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Abstract

Simultaneous Localization and Map Building (SLAM) and Map
Aided Localization (MAL) are very effective techniques employed
extensively in robot navigation tasks. However, biases and drifts in
both exteroceptive and proprioceptive sensors adversely impair cor-
rect localization (in MAL) and also impair map building (in SLAM).
More specifically, accumulated errors as a result of biases in the
sensors cause the algorithms to diverge and produce inconsistent
and inaccurate results. Although offline calibration of these sensors
can reduce the effects to some extent, the process results in longer
setup and processing times. Moreover, during operation, the sen-
sors’ calibration may often be subject to changes or drifts requiring
regular resetting and initialization. A convenient, appropriate and
effective approach to overcome problems associated with biases in
sensors has been to explicitly model and estimate the bias parame-
ters concurrently with the vehicle state online using an augmented
state space approach. This paper investigates the properties of the
concurrent bias estimation in MAL using an augmented, estimation
theoretic state space approach for the localization of a large class
of mobile robots, consisting of autonomous ground vehicles. This
involves a rigorous theoretical study of the issues of observability
and convergence, their interrelations and effects on the algorithm’s
performance. This paper shows analytically that if sensor biases are
estimated jointly with the vehicle pose in a MAL framework: 1) The
uncertainties of the estimated errors in the bias parameters of both
proprioceptive and exteroceptive sensors diminish in each update. 2)
A derived lower bound is reached in each of these estimates. 3) The
rate of convergence to this lower bound is also derived. 4) Although
often neglected in the literature, observability is a major issue. From
the analysis it is derived that in order to guarantee observability in
MAL with bias estimation, it is necessary to observe simultaneously
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at least two distinct landmarks, which are not on a straight line with
the vehicle position. Extensive simulations are provided to illustrate
the theoretical results established for the general case of nonlinear
dynamics and slowly varying sensor biases. The results are further
exemplified and verified experimentally using a sophisticated MAL
algorithm, utilizing a low cost inertial navigation sensor suite.

KEY WORDS—robot localization, map aiding, mapping

1. Introduction

The problem of positioning or localization is still consid-
ered to be one of the key challenges in achieving a truly
autonomous navigation capability for mobile robots. Local-
ization information is of paramount importance for any au-
tonomous agent to plan missions, tasks or paths and execute
any form of vehicle control (Durrant-Whyte 2001). In map
aided localization (MAL), an a priori stored terrain map of
some form is utilized in the localization algorithm. The plat-
form with its onboard sensors, senses its surroundings, ex-
tracts salient features and compares them with the features in
the stored map to find its current position.Application areas of
MAL include reconnaissance and surveillance missions, guid-
ance of weapons, mining, and cargo handling among many
others. TERCOM (Hicks 1993), used in Cruise missile navi-
gation, and TERPROM (Hosteler and Andreas 1983), used in
low altitude aircraft navigation and collision avoidance, are
two of the fully operational MAL systems currently available.
These systems use an a priori digital terrain elevation map and
data sensed by radar altimeters to provide corrections to an
inertial navigation system (Hosteler and Andreas 1983). Al-
though GPS-based location systems are very effective in open
space, sea and air, they are affected by radio signal blockages
and multi-path reflections off the ground and/or surrounding
structures (buildings, canyon walls, etc.), partial satellite oc-
clusion and active RF jamming. In such situations MAL can
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complement or substitute GPS-based location systems. The
rich corpus of MAL literature contains several estimation al-
gorithms including extended Kalman filters (EKF; Leonard
and Durrant-Whyte 1991), particle filters (Fox et al. 1999),
and transformation based filtering methods, which use only
bearing information (Betke and Gurvits 1997; Briechle and
Hanebeck 2004).

In this paper a rigorous theoretical investigation is carried
out to understand the effects and implications of exteroceptive
and proprioceptive sensor biases on map aided mobile robot
localization in an estimation theoretic localization framework.
In MAL, the propagation of sensor uncertainties due to sys-
tematic and nonsystematic errors may result in inconsistent
and inaccurate localization results. Persistent and slowly vary-
ing biases due to modeling errors, sensor biases and imperfect
calibrations may compromise performance. Use of linearized
approximations of the nonlinear motion and sensor models
and Gaussian assumptions in the measurement and process
models also impair accurate and robust localization. Thus,
biases in the sensors and modeling offsets and their cumu-
lative effects can cause significant localization errors, espe-
cially over long operating hours and in large-scale outdoor
MAL implementations.

There are several bias estimation methods proposed in the
literature such as those of Krishnan and Grobert (1970), Fang
and Wan (1996), Friedland (1969), and Ignagni (2000). Krish-
nan and Grobert (1970) and Fang andWan (1996) used off-line
inertial sensor calibration and error modeling approaches to
offset the bias errors in the sensors. Friedland (1969) and
Igangni (2000) presented effective techniques for separate
bias estimation that are most suitable when the number of
bias terms in the estimation process is high compared with
the bias-free state vector. Huster and Rock (2003) described a
relative position sensing strategy based on the nonlinear Un-
scented Kalman Filter that fuses bearing information from
monocular vision, with inertial rate-sensor measurements to
estimate relative velocity position and orientation. Although
they explicitly accounted for the biases and random noises in
the gyro (rate sensor) and accelerometers, a rigorous analysis
of the properties and behavior of the estimator was difficult
due to the nonlinear unscented transform utilized.

Martinelli et al. (2003) presented the theory and experi-
mental results (using a differential drive robot) of simultane-
ous estimation of the robot configuration and the odometer er-
ror (both systematic and nonsystematic) during mobile robot
navigation. Martinelli et al. (2003) described the notion of
observability for a specific error model but did not investigate
the algorithm properties rigorously. Roy andThrun (1999) for-
mulated the on-line self calibration problem of mobile robots
as a maximum likelihood estimation problem and presented
experimental results in an indoor setting. The sensor and mea-
surement updates were calculated based on an occupancy grid
based method. However, an occupancy grid based approach
requires that different measurements obtained at the same in-

stance be conditionally independent, which is not strictly true
in MAL. Furthermore, it is not straightforward to evaluate the
observability, convergence and other algorithmic properties
of probabilistic occupancy grid based estimators. For mobile
robots, Stroinger and Stone (2005) described a method to si-
multaneously learn the action and sensor models including
their biases using linear regression techniques. However, the
application of learning sensor and action models in MAL is
not detailed.

The indirect approach to state estimation (Roumeliotis,
Sukhatme, and Bekey 1999; Kim and Sukkarieh, 2004) is
also a popular way of dealing with inertial navigation biases
and drifts. The main advantage of the indirect formulation
is that it gives a lesser number of predictions and linearized
models. However, due to the inherent low dimensionality of
the MAL problem, there is no definite computational or other
advantage in the indirect form as compared with the direct
form.

In this work an augmented state vector approach is used
for sensor bias estimation and compensation because of its
simplicity and low complexity when applied to the low di-
mensional MAL problem. The paper is organized as follows.
In Section 2, MAL and the estimation theoretic bias correction
problem in MAL are presented and discussed. In Section 3,
the properties of the concurrent bias estimation and MAL
algorithm are rigorously investigated and analyzed. In Sec-
tion 4 extensive simulation results and experimental results
are presented and discussed to validate the theoretical results
established. Section 5 concludes the paper with a summary of
the theoretical results and its implications on MAL.

2. Proprioceptive and Exteroceptive Sensor Bias
Estimation

Section 2.1 gives an overview of the now standard EKF for-
mulation used to estimate a vehicle’s pose in MAL. For those
familiar with this analysis, Section 2.1 can be skipped.

2.1. The Standard EKF/MAL

The basic EKF MAL framework represents the vehicle pose
vector in absolute coordinates with reference to a global co-
ordinate frame. That is, the state vector denoted byX(k) in
this case consists only of the vehicle pose,xv(k) at timek.

X(k) = xv(k). (1)

If the vehicle is assumed to be constrained to move on a two di-
mensional (2D) plane then the pose vector can be represented
by xv(k) = [

x(k) y(k) θ(k)
]T
, wherex(k), y(k) and

θ(k) denote the Cartesian coordinates and heading of the ve-
hicle with respect to the global reference coordinate frame as
shown in Figure 1. The mid point of the rear axle of the vehi-
cle represents the vehicle position. In general, the kinematic
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Fig. 1. The vehicle modeling and the coordinate frames.

motion model of the vehicle shown in Figure 1 is nonlinear
and can be represented in closed form as

xv(k) =

 x(k − 1)+�t ua(k − 1) cos(θ(k − 1))

y(k − 1)+�t ua(k − 1) sin(θ(k − 1))
θ(k − 1)+�t ua(k − 1) tan(γa(k − 1))

/
a1




+ v(k − 1)

= f(xv(k − 1), ua(k − 1), γa(k − 1))+ v(k − 1),
(2)

ua(k − 1) = u(k − 1)+ un(k − 1), (3)

γa(k − 1) = γ (k − 1)+ γn(k − 1). (4)

Hereu(k − 1) andγ (k − 1) denote the speed and the steer-
ing angle inputs at timek − 1 respectively as measured by
the proprioceptive sensors (e.g., odometers, gyroscopes etc.)
and the lumped proprioceptive sensor input is expressed as
u(k − 1) = [

u(k − 1) γ (k − 1)
]T
. un(k) ∼ N(0, σ 2

un
)

andγn(k) ∼ N(0, σ 2
γn
), denote the random noises ofu and

γ which are assumed Gaussian with zero mean. The sub-
script “a” is used to denote the actual proprioceptive sensor
inputs anda1 is the vehicle wheel-base and�t is the sam-
pling time.v(k) ∼ N(0,Qv(k)) is a temporally uncorrelated
noise sequence with covariance matrixQv(k) representing the
modeling uncertainties.

