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Abstract— Notable problems in Simultaneous Localization 
and Mapping (SLAM) are caused by biases and drifts in both 
exteroceptive and proprioceptive sensors. The impacts of 
sensor biases include inconsistent map estimates and 
inaccurate localization. Unlike Map Aided Localisation with 
Joint Sensor Bias Estimation (MAL-JSBE), SLAM with Joint 
Sensor Bias Estimation (SLAM-JSBE) is more complex as it 
encompasses a state space, which increases with the discovery 
of new landmarks and the inherent map to vehicle correlations. 
The properties such as observability, error bounds and 
convergence rates of SLAM-JSBE using an augmented 
estimation theoretic, state space approach, are investigated 
here. SLAM-JSBE experiments, which adhere to the derived 
constraints, are demonstrated using a low cost inertial 
navigation sensor suite. 

Index Terms— bias estimation, mapping, Robot localization  

NOMENCLATURE 

MAL     Map Aided Localization. 

SLAM    Simultaneous Localization and Mapping. 

JSBE  Joint Sensor Bias Estimation. 

MAL-JSBE  Map Aided Localization with Joint Sensor 
Bias Estimation. 

 
SLAM-JSBE  Simultaneous Localization and Mapping 

with Joint Sensor Bias Estimation. 

1D      Single degree of freedom. 

2D      2 degrees of freedom. 

IMU     Inertial Measurement Unit 

LMS     Laser Measurement System 

nI      Identity matrix of size n n×  

n0      Square matrix of size n n×  with all zero   
      elements 

m n×λ     Matrix of size m n×  with every element is 
λ  

I. INTRODUCTION 
AL or map aided localization is the process of a 

vehicle localizing itself at all times, assuming that 
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prior environmental knowledge is available. In [15], the 
authors provided an extensive theoretical analyses and 
important results of the problem of Map Aided Localization 
with Joint Sensor Bias Estimation (MAL-JSBE). 

As opposed to MAL, SLAM does not presuppose the 
availability of an a priori map, but with the aid of the 
robot’s onboard exteroceptive and proprioceptive sensors, 
attempts to incrementally build a feature map of the robot’s 
environment and use this to localize the robot. Works [4], 
[16] and [17] provide rigorous analyses of the convergence 
of uncertainties, rates of convergence and observability 
properties of the estimation theoretic, Extended Kalman 
Filter (EKF) based standard SLAM algorithm.  

Even though, SLAM has stimulated considerable interest 
in the mobile robotics community, as evident from the 
plethora of SLAM formulations, algorithms and 
implementations reported in the literature, the effects and 
implications of exteroceptive and proprioceptive sensor 
biases on SLAM have been largely ignored. The 
propagation of sensor errors (both systematic and random) 
in SLAM often results in inaccurate localization estimates 
(as in MAL) as well as inconsistent maps. It is noted in [1] 
that as more features are added to the map, the inherent 
map-to-vehicle correlations results in the spread of bias 
errors throughout the map causing the EKF-SLAM filter to 
diverge. Time varying biases arising from modeling errors, 
sensor biases and imperfect calibrations also contribute to 
map divergence even if the sensors are accurately initialized 
or calibrated prior to their use. The cumulative effects of 
sensor biases and modeling offsets often cause significant 
problems in large-scale SLAM implementations. 
Furthermore, it is also observed in [1] that bias errors 
significantly impair tracking accuracy and data association 
in the context of the SLAM problem. In summary, it can be 
conjectured that the negative impacts of bias errors on 
SLAM are significant and more adverse than on MAL. In 
this paper we extend our work on MAL-JSBE [15] to 
SLAM-JSBE, verify the results through simulations and 
experimental results, and compare the theoretical results 
obtained with those of [4], [15], [16] and [17]. 

Works [2], [3], [13] and [15] review the various sensor 
bias estimation techniques and their merits and demerits. 
Although, offline calibration of a sensor can minimize the ill 
effects of its bias, the process results in longer set-up and 
processing times. Moreover, these calibrations are not 
effective in the long run if the biases are subject to frequent 
changes and drifts. This motivates one to model and on-line 
estimate sensors’ bias parameters jointly with the vehicle 
and map states using an augmented state space approach [5]. 
In [6], Okkello and Challa describe a radar bias estimation, 
joint registration and track-to-track fusion method based on 
measurements collected from geographically separated radar 
trackers, whose locations are fixed. In a similar vain, we use 
the augmented state vector method for the joint estimation 
of sensor biases, vehicle localization and map estimates 
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using an estimation theoretic framework. 
Section II, discusses the properties of the 1D SLAM-

JSBE problem. Section III, investigates the properties of the 
2D SLAM-JSBE problem. Section IV discusses IMU aided 
SLAM-JSBE and provides experimental results utilizing an 
IMU and other sensors. Section V concludes the work. 

