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Abstract

In this paper, force/motion tracking control is investigated for nonholonomic mobile manipulators with unknown parameters and disturbances
under uncertain holonomic constraints. The nonholonomic mobile manipulator is transformed into a reduced chained form, and then, robust
adaptive force/motion control with hybrid variable signals is proposed to compensate for parametric uncertainties and suppress bounded
disturbances. The control scheme guarantees that the outputs of the dynamic system track some bounded auxiliary signals, which subsequently
drive the kinematic system to the desired trajectory/force. Simulation studies on the control of a wheeled mobile manipulator are used to show
the effectiveness of the proposed scheme.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Mobile manipulators have received increasing attention over
the last 15 years, because of their industrial relevance and aca-
demic interest (Dong, 2002; Liu & Lewis, 1990; Tan, Xi, &
Wang, 2003; Watanabe, Sato, Izumi, & Kunitake, 2000). How-
ever, the motion planning and control of mobile manipulators
cannot be addressed by traditional methods due to the nonholo-
nomic nature of the systems which are imposed by the wheeled
platforms. Due to Brockett’s theorem (1983), it is well known
that nonholonomic systems with restricted mobility cannot be
stabilized to a desired configuration nor posture-via differen-
tiable, or even continuous, pure state feedback. Therefore, the
control design for these systems is a challenging problem, and
has attracted much attention in the robotics and control com-
munity (Ge, Wang, Lee, & Zhou, 2001, 2003; Oya & Su, 2003;
Wang, Ge, & Lee, 2004).
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With the assumption of known dynamics, much research
has been carried out to control mobile manipulators including
input–output feedback linearization (Tan et al., 2003), nonlin-
ear feedback control (Yamamoto & Yun, 1996). Because of
dynamic uncertainty, adaptive neural network controls (Lin &
Goldenberg, 2001) have been proposed for motion control of
mobile manipulators. However, for practical applications, not
only the motion but also the force of the end-effector of the arm
should be considered. In Dong (2002), adaptive control was
proposed for trajectory/force control of mobile manipulators
subjected to holonomic and nonholonomic constraints with
unknown inertia parameters. Most control approaches for mo-
bile manipulator deal with uncertainty in system dynamics and
assume that the exact holonomic constraints of the intercon-
nected system are known (Ge & Lewis, 2006). However, in
practical applications, environmental uncertainties arise in mo-
bile manipulator applications which can affect the system stabil-
ity and performance. In this paper, under holonomic uncertainty,
we consider the trajectory and force tracking for general
dynamic nonholonomic mobile manipulator systems in which
the system is transformed into a chained form. Since the general
motion/force decomposition control is not valid with constraint
uncertainties, we develop a low-pass force filter to assure the
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boundedness of force error and simultaneously estimate the
uncertain constraint Jacobian matrix. A main concern in our
design is the magnitude of the Jacobian error as it influences
the residual force error. By investigating the dynamics error, we
apply a reduction procedure and define a mixed tracking error of
trajectory and force. Then, robust adaptive force/motion control
is presented in which adaptive controls are used to compensate
for parametric uncertainties, suppress constraint uncertainties
and bounded disturbances. The control guarantees the outputs
of the dynamic system to track some bounded hybrid signals
which subsequently drive the kinematic system to the desired
trajectory/force.

2. System description

2.1. Dynamics of mobile manipulators

Consider an n DOF manipulator mounted on a nonholonomic
mobile platform (Li, Ge, & Ming, 2007)

M(q)q̈ + C(q, q̇)q̇ + G(q) + d(t) = B(q)� + f , (1)

where q = [q1, . . . , qn]T ∈ Rn denote the generalized coordi-
nates; M(q) ∈ Rn×n is the symmetric bounded positive defi-
nite inertia matrix; C(q, q̇)q̇ ∈ Rn denotes the Centripetal and
Coriolis torques; G(q) ∈ Rn is the gravitational torque vector;
d(t) ∈ Rn denotes the external disturbances; � ∈ Rp are the
control inputs; B(q) ∈ Rn×p is a known input transformation
matrix; and f = J T(q)� ∈ Rn denotes the generalized con-
straint forces. The generalized coordinates may be separated
into two sets as q = [qv, qa]T with qv ∈ Rnv denoting the gen-
eralized coordinates for the vehicle and qa ∈ Rna denoting the
coordinates of the arm.