For simplicity, the landmarks in the environment are repre-
sented as point features. Thus the stored map is a vectorm of
n landmark points,Li = [

mx
i
m
y

i

]T
, i = 1 . . . n, where (mx

i
,

m
y

i ) is the (x, y) coordinate pair of theith landmark. Now
if an exteroceptive sensor such as a laser range measurement

system (e.g., SICK LMS 290) is used to observe the range
and bearing of theith landmark, we obtain the following ob-
servation model:

z(k) =[ √
(mx

i − xs(k))2 + (m
y

i − ys(k))2

tan−1
(
(m

y

i − ys(k))
/
(mx

i
− xs(k))

) + π
/

2 − θ(k)

]

+ w(k) = h(xv(k),Li )+ w(k) (5)

wherew(k) is the vector of observation noise in range and
bearing and is assumed Gaussian with zero mean and co-
varianceR(k). (xs(k), ys(k)) is the absolute position of the
exteroceptive sensor mounted on the vehicle at position S as
shown in Figure 1 and is given by:[

xs(k)

ys(k)

]
=

[
x(k)+ a2 cos(θ(k))
y(k)+ a2 sin(θ(k))

]
(6)

wherea2 is the offset of the exteroceptive sensor mounting
from the vehicle reference position as shown in Figure 1. Now
if the state covariance matrix ofX(k− 1) is P(k− 1|k− 1) at
timek − 1 then the EKF predictor equations are as follows:

X(k|k − 1) = xv(k|k − 1) = f(xv(k − 1),u(k − 1)), (7)

P(k|k − 1) = FP(k − 1|k − 1)FT + Q(k − 1), (8)

ẑ(k) = h(xv(k|k − 1),Li ). (9)

HereF is the Jacobian(∂f/∂X)of the process model evaluated
at timek − 1 and

Q(k) = (
∂f

/
∂(u, γ )

)
diag(σ 2

un
, σ 2

γn
)
(
∂f

/
∂(u, γ )

)T + Qv(k).

(10)

When the true observationz(k) is available at timek and after
correct observations to map feature associations are resolved
using an appropriate data association algorithm, the EKF up-
date equations are applied as follows:

e(k) = z(k)− ẑ(k), (11)

X(k|k) = X(k|k − 1)+ K(k)e(k), (12)

P(k|k) = P(k|k − 1)− K(k)S(k)KT (k), (13)

wheree(k),S(k),H andK(k) = P(k|k−1)HTS - 1(k) denote
respectively the observation innovation, its covariance matrix,
the Jacobian(∂h/∂X) and the Kalman gain with the usual
notation.
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2.2. Concurrent Bias Estimation with MAL

Although offline calibration and modeling of biases in sen-
sors can reduce or mitigate localization errors to some extent,
these processes result in longer setup and processing times.
Moreover, during operation, the sensors’ calibration may of-
ten be subject to changes or drifts requiring regular resetting
and initialization. A convenient, appropriate and an effective
way to overcome problems associated with biases in sensors
is to explicitly model and estimate the bias parameters online,
jointly with the vehicle state. Work described here aims to
investigate the properties of this augmented estimation the-
oretic state space approach to joint estimation of biases and
vehicle state in map aided localization for a large class of mo-
bile robots, consisting of autonomous ground vehicles. This
includes a rigorous theoretical analysis on the issues of ob-
servability and convergence, their interrelations and effects
on the algorithm’s performance.

To better appreciate the joint estimation of biases in the
sensors and vehicle state in MAL, consider the problem of
one degree-of-freedom (1D) MAL. Here, a vehicle traversing
a straight line path (along the x-axis) attempts to localize itself
on a straight line based on the correct association of landmarks
observed on the line with those stored in an a priori mapm. If
the vehicle’s proprioceptive and exteroceptive sensors’biases
areub(k) and sb(k) at timek respectively, then the process
(incorporating the biases) and the measurement models of
the 1D problem, when observing a single known (or stored)
landmark, are given by

X(k) =

 1 1 0

0 1 0
0 0 1


 X(k − 1)+


 u(k − 1)

0
0




+

 v(k − 1)

0
0


 , (14)

z(k) = [ −1 0 1
]

X(k)+ L+ w(k). (15)

Here,X(k) = [
xv(k) ub(k) sb(k)

]T
is the joint or aug-

mented state vector including vehicle state and biases in the
sensors.v(k) ∼ N(0, q2), andw(k) ∼ N(0, r2) are the exte-
roceptive and proprioceptive sensor noises assumed Gaussian
with zero means and variancesq2 andr2 respectively.L is the
coordinates of the observed known or stored landmark.

Now, by extending the derivations given in Section 2.1, we
formulate the concurrent bias estimation of exteroceptive and
proprioceptive sensors with vehicle state for the more realistic
2D MAL problem. Again for simplicity we consider only a
single exteroceptive sensor for making observations of land-
marks, although the derivation that follows can be extended to
any arbitrary number. Let the lumped proprioceptive sensor
biases, namely the biases in the input vehicle speed and input

steering angle, beub(k) andγb(k). Suppose that the extero-
ceptive sensor’s biases in the range and bearing arerb(k) and
αb(k) respectively. By incorporating all of the biases of both
proprioceptive and exteroceptive sensors, we form the vector
of biasesxb(k) as follows:

xb(k) = [
ub(k) γb(k) rb(k) αb(k)

]T
. (16)

As was illustrated for the 1D case for online concurrent bias
and vehicle state estimation and filtering in MAL, a new com-
posite state vectorX is formed by concatenating the vehicle
state vector and the vector of biases as follows:

X(k) =
[

xT
v
(k) xT

b
(k)

]T
. (17)

The new vehicle model takes the form of (2) with changes to
ua(k − 1) andγa(k − 1) as follows:

ua(k − 1) = u(k − 1)+ un(k − 1)+ ub(k − 1), (18)

γa(k − 1) = γ (k − 1)+ γn(k − 1)+ γb(k − 1). (19)

We assume that the biases of the proprioceptive sensors exhibit
a random walk behavior and that those of the exteroceptive
sensors are constant. Thus we have

ub(k) = ub(k − 1)+ ubn(k − 1), (20)

γb(k) = γb(k − 1)+ γbn(k − 1), (21)

rb(k) = rb(k − 1), (22)

αb(k) = αb(k − 1), (23)

whereubn ∼ N(0, σ 2
ub
) andγbn ∼ N(0, σ 2

γ b
). Now the time

evolution of the concatenated bias state vector which is as-
sumed to exhibit a random walk behavior can be expressed as

xb(k) = xb(k − 1)+ vb(k − 1) (24)

wherevb(k) ∼ N(0, diag(σ 2
unb
, σ 2

γnb
,0,0)) andσ 2

unb
andσ 2

γnb

are assumed to be the known variances ofubn(k) andγbn(k)
respectively. If the biases are known to behave differently,
then it is straightforward to incorporate their different time
varying characteristics in the formulation through appropriate
modeling.

The observation model when modified to incorporate the
biases of the exteroceptive sensors becomes:

z(k) = h(xv(k), xi(k), yi(k))+ [rb(k) αb(k)]T + w(k)

= h(xv(k), xi(k), yi(k), rb(k), αb(k))+ w(k). (25)

Now the concurrent estimation of the bias parameters with
the vehicle state in MAL proceeds according to (7) to (13),
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with the augmented vehicle and bias model (17) to (24) and
the observation model (25) replacing (2) and (5) respectively.
It may be noted that the system of eqs (18) to (25) describing
concurrent bias estimation with the vehicle state in MAL is
nonlinear.To develop insight and facilitate theoretical analysis
(Section 3) the system of eqs (16) to (25) is first linearized as
follows:

X(k) =
[
∂fv

/
∂xv ∂f

/
∂xb

04×3 I4×4

] [
xv(k − 1)
xb(k − 1)

]

+
[
∂fv

/
∂u

04×2

]
ua(k − 1)

+ [
vT (k − 1) vT

b
(k − 1)

]T + df (k), (26)

z(k) = [
∂h

/
∂xv ∂h

/
∂xb

] [
xT
v
(k) xT

b
(k)

]T
+ w(k)+ dh(k), (27)

whereua(k − 1) = [
ua(k − 1) γa(k − 1)

]T
. 0n×m is

the null matrix of dimensionn×m and In×n is the identity
matrix of dimensionn×n. Here,nandmare non-zero integers.
The quantitiesdf (k) anddh(k) can be determined from the
following equations:

df (k) = f(x̂v(k − 1), ûb(k − 1), γ̂b(k − 1),

u(k − 1))−
[
∂fv

/
∂xv ∂fv

/
∂xb

04×3 I4×4

]
[

x̂v(k − 1)
x̂b(k − 1)

]
−

[ (
∂fv

/
∂u

)T
02×4

]T

u(k − 1), (28)

dh(k) = h(x̂v(k),Li , r̂b(k), α̂b(k))

− [
∂h

/
∂xv ∂h

/
∂xb

]
[

x̂T
v
(k) x̂T

b
(k)

]T
, (29)

where the quantitieŝxv(k−1), x̂b(k−1), ûb(k−1), γ̂b(k−1),
x̂v(k), x̂b(k), r̂b(k) andα̂b(k) denote the estimates of the states
xv, xb, ub andγb at timek−1 and the predictions of the states
xv, xb, rb andαb at timekrespectively given the states at time
k − 1 andf(.) = [(fv(.))T xT

b
(k − 1)]T .