II. BIAS CORRECTION IN THE SINGLE DEGREE OF FREEDOM 
SLAM PROBLEM 

A. Problem Formulation 
To better appreciate the effects of sensor biases and 

it’s analysis in the context of the SLAM problem, we start 
off with the simple 1D SLAM problem. 1D SLAM problem 
([16]) is a linear estimation problem. Let the location of the 
vehicle and vehicle’s proprioceptive and exteroceptive 
sensors’ biases at time k  be ( ),vx k  ( )bu k  and ( )bs k  
respectively. The augmented process model (incorporating 
the unknown sensor bias parameters) for 1D SLAM-JSBE 
and the corresponding measurement model, when observing 
n landmarks are 

( 2) 1 ( 2) 1

( 1) ( 1)
( ) ( 1)FX X 0 0n n

u k v k
k k

+ × + ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

− −
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( ) ( ) ( )Hz X wk k k= +                               (2) 
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and .( ) ( ) ( ) ( ) ( )T TT
v b bk x k u k s k k⎡ ⎤⎣ ⎦=X m The 

proprioceptive sensor input is ( 1)u k − ,  the proprioceptive 
sensor input noise is 2( 1) (0, )v k N q− ∼ , the measurement 
noise is 2

1( ) ( , )n nk N r×w 0 I∼ . 2q  and 2r  are the variances 
of ( )v k  and the exteroceptive measurement noise when 
observing one landmark. ( )km  is the n landmark map state 
of 1D landmark locations. 

B. Observability Conditions in 1D 
Observability is one of the important requirements as far 

as the choice of a process model and an observation model 
for an estimation theoretic algorithm is concerned. With the 
usual notation (1) and (2) in terms of linearized error states 
are as follows.  

1 ( 2)( ) ( 1) ( 1) ( )X FX B 0 w
TT

nk k v k k× +⎡ ⎤= − + −⎣ ⎦
� �            (3) 

1 ( 2)( 1)( ) ( ) ( )0z HX H w
TT

w nv kk k k× +⎡ ⎤−⎣ ⎦= +��
       

(4) 

( )kX�  and ( )kz�  denote the error of actual and estimated 
states of ( )kX  and ( )kz  respectively. Observability and 
controllability Grammians GO  and .GC  for linear time 
invariant systems such as (3) and (4) are as follows  

( ) ( ) ....... ( )2G HF  HF  HF
TT T i T

O ⎡ ⎤= ⎣ ⎦              (5) 

2 1......G B  FB  F B   F Bi
C

−⎡ ⎤= ⎣ ⎦                    (6)  

where i is the dimension of the state vector ( ).X k� The 

system is controllable if CG  has a rank of i and observable 

if OG  has a rank of i. Now Image( )CG  and Image( )T
OG  

(where Image( )X  denotes a basis of the image of the vector 
space of X ) can be obtained from (3)-(6). Hence from the 
Image( )T

OG  it follows that the rank of the observability 
Grammian is n+1. Thus, the 1D SLAM-JSBE is partially 
observable as in the case of 1D MAL-JSBE [15] and 1D 
SLAM [17]. This partial observability can be expressed in 
terms of an angle ψ  which is the angle between the 
controllable and observable subspaces. It is important to 
note that assuming a known initial state does not affect the 
observability results, since history of measurements are not 
uniquely related to the initial state in an unobservable 
system.  
Result 1: The angle, ψ  between the controllable and 
observable subspaces in 1D SLAM-JSBE is a function of 
the number of landmarks in the map only and is given 
by  

( )1cos (2 1)n nψ −= +                        (7) 

It may be noted that ψ  is a monotonically decreasing 
function of n, and as such as the number of observed 
landmarks increase, the observable subspace gets closer to 
the controllable region of the state space. However, ψ  
cannot be reduced below 4.π   

As emphasized in [10], another important scenario is 
when the proprioceptive sensor bias exhibits random walk 
behavior which is often present in common rate sensors. In 
such a scenario, ( ),X k  F, H  and ( )z k  take the same form 
as in (3) and (4), however the linearized error state is now, 

1 ( 1)( ) ( 1) ( 1) ( 1) ( )
TT

b nk k v k v k k× +⎡ ⎤= − + − −⎣ ⎦X FX B    0   w� �   (8) 

where, the noise ( )bv k  in proprioceptive sensor bias term is 
zero mean Gaussian. As before for this system we can 
obtain the Image( )GT

O  and Image( )CG  and hence show 

that the rank of GT
O  is n+1, and thus is rank deficient by 2.   

The angle between any two subspaces F  and G   with FQ  
and GQ  as orthonormal bases is given by the inverse cosine 

of the smallest singular value of T
F GQ Q . Using this result it 

is possible to verify that in this case too, the angle between 
the controllable and observable subspaces, ψ  resembles the 
expression (7). One way to achieve full observability of the 
1D SLAM is to incorporate a known landmark observation 
and the absolute position information of the vehicle as 
measured by an absolute position measurement sensor 
system, such as GPS, in to the measurement vector. The 
observation matrix H  of 1D SLAM-JSBE when observing 
n unknown landmarks, one known landmark and the 
absolute vehicle position would then be 

1 1 1

1

1

1 0 1
1 0 0

n n n n

n

n

× × ×

×

×

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

1 0 1 I
H 0

0
                  (9) 

In this instance it can be easily verified that T
OG  is rank 

n+3, and is equal to the dimension of the full state vector. 
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Hence, the system is now fully observable and 

C 1 ( 3)Image(G ) 1 .
T

n× +⎡ ⎤= ⎣ ⎦0 Consequently, the angle 

between the controllable and observable subspaces is now 
zero.  

