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I. INTRODUCTION

Navigation is the process of estimating a vehicle’s
pose (i.e., position and orientation) through the use of
sensor measurements that contain uncertainty.
Satellite-based positioning systems provide absolute
exteroceptive measurements that allow this task to be
performed in a fixed reference frame. Alternatively, a
vehicle can utilize its onboard sensors to obtain relative
exteroceptive measurements for navigation. Upon
initiation, these measurements will be referenced to an
arbitrary coordinate system. The task of navigation may
include the tracking and localization of objects in the local
environment, which can be labeled as targets, map
features, or landmarks depending on the application. This
type of navigation and mapping problem is known as
simultaneous localization and mapping (SLAM). It is a
joint state-estimation problem of the dynamic vehicle (or
sensor) state and the position of usually static, but possibly
dynamic, targets or landmarks. The problem is of great
relevance in the aerospace domain, with various
applications using different sensing modalities. Some
examples include radar-based navigation for flying
vehicles and lidar or vision-based navigation for planetary
exploration scenarios. This article will examine a
random-finite-set (RFS)-based method for solving the
SLAM navigation problem.

The common probabilistic approach to navigation uses
random vectors to represent the state of the system and
estimates the solution through stochastic filtering, or
smoothing (i.e., batch estimation via least-squares
optimization) [1]. RFSs were introduced to the field of
target tracking as an alternative to formulating tracking
filters with random vectors [2]. This newer approach
allows for multitarget tracking, in which both the position
and number of targets are estimated concurrently.1 The
RFS formulation has since been adapted for vehicle
navigation, tracking, and mapping problems [3–10].

Numerous RFS filters, such as those presented in
[11–14], have been developed since the initial contribution
by Mahler [2]. Mullane et al. [3] were among the first to
adapt an RFS filter for navigation problems. Specifically, a
Rao–Blackwellized particle filter (RB-PF) was designed
for estimating the vehicle pose, while a Gaussian-mixture
probability-hypothesis-density (GM-PHD) filter [11] was
used for target and landmark estimation. One of the
problems with this PHD SLAM filter is that it is not
robust, and will often lead to estimate divergence due to
the strategies used for importance weighting in the PF. A
similar SLAM method based on the single-cluster PHD
filter developed by Lee et al. [5] showed much
improvement over the currently existing approaches. The
purpose of this article is to present an improved method of
importance weighting that makes the PHD SLAM filter
more robust and allows it to consistently provide more

1 This is compared to single-target tracking, where only the state vector is
estimated.
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accurate state estimates. Furthermore, this article will
examine practical aspects of the proposed method,
including implementation and computational
requirements. The improved PHD SLAM filter is
validated through thousands of simulation trials, as well as
two experimental data sets collected using real hardware.

The remainder of this article is organized as follows.
In the next section, additional relevant background
information will be presented. In Section III, the PHD
SLAM formulation will be reviewed along with existing
particle-weighting strategies, and the proposed weighting
strategy will be presented. Section IV will detail the
implementation of the SLAM filter using the various
particle-weighting strategies explained in the previous
section. The validation of the proposed approach with 2-D
simulations is presented in Section V, which also includes
the results from real experimental data sets.

II. BACKGROUND INFORMATION

Similar to vector-based filtering methods for
single-target tracking, such as the Kalman filter (KF), RFS
filtering methods stem from the recursive Bayesian
filtering paradigm. Mathematical tools called finite set
statistics were developed by Mahler [2] for RFS
multitarget estimation.

One of the key differences between a random vector
and an RFS filter is the representation of the system state.
Mathematically, the size of a random vector is fixed, and
the ordering of its elements is important. In contrast, there
is no inherent ordering of an RFS’s elements, and its
cardinality is a random variable. This makes RFS filtering
more appropriate for navigational and mapping tasks in
environments where the number of targets or landmarks is
unknown a priori. Traditionally, single-target tracking
filters (such as the extended Kalman filter [EKF]) have
been used for solving such problems, but they usually
require the use of separate heuristic-based management
algorithms for changing the state vector size as new
features are assumed to be detected. Note that there are
also vector-based non-Bayesian estimators based on
Gaussian nonlinear optimization, such as [15–19], which
are also suitable for navigation and mapping tasks.

Another distinction of RFS-based filtering is its ability
to account for detection statistics (i.e., the probability of
detection and the expected amount of clutter or outliers).
This provides RFS filters with increased robustness and
eliminates the need for filter-independent outlier-rejection
methods that are typically used with single-target
estimation filters. From their remaining inlier
measurements, single-target estimation filters typically
rely on data-association routines to determine the
correspondences of measurements to targets for their
position updates. More advanced methods such as the
joint probabilistic data-association filter [20, 21] perform
KF updates to landmarks using combined innovations,
calculated from the sum of measurement-
likelihood-weighted innovations. With RFS-based filters,

every target or landmark is updated using all
measurements. The updating effect of a measurement
on a target or landmark is determined by the the ratio of
the measurement likelihood based on that landmark and
the sum of the measurement likelihoods to all
landmarks.