It may be noted that the linearized eqs (26) to (29) have
the same general structure as the simple linear bias estimation
algorithm for the linear MAL case.

3. Analysis of the Bias Estimation Problem
in MAL

Previous work on MAL (Leonard and Durrant-Whyte 1991;
Fox et al. 1999; Durrant-Whyte 2001) has mostly emphasized
the formulation and application of MAL in mobile robotics.
However, the observability, convergence and bounds of un-
certainty of the estimated bias parameters are major concerns
of MAL in practice and require greater attention.

3.1. Diminishing Uncertainty of Bias Estimates

Whether it be the ideal 1D linear case ((14) and (15)) or the
more realistic 2D nonlinear case (linearized models given
by (26) to (29)), for the case of constant biases (where
σ 2
ub

= σ 2
γ b

= 0), we can summarize the problem of the joint
estimation of the biases with the vehicle state in MAL in
the following manner. Ifub(k) andsb(k) are used to denote
the proprioceptive and exteroceptive sensors’ bias vectors re-
spectively then the bias vector of (16)xb(k) can be concisely
expressed as follows:

xb(k) = [
uT
b
(k) sT

b
(k)

]T = xb(k − 1). (30)

The evolution of the composite state vectorX(k) given by
(17), comprising the bias vectorxb(k) and the vehicle state
Xv(k) can be expressed as

X(k) = FX(k − 1)+ Bvu(k − 1)+ [vT (k) 0]T (31)

whereBv is the transition matrix of the proprioceptive sensor
measurements,v(k) andu(k) are defined in Section 2.1. The
matrix F is

F =

 Fv Bv 0vs

0T
vu

Iuu 0us
0T
vs

0T
us

Iss


 (32)

where Iss and Iuu are identity matrices with dimensions
dim(sb)×dim(sb)and dim(ub)×dim(ub) respectively.0vs, 0vu
and0us are null matrices having appropriate dimensions. The
observation model corresponding to (15) and (27) can be ex-
pressed as:

z(k) = H(k)X(k)+ L + w(k) (33)

where,H(k) = [ −Hv(k) 0uu Iss
]
, with L denoting a

constant vector corresponding to the observed landmark in the
stored map andw(k) ∼ N(0,R(k)) denotes the observation
noise.0uu is a null matrix of dimension dim(ub) × dim(ub).
Then the prediction and update equations take the form of (7)
to (13) with the process and observation models (31) and (33)
replacing those given in the general formulation outlined in
the previous section. Now, ifP(k|k) represents the covariance
matrix of the composite state vectorX(k), it can be partitioned
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as follows:

P(k|k) =

 Pvv(k|k) Pvu(k|k) Pvs(k|k)

PT
vu
(k|k) Puu(k|k) Pus(k|k)

PT
vs
(k|k) PT

us
(k|k) Pss(k|k)


 (34)

where the subscriptsv, u, ands denote the vehicle state, pro-
prioceptive sensor and exteroceptive sensor bias vectors re-
spectively. For example,Pvv(k|k) denotes the vehicle state’s
covariance andPvs(k|k) denotes the cross covariance of vehi-
cle state and the exteroceptive sensor bias state. Now from (8),
the prediction of the composite state vector covariance matrix
P(k|k − 1) can be determined. LetP(k|k − 1)be partitioned
as follows:

P(k|k − 1) =

 P1 P4 P5

PT
4 P2 P6

PT
5 PT

6 P3


 .

Then it follows that

P1 = FvPvv(k − 1|k − 1)FT

v
+ FvPvu(k − 1|k − 1)BT

v

+ BvPuu(k − 1|k − 1)+ BvPvu(k − 1|k − 1)BT

v

+ FvPvu(k − 1|k − 1)+ Qv(k), (35)

P2 = Puu(k − 1|k − 1), (36)

P3 = Pss(k − 1|k − 1), (37)

P4 = FvPvu(k − 1|k − 1)+ BvPuu(k − 1|k − 1), (38)

P5 = FvPvs(k − 1|k − 1)+ BvPus(k − 1|k − 1), (39)

P6 = Pus(k − 1|k − 1). (40)

As P(0|0),Q(k) andR(k) are positive semi definite (PSD)
matrices, by the properties (Horn and Johnson 1985) of PSD
matrices (see Appendix),S(k) andK(k)S(k)KT (k) are also
PSD matrices. Hence from (13),

det(P(k|k)) = det
(
P(k|k − 1)− K(k)S(k)KT (k)

)
, (41)

det(P(k|k)) � det(P(k|k − 1)). (42)

Since any principal sub matrix of a PSD matrix is also PSD,

det(Puu(k|k)) � det(Puu(k|k − 1)), (43)

det(Pss(k|k)) � det(Pss(k|k − 1)). (44)

However, from (36) and (37),Puu(k|k−1) = Puu(k−1|k−1)
andPss(k|k−1) = Pss(k−1|k−1). Therefore from (43) and
(44),

det(Puu(k|k)) � det(Puu(k − 1|k − 1)), (45)

det(Pss(k|k)) � det(Pss(k − 1|k − 1)). (46)

Since the determinant of a matrix is proportional to its vol-
ume, the determinants of the covariance matrices indicate the
volume or size of their uncertainty ellipses and therefore it
can be concluded that the errors in the estimates of the bias
parameters involving both proprioceptive and exteroceptive
sensors diminish in each successive update ((45) and (46) of
the MAL algorithm). This is an important result and its impli-
cations involving nonlinear models are further investigated in
Section 4.

3.2. Lower Bounds of the Uncertainty

In this section we investigate rigorously whether the decrease
in the bias estimation errors over successive observations as
shown in the Section 3.1 will eventually become zero (biases
completely determined with no uncertainty) or approach a
non-zero but finite lower limit. It may be noted that the lowest
covariance estimate is obtained when the proprioceptive sen-
sor noise and the modeling uncertainty (process noise) are at
their minima (i.e., whenQ is lowest) and the observation noise
is small. Such a scenario occurs when the vehicle is stationary
(Q = 0)whilst observing a landmark in the stored map. How-
ever, under these circumstances it is not possible to obtain an
estimate of the proprioceptive sensor bias terms as they are
not observable when the vehicle is not in motion. Hence we
calculate the lower bounds for the covariance of the extero-
ceptive sensor bias vectorsb when the vehicle is stationary. In
this situation, the composite state vector reduces to:

X(k) =
[

xT
v
(k) sT

b
(k)

]T
. (47)

The observation model takes the form of (33) withH(k) =[ −Hv(k) Iss
]
. Since the vehicle is stationary, the pre-

dicted covariance matrixP(k|k − 1) for all k is

P(k|k − 1) = P(k − 1|k − 1). (48)

Suppose the initial value of the covariance matrix isP(0|0) =
diag(Pv,Pb), wherePv andPb denote the initial covariance
matrices of the vehicle and the exteroceptive sensor biases
respectively. Using the inverse covariance form of the Kalman
filter (Brown and Hwang 1992; Bar-Shalom and Li 2001),

P−1(k|k) = P−1(k|k − 1)+ HTR−1H. (49)
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Hence when makingk observations,

P−1(k|k) =
[

P−1
v

+ kHT
v
R−1Hv −kHT

v
R−1

−kR−1Hv P−1
b

+ kR−1

]

=
[

A B
C D

]
. (50)

Let P(k|k) =
[

A B
C D

]−1

=
[

P11 P12

P21 P22

]
whereP22 is the

covariance matrix of the exteroceptive sensor biases. Thus
usingP11 = (A − BD - 1C)−1 and similar identities it can be
shown that:

P11 = (P−1
v

+ kHT

v
R−1Hv − kHT

v
R−1

(P−1
b

+ kR−1)−1kR−1Hv)
−1, (51)

P12 = (P−1
v

+ kHT

v
R−1Hv)

−1(−kHT

v
R−1)((kR−1Hv)

(P−1
v

+ kHT

v
R−1Hv)

−1(kHT

v
R−1)− (P−1

b
+ kR−1))−1,

(52)

P21 = PT

12, (53)

P22 = (P−1
b

+ kR−1 − k2R−1Hv

(P−1
v

+ kHT

v
R−1Hv)

−1HT

v
R−1)−1. (54)

Since the value ofP22 is obtained by assuming zero vehicle
and proprioceptive sensor uncertainties, its inverse represents
the maximum information gain conceivable or realizable for
the algorithm. In the limit when a large number of successive
observations are made using on board sensors while the vehi-
cle is stationary, the upper limit of this information gain will
be reached (if a limit exists at all). Conversely, if this finite
limit exists the covariance of the exteroceptive sensor bias
termP22 will reach its lower bound. Therefore this limit, if it
exists, is a lower boundP∗

22 for the covariancePb(k|k) of the
exteroceptive sensor bias term under the given circumstances,
i.e.,

P∗
22 = lim

k→∞
(P22). (55)

The lower bound of the covariance (given by (55)) of the
exteroceptive sensor biases can be obtained in closed form
for the special cases given below.

