2 2
Here X(k) = [ x,(k) wu,(k) s,(k) | is the joint or aug- Wherevi(k) ~ N0, diag(o,,, 0;,,,0,0) ando,, ando,,
mented state vector including vehicle state and biases in {iEE @ssumed to be the known variances,pfk) andy;, (k)
sensorsu(k) ~ N(0, ¢?), andw(k) ~ N (0, r2) are the exte- respectively. If the biases are known to behave differently,

roceptive and proprioceptive sensor noises assumed Gaus<ii it is straightforward to incorporate their different time
with zero means and variancgsandr respectivelyZ is the varying characteristics in the formulation through appropriate

coordinates of the observed known or stored landmark. ~ M°deling. _ . _

Now, by extending the derivations given in Section 2.1, we. The observation mod_el when modified to incorporate the
formulate the concurrent bias estimation of exteroceptive amipses of the exteroceptive sensors becomes:
proprioceptive sensors with vehicle state for the morerealistic _, ,\ _ 1 1) x. (k). v (k k 1 + Wik
2D MAL problem. Again for simplicity we consider only a (k) = NG, 2 ), 3 (6)) + [ (k) 2 ()] ®
single exteroceptive sensor for making observations of land- = h(x,(k), x;,(k), yi(k), 1, (k), @y (k) + W(k). (25)
marks, although the derivation that follows can be extended to
any arbitrary number. Let the lumped proprioceptive sensttow the concurrent estimation of the bias parameters with
biases, namely the biases in the input vehicle speed and infhg vehicle state in MAL proceeds according to (7) to (13),
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with the augmented vehicle and bias model (17) to (24) aré8l Analysis of the Bias Estimation Problem

the observation model (25) replacing (2) and (5) respectivelyn M AL

It may be noted that the system of egs (18) to (25) describing

concurrent bias estimation with the vehicle state in MAL i$revious work on MAL (Leonard and Durrant-Whyte 1991;
nonlinear. To develop insight and facilitate theoretical analysisox et al. 1999; Durrant-Whyte 2001) has mostly emphasized
(Section 3) the system of egs (16) to (25) is first linearized ake formulation and application of MAL in mobile robotics.

follows: However, the observability, convergence and bounds of un-
certainty of the estimated bias parameters are major concerns
X (k) = af, /ax, af/axb X, (k —1) of MAL in practice and require greater attention.
B 43 laxa X, (k — 1)
[ 3fu/3u ] Wk - D 3.1. Diminishing Uncertainty of Bias Estimates
O ‘ Whether it be the ideal 1D linear case ((14) and (15)) or the

’ more realistic 2D nonlinear case (linearized models given
+H[Vik-1 vjk=1 ] +d,(k), (26) by (26) to (29)), for the case of constant biases (where
of, = o2, = 0), we can summarize the problem of the joint
estimation of the biases with the vehicle state in MAL in
the following manner. Iu, (k) ands,(k) are used to denote

2(k) = [ dh/ax, ah/ax, |[ X' k) xI (k) ]T the pr'oprioceptive ar!d exteroceptive sensors’ bias vectors re-
spectively then the bias vector of (1§)k) can be concisely
+ w(k) 4+ d, k), (27) expressed as follows:

_ T T r_ N
whereu,(k — 1) = [u,k—1) pk-1 ]". 0, is o) =[ w® S® ] =xk-1.  E0)
the null matrix of dimensiomxm andl,,, is the identity The evolution of the composite state veckk) given by

matrix ofdi'mensiormxn. Heren andm are non—;erointegers. (17), comprising the bias vectos,(k) and the vehicle state
The quantitiesl (k) andd,(k) can be determined from the X, (k) can be expressed as

following equations:
X(k) = FX(k — 1) + B,u(k — 1) + [V" (k) O]” (31)
ds(k) =f(X,(k = 1), dp(k — 1), y(k — 1),
whereB, is the transition matrix of the proprioceptive sensor

uk — 1)) — | /% of/o%, measurements,(k) andu(k) are defined in Section 2.1. The
43 |4><4 matrix F is
)/ZU (k - 1) T r FU Bu Ovs
uck — 1), (28)

where |, and |, are identity matrices with dimensions
dim(s,) xdim(s,) and dimu,) x dim(u,) respectively0,,, 0,,
andQ,, are null matrices having appropriate dimensions. The
observation model corresponding to (15) and (27) can be ex-
pressed as:

dy (k) = h(X,(k), L, 7, (k), &, (k)

—[ ah/ax, oh/ox, ]
’ z(k) = H(k)X (k) + L + w(k) (33)
[ X! (k) % (k) ] ) (29)
where,H(k) = [ —H,(k) 0, I ], with L denoting a
where the quantities, (k — 1), X, (k — 1), 4, (k— 1), 7,(k—1), constantvector corresponding to the observed landmarkinthe
X, (k), X, (k), , (k) anda, (k) denote the estimates of the statestored map anav(k) ~ N (0, R(k)) denotes the observation
Xy, Xp, U, @ndy, attimek — 1 and the predictions of the statesnoise.0,, is a null matrix of dimension dirfu,) x dim(u,).
Xv, Xp, , @Nda, at timekrespectively given the states at timeThen the prediction and update equations take the form of (7)
k—1andf(.) =[(f,()"X] (k —D]". to (13) with the process and observation models (31) and (33)
It may be noted that the linearized eqs (26) to (29) haweplacing those given in the general formulation outlined in
the same general structure as the simple linear bias estimatiba previous section. Now, P(k|k) represents the covariance
algorithm for the linear MAL case. matrix of the composite state vect(k), it can be partitioned
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as follows: However, from (36) and (37R,., (klk—1) = P,,(k—1lk—1)
andP, (k|k — 1) = P,,(k — 1]k — 1). Therefore from (43) and
Po(klk) Py (klk) Py (klk) (44),
Pklk) = | Pl (klk) P, (klk) P, (k|k) (34)

Pl (klk) Py (klk) Py (klk)

det(Puu (k|k)) g det(Puu (k - 1|k - 1))? (45)

where the subscripts «, ands denote the vehicle state, pro-

prioceptive sensor and exteroceptive sensor bias vectors re-

spectively. For examplé,, (k|k) denotes the vehicle state’s det(P,, (k[k)) < det(P,(k — 1k — 1)). (46)
covariance an@,, (k|k) denotes the cross covariance of vehi- ) o ) )

cle state and the exteroceptive sensor bias state. Now from (8)Ce the determinant of a matrix is proportional to its vol-
the prediction of the composite state vector covariance mat/e, the determinants of the covariance matrices indicate the
P(k|k — 1) can be determined. L&(k|k — 1)be partitioned volume or size of their uncertainty ellipses and therefore it

as follows: can be concluded that the errors in the estimates of the bias
parameters involving both proprioceptive and exteroceptive
P, P, Ps sensors diminish in each successive update ((45) and (46) of
Pklk—1) =| P, P, P |. the MAL algorithm). This is an important result and its impli-
P PI Ps cations involving nonlinear models are further investigated in
) Section 4.
Then it follows that
P, =F,P,(k — 1|k — DF! +F,P,, (k — 1]k — 1)B 3.2. Lower Bounds of the Uncertainty