2.2. Nonholonomic constraints

When the system is subjected to nonholonomic constraints,
assume that the nv − m nonintegrable and independent veloc-
ity constraints can be expressed as A(qv)q̇v =0. Since A(qv) ∈
R(nv−m)×nv , it is always possible to find an m rank matrix
Hv(qv) ∈ Rnv×m formed by a set of smooth and linearly
independent vector fields spanning the null space of A(qv), i.e.,
HT

v (qv)A
T(qv) = 0. Since Hv(qv) = [Hv1(qv), . . . , Hvm(qv)]

is formed by a set of smooth and linearly independent vectors
spanning the null space of A(qv), define an auxiliary function
vb = [vb1, . . . , vbm]T ∈ Rm such that

q̇v = Hv(qv)vb = Hv1(qv)vb1 + · · · + Hvm(qv)vbm (2)

which is the so-called kinematic model of nonholonomic
system. Differentiating (2) yields

q̈v = Ḣv(qv)vb + Hv(qv)v̇b. (3)

Therefore, the dynamics (1), after eliminating the nonholo-
nomic constraint AT�n, can be reformulated as

q̇ = H(q)v, (4)

M1(q)v̇ + C1(q, q̇)v + G1(q) + d1 = B1(q)� + f1, (5)

where H = diag[Hv(qv), Ia], M1(q) = HT(q)M(q)H(q),
C1(q, q̇) = HT(q)[M(q)Ḣ (q) + C(q, q̇)H(q)], G1(q) =
HT(q)G(q), d1 = HT(q)d(t), B1(q) = HT(q)B(q), v =
[vb, q̇a]T, and f1 = J1(q)T�h.

2.3. Reduced model and state transformation

There exist a coordinate transformation T1(q) and a state
feedback T2(q), such that

� = [�, qa]T = T1(q) = [T11(qv), qa]T, (6)

v = [vb, q̇a]T = T2(q)u = [T21(qv)ub, ua]T (7)

with T2(q)= diag[T21(qv), I ] and u=[ub, ua]T, then the kine-
matic system (4) could be locally or globally converted to the
chained form (Walsh & Bushnell, 1995)

�̇1 = u1, �̇i = u1�i+1 (2� i�nv − 1),

�̇nv
= u2, q̇a = ua , (8)

where ua = [ua1, . . . , uana ]T.

Remark 2.1. In Murray and Sastry (1993), a necessary and
sufficient condition for the transformation of the kinematic sys-
tem (4) of a differential drive wheeled mobile platform into
single chain was given. In Walsh and Bushnell (1995), the ex-
istence condition of the transformation (multi-chain case) was
discussed for the other types of mobile platform.

Consider the above transformations, the dynamics (5) is con-
verted as

M2(�)u̇ + C2(�, �̇)u + G2(�) + d2 = B2� + f2, (9)

where M2(�) = T T
2 (q)M1(q)T2(q)|

q=T −1
1 (�), C2(�, �̇) = T T

2 (q)

[M1(q)Ṫ2(q) + C1(q, q̇)T2(q)]|
q=T −1

1 (�), G2(�) = T T
2 (q)

G1(q)|
q=T −1

1 (�), B2 = T T
2 (q)B1(q)|

q=T −1
1 (�), d2 = T T

2 (q)

d1|q=T −1
1 (�), f2 = T T

2 (q)f1 = J T
2 (q)�h|q=T −1

1 (�).

Property 2.1. The matrix M2 is symmetric and positive defi-
nite, and the matrix Ṁ2 −2C2 is skew-symmetric (Dong, 2002).

Property 2.2. There exist some finite non-negative constants
ci �0 (i=1, . . . , 5) such that ∀� ∈ Rn, ∀�̇ ∈ Rn, ‖M2(�)‖�c1,
‖C2(�, �̇)‖�c2 +c3‖�̇‖, ‖G2(�)‖�c4, and supt �0‖d2(t)‖�c5
(Wang et al., 2004).

2.4. Uncertain holonomic constraints

Assume that the r-rigid-link manipulator is in contact
with a certain constrained surface �(q) can be represented
as: �(�(q)) = 0, where �(�(q)) is a given scalar function,
�(q) ∈ Rl denotes the position vector of the end-effector in
contact with the environment. If the constraint surface is rigid
and has a continuous gradient, the contact force in (9) is then
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given by f2 = J T
2 (q)�h, where �h is the magnitude of

the contact force. However, when the robot end-effector is
rigidly in contact with the uncertain surface, the environ-
mental constraint could be expressed as an algebraic equa-
tion of the coordinate � in the task space. Without loss of
generality, the uncertain surface constraint �̄(�(q)) can be
decomposed into a nominal part �(�(q)) and an unknown
constraint error part ��(�(q)) in an additive manner as
follows:

�̄(�(q)) = �(�(q)) + ��(�(q)), (10)

where �̄(�(q)) is the constrained surface.
Denoting J̄2 and J2 as the Jacobian matrix of �̄(�(q)) and

�(�(q)) with respect to q, and since q̇v = Hv(qv)T21(qv)ub,
J̄2(q) = J̄�[J2vHv(qv)T21(qv), J2a], J2(q) = J�[J2vHv(qv)T21
(qv), J2a], J̄� = �̄(�(q))/��, J� = ��(�(q))/��, J2v = ��/�qv

and J2a = ��/�qa .
Integrating (4) and (7), we have

J2(q)u + ���(�(q))

�t
= 0. (11)

Assume that

J̄2(q) = J2(q) + �J2(q) (12)

with �J2(q) defined later. Since the uncertain constraint error
(10) is introduced, integrating (12) into (9) yields

M2(�)u̇ + C2(�, �̇)u + G2(�) + d2

= B2� + (J2(T
−1
1 (�)) + �J2(T

−1
1 (�)))T�h. (13)

Assumption 2.1. The Jacobian matrices J̄2(q) is uniformly
bounded and uniformly continuous if q is uniformly bounded
and continuous, respectively.