Case 1: The initial uncertainty of exteroceptive sensor biases
is infinite, i.e., the biases are completely unknown. From (51)
to (55),

Pb(k|k) = lim
Pb→∞

(P∗
22) = HvPvHT

v
. (56)

Therefore, when the bias terms are initially completely un-
known the lower bound of the uncertainty of the exteroceptive

sensor biases isHvPvHT
v
. Hence, the lower bound of uncer-

tainty of the exteroceptive sensor’s biases is determined by the
initial covariance of the vehicle pose or in other words the co-
variance of the vehicle (Pv). On the other hand, if the vehicle’s
starting position is initially known with complete certainty
thenPb(k|k) should reach zero or a value independent of the
initial conditions depending on observability conditions.

Case 2: If the vehicle’s initial position is completely unknown,
such as in the Kidnapped Robot Problem, thenPv → ∞. i.e.,
P−1
v

= 0. After careful rearrangement of terms and simplifi-
cation of eqs (50) to (56), it can be shown that

P22 = Pb. (57)

Hence,Pb(k|k) = Pb for all k.This implies that the uncer-
tainty of the exteroceptive sensor biases cannot be reduced
by observing a known landmark from an unknown vehicle
position while the vehicle is stationary.

These observations can be reiterated for a situation involv-
ing a single degree of freedom MAL problem. Consider the
simplified process and observation models derived in (14)
and (15) and the removal of the proprioceptive bias term in
the state vector as follows:

X(k) = [
xv(k) sb(k)

]T
, (58)

z(k) = [ −1 1
] [

xv(k) sb(k)
]T + L. (59)

By comparing (59) with (33), it may be deduced that in this
caseH = [ −1 1

]
, andHv = 1. Now, using the scalar

forms of uncertainties for the initial covariance matrix ofX(k),
given byP(0|0) = diag(Pv, Pb) and using the standard in-
verse covariance form of the Kalman filter given by (49),

P(k|k) = 1

R + kPb + kPv

[
(R + kPb)Pv kPvPb
kPvPb (R + kPv)Pb

]
,

(60)

Pb(∞) = lim
k→∞

(R + kPv)Pb

R + kPb + kPv
= PvPb

Pb + Pv
, (61)

wherePb(∞) is the steady state error covariance of the ex-
teroceptive sensor bias term for the single degree of freedom
MAL algorithm. The decrease in the bias varianceδPb(∞) is
given by:

δPb(∞) = lim
k→∞

(
Pb − (R + kPv)Pb

R + kPb + kPv

)
= P 2

b

Pb + Pv
> 0.

(62)

Equation (62) suggests that, in the limit, the exteroceptive
sensor bias variance is strictly monotonically decreasing and
is bounded by (61).
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3.3. Observability Conditions

It is always important to know how the choice or design of
observation model and constraints for a given process model
influences the observability of the estimated states. In the fol-
lowing, we analyze the observability conditions of several
scenarios in MAL to gain insight, assess and improve the per-
formance of the estimator. First we analyze the observability
of the 1D MAL formulation wheren landmarks are observed
with biased proprioceptive and exteroceptive sensors. Upon
writing process and observation equations (14) and (15) in
terms of their linearized error states we obtain:

X̃(k) = FX̃(k − 1)+ B
[
v(k − 1) 01×2 [w1 w2 . . . wn]

]T
,

(63)

z̃(k) = HX̃(k)+ Hw

[
v(k − 1) 01×2 [w1 w2 ... wn]

]T
,

(64)

where
[
v(k − 1) 01×2 [w1 w2 ... wn]

]
is the input noise

vector written in terms of the concatenated process and mea-
surement noise terms,

H = [−1n×1 0n×1 1n×1] ,

Hw = [
0n×3 In×n

]
, F =


 1 1 0

0 1 0
0 0 1


 ,

B =
[

1 01×(n+2)

0(n+2)×1 0(n+2)×(n+2)

]

and(1)n1×n2 is a matrix of sizen1 ×n2 with all elements equal
to one.

Now it is possible to compute the observability and con-
trollability Grammians,GO andGC respectively. For linear
time invariant systems such as (63) and (64),GO andGC can
be determined as follows:

GO = [
(HF)T (HF2)T ....... (HFi )T

]T
, (65)

GC = [
B FB F2B ...... Fi−1B

]
, (66)

wherei is the dimension of the state vectorX̃(k). The system
is controllable ifGC has a column rank ofi and observable if
GO has a row rank ofi.

Hence from (63) and (64) it is clear that the rank ofGO is
two and thus it is rank deficient by one. Therefore, the sensor
bias estimation problem in 1D MAL is partially observable.
The second case arises when the bias in the vehicle’s speed
proprioceptive measurement has a random walk behavior as
modeled by (20). In this case,X(k), F, H andz(k) take the
same form as in the previous system ((63) and (64)) with
changes in,

X̃(k) = FX̃(k − 1)+ B
[
v(k) vb(k) 01×(n+1)

]T
(67)

and

B =

 1 0 01×(n+1)

0 1 01×(n+1)

0(n+1)×1 0(n+1)×1 0(n+1)×(n+1)


 .

In this case, the rank ofGO is two, i.e., rank deficient by
one. However, the rank ofGC in this case is two, which is
higher than the rank ofGC in the previous case with the con-
stant bias term. The results also show that the angle between
the controllable and observable subspaces in the previous case
is π

/
2 and in this case isπ

/
4. This implies that corrections

to the state estimate driven by exteroceptive sensor measure-
ment noise could reconstruct the vehicle state more accurately
when the biases are variable as opposed to constant. If the
MAL formulation is partially observable there is a possibility
that the uncertainty in an estimation algorithm may increase
in an unobservable direction. However, according to the anal-
ysis on diminishing uncertainties in Section 3.1, the direction
of degeneracy is not possible along the biases as uncertainties
of biases decrease in each update. Thus, the degeneracy can
possibly occur in the direction of the robot position, resulting
in inaccurate localization. This partial observability situation
in 1D MAL can be rectified by incorporating absolute position
information of the vehicle in the measurement vector. Thus
the observation matrix,H of the fully observable, ID MAL
formulation with sensor biases and observation ofn known
landmarks is:

H =
[ −1n×1 0n×1 1n×1

1 0 0

]
. (68)

In general there are no specific rules governing the observabil-
ity of nonlinear stochastic systems and therefore, it is difficult
to have prior judgments on the viability of 2D MAL with con-
current sensor bias estimation, which is inherently nonlinear.
However, a test similar to the observability analysis of lin-
ear systems may be carried out by linearizing the nonlinear
process and observation models about a state (Southall, Bux-
ton, and Marchant 1998; Reif et al. 1999). Here the rank test
is carried out on an observation matrix constructed from the
Jacobians of the process and observation models which are
assumed piecewise constant. Although this rank analysis is
not always sufficient to ensure observability, it provides the
necessary conditions (Reif et al. 1999).

The observability analysis of the planar (2D) nonlinear
MAL algorithm is carried out by symbolic manipulation of
models (16) to (25) with a single known landmark observa-
tion. The analysis shows that the observability matrix is rank
deficient by 2 (the dimension of the state vector is 7, and the
rank of GO is 5). However, it can be shown that the matrix
GO becomes full rank when observing more than one known
landmark at the same time. Hence, for observability in 2D
MAL, with bias estimation, it is a pre-requisite that at least
two landmarks are observed simultaneously.
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It is important to note that there can be certain condi-
tions that can still prevent the system from achieving full
observability depending on the trajectory of robot and the
relative configuration of observed known landmarks. This
can be explained using the following example. According
to the usual notation, let the robot pose be denoted by
X(k) = [

x(k) y(k) θ(k)
]T

. Assume that the extero-
ceptive sensor on the robot (at locationV ≡ (x, y)) is ob-
serving two known landmarks denoted byLM1 ≡ (x1, y1)

andLM2 ≡ (x2, y2), wherex1, y1 andx2, y2 are the coordi-
nate pairs of the two known landmarks. Assuming the vehicle
location and the exteroceptive sensor coordinates coincide,
the measurement Jacobian,H,when observing both the land-
marks simultaneously, can be expressed as,

H =


�x1

/
�r1 �y1

/
�r1 0 0 0 1 0

−�y1

/
(�r1)

2 −�x1

/
(�r1)

2 −1 0 0 0 1
�x2

/
�r2 �y2

/
�r2 0 0 0 1 0

−�y2

/
(�r2)

2 −�x2

/
(�r2)

2 −1 0 0 0 1




(69)

where�xi = x(k|k− 1)− xi,�yi = y(k|k− 1)− yi,�ri =√
(�xi)2 + (�yi)2 andi is an integer specifying the landmark

being observed. Thus it can be established that when the first
and the third rows or the second and the fourth rows ofH
are equivalent, the observability matrix of the system for this
particular linearization is rank deficient. The conditions for
the linearly dependent rows inH can thus be derived from
(69) as

�x1

/
�x2 = �y1

/
�y2 = �r1

/
�r2, (70)

�x1

/
�x2 = �y1

/
�y2 = (

�r1

/
�r2

)2
. (71)

The conditions stipulated by eq. (70) or (71) occur when the
vehicle position and the landmark locations are on a straight
line. Thus, eq. (70) or (71) establishes that when the vehi-
cle and the two landmarks being observed are on a straight
line the problem of joint estimation of sensor biases (of both
exteroceptive and proprioceptive sensors) and the vehicle
state in MAL is unobservable. Let�xi = xi(k − 1) and
�yi = yi(k − 1) be the x and y coordinates of theith (where
i is any positive integer) landmark being observed, then from
the measurement JacobianH (which can be generalized to
more than two landmarks in the same manner as eq. (69)) we
can obtain the expression for linear dependency as:

�x1

/
�y1 = �x2

/
�y2 = �x3

/
�y3 = · · · = �xn

/
�yn.