+B,P..(k — 1]k — 1) + B,P,,(k — 1]k — 1)B! In this section we investigate rigorously whether the decrease

in the bias estimation errors over successive observations as
shown in the Section 3.1 will eventually become zero (biases
completely determined with no uncertainty) or approach a
P, =P,k — 1}k — 1), (36) non-zero butfir_1ite Iov_ver Iimi_t. It may be noted thgt the I_owest
covariance estimate is obtained when the proprioceptive sen-
sor noise and the modeling uncertainty (process noise) are at
P, =P, (k — 1|k — 1), (37) theirminima (i.e., wheR is lowest) and the observation noise
is small. Such a scenario occurs when the vehicle is stationary
(Q = 0) whilst observing a landmark in the stored map. How-
P, =F,P,(k — 1k — 1) + B,P.(k — 1k — 1), (38) ever, under these circumstances it is not possible to obtain an
estimate of the proprioceptive sensor bias terms as they are
not observable when the vehicle is not in motion. Hence we
calculate the lower bounds for the covariance of the extero-
ceptive sensor bias vectgrwhen the vehicle is stationary. In
Ps =P, (k — 1|k — 1). (40) this situation, the composite state vector reduces to:

+ vauu (k - 1|k - 1) + Qv(k)7 (35)

PS = FvPv:(k - 1|k - 1) + BUPuS(k - 1|k - 1)1 (39)

As P(0]0), Q(k) andR(k) are positive semi definite (PSD) X(k) = [ XI'(k) sl (k) ]T. 47
matrices, by the properties (Horn and Johnson 1985) of PSD
matrices (see Appendixg(k) andK (k)S(k)KT (k) are also The observation model takes the form of (33) whtlk) =
PSD matrices. Hence from (13), [ —H, k) I ] Since the vehicle is stationary, the pre-
dicted covariance matriR(k|k — 1) for all k is
det(P(k|k)) = det(P(k|k — 1) — K(k)S(k)K" (k)), (41)
P(klk — 1) = P(k — 1k — 1). (48)
det(P(k|k)) < det(P(k|k — 1)). (42) Suppose the initial value of the covariance matriR(8|0) =
Since any principal sub matrix of a PSD matrix is also PSDC,lmg.(P“’ Ps), wherel?v andP, denote the |n|t_|al covanancg
matrices of the vehicle and the exteroceptive sensor biases
det(P,, (k|k)) < det(P,, (k|k — 1)), (43) respectively. Using the inverse covariance form of the Kalman
filter (Brown and Hwang 1992; Bar-Shalom and Li 2001),

det(P,, (klk)) < det(P,,(k|k — 1)). (44) P '(klk) = P '(klk — 1) + H'R'H. (49)
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Hence when making observations, sensor biases id,P,H’. Hence, the lower bound of uncer-
tainty of the exteroceptive sensor’s biases is determined by the
-1 P/t +kH/RTH,  —kHIR™ initial covari f the vehicl in other words the co-
PL(klk) = © T RAH b1 Rt initial covariance of the vehicle pose or in other words the co

- v , T variance of the vehiclé,). On the other hand, if the vehicle’s
A B starting position is initially known with complete certainty
= [ C D } . (50) thenP,(k|k) should reach zero or a value independent of the
initial conditions depending on observability conditions.

Let P(k[k) = A B | Pu Py Case2: Ifthe vehicle’sinitial positionis completely unknown,
| C D T Pa P such as in the Kidnapped Robot Problem, tRen~ oo. i.e.,

covariance matrix of the exteroceptive sensor biases. ThRst = 0. After careful rearrangement of terms and simplifi-

usingP;; = (A — BD"*C)~* and similar identities it can be cation of egs (50) to (56), it can be shown that

shown that:

} whereP,, is the

o= (P-4 KHTR-H, — KRS Po = P,. (57)
Hence,P,(k|k) = P, for all k.This implies that the uncer-
tainty of the exteroceptive sensor biases cannot be reduced
by observing a known landmark from an unknown vehicle
Py, = (P;' + kH'R™H,) " "(—kH'R™M)((kR"'H,) position while the vehicle is stationary.
» o1yt Tt . ey These observations can be reiterated for a situation involv-
(P," 4+ kH,R™H) " (kH,R™) — (P" + kR™) ™, ing a single degree of freedom MAL problem. Consider the
(52) simplified process and observation models derived in (14)
and (15) and the removal of the proprioceptive bias term in
P, = PL, (53) the state vector as follows:

(P;l +kR™HkR™MH,) T, (51)

Xk =[ x,k) sk ], 58
Py = (Ph_1 +kR™ — k*R'H, [ . S ] (58)

(P +AHRZH)THR™D ™ (54) = -1 1][ xn® s® ] +L (59

Since the value oP,, is obtained by assuming zero vehicle . . . . .
and proprioceptive sensor uncertainties, its inverse represeﬁ%’sc?_'mga”ng 1(59% with (33H)' |t_m1abee dedgce?hthat ml this
the maximum information gain conceivable or realizable fo aseH = [ — - ], an v = - NOW, USIng e scalar
the algorithm. In the limit when a large number of successi Qrms ofuncertainties for the initial covariance matrlmfc),_
observations are made using on board sensors while the velen by P(Q|0) =fdlag(f,t}|ll P”li allnd usf_llr:g th_e ste:)nda;rg n-
cle is stationary, the upper limit of this information gain wil| VETSE covariance form of the Raiman hiter given y (49),

be reached (if a limit exists at all). Conversely, if this finite 1

limit exi h i f th i ikk) = ———
imit exists the covariance of the exteroceptive sensor biddk|k) R kP, - kP, [

(R+kP)P, kP, P, ]
termP,, will reach its lower bound. Therefore this limit, if it

kPUPb (R+kPU)Pb

exists, is a lower bouni;, for the covarianc®, (k|k) of the (60)
exteroceptive sensor bias term under the given circumstances,
ie., _ (R+kP)P PP,
P,(00) = lim (R+ kPP, _ ., (61)
P;, = Jim (P2). (55) oo R kP + kP Byt Py

) . where P,(c0) is the steady state error covariance of the ex-
The lower bound of the covariance (given by (55)) of th‘?eroceptive sensor bias term for the single degree of freedom

exteroceptive sensor biases can be obtained in closed foml_ algorithm. The decrease in the bias variad@®(oo) is
for the special cases given below. '

given by:
Case 1: The initial uncertainty of exteroceptive sensor biases ,
is infinite, i.e., the biases are completely unknown. From (51)8P,,(oo) — lim (Pb _ _(R+kP)P, ) _ P; -0
to (55), ko0 R+ kP, + kP, P, + P,