C. Rates of Convergence of Uncertainties in 1D 
The rate of convergence of uncertainties is one of the key 

issues invaluable in evaluating the performance of an 
estimation algorithm in terms of speed. Consider the 
continuous time equivalent of the 1D SLAM-JSBE state (1) 
and (2) incorporating only one unknown landmark It is 
assumed that ( )tw  corresponding to ( )kw  in (2) is 

3 1( ) ( , )t N ×w 0 R∼  2 2 2( , , )ediag r r r=R is the covariance 
matrix of ( ),w t and 2r  and 2

er  are the variances of the 
exteroceptive and absolute sensor measurement noises 
respectively. H  is given by (9) (n=1). Suppose that ( )P t  is 
the covariance matrix of ( ).tX  Thus, ( )P t  can be obtained 
by the solution of the continuous time Riccati equation 

-1( ) ( ) ( ) ( ) ( )P FP P F GQG P H R HPT T Tt t t t t= + + −�      (10) 

where 2 2 2(0) (0, , , ).bu bs mdiag σ σ σ=P  2
buσ , 2

bsσ  and 2
mσ  denote 

the initial variances of proprioceptive and exteroceptive 
sensor biases and map consisting of the unknown landmark 
respectively. Except that of the vehicle position, solution to 
(10) (see [15] for the solution method) shows that all the 
steady state covariance terms, ( )P ∞ , approach zero. As 
there is continuous noise injected into the vehicle motion 
model, in the form of process noise when the vehicle is 
moving, the vehicle position variance approaches 2q α , 

where, 2 2 0.5( ( ))(2 )e eq rr r rα = + This further shows that the 
error covariance terms of ( )X t , initially decay 
exponentially with a time constant of  1 α  and then 
converge asymptotically to the steady state covariance.  
Suppose that 1n  unknown landmark locations are estimated 
in the SLAM-JSBE state vector while observing 2n  known 
landmarks. Then if an absolute sensor measurement of the 
robot position is incorporated it follows that: 

2 2
1 2( ( )) ( )e eq rr n n r rα = + +                    (11) 

It is interesting to note that this convergence rate α  is not 
affected by the biases or their initial uncertainties. When 

2 2
er r� (i.e. landmark based information dominates the 

absolute position sensor based information) this time 
constant (τ ) can be expressed as: 

( )1 2( )r q n nτ = +                             (12) 

Hence we can arrive at the following result. 
Result 2: The smaller the ratio between the exteroceptive 
sensor noise and the process noise (proprioceptive sensor 
noise and the modeling uncertainty) or the larger the 
number of landmarks observed simultaneously (known, 
estimated or both), the faster will be the convergence of 
the state variances to their steady state values. 
It is ascertained from (12) that the uncertainties of 1D 
SLAM-JSBE converge much faster than those of 1D MAL-
JSBE [15].  

III. BIAS CORRECTION IN THE TWO DEGREES OF FREEDOM 
SLAM PROBLEM 

A. Problem Formulation 
In the 2D (planar) SLAM problem, a vehicle traversing on a 
2D plane incrementally builds a map ( )m k  of n landmarks 
situated on the same plane, whilst using this map to localize 
itself. Let the location of the vehicle on the plane be 

[ ]( ) ( ) ( ) ( ) T
v k x k y k kθ=x  where ( ),x k  ( )y k  and ( )kθ  

denote coordinates (mid point of the rear axel) and heading 
of the vehicle with respect to a global coordinate frame. 

1 1( ) ( ) ( )..... ( ) ( )m     T
n nk x k y k x k y k= ⎡ ⎤⎣ ⎦  is the feature map 

where point feature position vectors 
( ) ( ) 1, 2...,T

i ix k y k i n=⎡ ⎤⎣ ⎦  are specified with respect to the 
same global coordinate frame. Let ( )ku  denote the 
proprioceptive sensor input; ( ) ( , ( ))vk N kv 0 Q∼ denote the 
modeling uncertainties having a covariance matrix of 

( )v kQ ; ( )b ku  denote the concatenated proprioceptive 
sensor biases and ( )b ks  denote the concatenated 
exteroceptive sensor biases. The process and observation 
models of the 2D SLAM-JSBE problem are then 

2

( ( 1), ( -1), ( )) ( 1)
( | 1) ( 1) ( 1)
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v v b

b b

n

k k k k
k k k k

k
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f x u  u v
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m 0
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( ) ( ( ), ( ), ( )) ( )z h x m s wv bk k k k k= +             (14) 

where ( ) ( ) ( ) ,
TT T

b b bk k k⎡ ⎤= ⎣ ⎦x u  s  ( ) ( ) ( ) ( ) ,X = x  x  mT T T
v bk k k k⎡ ⎤⎣ ⎦  

( )vb k  represents a temporally, uncorrelated noise sequence 
of the sensor biases, ( )w k  is the vector of observation 
noise, assumed Gaussian with zero mean and covariance 

( ),R k (.)fv  is a nonlinear function representing the robot 
motion model and (.)h  is the observation model of the 
exteroceptive sensors used by the robot.  