Assumption 2.2. The manipulator is operating away from any
singularity.

Remark 2.2. Under Assumption 2.2, the Jacobian J2a=��/�qa

is of full row rank l, such that the joint coordinate qa can be par-
titioned into qa =[qT

a1, q
T
a2]T where qa1 ∈ Rna−l and qa2 ∈ Rl ,

with qa2 =�(qa1) with a nonlinear mapping function �(·) from
an open set Rna−l × R → Rl . The terms ��/�qa1, �2�/�q2

a1,
��/�t , �2�/�t2 exist and are bounded in the workspace.

Since the dimension of the constraint is l, the configuration
space of the manipulator is left with na − l degrees of freedom.
Based on the full row rank for Ja , the existence of �(qa1)

(You & Chen, 1993; Yuan, 1997), it is easy to obtain

J2(q) = J�[J2vHv(qv)T21(qv), J2a1, J2a2]. (14)

Integrating (14) into (11) and considering (14) and letting 	h =
���(�(q))/�t , we have

u =

⎡
⎢⎢⎢⎣

ub

q̇a1

−J−1
2a2[J1vHv(qv)T21(qv)ub + J1a1q̇a1]

−J−1
1a2J

−1
� 	h

⎤
⎥⎥⎥⎦

= Lu1 + ε, (15)

where

L = [Lv La]T

=
⎡
⎢⎣

Iv 0

0 Ia1

−J−1
2a2J2vHv(qv)T21(qv) −J−1

2a2J2a1

⎤
⎥⎦ , (16)

u1 = [ub q̇a1]T, (17)

ε = J	h, (18)

J = [0 0 − J−1
2a2J

−1
� ]T. (19)

It is easy to have

LTJ T
2 (q) = 0. (20)

Differentiating (15) and substituting it into (13), we have

M3(�)u̇
1 + C3u

1 + G3(�) + d3

= B3� + (J2(T
−1
1 (�)) + �J2(T

−1
1 (�)))T�h, (21)

where M3(�)=M2(�)L, C3(�, �̇)=M2(�)L̇+C2(�, �̇)L, G3(�)=
G2(�), B3 = B2, d3 = M2(�)ε̇ + C2(�, �̇)ε + d2.

Assumption 2.3. The set of the constrained surface reachable
by the end-effector of mobile manipulator, defined by

S := {� : �̄(�, 
) = 0, 
 ∈ Rl1} (22)

is bounded and belong to a class of continuously differentiable
manifolds �̄(�, 
) = f (�1, �2, . . . , �l1

)
 + g(�l1+1, �l1+2, . . . ,

�l )� + � with l1 � l�n and � ∈ Rn, where 
 = [
1, . . . , 
l1 ,

0, . . . , 0]T ∈ Rl and � = [0, . . . , 0, 1, . . . , 1]T ∈ Rl are con-
stant vectors, f (∗)=[f1, . . . , fl1 , 0, . . . , 0] ∈ R1×l and g(∗)=
[0, . . . , 0, g1, . . . , gl] ∈ R1×l are bounded and uniformly con-
tinuous differentiable vectors, and � is a constant scalar.

Considering Assumption 2.3, the uncertainty 	h could be
expressed with

	h = �J2(T
−1
1 (�))

d

dt
(T −1

1 (�)), (23)

�J T
2 = J T

� (S�(�)W + C��), (24)

where S� =[�f/��1, �f/��2, . . . , �f/��l1
, 0, . . . , 0]T ∈ Rl×l ,

C� = [0, . . . , 0, �g/��l1+1, �g/��l1+2, . . . , �g/��l]T ∈ Rl×l ,
=1/‖S�(�)W +C��‖, and J�=��/��. From Assumption 2.3,
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the weight vector W = [W1, . . . , Wl1 , 0, . . . , 0]T ∈ Rl is
unknown positive, and � = [0, . . . , 0, 1, . . . , 1]T ∈ Rl .

Property 2.3. S�C� = 0 and WT� = 0.