(62)
P,(klk) = lim (P;,) = H,P,H”. (56)
P Equation (62) suggests that, in the limit, the exteroceptive
Therefore, when the bias terms are initially completely ursensor bias variance is strictly monotonically decreasing and
known the lower bound of the uncertainty of the exteroceptivis bounded by (61).
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3.3. Observability Conditions and
It is always important to know how the choice or design of 1 0 Ot nin)
observation model and constraints for a given process model B= 0 1 Ovvnsn)

influences the observability of the estimated states. In the fol-
lowing, we analyze the observability conditions of several
scenarios in MAL to gain insight, assess and improve the per- In this case, the rank db; is two, i.e., rank deficient by
formance of the estimator. First we analyze the observabilihe. However, the rank db¢ in this case is two, which is
of the 1D MAL formulation where: landmarks are observed higher than the rank d&. in the previous case with the con-
with biased proprioceptive and exteroceptive sensors. Upstant bias term. The results also show that the angle between
writing process and observation equations (14) and (15) the controllable and observable subspaces in the previous case
terms of their linearized error states we obtain: is 7'[/2 and in this case i3/4. This implies that corrections
5 S r  to the state estimate driven by exteroceptive sensor measure-
X(ky =FX(k =D +B[vtk =1 One [wiwz...wil] . meninoise could reconstruct the vehicle state more accurately
(63) when the biases are variable as opposed to constant. If the
MAL formulation is partially observable there is a possibility
2(k) = HX (k) + H,, [ vk—1) Ono [wyws..w,] ]T ,  that the uncertainty in an estimation algorithm may increase
(64) inanunobservable direction. However, according to the anal-
ysis on diminishing uncertainties in Section 3.1, the direction
where[ v(k —1) Oune [wiw,..w,] ]istheinputnoise of degeneracy is not possible along the biases as uncertainties
vector written in terms of the concatenated process and Mea+iases decrease in each update. Thus, the degeneracy can
surement noise terms, possibly occur in the direction of the robot position, resulting
H=[=11 051 L], @n inaccurate Iocalizat_i(_)n. Thi_s partial o_bservability situqt_ion
in 1D MAL can be rectified by incorporating absolute position
information of the vehicle in the measurement vector. Thus

0(n+l)><1 O(n+l)><1 O(n+l)><(n+l)

b - [ 0 | ] F_ (l) i 8 the obsgrvatic_)n matrix;1 o.f the fully observaple, ID MAL
v nx3 Tman | 00 1 ’ formulation with sensor biases and observatiom &hown
landmarks is:
_ 1 O1xnt2) — 1
B= |: 0(n+2)xl O(n+2)><(n+2) ] H= |: ]i”l Onox1 HOXl ] (68)
and(1),, ., is @ matrix of sizer; x n, with all elements equal N ) )
to one. In general there are no specific rules governing the observabil-

Now it is possible to compute the observability and conly of nonlinear stochastic systems and therefore, itis difficult
trollability Grammians,G, and G respectively. For linear 0 have prior judgments on the viability of 2D MAL with con-
time invariant systems such as (63) and (&),andG¢ can  current sensor bias estimation, which is inherently nonlinear.

be determined as follows: However, a test similar to the observability analysis of lin-
ear systems may be carried out by linearizing the nonlinear
Go = [(HF)" (HFH)"....... HFY]", (65) process and observation models about a state (Southall, Bux-
ton, and Marchant 1998; Reif et al. 1999). Here the rank test
Gc=[BFBF?B...... FB], (66) is carried out on an observation matrix constructed from the

Jacobians of the process and observation models which are
wherei is the dimension of the state vecté¢k). The system assumed piecewise constant. Although this rank analysis is
is controllable ifG¢ has a column rank afand observable if not always sufficient to ensure observability, it provides the
Go has a row rank of. necessary conditions (Reif et al. 1999).

Hence from (63) and (64) it is clear that the rankGyf is The observability analysis of the planar (2D) nonlinear
two and thus it is rank deficient by one. Therefore, the sensBfAL algorithm is carried out by symbolic manipulation of
bias estimation problem in 1D MAL is partially observablemodels (16) to (25) with a single known landmark observa-
The second case arises when the bias in the vehicle’s speiedi. The analysis shows that the observability matrix is rank
proprioceptive measurement has a random walk behavior deficient by 2 (the dimension of the state vector is 7, and the
modeled by (20). In this cas¥(k), F, H andz(k) take the rank of G, is 5). However, it can be shown that the matrix
same form as in the previous system ((63) and (64)) witG, becomes full rank when observing more than one known
changes in, landmark at the same time. Hence, for observability in 2D
MAL, with bias estimation, it is a pre-requisite that at least

S S T
X (k) = FX(k = 1) + B[v(k) v,(k) Opcinsa | (67)  two landmarks are observed simultaneously.
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It is important to note that there can be certain condall observed landmarks and the vehicle are on a straight line.
tions that can still prevent the system from achieving full his demonstrates that even though more than two landmarks
observability depending on the trajectory of robot and thare simultaneously observed, under the condition of (72), the
relative configuration of observed known landmarks. Thiebservability matrix is still rank deficient. This is an important
can be explained using the following example. Accordingesult, which states that the landmarks need to be observed in
to the usual notation, let the robot pose be denoted lymannerthatdoes notviolate the conditions for observability.
X(k) = [ x(k) yk) 6(k) ]T_ Assume that the extero- Thus it is always desirable to observe as many landmarks as
ceptive sensor on the robot (at locatign= (x, y)) is ob- possible so that at least two landmarks are not on a straight
serving two known landmarks denoted by, = (x;, y;) linewith the vehicle location simultaneously in order to retain
andLM, = (x, y,), wherex,, y; andx,, y, are the coordi- the full observability.
nate pairs of the two known landmarks. Assuming the vehicle
location and the exteroceptive sensor coordinates coincidg4, Rates of Convergence of Uncertainties
the measurement Jacobi&h,when observing both the land-

marks Simu|taneous|y, can be expressed as, From the perspective of praCtical implementa’[ion itis impor-
tant to know the rates of convergence of the estimated bias
H= parameters of the estimation algorithm. The phenomenon of
convergence can be better elucidated by studying the 1D MAL
Axi/Ary Ayy/Ary 0 0010 problem introduced in Section 1.2 using (14) together with
—Ay/(Ar)? —Ax/(Ar)? -1 0 0 0 1 the modified observability matrix of (68) that ensures full
Axz/Ar, Aya/Ar, 0 0010 observability.
—Ay,[(Ar)? —Ax;/(Ar)> =1 0 0 0 1

By employing continuous time equivalents of (14) and (68)
(69) it is possible to obtain a closed form solution for the uncer-
tainty terms of the bias estimates and the vehicle location

Wka; dl')'; ;ﬁ’_ﬁé : :rys (kellé ._.i) _thyé | ;}ré;arkestimate. The factors that affect the rates of convergence of
b(a('nXic))b_s'_e(r éV é) h sl!t canl be%stalgl'srllfgclj t?\at hen the f.thﬁ:se uncertainties are clearly visible from the closed form