As with random vectors, the RFS Bayes filter remains
computationally intractable in general. One feasible
approximation can be achieved by using the first statistical
moment of an RFS, which is also known as its PHD or
intensity, assuming that the RFSs follow a multitarget
Poisson distribution.2 This approximation results in the
PHD filter. When a GM is used to represent the PHD, it is
known as the GM-PHD filter [11]. A generalization of the
PHD filter, known as the cardinalized PHD filter [12],
relaxes the Poisson assumption by treating RFSs as
independently and identically distributed clusters. This
provides better filtering performance at a higher
computational cost. Alternatively, the RFS Bayes filter can
be assumed to follow a multi-Bernoulli (MB) distribution,
where elements within the RFS are independent and
Bernoulli-distributed. This leads to the MB filter, which
produces a biased cardinality estimate. The
cardinality-balanced MB filter was introduced as a remedy
[13]. Track labels, or identification indices for objects
being estimated, were added to the outputs of the MB filter
through postprocessing. To facilitate the inclusion of track
labels into the filtering process, the generalized labeled
MB (GLMB) filter was introduced [22]. In the same work,
the δ-GLMB filter was introduced as a subclass of GLMB
filters offering better computational properties for
target-tracking applications. The labeled MB filter detailed
in [23] can also be derived from the GLMB with specific
assumptions that allow uncertainty propagation of a single
set of track labels for a reduction in computational cost.
This filter was applied to SLAM in [24].

The work presented in this article is focused on the use
of the PHD filter. In adapting the filter for navigation and
mapping, Mullane et al. [3] introduced the the PHD
SLAM filter. This approach utilizes a RB-PF, wherein the
vehicle trajectory estimate is represented by particles and
per-particle landmark estimates are updated by GM-PHD
filters. This is similar to the vector-based factored solution
to SLAM (FastSLAM) algorithm [25], which instead uses
the EKF for map updates.

Using a PF, it is necessary to assign importance-
weighting factors to particles so that the posterior they
represent can be updated through resampling [26]. From
the RFS formulation and the Poisson assumption made by
the PHD filter, there exist, in theory, different methods for
evaluating the importance factors for the PHD SLAM
filter. In [3, 4], the empty-set and single-feature strategies
are introduced. Unfortunately, these methods are not
robust and almost always lead to estimate divergence (as

2 This implies that features are independently and identically distributed,
while the number of features follows a Poisson distribution [2].
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will be shown in Section V). Another weighting method
based on the cluster process, which provides an exact
solution to the measurement likelihood set integral, is
introduced in the single-cluster (SC) PHD filter [5], which
allows the PHD filter to perform more robustly in
navigation and mapping tasks.

The contribution of this article is the presentation of an
improved method for evaluating particle importance
factors in the PHD SLAM filter, known as the multifeature
strategy. Through a comprehensive set of simulations and
hardware experiments, the performance of the proposed
method over the existing methods will be shown. The
work presented in this article is a continuation of the work
in [27], which shows only the derivation of a
double-feature strategy and uses 1-D simulations for
validation. The method for approximating the multifeature
strategy is a continuation of the work in [28], but this
article presents a more in-depth reasoning for the
approximations and validates the multifeature strategy
with real experimental data. Furthermore, comparisons are
made with various existing random-vector and RFS filters.

III. RFS SLAM PROBLEM FORMULATION

For completeness, this section will briefly review the
formulation of the navigation and mapping problem using
RFSs.

A. RFS SLAM

In general, the underlying stochastic system for the
navigation and mapping problem can be represented using
the nonlinear discrete-time equations

xk = g (xk−1, uk, δk) (1)

zj

k = h
(
xk, mi , εk

)
, (2)

where xk is a random vector representing the vehicle pose
at time step k, g is the vehicle motion model, uk is the
control input at time step k, δk is the process noise at time
step k, zj

k is the jth measurement vector at time step k, h is
the sensor-specific measurement model, mi is a random
vector for the position of target or landmark i, and εk is the
measurement noise.

Placing the independent random vectors of landmarks
into an RFS, the observed targets or landmarks up to time
step k are defined as

Mk ≡ {
m1, m2, . . . , mm

}
, (3)

where the cardinality |Mk| = m is also a random variable.
The set of all n measurements at time step k is defined

as

Zk ≡ {
z1
k, z2

k, . . . , zn
k

}
(4)

and may contain clutter (false alarms). The clutter
intensity κ is the expected number of clutter
measurements over a space. The probability of detection
PD(x, m) is the probability of obtaining a measurement
from a landmark at position m and vehicle pose x.