Define the estimated Jacobian �Ĵ2 by

�Ĵ T
2 = J T

� ̂(S�Ŵ + C��) (25)

with ̂= 1/‖S�(�)Ŵ +C��‖. Consider Property 2.3, the error
in Jacobian matrix �J̃2 = �Ĵ2 − �J2 can be expressed by

�J̃ T
2 = J T

� (S�(̂Ŵ − W) + ̃C��), (26)

where ̃ = ̂ − . Consider (26), the force error can be ex-
pressed as

ef = J+
�

T
J T

2 �h − F = J+
�

T
�J̃ T

2 �h, (27)

where J+
�

T = J�(J
T
� J�)

−1 and the force error ef can be calcu-

lated from J+
�

T
J T

2 �h and F from force sensor.

Assumption 2.4. There exist some finite non-negative known
constants b	1 and b	2, such that, ∀� ∈ ��, ‖	h‖�b	1‖(d/dt)

T −1
1 (�)‖, ‖	̇h‖�b	1‖(d2/dt2)T −1

1 (�)‖ + b	2‖(d/dt)T −1
1 (�)‖.

3. Adaptive control

Given a desired motion trajectory qd and a desired constraint
force, or, equivalently, a desired multiplier �d

h(t) should sat-
isfy the constrained equations. Since the desired trajectory qd

should satisfy Eq. (6), we can have the desired �d . After the
transformation for the chained form through �d = T1(qd) and
vd = T2(qd)ud , we can obtain �d and ud and, equivalently,
u1

d . The trajectory and force tracking control can be restated
as seeking a strategy for specifying a control law subjected
to the uncertain holonomic constraint, such that {�h, �, �̇} →
{�d

h, �d , �̇d}.

Assumption 3.1. The desired reference trajectory �d(t) is
assumed to be bounded and uniformly continuous, and has
bounded and uniformly continuous derivatives up to the
(n − 1)th order. The desired Lagrangian multiplier �d

h is also
bounded and uniformly continuous.

Assumption 3.2. Time varying positive functions �i and hi

converge to zero as t → ∞ and satisfy limt→∞
∫ t

0 �i (�) d� =
ai < ∞, limt→∞

∫ t

0 hi(�) d�=bi < ∞ with finite constants ai

and bi , i = 1, . . . , 5.

There are many choices for �i and hi that satisfy the
Assumption 3.2, for example, �i = hi = 1/(1 + t)2. Denote
the tracking errors as e = � − �d and e� = �h − �d

h, and define

the reference signals

u1
d = [u1T

bd , u1T
ad ]T,

u1
bd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ud1 + �

ud2 − snv−1ud1 − knv snv

+∑nv−3
i=0

�(env − snv )

�u
(i)
d1

u
(i+1)
d1

+∑nv−1
i=2

�(env − snv )

�ei

ei+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

u1
ad = q̇a1d − Ka(qa1 − qa1d), (28)

where

s =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3 + k2e2u
2p−1
d1

e4 + s2 + k3s3u
2p−1
d1

− 1

ud1

∑0
i=0

�(e3 − s3)

�u
(i)
d1

u
(i+1)
d1 −∑2

i=2
�(e3 − s3)

�ei

ei+1

...

env + snv−2 + knv−1snv−1u
2p−1
d1

− 1
ud1

∑nv−4
i=0

�(env−1−snv−1)

�ui
d1

u
(i+1)
d1

−∑nv−2
i=2

�(env−1−snv−1)

�ei
ei+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

�̇ = −k0� − k1s1 −
nv−1∑
i=2

si�i+1 +
nv∑

j=3

sj

j−1∑
i=2

�(ej − sj )

�ei

�i+1,

p = nv − 2, u
(i)
d1 is the ith derivative of ud1 with respect to

t, and ki is positive constant, Ka ∈ R(na−l)×(na−l) is diagonal
positive.

Define new variables to handle the force control

ϑ̇ = −Kϑϑ − KϑJ T
2 e�, (29)

where ϑ = [0, ϑ1] with ϑ1 ∈ Rna , e� = �h − �d
h, and Kϑ =

diag[0, kϑi] > 0. Defining the following auxiliary signals as
ũ1 = u1 − u1

d = [ũ1, ũ2, ũa1]T, �̇ = ũ1 and ur = u1
d − Ku�, we

have

r = �̇ + Ku�, (30)

� = Lr + ϑ, (31)

� = Lur − ϑ, (32)

where Ku = diag[0, Ku1] > 0 and Ku1 ∈ R(na−l)×(na−l). From
(30) and the definitions of ũ1, ur and �̇ above, we have

u1 = ur + r . (33)

The time derivatives of � and � are given by

�̇ = L̇u1 + Lu̇1 − �̇, (34)

�̇ = L̇ur + Lu̇r − ϑ̇. (35)
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From (31) to (33) we have

� + � = Lu1. (36)