N9 rved. 1hus| : w '‘Wiution. The continuous time process model, of the discrete
and the third rows or the second and the fourth rows$i of

. i . time model (14) is:
are equivalent, the observability matrix of the system for th|sI (14)1

particular linearization is rank deficient. The conditions for %, (1) 010 x,(t)
the linearly dependent rows id can thus be derived from i@ |=10 0 0 ()
(69) as $,(1) 0 00 5,(1)
Axl/sz = Ayl/Ayz == Arjl_/A’.Zs (70) 1
+ | 0 [[u@)+v®)] (73)
0
Axl/sz = Ayl/Ayz = (Arl/Ar2)2 . (71)

h herex,(¢) is the position of the roboty,(¢) is the bias of

Th diti tipulated b . (70 71 hen t . . . .
e conditions stipulated by eq. (70) or (71) occur when e proprioceptive sensay, () is the bias of the exterocep-

vehicle position and the landmark locations are on a straigl] . . :
line. Thus, eq. (70) or (71) establishes that when the veH|ve sensoru() is the proprioceptive sensor measurement

cle and the two landmarks being observed are on a straigg‘{ttimet af‘d”(f) dN NéO,I_qz) repre?e_n'? the_fpropri_clfﬁeptivel
line the problem of joint estimation of sensor biases (of bot °NSOr NoISe and modeling uncertainties, 1t any. The analo-

exteroceptive and proprioceptive sensors) and the vehid8ys continuous time state veTctor of the problem Is given by
state in MAL is unobservable. Letx, = x;(k — 1) and X =[ %) u,(t) () ] and the observation model
Ay, = y;i(k — 1) be the x and y coordinates of thé (where incorporating an external sensor measurement when observ-
i is any positive integer) landmark being observed, then frofi9 7 landmarks is given by:

the measurement Jacobiéh(which can be generalized to S

more than two landmarks in the same manner as eq. (69)) we 2(1) = HX(®) + [L7 0] +w(@) (74)

can obtain the expression for linear dependency as: wherew(r) ~ N(Opiue, R) is the measurement noise,

_ _ = R = diag(r®,r? ... ,r% r?) is the covariance matrix of

Axf Ay = Avaf Aye = Axs[ Ays Ax"/Ay&}Z) w(t), 2 is the variance of(r), r? is the variance of the ab-
solute sensor measurement nolsés the vector of: known
As stated, the condition stipulated by (70) and (71) occutkD landmarks stored in the map aHdis given by (68). Let

when the vehicle and all the landmarks being observed aP€0) = diag(0, o/, o2) be the initial error covariance matrix
on a straight line. Similarly, the condition (72) stipulates tha®(z) (model (73)) oX (¢), | be the identity matrix of sizex33
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ando?, ando? denote the initial variances of the propriocep- P(2, 3) = (1/C(t)) 0262q%r*rin(nr? + r*)(1 — e )2,
tive and exteroceptive sensor biases. The initial uncertainty of (83)

the vehicle is assumed to be zero. TH¥n) is governed by
the continuous time Riccati equation:

P(t) = FP(t) + P(1)F" + GQG" — P(t)H"R *HP(r)
(75)

whereG = [1 0 0] andF = [ [010" 05, ] .

P(3,3) = (1/C(1))
(q*(nr? +r*)(L+e7*)(q* + op,1)

- rzrfozabzu(l - e‘z"’))abzs (nrf + 32, (84)

The solution to this Riccati equation (Brown and Hwang 1992)

is of the formP() = M (#)N1(¢), whereM (¢r) andN(¢) are
as follows:

M@) ] F GQGT M (1)
[ N(r) ]—[ HTRH - F H N(r) } (76)

M@©O) | _| PO
[N =[] 7
Then the characteristic equati@tz) of the system, and the

i’ row andj™ column elemenP(, j) of P(¢) for all i andj
can be obtained by solving (76) and (77) as follows:

C@) = (nr? +r?) (ng*r’olol (L— e )1’
+ (02 (nr2 + 1) + ng’ol) L+ e *")g*r?
+nrériolola(l — e *))t)
+q*r?(mr? +r)(L+ e )
2o -
+ r’rla(n®r’q®o},

— 1?62, (nr2 + rA))((L— e™1)), (78)

P(1,1) = (1/C() @n*rlol(1—e)?
+ r?r?a(nr? + r* + nolt)(L— e "))

(q° + o2 )g%r?, (79)

P(L,2) = (1/C(1)) (2n?rio? (1 — e)?

+ r¥r?anr? + r? + nolt)(L— e *))o?

bu

q2r2’
(80)
P1,3) = (1/C(1)) L — e *)r’r’q*(nr? + r?)

(g% + ol t)nol, (81)

P(2,2) = (1/C(t)) (r’q*(nr? + r)(L+ e )

(nr? +r® 4+ nolt) + n’rirfa(l— e *"))q%c},.
(82)

o= (q/(rre)) (nrf + }'2)0'5 . (85)

Here, :I/a is the time constant of the decay of the covariance
terms. All the other terms of the covariance matrix can be
derived from (78) to (85) using the symmetry Bft). The

egs (78) to (85) show that the error covariance termsof
decay exponentially initially at a time constant cyfoZL and

then converge asymptotically to the steady state covariance
according to the expressions (78) to (85). This asymptotic
convergence of the error covariance terms can be a disadvan-
tage in actual practice. It may be interesting to note that this
convergence rate is not affected by the biases or their ini-
tial uncertainties and depends only on the proprioceptive and
exteroceptive sensor noise terms, absolute sensor measure-
ment noise term and the number of known landmarks in the
stored map. When the variance of the absolute sensor noise
r2 is very large compared & (i.e., the landmark based in-
formation dominates the external sensor based information)

the time constant approachgsz/(an). In other words, the
smaller the ratio between exteroceptive sensor noise and the
process noise (proprioceptive sensor noise and the modeling
uncertainty) or the larger the number of landmarks observed
simultaneously, the faster will be the convergence of the state
variances to their steady state values. The steady state co-
variance ofX (), P(c0) can be obtained from (78) to (85) by
taking the limitas — oo. Thusit can be seen that all the state
covariance terms, except that of the vehicle position, approach
zero. The vehicle position variance approaoh@éx.

Thus we can conclude that the rates of convergence of the
state uncertainties do not depend on the bias parameters or
their initial uncertainties. They depend only on proprioceptive
and exteroceptive sensor noise and the modeling uncertainty.
These theoretically established properties provide useful in-
sightinto the problem and are useful in practical applications.