In the navigation problem being considered, the best
estimate of the vehicle trajectory and target positions are
sought, using the information contained in the available
control inputs and sensor measurements. Using a
probabilistic approach, the required estimate at each time
step is

p (x0:k,Mk|Z1:k, u1:k) . (5)

Similar to vector-based formulations, (5) can
theoretically be solved by recursive Bayesian estimation.
Following the FastSLAM approach, (5) can be factored as

p (x0:k|Z1:k, u1:k) p (Mk| x0:k,Z1:k, u1:k) . (6)

The first term in (6) is a conditional probability density
function on the vehicle trajectory and can be estimated
using a PF; the second term is the density of landmarks
conditioned on the trajectory. In this article, it is assumed
that landmarks are static and not dependent on any control
inputs. In general, their dynamics can follow any process
model. The map density can be updated using the latest
measurement according to the RFS Bayes filter:

p(Mk|x0:k,Z1:k) = p(Zk|x0:k,Mk)p(Mk|x0:k,Z1:k−1)

p(Zk|x0:k,Z1:k−1)
.

(7)
Since the Bayes filter is computationally intractable in
general, approximations are made to obtain closed-form
solutions for the update process. Furthermore, instead of
updating the map density directly, its first moment, also
known as the intensity or PHD, can be used as an
approximation for the update. The PHD of the map can be
expressed using δw, the Dirac delta density (concentrated
at w), as [2]

v (m) =
∫ ∑

w∈M
δw (m) p (M) δM. (8)

Let v−(m) represent the map intensity corresponding to
the prior map before update—that is, p(Mk|x0:k,Z1:k−1)
and v+ (m) the map intensity corresponding to the
posterior map after update—that is, p(Mk|x0:k,Z1:k).

For the vehicle trajectory, the predicted estimate using
the latest process input is calculated as

p (x0:k|Z1:k, u1:k)

= p (xk| xk−1, u1:k) p (x0:k−1|Z1:k−1, u1:k−1) , (9)

where the first term is the transition density from the
process model. The trajectory estimate is updated using
the latest measurements according to

p (x0:k|Z1:k, u1:k)

= p (Zk| x0:k,Z1:k−1) p (x0:k|Z1:k−1, u1:k)

p (Zk|Z1:k−1)
(10)

= (ηp (Zk| x0:k,Z1:k−1)) p (x0:k|Z1:k−1, u1:k) . (11)

In using a PF to estimate the vehicle trajectory, the
parenthesized terms are used to calculate
importance-weighting factors for each particle. The
calculation of these factors is the focus of this article.
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B. Importance-Weighting Strategies

Existing particle importance-weighting strategies will
first be reviewed. The proposed strategy will then be
presented. Implementation details of the various strategies
will be covered in Section IV.

One possible way of determining the importance-
weighting factor is to apply Bayes’s theorem [4]:

ηp (Zk| x0:k,Z1:k−1)

= ηp (Zk|Mk, x0:k)
p (Mk|Z1:k−1, x0:k)

p (Mk|Z1:k, x0:k)
. (12)

Note from (12) that the RFS Mk is a free variable that can
be chosen arbitrarily, since it appears only on the
right-hand side. Theoretically, this choice should not make
a difference to the resulting particle weight. For
computational tractability however, some assumptions
need to be made on the map densities in the
right-hand-side fraction of (12). They can be approximated
as multiobject Poisson distributions such that

p (Mk|Z1:k−1, x0:k) =p
({

m1
k, m2

k, . . . , mn
k

}∣∣Z1:k−1, x0:k
)

= m−n

exp m−

n∏
i=1

p
(

mi
∣∣Z1:k−1, x0:k

)
(13)

p (Mk|Z1:k, x0:k) = p
({

m1
k, m2

k, . . . , mn
k

}∣∣Z1:k, x0:k
)

= m+n

exp m+

n∏
i=1

p
(

mi
∣∣Z1:k, x0:k

)
, (14)

where m− and m+ are the respective means of the
cardinality distributions. Due to the multiobject Poisson
assumption, the choice of Mk does make a difference
when the particle weight is calculated.

1) The Empty-Set Strategy: From (12), the simplest
approach is to assume that Mk = ∅. All measurements are
considered to be multiobject Poisson-distributed clutter,
and the measurement likelihood term in (12) becomes

p (Zk|Mk, x0:k) = pκ (Zk) =

∏
zk∈Zk

c (zk| xk)

exp
∫

c (z | xk) dz
. (15)

Note that in many applications, clutter is assumed to be
uniformly distributed in space. From here on, let

c = c (zk| xk) (16)

and let the expected number of clutter measurements be

Nc ≡
∫

c (z| xk) dz. (17)

Then (12) simplifies to:

ηp (Zk| x0:k,Z1:k−1) = η
c|Zk |

Nc

exp
(
m+ − m−)

. (18)

In Section V, it will be shown that this choice for Mk

is a poor approximation of the map density, and it causes
filter divergence in most situations.