From the dynamics (21) together with (34)–(36), we have

M2(�)�̇ + C2(�, �̇)� + M2(�)�̇ + C2(�, �̇)�

+ G2(�) + d3(t) = B2(�)� + (J T
2 + �J T

2 )�h. (37)

Consider the control law given by

B2� = −
5∑

i=1

ĉi�
2
i ‖�‖2Y 2

i (�, �̇)

�iYi(�, �̇)‖�‖ + �i

− K�� − �

− (J T
2 + �Ĵ T

2 )�d
h + (J T

2 + �Ĵ T
2 )K�(�h − �d

h)

− �h, (38)

� = [�1 0]T, (39)

�1 =

⎡
⎢⎢⎣

k1s1 +∑nv−1
i=2 si�i+1

−∑nv

j=3 sj
∑j−1

i=2
�(ej − sj )

�ei

�i+1

snv

⎤
⎥⎥⎦ ,

�h = ‖J�‖
2‖C��‖ sgn(�)(‖S�‖2�̂ + ‖C��‖2)

+ ‖J�‖
2‖C��‖ sgn(�)‖ef ‖2 + (K� + I )�Ĵ T

2 (�h − �d
h), (40)

sgn(�) =
{

1 if ��0,

−1 if � < 0

and the adaptive laws

˙̂
W = ̂�hS

T
�J��, (41)

˙̂� = 1

2‖C��‖‖�‖‖J�‖‖S�‖2, (42)

˙̂ci = −hi ĉi + �i�
2
i Y

2
i ‖�‖2

�iYi(�, �̇)‖�‖ + �i

(i = 1, . . . , 5), (43)

where

Y1(�, �̇) = ‖�̇‖ +
(

b	1

∥∥∥∥ d

dt
J

∥∥∥∥+ b	2‖J‖
)∥∥∥∥ d

dt
T −1

1 (�)

∥∥∥∥
+ b	1‖J‖

∥∥∥∥ d2

dt2 T −1
1 (�)

∥∥∥∥ ,

Y2(�, �̇) = ‖�‖ + b	1‖J‖
∥∥∥∥ d

dt
T −1

1 (�)

∥∥∥∥ ,

Y3(�, �̇) = ‖�̇‖
(

‖�‖ + b	1‖J‖
∥∥∥∥ d

dt
T −1

1 (�)

∥∥∥∥
)

,

Y4(�, �̇) = Y5(�, �̇) = 1.

K� and K� are positive definite matrices, �i > 0 and �i > 0 are
constant. From the dynamic equation (37) together with (38),
the closed-loop system dynamics can be written as

ṡ1 = � + ũ1, (44)

ṡ2 = (� + ũ1)�3 + s3ud1 − k2s2u
2p
d1 , (45)

ṡ3 = (� + ũ1)

(
�4 − �(e3 − s3)

�e2
�3

)

+ s4ud1 − s2ud1 − k3s3u
2p
d1

... (46)

ṡnv−1 = (� + ũ1)

(
�nv

−
nv−2∑
i=2

�(env−1 − snv−1)

�ei

�i+1

)

+ snvud1 − snv−2ud1 − knv−1snv−1u
2p
d1 , (47)

ṡnv = (� + ũ1)

nv−2∑
i=2

�(env − snv )

�ei

�i+1 − knv snv

− snv−1ud1 + ũ2, (48)

�̇ = −k0� − �1, (49)

M2�̇ = − C2� − � − K�� −
5∑

i=1

ĉi�
2
i ‖�‖2Y 2

i (�, �̇)

�iYi(�, �̇)‖�‖ + �i

− J T
2 (�d

h − K�e�) + J T
2 �h

− �J̃ T
2 �h + �Ĵ T

2 (K� + I )e� − �h − �, (50)

where Υ = M2�̇ + C2� + G2 + d3.

Theorem 3.1. Consider the mechanical system described by
(1), (2), and (10). Under Assumption 3.1, the control law
(38) leads to: (i) �, �̇, �h converge to �d , �̇d , �d

h at t → ∞;
and (ii) all the signals in the closed-loop are bounded for all
t �0.

Proof. Consider the Lyapunov function candidate:

V (t) = 1

2

nv∑
i=2

s2
i + 1

2
k1s

2
1 + 1

2
�2 + 1

2
�TM2� +

5∑
i=1

1

2�i

c̃2
i

+ 1

2
W̃TW̃ + 1

2
ϑT(I + K�)K

−1
ϑ ϑ

+ 1

2
(‖W‖2 − �̂)2, (51)

where W̃ = Ŵ − W , c̃i = ĉi − ci , we have ˙̃
W = ˙̂

W , ˙̃ci = ˙̂ci .
Considering Property 2.1 and integrating (43) and (50) into the
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derivative of V yield