4. Simulations and Experiments

4.1. Simulation of Standard 2D MAL

In this section we consider relevant simulation scenarios to
establish the importance of jointly estimating the biases and
the vehicle state online and also to verify the theoretical find-
ings on the observability, convergence and lower bounds in
the context of MAL.
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The performance of the algorithm for the joint estimation We demonstrate how the theoretical results, discussion and
of the sensor biases and the vehicle state in MAL is inihe principles given in Section 3 can be extended for the case
tially evaluated in a simulated 2D planar environment coref joint online estimation of biases in inertial sensors used
sisting of 25 point landmarks. It is assumed that the vehicle fer MAL. The autonomous vehicle used is shown in Figure 4.
equipped with wheel encoders (proprioceptive sensors) afid keep the explanations and derivations simple it is assumed
a laser range-bearing sensor (exteroceptive sensor), such #sa the vehicle is moving on a flat horizontal planar surface
SICK LMS 290 laser measurement system, and is travelirand that the inertial sensor assembly is mounted at or near the
in an approximately circular path of radius 20 m. center of gravity (COG) of the vehicle.

The process and observation models and joint bias and ve-The vehicle motion is referenced to a global coordinate
hicle state estimation formulae for this 2D MAL simulationframe, which is the earth reference frame or the navigation
are given by equations (16) to (25). The simulated values fame{n} forming a right handed orthogonal set of axes NED
the bias parameters of the sensors are: LMS range bias of (Nerth, East and Down) as shown in Figure 5. The vehicle
m, angle bias of 2speed sensor input bias of 0.25 m/s antlody reference framév} has its origin at the COG of the
steering input angle sensor bias ofihd random noise se- vehicle with its X-axis in the direction of heading and the Y-
guences with variances 0, 0, 0.000%shand 4x 10 %racf/s*>  axis and Z-axis as shown in the Figure 5. The proprioceptive
respectively. The update rate of all sensors is 10 Hz. sensor or the inertial measurement unit's (IMU) coordinate

At the outset, it is important to state that when there afeame is coincident with the vehicle frameg} The vehicle’s
biases in the sensors and no bias estimation is utilized itasientation (i.e., orientation of vehicle body frame}) is
almost impossible to estimate the vehicle pose consistentiiierefore represented using the three Euler anglestation
Figures 2(a) to (h) show simulation results of MAL with theabout vehicle X axis or roll} (rotation about vehicle Y axis
online joint estimation and correction of biases. The results pitch) andys (rotation about vehicle Z axis or yaw) as
clearly show that MAL works well with the online joint sen- shown in Figure 5. Now if the vehicle is confined to move on
sor bias estimation with ever diminishing uncertainties of tha flat horizontal plane and its position in X and Y coordinates
bias estimates, as established in the theoretical discussioraimd velocities in the X, Y and Z directions, with respect to
Section 3.1. The graphs in Figures 2(g) and (h) also show tithe global navigation framen{, are x)', y7, v}, v} andv”
the uncertainties of the bias estimates reach a lower boumespectively, then the whole process stafe) incorporating
In particular, the convergence of the estimated bias paranthe vehicle stat&, (k) and the biases in the inertial sensor is:
ters to the actual values establish that in the 2D MAL case,
observing two or more landmarks makes the system fully ob- v T
servable as established in Section 3.3, obviating the need f&?(k) - [ X, (k) (b* (k)" ]
any absolute sensor such as a GPS. Figure 3 shows the averaggr) = [x: AR AR X 1/,]7
value of the normalized estimation error squared (NEES) at -
each time step, for a 100 run, Monte-Carlo simulation. As the?' (&) = [ b}, (k) b} (k) b! (k) b (k) by (k) b (k)]

sample average is within the 95% confidence region with the (86)
expected probability, it can be concluded that the estimator is
consistent. wherebY (k) is the vector of biases of the IMU and its ele-

. ) mentsby , by , b, b} , b} andb! represent the biases in
4.2.Useof Inertial Sensorsin MAL the linear acceleration measuremeants (@' anda!) and the

The application of online bias estimation is most importardngular velocity measurements!( «' ande!) with respect
when using inertial sensors in MAL. With the advent of lowto the vehicle body frame. Let e, ‘ng“, n! . ny, ny and

cost (strap down) inertial sensors, use of inertial sensor suit@g denote the assumed temporally uncorrelated noise terms
in many autonomous underwater and land navigation systegisthe measurement§, a', a', o', w’ andw'respectively.

has become economically viable. These sensor suites arelast;" andn" represent the modeling uncertainties of the ve-
sential in field robotics where extensive uneven terrain has ficle’s (x, y) position with reference to the navigation frame

be explored and mapped. The ability to navigate in 3D tefn}. We assume that the vehicle state and the bias state evolve
rain and the fact that the localization solution can be obtaineg follows:

independently of vehicle’s kinematic model are some of the
b_eneflts of using !nert!al sensors |n_MAL. However, the major (k) Xk — 1) + Aok — 1)
disadvantage of inertial sensor suites especially the low cost n = n n

o g . ) ¥, (k) ik —1) + Arvl(k — 1)
strap down variety, is their inherent sensor biases, drifts and Y
scale factors. Random walks and time varying biases present "
in gyros (angular rate) and acceleration inertial sensors (Gre- + [ ,7'3 ] ’
wal, Weill, and Andrews 2001), cause the offline calibration '
methods to be less effective.

(87)
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Fig. 2. Graphs (a) and (b) show the 2D MAL, localization error in x and heading with online bias estimation. Graphs (c), (d),
(e) and (f) show sensor bias estimates. Graphs (g) and (h) show the variation of the standard deviation of the sensor biases.
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+ (@) + B!, (k= D) + 1}, )(sing (k — 1)
+ (! + b, (k= 1) + !, cos@ (k — 1)))
tan(@ (k — 1)))At, (89)

0(k) = 6(k — D)+ ((wy + b} (k—1) +ny ) codp(k — 1))
— (0! + b} (k—1)+n!)sin(g(k — 1)))At, (90)

vk =vyk -1+ (o) +b) (k=1 +n))
sin(¢p (k — 1)) sedd(k — 1))) At
+ (@) + b (k= 1) + 7)) cos¢ (k — 1))
sedqd (k — 1)) At, (91)

Monte-Carlo simulation in 2D MAL. The dotted lines show
the 95% confidence regions.