(72)

As stated, the condition stipulated by (70) and (71) occurs
when the vehicle and all the landmarks being observed are
on a straight line. Similarly, the condition (72) stipulates that

all observed landmarks and the vehicle are on a straight line.
This demonstrates that even though more than two landmarks
are simultaneously observed, under the condition of (72), the
observability matrix is still rank deficient. This is an important
result, which states that the landmarks need to be observed in
a manner that does not violate the conditions for observability.
Thus it is always desirable to observe as many landmarks as
possible so that at least two landmarks are not on a straight
line with the vehicle location simultaneously in order to retain
the full observability.

3.4. Rates of Convergence of Uncertainties

From the perspective of practical implementation it is impor-
tant to know the rates of convergence of the estimated bias
parameters of the estimation algorithm. The phenomenon of
convergence can be better elucidated by studying the 1D MAL
problem introduced in Section 1.2 using (14) together with
the modified observability matrix of (68) that ensures full
observability.

By employing continuous time equivalents of (14) and (68)
it is possible to obtain a closed form solution for the uncer-
tainty terms of the bias estimates and the vehicle location
estimate. The factors that affect the rates of convergence of
these uncertainties are clearly visible from the closed form
solution. The continuous time process model, of the discrete
time model (14) is:

 ẋv(t)

u̇b(t)

ṡb(t)


 =


 0 1 0

0 0 0
0 0 0





 xv(t)

ub(t)

sb(t)




+

 1

0
0


 [u(t)+ v(t)] (73)

wherexv(t) is the position of the robot,ub(t) is the bias of
the proprioceptive sensor,sb(t) is the bias of the exterocep-
tive sensor,u(t) is the proprioceptive sensor measurement
at time t andv(t) ∼ N(0, q2) represents the proprioceptive
sensor noise and modeling uncertainties, if any. The analo-
gous continuous time state vector of the problem is given by
X(t) = [

xv(t) ub(t) sb(t)
]T

and the observation model
incorporating an external sensor measurement when observ-
ing n landmarks is given by:

z(t) = HX(t)+ [LT 0]T + w(t) (74)

where w(t) ∼ N(0(n+1)×1,R) is the measurement noise,
R = diag(r2, r2, . . . , r2, r2

e
) is the covariance matrix of

w(t), r2 is the variance ofw(t), r2
e

is the variance of the ab-
solute sensor measurement noise,L is the vector ofn known
1D landmarks stored in the map andH is given by (68). Let
P(0) = diag(0, σ 2

bu
, σ 2

bs
) be the initial error covariance matrix

P(t) (model (73)) ofX(t), I be the identity matrix of size 3×3



654 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / July 2006

andσ 2
bu

andσ 2
bs

denote the initial variances of the propriocep-
tive and exteroceptive sensor biases. The initial uncertainty of
the vehicle is assumed to be zero. ThenP(t) is governed by
the continuous time Riccati equation:

Ṗ(t) = FP(t)+ P(t)FT + GQGT − P(t)HTR - 1HP(t)
(75)

whereG = [
1 0 0

]T
and F = [ [0 1 0]T 03×2

]T
.

The solution to this Riccati equation (Brown and Hwang 1992)
is of the formP(t) = M(t)N - 1(t), whereM(t) andN(t) are
as follows:[

Ṁ(t)

Ṅ(t)

]
=

[
F GQGT

HTR - 1H - FT

] [
M(t)

N(t)

]
, (76)

[
M(0)
N(0)

]
=

[
P(0)

I

]
. (77)

Then the characteristic equationC(t) of the system, and the
ith row andj th column elementP(i, j) of P(t) for all i andj
can be obtained by solving (76) and (77) as follows:

C(t) = (
nr2

e
+ r2

)
(nq2r2σ 2

bu
σ 2
bs
(1 − e−αt )2t2

+ ((σ 2
bu
(nr2

e
+ r2)+ nq2σ 2

bs
)(1 + e−2αt )q2r2

+ nr2r2
e
σ 2
bu
σ 2
bs
α(1 − e−2αt ))t)

+ q4r2(nr2
e
+ r2)(1 + e−2αt )

− 2n2r4
e
r2σ 2

bu
σ 2
bs
(1 − e−αt )2

+ r2r2
e
α(n2r2

e
q2σ 2

bs

− r2σ 2
bu
(nr2

e
+ r2))((1 − e−2αt )), (78)

P(1,1) = (
1
/

C(t)
)
(2n2r4

e
σ 2
bs
(1 − e−αt )2

+ r2r2
e
α(nr2

e
+ r2 + nσ 2

bs
t)(1 − e−2αt ))

(q2 + σ 2
bu
t)q2r2, (79)

P(1,2) = (
1
/

C(t)
)
(2n2r4

e
σ 2
bs
(1 − e−αt )2

+ r2r2
e
α(nr2

e
+ r2 + nσ 2

bs
t)(1 − e−2αt ))σ 2

bu
q2r2,

(80)

P(1,3) = (
1
/

C(t)
)
(1 − e−αt )2r2r2

e
q2(nr2

e
+ r2)

(q2 + σ 2
bu
t)nσ 2

bs
, (81)

P(2,2) = (
1
/

C(t)
)
(r2q2(nr2

e
+ r2)(1 + e−2αt )

(nr2
e
+ r2 + nσ 2

bs
t)+ n2r4

e
r2α(1 − e−2αt ))q2σ 2

bu
,

(82)

P(2,3) = (
1
/

C(t)
)
σ 2
bu
σ 2
bs
q2r2r2

e
n(nr2

e
+ r2)(1 − e−αt )2,

(83)

P(3,3) = (
1
/

C(t)
)

(q2(nr2
e
+ r2)(1 + e−2αt )(q2 + σ 2

bu
t)

− r2r2
e
ασ 2

bu
(1 − e−2αt ))σ 2

bs
(nr2

e
+ r2)r2, (84)

α = (q
/
(rre))

(
nr2

e
+ r2

)0.5
. (85)

Here, 1
/
α is the time constant of the decay of the covariance

terms. All the other terms of the covariance matrix can be
derived from (78) to (85) using the symmetry ofP(t). The
eqs (78) to (85) show that the error covariance terms ofX(t)
decay exponentially initially at a time constant of 1

/
α and

then converge asymptotically to the steady state covariance
according to the expressions (78) to (85). This asymptotic
convergence of the error covariance terms can be a disadvan-
tage in actual practice. It may be interesting to note that this
convergence rate is not affected by the biases or their ini-
tial uncertainties and depends only on the proprioceptive and
exteroceptive sensor noise terms, absolute sensor measure-
ment noise term and the number of known landmarks in the
stored map. When the variance of the absolute sensor noise
r2
e

is very large compared tor2 (i.e., the landmark based in-
formation dominates the external sensor based information)

the time constant approaches
√
r2

/
(nq2). In other words, the

smaller the ratio between exteroceptive sensor noise and the
process noise (proprioceptive sensor noise and the modeling
uncertainty) or the larger the number of landmarks observed
simultaneously, the faster will be the convergence of the state
variances to their steady state values. The steady state co-
variance ofX(t),P(∞) can be obtained from (78) to (85) by
taking the limit ast → ∞.Thus it can be seen that all the state
covariance terms, except that of the vehicle position, approach
zero. The vehicle position variance approachesq2

/
α.

Thus we can conclude that the rates of convergence of the
state uncertainties do not depend on the bias parameters or
their initial uncertainties. They depend only on proprioceptive
and exteroceptive sensor noise and the modeling uncertainty.
These theoretically established properties provide useful in-
sight into the problem and are useful in practical applications.