B. Diminishing Uncertainty of Bias Estimates 
SLAM-JSBE for the case of unknown, constant biases, 

using the linearized models of (13) and (14) can be 
summarized as follows. The process model is given by, 

1 11 1

( ( 1)) ( )
( ) ( 1)

B u v
X FX

0 0
v

n n

k k
k k

× ×

−⎡ ⎤ ⎡ ⎤
= − + +⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
         (15) 

where Bv  is the transition matrix of the proprioceptive 
sensor measurements and ( ) ( , ( )).v 0 Qvk N k∼  The sensor 
bias state ( ),xb k  augmented state ( )X k  and observation 
noise ( )w k  are assumed to be of the same form and 
meaning as (13) and (14). 1n  is the total dimension of the 
bias states and map states. F  and Fb are given by 

F 0
F

0 I
b bm

T
bm mm

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
 and  

F B 0

F 0 I 0

0 0 I

v v vs
T

b vu uu us
T T
vs us ss

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

        (16) 

where subscripts m denote the entire map state, v the vehicle 
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state, u the proprioceptive sensor bias vector and s the 
exteroceptive sensor bias vector. Matrices, Iss , Iuu  and 
Imm  are identity matrices with dimensions 
dim ) dim )(s (sb b× , dim ) dim )(u (ub b×  and 
dim ) dim )(m (m×  respectively. ,0vs 0vu  and 0us  are null 
matrices having appropriate dimensions. The corresponding 
observation model is;  

( ) ( ) ( ) ( )z H X wk k k k= +                        (17) 

where ( ) ( ) ( )H H 0 I   Hv uu ss mk k k= −⎡ ⎤⎣ ⎦ . ( )Hv k− , 
( )Hm k  and uu0  denote the parts of ( )H k  corresponding to 

vehicle states, map states and a null matrix of dimension 
dim ) dim )(u (ub b× . By investigating the above models 
(15)-(17), the following important result can be derived. 

Result 3: The uncertainties in the estimates of the 
proprioceptive and exteroceptive sensor bias parameters 
diminish monotonically in an update of the SLAM 
algorithm (See Appendix for the proof). 

Thus it can be conjectured that as the estimated 
environmental map state errors decrease, so do those of the 
proprioceptive and exteroceptive sensor bias errors. 

C. Uncertainty Bounds 
It is important to investigate whether the diminishing 

uncertainties of the bias error states will eventually reach a 
finite lower limit or zero. Suppose that vP  denotes the 
initial vehicle covariance matrix, Pm  the initial map 
covariance matrix and Ps  the initial exteroceptive sensor 
bias covariance matrix of ( | ).k kssP  Theoretical analysis 
yields the following Result 4. 

Result 4: The uncertainties in the estimates of the 
exteroceptive sensor bias parameters in 2D SLAM-JSBE 
reach a lower bound as determined by the process and 
observation model error covariances. 

For two special cases of SLAM-JSBE, these lower bounds 
can be derived in closed form as follows.  
Case 1: The initial values of exteroceptive sensor biases are 
completely unknown. From (36) to (39) given in the 
Appendix, it follows that ( | ) T T

ss m m m v v vk k =P H P H +H P H . 
Thus, the lower bound of the exteroceptive sensor bias 
terms is entirely determined by the initial covariance 
estimates of the vehicle ( Pv ) and the unknown, or 
estimated, landmark ( Pm ). According to [15], the lower 

bound ( T
v v vH P H ) of the exteroceptive sensor bias terms in 

MAL-JSBE is lower than the lower bound for SLAM-JSBE. 
This can be attributed to the fact that in the case of MAL, 
the information acquired is entirely utilized for vehicle 
localization and sensor bias estimation. 
Case 2: The initial landmark position uncertainty is very 
large ( )m → ∞P . Under these circumstances ( | )ss sk k =P P  
implying that the uncertainties of the exteroceptive sensor 
biases cannot be reduced by observing unknown landmarks 
from a stationary vehicle. 