Fig. 4. The autonomous vehicle used in MAL experiments.
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(88)

b*(k) = Ayb"(k — 1) + ¢; +my, (92)

CsCy  —CySy+ SyS5Cy SpS, +CySyC,y
Com=| CoSy CyCy+S8:58, —S,Cp+CySsS,
—S, S,Co C,Cy
(93)

Here At is the sampling time of the inertial sensgris the
gravitational constan€,, is the rotational matrix describing
the orientation of the vehicle fram{@} with respect to the
navigation framgn}, andC, = cogx) andsS, = sin(x) for

x € {¢, 6, ¥}. A, is a 6x 6 diagonal matrixgc) isa 6x 1
constant vector angl is a 6x 1 temporally uncorrelated noise
vector with covarianc®, (diagonal matrix). The values of
A,, ¢ andQ, can be experimentally determined. To account
for the offsets and drifts in the bias phenomena of inertial
sensors, they are modeled as given by (92). Equation (92)
is able to accommodate exponential variation (Barshan and
Durrant-Whyte 1995) of biases or a constant but unknown
component and a random walk component (Grewal, Weill,
and Andrews 2001). The error models of the gyroscopes and
the accelerometers are given by (94) and (95):

i)y = ngro (a)o/p + wbias) + 1, (94)

i/ = M (80 + @bias) + N, (95)

wherew,,, is the actual input rotational rate vectar,,, is
. T .

the measured rotational rate vec{os!, !, w!] , @y, is

the three axis gyro bias vectfs bY b! ] .1, is the gyro-

scope measurement noise vedtof , 1! lew]T. a,, is the
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actual input acceleration vectey,, is the measured acceler-features, or landmarks are observed using an onboard extero-

ation vector[a;’, a’, ay]T, a,.., IS the acceleration bias vector ceptive sensor, such as a 2D range-bearing sensor. As shown

[bY bY b ]T , andn, is the accelerometer measurement noisg Figure 5, the exteroceptive sensors fra{s}e_ls assumed
T, T . to be aligned but not coincident with the vehicle frafwg.

vector[ny , 7y, 0! ] - M, andM,.. are 3«3 matrices used | o X’ represent the exteroceptive sensor’s position in the ve-

Xa

for scale factor and misalignmgnt compensation of the.gyrq)ﬂde‘ frame{v}, x" the exteroceptive sensor’s position in the
scopes. The scale factor matrices are assumed to be 'derWéX/igation framgn}, andx" the vehicle’s coordinates in the
matrices. Now the complete process model of the system CAQvigation framen}. Let X" represent the coordinates of a
be expressed as: point landmark in{n}, andx$ = [ L, L, L, ]T its co-

X(k) = (X, (k — 1), Uk — 1), b"(k — 1), n(k — 1 96 ordinates in the extero_ceptlve sensor’s frafge S!nce it is

(k) =T0ul U )b )¢ ) (90) assumed that the vehicle moves on a flat horizontal plane

whereu’(k — 1) = [a" @’ a’ ! " »¥] andf(.) is given by whose elevr;ttio:\ is knosvvn, the z coordin.at(.as qf the pqsition
the concatenated right hand sides of the equations (87) to (YFOrsX(, x{, x|, andx; are known a priori. Sinc€,, is
andn is a zero mean process noise sequence. the r_elatlv_e orientation betwedn} and{n}, and there is no

The covarianc€ (k) representing the entire noise characfelative orientation betweefv}, and{s}, we have
teristics of the measurements and biases of the IMU is given X=X 4 CoX's X = (Cu)” O — XY, (98)

by:
0 0 Now, it is straightforward to show that the observation model
of af \" Qy Oz Qo for a single landmark observation from the range-bearing sen-
Qk) = P Qu P + | Osz Osxs  Osxe sor is

06><2 06)(6 Qb
(97)

z(k):[ JLZ+L? ]

| | _ tant (L, /L,) + 7 /2 (99)
whereQ, andQ,, are zero mean diagonal noise covariance
matrices of the concatenated IMU measurement noise véldae observation model of (99) can be easily generalized to
tor, [y, ny, 2, ny, ny, ny, 1" and the vector representing theany number of landmarks by concatenating the observation
modeling uncertaintyn? n}1" respectively. vector with the relative measurements to the landmarks.

In the following, the observation model is determined for The prediction and update equations of MAL are similar
the case of a vehicle moving on a horizontal plane whilst make (7) to (13). Since the vehicle is assumed to be moving

ing measurements to point landmarks. It is assumed that thie a horizontal plane and there is no side slip, the vehicle
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motion in the X and Y axis in its franjg} will be zero. These 4.3. Simulation of IMU Aided MAL

nonholonomic constraints (i.exy = 0, andv! = 0) are also fies of th line bi timat d i
used as virtual observations in the joint online bias estimatioH'€ Properties of the online bias estimation and correction

process (Koifman and Bar-ltzhack 1999; Bingbing andAdameOblem in IMU aided MAL is studied by conducting sim-

2005). Now the vehicle’s velocity vector, referenced to it lations in a planar environment consisting of several point
frame{v}, can be expressed as: andmarks (Figure 6). The vehicle is assumed to make sev-

eral rounds in an approximately elliptical path at a forward

[V v vZV]T = (Cy)" [v] 0" vj]T , (100) speed of approximately 4 m/s. As described in Section 4.2,
a 2D range-bearing sensor and an IMU (three axis angular
v, =04, (101) rate and linear acceleration measurements) are assumed to be
“ onboard the vehicle. The gyro (rate sensor) and acceleration
v =041, (102) bias parameters in all three axes of the IMU are set to constant

lues of 15%~* and 12 mg respectively. The random walk

. . . %
Wher?"-" "’?”d”z are Gaussian NoIS€ sequences, which mOdSZmponents due to the biases in the gyro and accelerometer
any violation of the nonholonomic constraints.

As discussed earlier, it makes sense to investigate the ¢&-the IMU are set to .450/«/h_r and 01 msl/Jh_r respec-
servability of the system in the presence of biases before atiyely. The sampling rates of the range-bearing sensor and the
attempt is made to estimate the parameters online. In IMIYIU were set to 10 Hz and 50 Hz respectively.
aided MAL with joint estimation of inertial bias parameters Figures 7(a) and (b) show the localization error distribu-
and the vehicle state, there are in all 14 state variables igns of IMU aided MAL with online bias estimation. The
the system state; 8 describing the vehicle state, and 6 corfésults of the estimation of the bias parameters and their un-
sponding to the biases in the inertial sensor. Therefore, fegrtainties in the IMU are shown in Figures 8 and 9. It can be
complete observability of the vehicle states and inertial bizggen that both localization errors and uncertainty (variance)
parameters the rank of the observability Grammian of the syi!the biases are bounded by the Bnits demonstrating the
tem ((86) to (102)) must be 14. The observability of the systeffiter's consistency. In general, it may be noted that the uncer-
((86) to (102)) is investigated by symbolic manipulation witHainties or variances of the estimated bias parameters settle toa
and without the imposition of the nonholonomic constraintwer bound as predicted by the theory detailed in Section 3.2.
and a Varying number of landmarks in the MAL state vector. The random walk behavior in the biases and the intermit-
The symbolic analysis is verified through empirical runs ofent unavailability of observations cause the uncertainty in the
the joint bias and vehicle state MAL estimation algorithmbiases to increase at certain instances (Figures 8(a), (c), (e)
When the nonholonomic constraints ((100) to (102)) are nénd 9(a), (c) and (e)). For example, all but the uncertainty of
imposed the rank of the observability matrix is 9. However,
when observing two landmarks (with corresponding change
inthe observation model (99)), the rank increases from9to 11