4. Simulations and Experiments

4.1. Simulation of Standard 2D MAL

In this section we consider relevant simulation scenarios to
establish the importance of jointly estimating the biases and
the vehicle state online and also to verify the theoretical find-
ings on the observability, convergence and lower bounds in
the context of MAL.
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The performance of the algorithm for the joint estimation
of the sensor biases and the vehicle state in MAL is ini-
tially evaluated in a simulated 2D planar environment con-
sisting of 25 point landmarks. It is assumed that the vehicle is
equipped with wheel encoders (proprioceptive sensors) and
a laser range-bearing sensor (exteroceptive sensor), such as a
SICK LMS 290 laser measurement system, and is traveling
in an approximately circular path of radius 20 m.

The process and observation models and joint bias and ve-
hicle state estimation formulae for this 2D MAL simulation
are given by equations (16) to (25). The simulated values of
the bias parameters of the sensors are: LMS range bias of 0.5
m, angle bias of 2˚, speed sensor input bias of 0.25 m/s and
steering input angle sensor bias of 1˚ and random noise se-
quences with variances 0, 0, 0.0004 m2/s4 and 4× 10−6rad2/s2

respectively. The update rate of all sensors is 10 Hz.
At the outset, it is important to state that when there are

biases in the sensors and no bias estimation is utilized it is
almost impossible to estimate the vehicle pose consistently.
Figures 2(a) to (h) show simulation results of MAL with the
online joint estimation and correction of biases. The results
clearly show that MAL works well with the online joint sen-
sor bias estimation with ever diminishing uncertainties of the
bias estimates, as established in the theoretical discussion in
Section 3.1. The graphs in Figures 2(g) and (h) also show that
the uncertainties of the bias estimates reach a lower bound.
In particular, the convergence of the estimated bias parame-
ters to the actual values establish that in the 2D MAL case,
observing two or more landmarks makes the system fully ob-
servable as established in Section 3.3, obviating the need for
any absolute sensor such as a GPS. Figure 3 shows the average
value of the normalized estimation error squared (NEES) at
each time step, for a 100 run, Monte-Carlo simulation. As the
sample average is within the 95% confidence region with the
expected probability, it can be concluded that the estimator is
consistent.

4.2. Use of Inertial Sensors in MAL

The application of online bias estimation is most important
when using inertial sensors in MAL. With the advent of low
cost (strap down) inertial sensors, use of inertial sensor suites
in many autonomous underwater and land navigation systems
has become economically viable. These sensor suites are es-
sential in field robotics where extensive uneven terrain has to
be explored and mapped. The ability to navigate in 3D ter-
rain and the fact that the localization solution can be obtained
independently of vehicle’s kinematic model are some of the
benefits of using inertial sensors in MAL. However, the major
disadvantage of inertial sensor suites especially the low cost
strap down variety, is their inherent sensor biases, drifts and
scale factors. Random walks and time varying biases present
in gyros (angular rate) and acceleration inertial sensors (Gre-
wal, Weill, and Andrews 2001), cause the offline calibration
methods to be less effective.

We demonstrate how the theoretical results, discussion and
the principles given in Section 3 can be extended for the case
of joint online estimation of biases in inertial sensors used
for MAL. The autonomous vehicle used is shown in Figure 4.
To keep the explanations and derivations simple it is assumed
that the vehicle is moving on a flat horizontal planar surface
and that the inertial sensor assembly is mounted at or near the
center of gravity (COG) of the vehicle.

The vehicle motion is referenced to a global coordinate
frame, which is the earth reference frame or the navigation
frame{n} forming a right handed orthogonal set of axes NED
(North, East and Down) as shown in Figure 5. The vehicle
body reference frame{v} has its origin at the COG of the
vehicle with its X-axis in the direction of heading and the Y-
axis and Z-axis as shown in the Figure 5. The proprioceptive
sensor or the inertial measurement unit’s (IMU) coordinate
frame is coincident with the vehicle frame {v}. The vehicle’s
orientation (i.e., orientation of vehicle body frame {v}) is
therefore represented using the three Euler anglesφ (rotation
about vehicle X axis or roll),θ (rotation about vehicle Y axis
or pitch) andψ (rotation about vehicle Z axis or yaw) as
shown in Figure 5. Now if the vehicle is confined to move on
a flat horizontal plane and its position in X andY coordinates
and velocities in the X, Y and Z directions, with respect to
the global navigation frame {n}, are xn

v
, yn

v
, vn

x
, vn

y
andvn

z

respectively, then the whole process statex(k) incorporating
the vehicle statexv(k) and the biases in the inertial sensor is:

x(k) = [
xTv (k) (bv(k))T

]T
xv(k) = [

xn
v
yn
v
vn
x
vn
y
vn
z
φ θ ψ

]T
bv(k) = [

bv
xa
(k) bv

ya
(k) bv

za
(k) bv

xω
(k) bv

yω
(k) bv

zω
(k)

]T
(86)

wherebv(k) is the vector of biases of the IMU and its ele-
mentsbv

xa
, bv

ya
, bv

za
, bv

xω
, bv

yω
andbv

zω
represent the biases in

the linear acceleration measurements (av
x
, av

y
andav

z
) and the

angular velocity measurements (ωv
x
, ωv

y
andωv

z
) with respect

to the vehicle body frame {v}. Let ηv
xa
, ηv

ya
, ηv

za
, ηv

xω
, ηv

yω
and

ηv
zω

denote the assumed temporally uncorrelated noise terms
of the measurementsav

x
, av

y
, av

z
, ωv

x
, ωv

y
andωv

z
respectively.

Let ηn
x

andηn
y

represent the modeling uncertainties of the ve-
hicle’s (x, y) position with reference to the navigation frame
{n}.We assume that the vehicle state and the bias state evolve
as follows:

[
xn
v
(k)

yn
v
(k)

]
=

[
xn
v
(k − 1)+�tvn

x
(k − 1)

yn
v
(k − 1)+�tvn

y
(k − 1)

]

+
[
ηn
x

ηn
y

]
, (87)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 2. Graphs (a) and (b) show the 2D MAL, localization error in x and heading with online bias estimation. Graphs (c), (d),
(e) and (f) show sensor bias estimates. Graphs (g) and (h) show the variation of the standard deviation of the sensor biases.
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Fig. 3. The sample average values of the NEES for a 100 run
Monte-Carlo simulation in 2D MAL. The dotted lines show
the 95% confidence regions.

Fig. 4. The autonomous vehicle used in MAL experiments.
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(88)

φ(k) = φ(k − 1)+ ((ωv
x
+ bv

xω
(k − 1)+ ηv

xω
)

+ ((ωv
y
+ bv

yω
(k − 1)+ ηv

yω
)(sinφ(k − 1))

+ (ωv
z
+ bv

zω
(k − 1)+ ηv

zω
) cos(φ(k − 1)))

tan(θ(k − 1)))�t, (89)

θ(k) = θ(k − 1)+((ωv
y
+ bv

yω
(k − 1)+ ηv

yω
) cos(φ(k − 1))

− (ωv
z
+ bv

zω
(k − 1)+ ηv

zω
) sin(φ(k − 1)))�t, (90)

ψ(k) = ψ(k − 1)+ ((ωv
y
+ bv

yω
(k − 1)+ ηv

yω
)

sin(φ(k − 1)) sec(θ(k − 1)))�t

+ ((ωv
z
+ bv

zω
(k − 1)+ ηv

zω
) cos(φ(k − 1))

sec(θ(k − 1)))�t, (91)

bv(k) = Abbv(k − 1)+ cv
b
+ ηηηv

b
, (92)

Cvn =

CθCψ −CφSψ + SφSθCψ SφSψ + CφSθCψ
CθSψ CφCψ + SφSθSψ −SφCψ + CφSθSψ
−Sθ SφCθ CφCθ


 .

(93)

Here�t is the sampling time of the inertial sensor,g is the
gravitational constant,Cvn is the rotational matrix describing
the orientation of the vehicle frame{v} with respect to the
navigation frame{n}, andCx = cos(x) andSx = sin(x) for
x ∈ {φ, θ, ψ}. Ab is a 6× 6 diagonal matrix,cv

b
is a 6× 1

constant vector andηηηv
b
is a 6×1 temporally uncorrelated noise

vector with covarianceQb (diagonal matrix). The values of
Ab, cv

b
andQb can be experimentally determined. To account

for the offsets and drifts in the bias phenomena of inertial
sensors, they are modeled as given by (92). Equation (92)
is able to accommodate exponential variation (Barshan and
Durrant-Whyte 1995) of biases or a constant but unknown
component and a random walk component (Grewal, Weill,
and Andrews 2001). The error models of the gyroscopes and
the accelerometers are given by (94) and (95):

ωωωi/p = Mgyro

(
ωωωo/p +ωωωbias

) + ηηηω, (94)

ai/p = Macc

(
ao/p + abias

) + ηηηa, (95)

whereωωωi/p is the actual input rotational rate vector,ωωωo/p is
the measured rotational rate vector

[
ωv
x
, ωv

y
, ωv

z

]T
, ωωωbias is

the three axis gyro bias vector
[
bv
xω
bv
yω
bv
zω

]T
,ηηηω is the gyro-

scope measurement noise vector
[
ηv
xω
, ηv

yω
, ηv

zω

]T
, ai/p is the
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Fig. 5. Reference coordinate frames.

actual input acceleration vector,ao/p is the measured acceler-
ation vector

[
av
x
, av

y
, av

z

]T
, abias is the acceleration bias vector[

bv
xa
bv
ya
bv
za

]T
,andηηηa is the accelerometer measurement noise

vector
[
ηv
xa
, ηv

ya
, ηv

za

]T
. Mgyro andMacc are 3×3 matrices used

for scale factor and misalignment compensation of the gyro-
scopes. The scale factor matrices are assumed to be identity
matrices. Now the complete process model of the system can
be expressed as:

x(k) = f(xv(k − 1),uv(k − 1),bv(k − 1),ηηη(k − 1)) (96)

whereuv(k − 1) = [av
x
av
y
av
z
ωv
x
ωv
y
ωv
z
] andf(.) is given by

the concatenated right hand sides of the equations (87) to (92)
andηηη is a zero mean process noise sequence.