D. Observability in 2D SLAM-JSBE  
The Result 4 suggests that 2D SLAM-JSBE is not fully 

observable. If the above problem is fully observable 
( | )Pss k k  should approach zero or a value independent of 

the initial conditions. Although, it is difficult to ascertain the 
conditions that must be satisfied for full observability in 
non-linear, time varying systems, these conditions have 
been derived in [9], [14] and [15] under certain 
assumptions. In [9], [14] and [15] conditions for 
observability are derived through rank analysis of the 
observability matrices constructed from linearized Jacobians 
of the piecewise constant process and observation models. 
However, it is important to note that rank analysis provides 
necessary conditions and not sufficient conditions according 
to [9]. We use the technique described in [15] to analyze the 
observability of 2D SLAM-JSBE. Following this 
methodology, an observability analysis of single landmark 
SLAM-JSBE shows that the observability matrix GO  of the 
system is rank deficient by 4. A rank analysis of the 
observability matrix, with increasing number of unknown 
landmarks in the state vector, further establishes that the 
rank deficiency remains 4. However, it is interesting to note 
that the observability matrix of 2D SLAM-JSBE becomes 
full rank when observations from at least two a priori 
known landmarks are incorporated into the observation 
model in addition to the observations of all the unknown 
landmarks, which are being estimated. A necessary 
condition for full observability of 2D MAL-JSBE [15] and 
SLAM-JSBE is that at least two known landmarks must be 
observed at all times. However there can still be conditions 
that prevent the system from achieving full observability 
depending on the robot trajectory and the relative 
configuration of the observed known and unknown 
landmarks as is given in Result 5. 

Result 5: If the two observed known landmarks are 
collinear with the vehicle then 2D SLAM-JSBE becomes 
unobservable.  

Result 6: The necessary conditions for full observability of 
IMU aided SLAM-JSBE involving any numbers of 
unknown 2D landmarks are satisfied if the non-holonomic 
constraints are imposed, all the unknown landmarks are 
observed and at least two known 2D landmarks are 
observed simultaneously (see Section IVB). 

IV. APPLICATION - BIAS CORRECTION IN IMU AIDED 
SLAM  

A. Problem Formulation 
   Some of the major shortcomings of inertial measurement 
units (IMUs) are their inherent sensor biases, drifts and 
scale factors, which adversely affect the accuracy of any 
position estimate ([18] and [20]). It is therefore important 
that the effects of sensor biases on inertial sensor 
(proprioceptive sensor) aided SLAM are investigated. A 
vehicle (Fig. 1) is assumed to move in an environment 
consisting of static landmarks. An inertial sensor assembly 
is mounted at the centre of gravity (COG) of the vehicle. 
The landmark positions are represented by their lateral and 
longitudinal (x, y) coordinates. The vehicle body reference 
frame {v}  with origin at the COG of the vehicle coincides 
with the inertial measurement unit’s (IMU) coordinate 
frame. The vehicle frame,{v} ’s X-axis is pointing along the 
heading direction and the other orthogonal axes Y-axis and 
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Z-axis are shown in the Fig. 2. The orientation of the 
vehicle body frame {v}  is represented by the three Euler 
angles φ  (rotation about vehicle X axis or roll), θ  (rotation 
about vehicle Y axis or pitch) and ψ  (rotation about vehicle 
Z axis or yaw) also shown in Fig. 2. The vehicle motion is 
referred to a global frame, which is the navigation frame 
{n}  with its orthogonal axes pointing to North, East and 
Down (ENU). Let the vehicle state vector ( )xv k  at time k 
be 

( )      n nx x v x
T

v bk φ θ ψ⎡ ⎤= ⎣ ⎦                         (18) 

where   ,n n n nx
T

v v vx y z⎡ ⎤= ⎣ ⎦    n n n nv
T

x y zv v v⎡ ⎤= ⎣ ⎦  and n, , ,n n  v v vx y z  

,x yv vn n  and n
zv  are position coordinates  and velocities of 

the vehicle along X axis, Y axis and Z axis respectively all 
with reference to the fixed navigation frame ( ).n  The 
concatenated bias vector xb  at time k is given by 

( )
T

b xa ya za x y zk b b b b b bω ω ω⎡ ⎤= ⎣ ⎦
v v v v v vx                      (19) 

where ,  ,  ,  ,  v v v v v
xa ya za x yb b b b bω ω  and  v

zb ω  are the biases in the 
IMU acceleration and angular rate measurements along and 
about the vehicle X, Y and Z axes respectively. 
As discussed in the previous sections of this paper as well as 
in [10] and [12], the biases associated with the inertial 
sensors are appropriately modeled using constant terms and 
a random walk processes (this can accommodate the 
exponential variation of biases [10] as well) as follows. 

( ) ( 1) v vx A x c ηb b b b bk k= − + +                          (20) 

 
Fig. 1. Mobile robot used in SLAM experiments 

 

 

Fig. 2  Reference coordinate frames in inertial sensor aided SLAM  

where Ab  is a 6 6×  diagonal matrix, vcb  is a 6 1×  constant 

vector and vηb  is a 6 1×  temporally uncorrelated noise 
vector having the diagonal covariance matrix Qb . The 

values of ,Ab  vcb  and Qb  can be experimentally 

determined as in [12]. 
The inertial sensor aided SLAM with bias estimation 
problem has a composite state vector ( )X k  