Increasing the observed landmarks to three and beyond or ., Estimated Rubui Trajectary - Map Hased Localization
increases the rank to a maximum of 12. That is despite beil I

able to observe more than three landmarks the observabil 4] I

Grammian still remains rank deficient by 2. As expected, i  apt /":_ et 0
the given setting the required full rank of 14 is only achievabl ) l,.-";f" ‘-,"\1
through the imposition of the nonholonomic constraints (e i | i -,"-,",I
virtual observations) as there is no sensor providing informi =" 14 9 i "J ‘II
tion about the Z-dimension. Furthermore, close examinatic .. | ‘1. N TR, V- S ¥ ,J'
of the observability Grammian of the system when observir l?'-h

two landmarks reveals that there is little chance that equ " ‘*%

tions such as (70) and (71) are satisfied simultaneously, whi  .znt 8y

makes the system unobservable. This is because the numbe a0 &"\‘q:_i___;

conditions that must be simultaneously satisfied for the rov =
of the measurement Jacobian of (99) to be linearly depende -4l
is larger than in the case of the measurement Jacobian (¢ _5p
for standard 2D MAL with bias estimation. -4l -0 -2 U 20 40 B0

It is important to note that given a 3D sensor, suchas a 3. Am
laser measurement system or a stereo vision system, it wolii@- 6. IMU aided MAL simulation. The estimated path is
be straightforward to incorporate the Z-dimension of the veshown by the darker dashed line and the true path is shown
hicle location coordinates and landmark coordinates in tH® the lighter solid line. The true landmarks and estimated
formulation and hence, relax the assumption of a flat surfad@ndmarks are shown as circles and crosses respectively.
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Fig. 7. Localization errors of X, Y coordinates of vehicle in navigation frame in IMU aided MAL.

b! (k), increase at time instances 40 s, 100 s, and 180 s dueTable 1 shows how the divergence rate is affected by the
to inadequate landmark measurement updates at these tinvasiations of biases due to increasing random walk behavior.
The decrease in the uncertaintyif(k) is due mainly to in-  Itis however, assumed that the constant bias terms are known
formation available via nonholonomic constraints (or virtuah priori. The results suggest that offline calibration, initializa-
observations) at all times regardless of whether landmarkien and resetting can only be effective for short periods of
are observed or not. Figure 10 shows the average valuetwhe and for small variations in the biases.
the normalized estimation error squared (NEES) at each time
step for a 100 run Monte Carlo simulation of the IMU aided
MAL. Since the state vector for IMU aided MAL with con- 4.4. Experiments
current bias estimation described here consists of 14 states, ) ] ] )
the chi-square 95% confidence limits are 13.14 and 14.ggXPerimental evaluation of IMU aided MAL with on-line
As the sample average is within the 95% confidence regidiertial bias estimation, was carried out using an in-house
with the expected probability, it follows that the estimator i@Uilt @utonomous vehicle shown in Figure 4. The vehicle
consistent. is equipped with an uncalibrated IMU (Crossbow DMU-
Figures 11, 12 and 13 show the results obtained assut%HRS)z which is fixed to the vehicle frame as discussed
ing that the constant bias terms are known a priori, whic Section 4.2. A SICK LMS 290 range-bearing measure-
in effect simulates the offline calibration and initialization of €Nt Se€nsor is used as the exteroceptive sensor. The sampling
biased sensors. The parameters used in Section 4.2 to md@i§s are 100 Hz and 10 Hz for the inertial sensor and the
the random walk behavior of biases are used in the sim{@Nge-bearing sensor respectively. The speed of the vehicle
lations. It is noted that the estimation errors in the velocit}/@S maintained at approximately 4 m/s. The centroid of a set
(Figure 11) and location (Figure 12) diverge shortly after iniof contiguous laser range points (cluster) at constant depth
tialization. The rapid divergence of the errorsis mainly a resuft Chosen as a point feature. These clusters are formed from
of data association failures. Variations in the inertial biaséd aSer scan using a simple clustering strategy based on the
cause measurements to fall outside the validation regions §ptance between contiguous and adjacent range points. The
predicted landmarks thus resulting in data association fafidiacent range points in a scan, which are within a certain
ures. Figure 13 shows the sample average of the normaliz@&tance thresh_old_ among each other, are clustered. If an ad-
state estimation squared error plot for 50 Monte-Carlo rungagcent range pointis far frorr_1 the current cluste_r, anew cluster
Since the full state vector excludes the constant bias terms (5s¢réated. Now the centroid of each cluster is taken as the
sumed known a priori through offline calibration), it has eighgo°rdinates of the point feature or landmark. This simple dis-
components. Hence, the chi-square 95% confidence limits 4A&'Ce based clustering is appropriate for range scans which
5.22 and 6.83. Itis observed that the sample average of NEE¥€ range and bearing values consecutively. It is observed

diverges from the 95% confidence region demonstrating tffé OUr experiments that the method of clustering can easily
inconsistency of the filter. identify trees, lamp posts and other rigid objects in an out-

door setting.
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Fig. 8. Estimation of the accelerometer biases and their uncertainties in IMU aided MAL.
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Fig. 9. Estimation of the gyro biases and their uncertainties in IMU aided MAL.
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Table 1. Rates of Divergence of the Algorithm

Emor in ¥ Axis Velocity
Error
=== 2 Sigma Bounds

—

50 100 150 200 250 300 350 400 &50 503 550
Time [ 10 ms steps)

(b)

For constant rate sensor noise

Accelerometer

For constant accelerometer noise

Rate Sensor

Bias Random Time to Bias Random Time to

Walk msh/hr Diverge (s) Walk{/~/hr) Diverge (s)
0.02 521 1 480
0.04 345 2 295
0.06 172 3 195
0.08 110 4 95
0.10 63 4.5 63
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Fig. 12. Location estimation errors in navigation frame in MAL with offline calibration.
Marmalized Estimation Error Squirad loop closing error with no online bias estimation in inertial

aided MAL. Overall, it is clear from Figure 14 that without
online bias estimation (correction) the location estimates are
I significantly erroneous.
| The experimental results demonstrate that given sufficient
150! il number of landmark observations, the biases in the gyros and
| accelerometers can be jointly estimated with vehicle state on-
b dl line, without the aid of an absolute position sensor, such as
PG AR GPS, which provides absolute information. These experimen-
(! tal results concur with the theoretical result governing full ob-
servability (Section 3.3) of inertial aided MAL with the online
[ A AL M estimation of biases. The estimated acceleration and rate sen-
T e T sor biases and theivbounds are shown in Figures 15, 16, 17
0 100 HH MM 400 SN SN0 T00 B0 305 1090 and 18 respectively. It is observed that uncertainties in biases
Lime [ 1) ms steps] diminish with updates over time and approach lower bounds,
Fig. 13. Normalized state estimation squared error for 5@ agreement with the theory (Sections 3.1 and 3.2). The re-
Monte-Carlo runs in IMU aided MAL with offline calibra- sults also imply that observing enough landmarks which do
tion. The 95% confidence regions are shown as dotted linegot satisfy equations (70) and (71) is sufficient to make the
otherwise unobservable IMU aided MAL with bias estima-
tion observable. The initial constant components and the as-
sociated noise components of the inertial sensor biases are