The covarianceQ(k) representing the entire noise charac-
teristics of the measurements and biases of the IMU is given
by:

Q(k) =
(
∂f
∂uv

)
Qu

(
∂f
∂uv

)T

+

 Qxy 02×6 02×6

06×2 06×6 06×6

06×2 06×6 Qb



(97)

whereQu andQxy are zero mean diagonal noise covariance
matrices of the concatenated IMU measurement noise vec-
tor, [ηv

xa
ηv
ya
ηv
za
ηv
yω
ηv
yω
ηv
yω

]T and the vector representing the
modeling uncertainty[ηn

x
ηn
y
]T respectively.

In the following, the observation model is determined for
the case of a vehicle moving on a horizontal plane whilst mak-
ing measurements to point landmarks. It is assumed that the

features, or landmarks are observed using an onboard extero-
ceptive sensor, such as a 2D range-bearing sensor. As shown
in Figure 5, the exteroceptive sensor’s frame{s} is assumed
to be aligned but not coincident with the vehicle frame{v}.
Let xv

s
represent the exteroceptive sensor’s position in the ve-

hicle frame{v}, xn
s

the exteroceptive sensor’s position in the
navigation frame{n}, andxn

v
the vehicle’s coordinates in the

navigation frame{n}. Let xn
L

represent the coordinates of a
point landmark in{n}, andxs

L
= [

Lx Ly Lz
]T

its co-
ordinates in the exteroceptive sensor’s frame{s}. Since it is
assumed that the vehicle moves on a flat horizontal plane
whose elevation is known, the z coordinates of the position
vectorsxv

s
, xn

s
, xn

v
, and xs

L
are known a priori. SinceCvn is

the relative orientation between{v} and{n}, and there is no
relative orientation between{v}, and{s}, we have

xn
s

= xn
v
+ Cvnxv

s
, xs

L
= (Cvn)

T
(xn

L
− xn

s
). (98)

Now, it is straightforward to show that the observation model
for a single landmark observation from the range-bearing sen-
sor is,

z(k) =
[ √

L2
x
+ L2

y

tan−1
(
Ly

/
Lx

) + π
/

2

]
. (99)

The observation model of (99) can be easily generalized to
any number of landmarks by concatenating the observation
vector with the relative measurements to the landmarks.

The prediction and update equations of MAL are similar
to (7) to (13). Since the vehicle is assumed to be moving
on a horizontal plane and there is no side slip, the vehicle
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motion in the X andY axis in its frame{v} will be zero. These
nonholonomic constraints (i.e.,vv

y
= 0, andvv

z
= 0) are also

used as virtual observations in the joint online bias estimation
process (Koifman and Bar-Itzhack 1999; Bingbing andAdams
2005). Now the vehicle’s velocity vector, referenced to its
frame{v}, can be expressed as:[

vv
x
vv
y
vv
z

]T = (Cvn)
T
[
vn
x
vn
y
vn
z

]T
, (100)

vv
y

= 0 + η,
x

(101)

vv
z

= 0 + ηz, (102)

whereηx andηz are Gaussian noise sequences, which model
any violation of the nonholonomic constraints.

As discussed earlier, it makes sense to investigate the ob-
servability of the system in the presence of biases before any
attempt is made to estimate the parameters online. In IMU
aided MAL with joint estimation of inertial bias parameters
and the vehicle state, there are in all 14 state variables in
the system state; 8 describing the vehicle state, and 6 corre-
sponding to the biases in the inertial sensor. Therefore, for
complete observability of the vehicle states and inertial bias
parameters the rank of the observability Grammian of the sys-
tem ((86) to (102)) must be 14. The observability of the system
((86) to (102)) is investigated by symbolic manipulation with
and without the imposition of the nonholonomic constraints
and a varying number of landmarks in the MAL state vector.
The symbolic analysis is verified through empirical runs of
the joint bias and vehicle state MAL estimation algorithm.
When the nonholonomic constraints ((100) to (102)) are not
imposed the rank of the observability matrix is 9. However,
when observing two landmarks (with corresponding change
in the observation model (99)), the rank increases from 9 to 11.
Increasing the observed landmarks to three and beyond only
increases the rank to a maximum of 12. That is despite being
able to observe more than three landmarks the observability
Grammian still remains rank deficient by 2. As expected, in
the given setting the required full rank of 14 is only achievable
through the imposition of the nonholonomic constraints (as
virtual observations) as there is no sensor providing informa-
tion about the Z-dimension. Furthermore, close examination
of the observability Grammian of the system when observing
two landmarks reveals that there is little chance that equa-
tions such as (70) and (71) are satisfied simultaneously, which
makes the system unobservable. This is because the number of
conditions that must be simultaneously satisfied for the rows
of the measurement Jacobian of (99) to be linearly dependent
is larger than in the case of the measurement Jacobian (69)
for standard 2D MAL with bias estimation.

It is important to note that given a 3D sensor, such as a 3D
laser measurement system or a stereo vision system, it would
be straightforward to incorporate the Z-dimension of the ve-
hicle location coordinates and landmark coordinates in the
formulation and hence, relax the assumption of a flat surface.

4.3. Simulation of IMU Aided MAL

The properties of the online bias estimation and correction
problem in IMU aided MAL is studied by conducting sim-
ulations in a planar environment consisting of several point
landmarks (Figure 6). The vehicle is assumed to make sev-
eral rounds in an approximately elliptical path at a forward
speed of approximately 4 m/s. As described in Section 4.2,
a 2D range-bearing sensor and an IMU (three axis angular
rate and linear acceleration measurements) are assumed to be
onboard the vehicle. The gyro (rate sensor) and acceleration
bias parameters in all three axes of the IMU are set to constant
values of 1.50s−1 and 12 mg respectively. The random walk
components due to the biases in the gyro and accelerometer

of the IMU are set to 4.50
/√

hr and 0.1 ms−1
/√

hr respec-

tively. The sampling rates of the range-bearing sensor and the
IMU were set to 10 Hz and 50 Hz respectively.

Figures 7(a) and (b) show the localization error distribu-
tions of IMU aided MAL with online bias estimation. The
results of the estimation of the bias parameters and their un-
certainties in the IMU are shown in Figures 8 and 9. It can be
seen that both localization errors and uncertainty (variance)
in the biases are bounded by the 2σ limits demonstrating the
filter’s consistency. In general, it may be noted that the uncer-
tainties or variances of the estimated bias parameters settle to a
lower bound as predicted by the theory detailed in Section 3.2.

The random walk behavior in the biases and the intermit-
tent unavailability of observations cause the uncertainty in the
biases to increase at certain instances (Figures 8(a), (c), (e)
and 9(a), (c) and (e)). For example, all but the uncertainty of

Fig. 6. IMU aided MAL simulation. The estimated path is
shown by the darker dashed line and the true path is shown
by the lighter solid line. The true landmarks and estimated
landmarks are shown as circles and crosses respectively.
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(a) (b)

Fig. 7. Localization errors of X, Y coordinates of vehicle in navigation frame in IMU aided MAL.

bv
za
(k), increase at time instances 40 s, 100 s, and 180 s due

to inadequate landmark measurement updates at these times.
The decrease in the uncertainty ofbv

za
(k) is due mainly to in-

formation available via nonholonomic constraints (or virtual
observations) at all times regardless of whether landmarks
are observed or not. Figure 10 shows the average value of
the normalized estimation error squared (NEES) at each time
step for a 100 run Monte Carlo simulation of the IMU aided
MAL. Since the state vector for IMU aided MAL with con-
current bias estimation described here consists of 14 states,
the chi-square 95% confidence limits are 13.14 and 14.88.
As the sample average is within the 95% confidence region
with the expected probability, it follows that the estimator is
consistent.

Figures 11, 12 and 13 show the results obtained assum-
ing that the constant bias terms are known a priori, which
in effect simulates the offline calibration and initialization of
biased sensors. The parameters used in Section 4.2 to model
the random walk behavior of biases are used in the simu-
lations. It is noted that the estimation errors in the velocity
(Figure 11) and location (Figure 12) diverge shortly after ini-
tialization.The rapid divergence of the errors is mainly a result
of data association failures. Variations in the inertial biases
cause measurements to fall outside the validation regions of
predicted landmarks thus resulting in data association fail-
ures. Figure 13 shows the sample average of the normalized
state estimation squared error plot for 50 Monte-Carlo runs.
Since the full state vector excludes the constant bias terms (as-
sumed known a priori through offline calibration), it has eight
components. Hence, the chi-square 95% confidence limits are
5.22 and 6.83. It is observed that the sample average of NEES
diverges from the 95% confidence region demonstrating the
inconsistency of the filter.