( ) ( ) ( )X x mT T
vk k k⎡ ⎤= ⎣ ⎦                          (21) 

where ( ) ( 1)k k= −m m  and ( )v kx  evolves as discussed in 
[15] for IMU aided localization with a known map.  
It is assumed that the vehicle moves on a flat surface thus 
constraining n

vz  to a constant value. Landmarks are assumed 
to be observed using an onboard exteroceptive sensor such 
as a 2D scanning range-bearing sensor.  
As shown in Fig. 2, the vehicle body fixed exteroceptive 
sensor frame {s}  is assumed to be aligned, but not 
coincident, with the vehicle frame .{v}  Let vxs  represent the 
position of the exteroceptive sensor in ,{v}  nxs  the position 
of the exteroceptive sensor in {n} , nxm  the coordinates of a 

point landmark in {n} , and sx
T

m x y zm m m⎡ ⎤= ⎣ ⎦ its 
coordinates in the exteroceptive sensor’s frame .{s}  Since 
the vehicle moves on a horizontal plane with known 
elevation, the z coordinates of the position vectors ,vxs  

,nxs ,nx  and sxm  are fixed and known a priori. Since vnC  is 
the relative orientation between{v}  and {n} , we have  

n n v
vnx x C xs s= + , ( ) ( )s n n

vnx C x xT
m m s= −               (22) 

( )2 2 1( ) tan 2z
T

x y y xk m m m m π−⎡ ⎤= + +⎢ ⎥⎣ ⎦
           (23) 

Since the vehicle motion is constrained by the 
nonholonomic constraints, (i.e. vehicle velocities along the 
Y-axis v

yv  and Z-axis v
zv  of the vehicle reference frame 

{v}  are zero) we use these constraints [11] as additional 
(virtual) observations in the online bias estimation. Let the x 
component of the vehicle velocity be ,v

xv  then 

[ ] ( ) [ ]T T T
x y z x y zv v v v v v=v v v n n n

vnC        (24) 

0v
y xv η= +                                      (25) 

0v
z zv η= +                                      (26) 

where xη  and zη  are Gaussian noise sequences 
representing the amount of constraint violation [31]. 

B. Maintaining Observability in IMU Aided SLAM-JSBE 
Through symbolic manipulation of the vehicle motion and 
observations models ((18)-(26)) in accordance with the 
theory detailed in Section IID, the necessary conditions for 
the observability of the inertial sensor aided SLAM-JSBE 
can be derived (see Result 6). 

C. Experiments 
The in-house built mobile robot (Fig. 1) was used in the 

SLAM-JSBE experiments described here. An un-calibrated 
IMU (Crossbow DMU-AHRS) was mounted at the COG of 
the mobile robot as shown in Fig. 2. The mobile robot was 
driven at approximately 4m/s in a car park where the surface 
was relatively flat and horizontal. A SICK LMS 290 
scanning range/bearing measurement sensor, mounted as 
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shown in Fig. 2, was used as the exteroceptive sensor. The 
IMU and LMS range scans were sampled at 100 Hz and 
10Hz respectively. 

Feature extraction was achieved using a simple 
clustering strategy based on the distance between 
contiguous and adjacent range points. In this experiment the 
locations of a few prominent landmarks were hand 
measured and taken as known landmarks. Artificial fiber 
glass poles were also used as the known landmarks. These 
were selected so that at least two or more of them are 
always visible to the LMS exteroceptive sensor. Figs. 3 and 
4 show the variation of the biases and Figs. 5 and 6 the 
variation of the 95% confidence bounds of the uncertainties 
of the estimated biases. Figs. 3 – 6 show the results of 
estimation of the biases in accelerometers and gyroscopes. 
In order to evaluate the estimated results initial systematic 
and associated noise components of the IMU biases were 
estimated offline as described in [12] using data obtained 
when the vehicle was stationary. On average, these off-line 
estimates of the initial bias components in the x, y and z 
directions of the accelerometers were 0.075 ms-2, 0.08 ms-2, 
and 0.08 ms-2 respectively, and in the gyroscopes, 0.02 rad/s 
in all three directions. It may be noted that the initial 
estimated sensor bias components (Figs 3-6) are close to the 
values obtained by the offline algorithm described in [12]. 
Fig. 7 illustrates the estimated vehicle path and landmarks. 
DGPS measurements obtained at 1 Hz is also plotted along 
the vehicle trajectory to compare the “true” (obtained 
through GPS) and the estimated trajectories. Fig. 8 shows 
the estimated landmarks and their 95% confidence limits of 
uncertainties. The results of Fig. 8 verify that the landmark 
estimated errors are bounded by their 95% confidence 
limits. 

 

Fig. 3 Estimation of accelerometer biases 
 

 
Fig. 4 Estimation of gyroscope biases 

 

 

Fig. 5 Estimation of 95% confidence limits of accelerometer biases 

Figs. 9-10 show the estimated landmark positions against 
the measured ground truth of the static landmarks. The 
ground truth of the landmarks was obtained by hand 
measurements. It may be noted that the “true errors” in the 
landmark estimates are well within the 95% confidence 

bounds implying the consistency of the filter. However, it is 
of interest to note in Figs. 9 – 10 that the landmark x and y 
position estimation errors seem to exhibit a deterministic 
trend. This is a consequence of the non-satisfaction of the 
full observability condition for that particular landmark at 
all times. To guarantee full observability it is necessary that 
the landmark is observed by the exteroceptive sensor 
(LMS291) at all times.  
 