V̇ � −
nv−1∑
i=2

kis
2
i u2l

d1 − knv s
2
nv

− k0�
2 + ũ1T� − �TK��

−
5∑

i=1

ĉi�
2
i ‖�‖2Y 2

i (�, �̇)

�iYi(�, �̇)‖�‖ + �i

+ ‖�‖‖Υ ‖

− �TJ T
2 (�d

h − K�e�) + �TJ T
2 �h

− �T�J̃ T
2 �h + �T�Ĵ T

2 (K� + I )e� − �T�h − �T�

−
5∑

i=1

hi ĉi c̃i

�i

+
5∑

i=1

c̃i�
2
i ‖�‖2Y 2

i (�, �̇)

�iYi(�, �̇)‖�‖ + �i

+ ˙̃
W

T
W̃

+ ϑT(I + K�)K
−1
ϑ ϑ̇ − (‖W‖2 − �̂) ˙̂�. (52)

From (26) and (27), we can obtain

ef = J+
�

T
�J̃ T

2 �h

= J+
�

T
J T
� S�(̂Ŵ − W)�h + J+

� J T
� ̃C���h. (53)

Considering Property 2.3, we have

‖ef ‖2 = ‖J+
�

T
J T
� ‖2‖S�(̂Ŵ − W)‖2‖�h‖2

+ ‖J+
�

T
J T
� ‖2‖C��‖2‖̃�h‖. (54)

Therefore, we obtain

‖̃�h‖�‖ef ‖/‖C��‖. (55)

Considering (26), (53) and using the adaptive parameter law
(41), rewriting the 10th, the 11th and the 16th right-hand terms
in (52), we have

− �T�J̃ T
2 �h + ˙̃

W
T
W̃ + �T�Ĵ T(k� + I )e�

= −�TJ T
� ̃(S�W + C��)�h + �T�, (56)

where � = �Ĵ T
2 (K� + I )e�. From (55) and (56), we have

− �TJ T
� �h̃(S�W + C��)

�
‖�‖‖J�‖
2‖C��‖ (‖ef ‖2 + ‖S�‖2‖W‖2 + ‖C��‖2) (57)

by noting Property 2.3. Moreover

‖�‖‖Υ ‖ −
5∑

i=1

ĉi�
2
i ‖�‖2Y 2

i (�, �̇)

�iYi(�, �̇)‖�‖ + �i

−
5∑

i=1

hi ĉi c̃i

�i

+
5∑

i=1

c̃i�
2
i ‖�‖2Y 2

i (�, �̇)

�iYi(�, �̇)‖�‖ + �i

�
5∑

i=1

(
hi

4�i

c2
i + ci�i

)
. (58)

In addition, from (29) and (31), �T =rTLT +ϑT. Thus, we have

− �TJ T
2 (�d

h − K�e�) + �TJ T
2 �h + ϑT(I + K�)K

−1
ϑ ϑ̇

= −ϑT(I + K�)ϑ + rTLTJ T
2 (I + K�)e� (59)

by noting LTJ T
2 = 0 from (20).

From (41), (57)–(59), it can be shown that

V̇ � − k0�
2 − knv snv −

nv−1∑
i=2

kis
2
i u2l

d1 + ũ1T� − �TK��

+
5∑

i=1

(
hi

4�i

c2
i + ci�i

)
− ϑT(K� + I )ϑ + ‖�‖‖J�‖

2‖C��‖ ‖ef ‖2

+ ‖�‖‖J�‖
2‖C��‖ (‖S�‖2‖W‖2 + ‖C��‖2) + �T� − �T�h

− �T� − (‖W‖2 − �̂) ˙̂� − ϑT(I + K�)ϑ. (60)

From (16), (29), and (39), considering the fourth and the 12th
right-hand terms in (60), we have

ũ1T� − �T� = ũ1T� − (rTLT� + ϑT�)

= ũ1T
[
�1

0

]
− rT[LT

v LT
a ]
[
�1

0

]
− [0 ϑ1]

[
�1

0

]
.

From (16) and (30), we have Lv=[Iv, 0], and Ku=diag[0, Ku1],
rT[LT

v LT
a ][�1 0]T = ũ1T�1, subsequently we obtain

ũ1T � − �T� = 0. (61)

Integrating (61), one obtains

V̇ � − k0�
2 − knv snv −

nv−1∑
i=2

kis
2
i u2l

d1 − �TK��

+
5∑

i=1

(
hi

4�i

c2
i + ci�i

)
− ϑT(I + K�)ϑ

+ ‖�‖‖J�‖‖S�‖2

2‖C��‖ (‖W‖2 − �̂) − (‖W‖2 − �̂) ˙̂�. (62)