Table 1 shows how the divergence rate is affected by the
variations of biases due to increasing random walk behavior.
It is however, assumed that the constant bias terms are known
a priori. The results suggest that offline calibration, initializa-
tion and resetting can only be effective for short periods of
time and for small variations in the biases.

4.4. Experiments

Experimental evaluation of IMU aided MAL with on-line
inertial bias estimation, was carried out using an in-house
built autonomous vehicle shown in Figure 4. The vehicle
is equipped with an uncalibrated IMU (Crossbow DMU-
AHRS), which is fixed to the vehicle frame as discussed
in Section 4.2. A SICK LMS 290 range-bearing measure-
ment sensor is used as the exteroceptive sensor. The sampling
rates are 100 Hz and 10 Hz for the inertial sensor and the
range-bearing sensor respectively. The speed of the vehicle
was maintained at approximately 4 m/s. The centroid of a set
of contiguous laser range points (cluster) at constant depth
is chosen as a point feature. These clusters are formed from
a laser scan using a simple clustering strategy based on the
distance between contiguous and adjacent range points. The
adjacent range points in a scan, which are within a certain
distance threshold among each other, are clustered. If an ad-
jacent range point is far from the current cluster, a new cluster
is created. Now the centroid of each cluster is taken as the
coordinates of the point feature or landmark. This simple dis-
tance based clustering is appropriate for range scans which
give range and bearing values consecutively. It is observed
in our experiments that the method of clustering can easily
identify trees, lamp posts and other rigid objects in an out-
door setting.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Estimation of the accelerometer biases and their uncertainties in IMU aided MAL.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Estimation of the gyro biases and their uncertainties in IMU aided MAL.
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Fig. 10. The sample average values of the NEES for a 100 run Monte-Carlo simulation in IMU aided MAL. The 95%
confidence regions are shown in dotted lines.

(a) (b)

Fig. 11. Velocity estimation errors in MAL with offline calibration.

Table 1. Rates of Divergence of the Algorithm

For constant rate sensor noise For constant accelerometer noise

Accelerometer Rate Sensor
Bias Random Time to Bias Random Time to
Walk ms/

√
hr Diverge (s) Walk (0/

√
hr) Diverge (s)

0.02 521 1 480
0.04 345 2 295
0.06 172 3 195
0.08 110 4 95
0.10 63 4.5 63
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(a) (b)

Fig. 12. Location estimation errors in navigation frame in MAL with offline calibration.

Fig. 13. Normalized state estimation squared error for 50
Monte-Carlo runs in IMU aided MAL with offline calibra-
tion. The 95% confidence regions are shown as dotted lines.

The experiment was conducted in a car park, where the
surface is relatively flat and horizontal. The stored or a priori
map is created manually by measuring the locations of a set
of features, such as lamp posts and trees, in the area with
respect to a predefined earth fixed navigation frame. The small
circles in Figure 14 show the locations of the hand-measured
features (true landmarks). The vehicle starting location is also
measured by hand with reference to the navigation frame. The
solid line in Figure 14 shows the estimated vehicle path when
performing IMU aided MAL with online bias estimation. The
crosses indicate landmarks observed and associated with the
a priori map features (shown by the circles) when the vehicle
is at the position indicated by the solid rectangle. The dotted
line in Figure 14 represents the estimated vehicle path without
online bias estimation. It is observed that there is a significant

loop closing error with no online bias estimation in inertial
aided MAL. Overall, it is clear from Figure 14 that without
online bias estimation (correction) the location estimates are
significantly erroneous.

The experimental results demonstrate that given sufficient
number of landmark observations, the biases in the gyros and
accelerometers can be jointly estimated with vehicle state on-
line, without the aid of an absolute position sensor, such as
GPS, which provides absolute information. These experimen-
tal results concur with the theoretical result governing full ob-
servability (Section 3.3) of inertial aided MAL with the online
estimation of biases. The estimated acceleration and rate sen-
sor biases and their 2σbounds are shown in Figures 15, 16, 17
and 18 respectively. It is observed that uncertainties in biases
diminish with updates over time and approach lower bounds,
in agreement with the theory (Sections 3.1 and 3.2). The re-
sults also imply that observing enough landmarks which do
not satisfy equations (70) and (71) is sufficient to make the
otherwise unobservable IMU aided MAL with bias estima-
tion observable. The initial constant components and the as-
sociated noise components of the inertial sensor biases are
also estimated using offline methods described in Barshan
and Durrant-Whyte (1995). As described in this work the
data are obtained when the vehicle is stopped or stationary.
It is estimated that on average the initial bias components
of the accelerometers in the x, y and z axes directions are
0.075 ms−2, 0.08 ms−2, and 0.08 ms−2 respectively, and in
the gyro 0.02 rad/s in all three axes directions. These results
(Figures 14 to 18) are quite close to the values obtained in the
MAL experiments involving online bias estimation.

5. Conclusions

In map aided localization the biases of proprioceptive and
exteroceptive sensors can impair the viability of the estima-
tion algorithm or compromise its performance. Standard brute
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Fig. 14. IMU aided MAL with and without online bias
estimation. The estimated paths with and without online bias
estimation are shown by solid and dotted lines respectively.
The vehicle at a particular instant is shown by the solid
rectangle.

B
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Fig. 15. Estimated accelerometer biases.

force practices of calibrating or initializing sensors or estimat-
ing biases offline can in certain situations offset localization
errors in MAL. However, these require longer setup times and
periodic resetting of sensors rendering such techniques much
less desirable in many practical applications, such as in au-
tonomous navigation tasks.An effective and efficient method-
ology to alleviate problems in MAL due to sensor biases is
to jointly estimate bias parameters of sensors with the vehi-
cle state and apply corrections online. In this paper, such an

Fig. 16. Estimated rotational rate sensor biases.

Fig. 17. Estimated 2σ uncertainty bounds of accelerometer
biases.

approach was investigated in detail. The elaborate theoretical
analysis, simulations and experimental results have provided
valuable insight to the problem and established useful prop-
erties of the solution.

In the joint estimation of sensor biases in MAL, it is es-
tablished that uncertainties of estimated errors in the bias pa-
rameters of both the proprioceptive and exteroceptive sensors
diminish in each successive update and approaches a lower
bound. This result is important in that it gives assurance that
the accuracy of estimated biases improves at each update. As
more and more measurement updates are incorporated, the
bias parameters are determined with greater accuracy thereby
guaranteeing accurate localization results regardless of the
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Fig. 18. Estimated 2σ uncertainty bounds of rotational rate
sensor biases.

unknown biases in the sensors. The fact that the uncertain-
ties of sensor biases have lower bounds enables us to estimate
the bounds in localization accuracies, which is useful in any
practical application of MAL.

Although often neglected in the literature on map aided
localization, observability is a major issue when it comes to
guaranteeing accurate localization. To ensure full observabil-
ity in 2D, nonlinear MAL with online bias estimation, it is
necessary to observe at least two landmarks, which are not
simultaneously collinear with the vehicle position. In order to
guarantee observability in IMU aided MAL with online bias
estimation, it is necessary to observe at least two landmarks
and simultaneously apply the nonholonomic constraints (vir-
tual observations). It is important to note that observing two
or more landmarks alone is not sufficient to ensure full ob-
servability. In all the above cases it was verified through sim-
ulations and experiments that satisfaction of the full observ-
ability conditions ensured consistent estimation of the bias
parameters of the sensors and vehicle states, yielding accu-
rate localization results. Moreover, given the a priori land-
mark map, these observability conditions enable a vehicle to
plan its trajectory so as to guarantee the observability of the
unknown bias parameters and thereby ensure correct vehicle
localization.

The rate of convergence of the uncertainties, i.e., speed
at which estimated quantities approach their true values, is
also a vital indicator of algorithm performance, especially for
real-time applications. For the linear 1D case, it is established
that a smaller ratio between exteroceptive sensor noise and
process noise (proprioceptive sensor noise and the modeling
uncertainty) or a larger number of simultaneously observed
landmarks, will result in faster convergence of the state vari-
ances to their steady state values. This result is helpful when

selecting sensors based on their bias and noise characteristics
and also the density of landmarks in the stored map. These
observations about uncertainty variations are made even for
nonlinear 2D models employed in standard MAL and INS
aided MAL.

In conclusion, the theoretical findings and results substan-
tiated by simulations and experiments provide greater insight
into the problem of estimation theoretic bias correction in
map aided localization. The investigations pave the way for
the improved design and judicious choice of process and ob-
servation models and the selection of appropriate sensors for
the enhanced performance of localization algorithms depend-
ing on the requirements of the mobile robot application.

Appendix

A matrix Anxn is known to be PSD ifxTAx � 0, for all non
zeroxnx1such thatx ∈ Rn.

Properties of the PSD Matrices

If Anxn andBnxn are PSD matrices, then:

1. A + B is PSD

2. AB is PSD

3. Diagonal entries ofA are nonnegative

4. det(A + B) � det(A)+ det(B)

5. Any principal sub matrix ofA is PSD
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