 

Fig. 6 Estimation of 95% confidence limits of gyroscope biases 
 

 
Fig. 7 Estimated robot trajectory and landmark locations. Known landmarks 
are indicated by diamond shaped markers 
 

 

Fig. 8 Estimation of landmark uncertainties. 
 

 

Fig. 9 Estimation of the longitudinal error of landmark 1. 
 
Nevertheless, as proven and discussed in Section IV B, the 
results of the experiment verify that given sufficient number 
of known landmark observations the biases of the 
accelerometers and rotational rate sensors (proprioceptive 
sensors) of the inertial sensor aided SLAM-JSBE can be 
estimated online.  
 

 

Fig. 10 Estimation of the lateral error of landmark 1. 
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V. CONCLUSIONS 
Biases in both proprioceptive and exteroceptive sensors can 
adversely impact the performance of EKF-SLAM.  
However, through explicit modeling of biases in sensors and 
their incorporation in the standard EKF-SLAM formulation 
it is possible to on-line estimate them and hence improve 
performance.  In addition several important properties of 
this complex joint estimation filter are theoretically 
established for simple 1D EKF-SLAM and more realistic 
2D EKF-SLAM scenarios and experimentally verified for 
the latter. The contributions thus made in each case can be 
summarized as follows. Although the angle between 
controllable and observable subspaces in 1D EKF-SLAM 
approaches zero when the number of observed landmarks 
are made infinitely large, it is not so in 1D EKF-SLAM-
JSBE. The problem is fully observable if the vehicle’s 
absolute position measurement and the range measurement 
of a known landmark is incorporated into the observation 
vector comprising of all the measurements of all the 
unknown estimated landmarks.  
The rate of convergence of the filter is affected by the 
relative strengths of noises of the proprioceptive and 
exteroceptive sensors and the number of landmarks 
observed. More specifically, the smaller the ratio between 
the exteroceptive sensor noise and the process noise 
(proprioceptive sensor noise and the modeling uncertainty) 
or, the larger the number of landmarks observed 
simultaneously (either known landmarks or the estimated 
landmarks or both), the faster will be the convergence of the 
state variances to their steady state values. 
In the more realistic scenario involving 2D SLAM-JSBE, 
the uncertainties in the estimates of the proprioceptive and 
exteroceptive sensor bias parameters diminish 
monotonically in an update of the SLAM algorithm. The 
errors in the exteroceptive sensor biases reach a certain 
lower bound as determined by the process and observation 
model accuracies. The necessary condition for the 
observability of the 2D SLAM-JSBE problem is satisfied 
when observations from two or more a priori known 
landmarks are incorporated in the observation model in 
addition to the observations of all the unknown landmarks, 
being estimated.  
However, if any two of these known landmarks are collinear 
with the vehicle the problem becomes unobservable. In the 
case of IMU aided SLAM-JSBE, full observability is 
satisfied if non-holonomic constraints are imposed, all 
estimated landmarks are observed together with at least two 
known landmarks. The SLAM-JSBE problem formulation, 
the theoretical results established and experimental results 
provide greater insight into the problems of estimation 
theoretic bias correction in MAL and SLAM paving the way 
for improved design of process and observation models and 
also the selection of appropriate sensors for the enhanced 
performance of localization and mapping algorithms 
depending on the requirements of the mobile robot 
application.  

APPENDIX 
Proof of Result 1: 

T
OImage( )G  and CImage( )G  consists of 1n +  and 1 basis 

vectors respectively. Let r ,  for 1,2...., 1i i n= +  be the basis 

vectors of T
OImage( )G  and q  be the basis vector of 

CImage( ).G  Suppose p  be the projection of the basis of 

CImage( )G  into the basis spanned by T
OImage( ).G  Thus, 

using the algebra of vector transformations and projections: 

1
1

1
1 1 1 1

T T Tn n
i i n

i i nT
i ii i i i n n

+
+

+
= = + +

= = +∑ ∑   
   T T

      

q r q r q r
p r r r

r r r r r r
,  

Since 1 0T
n+ = q r , 3T

i = r r  for all i and 3.T n=p q  

( ) ( )( ) ( )1 1cos cos (2 1) .T n nψ − −= = +p q p q  

Proof of Result 3: 
By expanding the error covariance matrix ( | 1)k k −P  of 

( )kX  of the model given by (15)-(17) we can deduce the 
covariance predictions of the sensor biases as follows. 