Considering the parameter �̂ update law (42), it results that
V̇ � − k0�2 − knv snv − ∑nv−1

i=2 kis
2
i u2l

d1 − �TK�� + ∑5
i=1

((hi/4�i )c
2
i + ci�i ) − ϑT(I + K�)ϑ. Noting Assumption 3.2,

we have
∑5

i=1 ((hi/4�i )c
2
i + ci�i ) → 0 as t → ∞. Integrating

both sides of the above equation gives V (t) − V (0) < −∫ t

0 (k0�2 + knv snv + ∑nv−1
i=2 kis

2
i u2l

d1 + �TK�� + ϑT(I +
K�)ϑ) ds+∑5

i=1 ((ai/4�i )c
2
i +cibi) < ∞. Thus, V (t) < V (0)+∑5

i=1((ai/4�i )c
2
i + cibi), therefore V (t) is bounded, which

implies that �, si , �, ĉi , Ŵ , ϑ and �̂ are bounded. From the defi-
nition of si in (29), it can be concluded that [e1, e2, . . . , env ]T is
bounded, which follows that � is bounded. Since � is bounded,
we can obtain r, ũ1 ∈ Ln−l

2 from (31), therefore, qa1 − qa1d

and q̇a1 − q̇a1d are bounded, which follows that qa1 is bounded.
Since ϑ is bounded, from (29), we have e� is bounded. There-
fore, it is concluded that siud1, snv , � ∈ L2, it can be shown
that siud1 → 0, snv → 0, � → 0 as t → 0, respectively. It
is further concluded that si → 0 as t → 0. Differentiating
u

p
d1� yields (d/dt)u

p
d1� = −k1u

p
d1s1 + lu

p−1
d1 u̇

p
d1� − k0u

p
d1� −

ul
d1{
∑nv−1

i=2 si�i+1 − ∑nv

j=3sj
∑j−1

i=2 (�(ej − sj )/�ei)�i+1},
where the first term is uniformly continuous and the other terms
converges to zero. Since (d/dt)u

p
d1� converge to zero, s and ṡ
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also tend to zero. It is obvious that si = 0, yields that �i → �di

and �̇i → �̇di as t → ∞. Since �, �̇, d3, �J̃2, e� and �h are all
bounded, it can be concluded that � is bounded from (38). �

4. Simulation studies

Consider a 3-DOF robotic manipulator with two revo-
lute joints and one prismatic joint mounted on two wheeled
mobile platform shown in Fig. 1, which is subjected to the
following constraints: ẋ cos � + ẏ sin � = 0. Using the La-
grangian approach, we can obtain the standard form (1) with
qv =[x, y, �]T, qa =[�1, �2, �3]T, �2 =�/2, q =[qv, qa]T, and
Av = [cos �, sin �, 0]T, and

Mv =
[
Mv11 Mv12

Mv21 Mv22

]
, Cv =

[
Cv11 Cv12

Cv21 Cv22

]
,

Bv =
[

sin �/r − cos �/r −l/r

− sin �/r cos �/r l/r

]T

,

Mv12 = [m123d cos � + m23 cos(� + �1), m123d sin � +
m23 sin(�+�1)]T, Mv11=diag[mp123], m23=m2l2+m3L3, L3=
2l2+l3+�3, Mv22=Ip+I123+m123d

2+m2(l
2
2 +2dl2 cos �1)+

m3(L
2
3 + 2dL3 cos �1), Mva = [Mva1, Mva2, Mva3], Mva1 =

[m23 cos(�+�1), m23 sin(�+�1), I123 +m2(l
2
2 +2dl2 cos �1)+

m3(L
2
3 + 2dL3 cos �1)]T, Mva2 = 0, Mva3 = [sin(� +

�1), − cos(�+�1), 0]T, Ba=diag[1.0], Ma=diag[I123, I23, m3],
�=[�l , �r , �1, �2, �3]T, Gv=[0.0, 0.0, 0.0]T, mp123=mp+m123,
m123 = m1 + m2 + m3, I123 = I1 + I2 + I3 + m3L

2
3,

I23 = I2 + I3 + m3L
2
3, Cv11 = 0, Cv12 = CT

v21, Cv22 =
−2m23d sin �1�̇1, Ca=diag[−m23d sin �1�̇, −m23d sin �1�̇, 0],
Cv12=[−m123d�̇ sin �−m23 sin(�+�1)(�̇+�̇1), m123d �̇ cos �+
m23 cos(� + �1)(�̇ + �̇1)]T, Ga = [0.0, m2gl2, m3gL3]T,
Cva =[Cva1, Cva2, Cva3], Cva1 =Cva2 =[−m23 sin(�+�1)(�̇+
�̇1), −m23 sin cos(� + �1)(�̇ + �̇1), 0]T, Cva3 = [−m3 cos(� +
�1)(�̇ + �̇1), −m3 sin cos(� + �1)(�̇ + �̇1), 0]T, Cav1 = CT

va1,
Cav2 = CT

va2, Cav3 = [m3 cos(� + �1)(�̇ + �̇1), m3 sin(� +
�1)(�̇ + �̇1), m3d sin ��̇1].