Th . ¢ ducted i K wh talso estimated using offline methods described in Barshan
€ experiment was conducted In a car park, where r‘]:\%d Durrant-Whyte (1995). As described in this work the

surface is relatively flat and horizontal. The stored or a POl i1 are obtained when the vehicle is stopped or stationary,

map is created manually by measuring the locations of a 3 tis estimated that on average the initial bias components

of features, such as lamp pqsts and_ tre_es, in the area Of'the accelerometers in the X, y and z axes directions are
respect to a predefined earth fixed navigation frame. The sm ﬁgb

) e . 8075 ms?, 0.08 ms?, and 0.08 m& respectively, and in
](‘:;;Ctljfelsn (Efg{gnzﬁnsaﬁigtr}ileo\?:ﬁi% ?j;;:gi;ﬁ;i}?;ﬁ?;:: e gyro 0.02 rad/s in all three axes directions. These results
measured by hand with re.ference to the navigation frame T%%igures 14. to 18) are qujte cloge 0 Fhe valyes thained inthe

SRR s . " MAL experiments involving online bias estimation.
solid line in Figure 14 shows the estimated vehicle path when
performing IMU aided MAL with online bias estimation. The
crosses indicate landmarks observed and associated with ;yeConclusions
a priori map features (shown by the circles) when the vehicle
is at the position indicated by the solid rectangle. The dottdd map aided localization the biases of proprioceptive and
line in Figure 14 represents the estimated vehicle path withoekteroceptive sensors can impair the viability of the estima-
online bias estimation. It is observed that there is a significatibn algorithm or compromise its performance. Standard brute
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Fig. 16. Estimated rotational rate sensor biases.
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approach was investigated in detail. The elaborate theoretical
analysis, simulations and experimental results have provided
valuable insight to the problem and established useful prop-
erties of the solution.

force practices of calibrating or initializing sensors or estimat- In the joint estimation of sensor biases in MAL, it is es-

ing biases offline can in certain situations offset localizatiotablished that uncertainties of estimated errors in the bias pa-

errors in MAL. However, these require longer setup times armameters of both the proprioceptive and exteroceptive sensors
periodic resetting of sensors rendering such techniques mutiminish in each successive update and approaches a lower
less desirable in many practical applications, such as in dosund. This result is important in that it gives assurance that

tonomous navigation tasks. An effective and efficient methodkhe accuracy of estimated biases improves at each update. As
ology to alleviate problems in MAL due to sensor biases isiore and more measurement updates are incorporated, the
to jointly estimate bias parameters of sensors with the vetbias parameters are determined with greater accuracy thereby
cle state and apply corrections online. In this paper, such gnaranteeing accurate localization results regardless of the
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-

L certaiinty i Rotationsl Bate Bias (235TD Bowidds)  Selecting sensors based on their bias and noise characteristics

] TR and also the density of landmarks in the stored map. These
“': A AxY observations about uncertainty variations are made even for
'h T Axis nonlinear 2D models employed in standard MAL and INS
A - aided MAL.

! & Azl In conclusion, the theoretical findings and results substan-

tiated by simulations and experiments provide greater insight
into the problem of estimation theoretic bias correction in
map aided localization. The investigations pave the way for
| the improved design and judicious choice of process and ob-
I servation models and the selection of appropriate sensors for
S S p—— ——a the enhanced performance of localization algorithms depend-
i ing on the requirements of the mobile robot application.

i L] L] miE 1K Sl
Time [100 ms stcps]
Fig. 18. Estimated @ uncertainty bounds of rotational rate
sensor biases.
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Appendix

A matrix A,,, is known to be PSD ik"Ax > 0, for all non
zerox, ,such thak € R".

Properties of the PSD Matrices

If A,., andB,,, are PSD matrices, then:

unknown biases in the sensors. The fact that the uncertain- .
ties of sensor biases have lower bounds enables us to estimat&' A+BisPSD
the bounds in localization accuracies, which is useful inany 2 ABis PSD
practical application of MAL.

Although often neglected in the literature on map aided 3. Diagonal entries oA are nonnegative
localization, observability is a major issue when it comes to
guaranteeing accurate |(§/C8.|i2ati0:"l. To ensure full observabil- 4. detA +B) > detA) + det(B)
ity in 2D, nonlinear MAL with online bias estimation, itis 5. Any principal sub matrix of is PSD
necessary to observe at least two landmarks, which are not
simultaneously collinear with the vehicle position. In order to
guarantee observability in IMU aided MAL with online biasRefer ences
estimation, it is necessary to observe at least two landmarks
and simultaneously apply the nonholonomic constraints (viBar-Shalom, Y. and Li, X. R. 200 Estimation with Applica-
tual observations). It is important to note that observing two tions to Tracking and Navigation: Theory Algorithms and
or more landmarks alone is not sufficient to ensure full ob- Software, John Wiley and Sons, Inc.
servability. In all the above cases it was verified through sinBarshan, B. and Durrant-Whyte, H. 1995. Inertial Naviga-
ulations and experiments that satisfaction of the full observ- tion Systems for Mobile Robot4EEE Transactions on
ability conditions ensured consistent estimation of the bias Robotics and Automation 11(3):328—-342.
parameters of the sensors and vehicle states, yielding acBetke, M. and Gurvits, L. 1997. Mobile robot localization
rate localization results. Moreover, given the a priori land- using landmarks EEE Transactions on Robotics and Au-
mark map, these observability conditions enable a vehicle to tomation 13(2):251-263.
plan its trajectory so as to guarantee the observability of tH&@ingbing, L. and Adams, M. D. 2005. Multi Aided Inertial
unknown bias parameters and thereby ensure correct vehicleNavigation for Ground Vehicles in Outdoor Uneven Envi-
localization. ronmentsProceedings of the IEEE International Confer-

The rate of convergence of the uncertainties, i.e., speed ence on Robotics and Automation, Barcelona, Spain.
at which estimated quantities approach their true values, Bsiechle, K. and Hanebeck, U..2004. Localization of a
also a vital indicator of algorithm performance, especially for mobile robot using relative bearing measuremertgE
real-time applications. For the linear 1D case, it is established Transactions on Robotics and Automation 20(1):36—44.
that a smaller ratio between exteroceptive sensor noise adtbwn, R. G. and Hwang, P.Y. C. 1992troduction to Ran-
process noise (proprioceptive sensor noise and the modelingdom Sgnals and Applied Kalman Filtering, 2nd Edition,
uncertainty) or a larger number of simultaneously observed John Wiley and Sons Inc.
landmarks, will result in faster convergence of the state vaidurrant-Whyte, H. 2001. A Critical Review of the State-
ances to their steady state values. This result is helpful whenof-the-Art in Autonomous Land vehicle Systems and
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