( | 1) ( 1 | 1)uu uuk k k k− = − −P P                          (27) 
( | 1) ( 1 | 1)ss ssk k k k− = − −P P                           (28) 

(0 | 0),P ( )Q k  and ( )R k  are positive semi definite (PSD) 
matrices. Thus, by using the properties (see [7]) of PSD 
matrices, ( )S k  and ( ) ( ) ( )K S KTk k k  can also shown to be 
PSD matrices. Hence  

( ) ( )det ( | ) det ( | 1) ( ) ( ) ( )P P K S KTk k k k k k k= − −        (29) 

det( ( | )) det( ( | 1))P Pk k k k≤ −                      (30) 

Since any principal submatrix of a PSD matrix is also PSD; 

 det( ( | )) det( ( | 1))P Puu uuk k k k≤ −                   (31) 
 det( ( | )) det( ( | 1))P Pss ssk k k k≤ −                   (32)  

Therefore from (31) and (32), 

det( ( | )) det( ( 1 | 1))P Puu uuk k k k≤ − −                (33) 
det( ( | )) det( ( 1 | 1))P Pss ssk k k k≤ − −                (34) 

The determinants of the covariance matrices indicate the 
volume or size of their uncertainty ellipsi and therefore it 
can be concluded that the errors in the estimates of the bias 
parameters diminish in a measurement update of the SLAM 
algorithm. This rationale is also true for the uncertainties of 
the sensor biases of 2D MAL-JSBE, as shown in the results 
in [15]. 

Proof of Result 4: 
It may be noted that the lowest exteroceptive sensor bias 

covariance estimates are obtained when the proprioceptive 
sensor noise covariance and the modeling uncertainty 
(process noise covariance Q ) and the observation noise 
covariance ( R ) are minimum. For example when the 
vehicle is stationary ( Q = 0 ) whilst observing an unknown 
landmark we have such a scenario. Under such a scenario 
the composite SLAM state vector is 

( ) ( ) ( ) ( )X = x m s
TT T T

v bk k k k⎡ ⎤
⎣ ⎦                  (35) 

where the map ( )m k  consists of the unknown landmark 
location vector, which has to be estimated. The observation 
model is ( ) ( ) ( )H H H   Iv m ssk k k= −⎡ ⎤⎣ ⎦  where ( )Hv k−  and 



IEEE Transactions on Control Systems Technology 8

( )Hm k  denote the parts of the observation matrix 
corresponding to the vehicle state and the landmark state 
respectively. Since Q = 0  the predicted covariance matrix 

( | 1)P k k −  for all k is, 

( | 1) ( 1 | 1)P Pk k k k− = − −                          (36) 

Using the inverse covariance form ([8]), 
-1 -1 -1( | ) ( | 1) ( ) ( ) ( )P P H R HTk k k k k k k= − +           (37) 

Hence, when making k observations 
1 -1( | ) ( ( , , )) ( ) ( ) ( )-1P P P P H R HT

v m sk k diag k k k k−= + . 
Thus, omitting the notation for time index k (eg. ( )H H k= ) 
and using ( , , )P P Pv m sdiag  as the initial covariance matrix 
of ( )X k , the exteroceptive sensor bias covariance matrix, 

( | )k kssP  can be determined as; 

-1 -1 -1 -1 -1
11 12

-1 -1 -1 1
21 22

(( ) ( )
( ))

P P R R H a H R a H R
                    R H a H R a H R

s
T T

ss v v m
T T

m v m

k k k
k k −

= + + − +

− − +
     (38) 

Since zero vehicle and proprioceptive sensor uncertainties 
were assumed in the above derivation, the inverse of Pss  
represents the maximum information one can gain on ( ).sb k  
Subsequently as information from more observations are 
obtained, the upper limit of this information gain will be 
reached (if at all a limit exists). Conversely, if this finite 
limit exists, the covariance of the exteroceptive sensor bias 
term Pss  will be lower bounded by *Pss .  

* lim ( )P Pss ssk→∞
=                                    (39) 

Proof of Result 5:  
Assume that the exteroceptive sensor observes two 

known landmarks denoted by 1 1 1( , )LM x y≡  and 

2 2 2( , )LM x y≡  and an unknown landmark 3 3 3( , )x y≡LM . 
Assuming that the point of the vehicle that is being 
estimated and the exteroceptive sensor location coincide, the 
measurement Jacobian H  when observing all three 
landmarks simultaneously is 

3 2 2 3

1 2 2 2

2 2 2 2

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

HV 0 I HL
H HV 0 I 0

HV 0 I 0
                       (40) 

where 2 2

0
( ) ( ) 1

i i i i
i

i i i i

x r y r
y r x r

Δ Δ Δ Δ⎡ ⎤
= ⎢ ⎥−Δ Δ Δ Δ −⎣ ⎦

HV  for all 

1, 2,3i =  3 3 3 3
3 2 2

3 3 3 3

,
( ) ( )

x r y r
y r x r

−Δ Δ −Δ Δ⎡ ⎤
= ⎢ ⎥Δ Δ − Δ Δ⎣ ⎦

HL  

( | 1) ,i ix x k k xΔ = − −  ( | 1)i iy y k k yΔ = − −   and 
2 2( ) ( )i i ir x yΔ = Δ + Δ  for all 1,2,3i =  When the two 

known landmarks being observed and the vehicle are 
collinear,  

1 2 1 2 1 2x x y y r rΔ Δ = Δ Δ = Δ Δ                      (41) 

When (41) is true, the matrix H  has linearly dependent 
rows. Under such circumstances, the observability matrix 
becomes rank deficient. Hence one of the necessary 
conditions for full observability of SLAM-JSBE is violated. 
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