2r

l

d

driving wheel

2l1 m1

2l2

m2

x

y
z

O

l

m3

2l3�2

�3

�1

�r

Fig. 1. 3-DOF robotic manipulator mounted on a mobile platform.

Remark 4.1. In such case that 3-DOF mobile manipulator
consists of two revolute joints and one prismatic joint, ∀� ∈
Rn, ∀�̇ ∈ Rn, ‖M2(�)‖�km1+km2‖�6‖2 with km1 and km2 > 0,
‖G2(�)‖�kg1 + kg2‖�6‖ with kg1 and kg2 > 0, where �6 = �3,
if the boundedness of �6 is known, there still exist some finite
non-negative constants ci �0 (i =1, . . . , 4), therefore Property
2.2 holds.

Remark 4.2. The existence of sign-function in the controller
(46) may inevitably lead to chattering in control torques. To
avoid chattering, a sat-function can be used to replace the sign-
function (Slotine & Li, 1991).

Given the desired trajectory qd =[xd, yd, �d , �1d , �2d ]T with
xd =2.0 cos(t), yd =2.0 sin(t), �d = t , �1d =�/2 rad, �2d =�/2
rad and the geometric constraint which the end-effector sub-
jected to: � = 
(x2 + y2) + z − c = 0 with c = 2.25 m, and
�d =10.0 N, the desired value of the parameter 
 is 1.0, and the
joint 3 is redundant prismatic joint used to compensate the posi-
tion errors caused by uncertain holonomic constraints. Assume
that �3 ∈ [0.0 m, 0.3 m]. The transformation T1(q) is defined
as �1 =�, �2 =x cos �+y sin �, �3 =−x sin �+y cos �, �4 =�1,
�5 = �2, �6 = �3, u1 = vb2, u2 = vb1 − (x cos � + y sin �)vb2,
u3 = �̇3, u4 = �̇4, u5 = �̇5, one can obtain the kinematic
system in the chained form as �̇1 = u1, �̇2 = �3u1, �̇3 = u2,
�̇4 = u3, �̇5 = u4, �̇6 = u5. Using the above diffeomorphism
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Fig. 2. Positions tracking.
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Fig. 4. The contact force (N) and estimated 
.

transformation, we can obtain �d1 = t , �d2 = 2.0, �d3 = 0.0,
�d4 = �/2, �d5 = �/2, �d

h = 10.0 N with ud1 = 1.0, ud2 = 0.0,
ud3=0.0, ud4=0.0. In the simulation, mp=5.0 kg, m1=1.0 kg,
m2 =m3 =0.5 kg, Ip =2.5 kg m2, I1 =1.0 kg m2,I2 =0.5 kg m2,
I3 = 0.5 + m3�

2
3 kg m2, d = l = r = 0.5 m, 2l1 = 1.0 m, 2l2 =

0.3 m. The initial condition select x(0) = 2.0 m, y(0) = 0.0 m,
�(0)=�/2 rad, �1(0)=�/2 rad, �2(0)=�/2 rad, �3(0)=0.1 m,
�(0)=0.0 N and ẋ(0)=0.5 m/s, ẏ(0)=�̇(0)=�̇1(0)=�̇2(0)=�̇3
(0)=0.0, 
(0)=0.1, ĉi (0)=1.0, i=1, . . . , 5. In the simulation,
the design parameters are set as b	1 = b	2 = 1.0, k0 = 30.0,
k1 = 200.0, k2 = 1.0, k3 = 1.0,Kϑ = diag[0, 0.01], K� = 0.5,
�(0)= 0, K� = diag[1.0], Ka = diag[1.0], the adaptive gains in
the adaptive laws are chosen as �i = 0.1, �i = 1.0, hi = �i =
1/(1+t)2. The disturbances on the mobile base are set to a time
varying form as 0.5 sin(t) and 0.5 cos(t). The control results
are shown in Figs. 2–4. Fig. 2 show the trajectory tracking
(q − qd) with the disturbances, and the corresponding torques
are shown in Fig. 3. Fig. 4 shows the contact force tracking
�h − �d

h and the evolution of 
. The simulation results show
that the position tracking error converges to zero, the estimated
uncertainty converges and the contact force error converges to
the desired contact force in Fig. 4.

5. Conclusion

In this paper, the trajectory and force tracking controls of
nonholonomic mobile manipulators have been investigated with
unknown inertia parameters, constraints and disturbances. The
controls ensure that the output of the dynamic system tracks
hybrid variable signals and makes the whole system stable
with respect to the desired force/motion. Throughout this paper,
feedback control design and stability analysis are performed via
explicit Lyapunov techniques. Simulation studies on the con-
trol of a two wheels driven mobile manipulator illustrate the
effectiveness of the proposed control.
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