2) The Single-Feature Strategy: Another simplistic
approximation is to assume a map that is based on a single
feature, Mk = {m}. All measurements but one are

considered clutter, and the measurement likelihood term in
(12) becomes

p (Zk|Mk, x0:k) ≈ (1 − PD)
c|Zk |

exp Nc

+PD

∑
zk∈Zk

(
c|Zk−{zk}|

exp Nc

p (zk| m, x0:k)

)
. (19)

The first term on the right-hand side of (19) represents the
case where the single feature is misdetected and all the
measurements are considered clutter. The second term
represents the cases where one of the |Zk| measurements
originates from the single feature, while the remaining
measurements are clutter. With this approach, the
fractional term of map densities in (12) becomes

p (Mk|Z1:k−1, x0:k)

p (Mk|Z1:k, x0:k)

= m−p
(

mi
∣∣Z1:k−1, x0:k

)
m+p

(
mi

∣∣Z1:k, x0:k
) exp

(
m+ − m−)

. (20)

It will be shown in Section V that this strategy does not
provide much improvement over the empty-set strategy.

3) The SC Filter: Another way of determining the
importance-weighting factor in (12) is through the
evaluation of its equivalent set integral:

p (Zk| x0:k,Z1:k−1)

=
∫

p (Zk|Mk, x0:k) p (Mk| x0:k,Z1:k−1) δMk. (21)

In [29] an exact solution to (21) is shown for independent
cluster processes, and a more specific solution for the
SC-PHD filter based on the Poisson cluster process is
given in [30]. This is implemented for SLAM in [5]. From
[30], the weighting factor in (21) is evaluated as

ηp (Zk| x0:k,Z1:k−1) = η exp

(
−

∫
v− (m) PDdm

)

×
∏

zk∈Zk

(
κ (z) +

∫
v− (m) PDp (zk| m, x0:k) dm

)
. (22)

This weighting method has been shown to produce
consistent estimates in various scenarios and will be used
in Section V as a benchmark for comparison.

4) The Multifeature Strategy: The proposed
particle-weighting strategy in this article is based on (12),
and its development was motivated by the poor
performance of the empty-set and single-feature strategies,
which are also derived from (12). The proposed strategy
assumes that Mk includes all the estimated landmarks in
the vehicle sensor’s field of view (FOV).3 That is,
Mk = {m1, m2, . . . , mm}. The intuition behind this is
that, since the set measurement likelihood is a contributing
factor in (12), it would be more beneficial to choose Mk

based on all current landmark estimates. This allows all

3 This is equivalent to including all the estimated landmarks in the map,
since the probability of detection of features outside the FOV is zero.

2700 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 52, NO. 6 DECEMBER 2016



measurements to be considered as both real or clutter.
Consider first the simplest multifeature case, where there
are in the FOV two targets or landmarks, Mk = {m1, m2},
with respective probabilities of detection P 1

D and P 2
D. The

measurement likelihood term in (12) becomes

p (Zk|Mk, x0:k)

= (
1 − P 1

D

) (
1 − P 2

D

) c|Zk |

exp Nc

+P 1
D

(
1 − P 2

D

) ∑
zk∈Zk

(
c|Zk−{zk}|

exp Nc

p
(

zk| m1, x0:k
))

+P 2
D

(
1 − P 1

D

) ∑
zk∈Zk

(
c|Zk−{zk}|

exp Nc

p
(

zk| m2, x0:k
))

+P 1
DP 2

D

∑
z1∈Zk

∑
z2∈Zk−z1

(c|Zk−{z1z2}|

exp Nc

p
(
z1|m1, x0:k

)

× p
(
z2|m2, x0:k

) )
. (23)

The first term represents the possibility of both features
not being detected by any measurements, which are all
considered as clutter. In the second term, only m1 is detected
by one of the measurements, while the rest are considered
clutter. Similarly, in the third term, only m2 is detected.
The last term represents the case where both landmarks are
detected and |Zk| − 2 measurements are considered clutter.

Consider now the case where there are m
landmarks within the vehicle sensor’s
FOV and Mk = {m1, m2, . . . , mm}. To aid with the
mathematical presentation, let θ represent an assignment
variable, where θ j = i indicates that measurement
j is assigned to landmark i and θ j = 0 if measurement
j is unassigned. Furthermore, given θ , we have

Zθ
k ≡ {

zj ∈ Zk

∣∣ θ j �= 0
}

(24)

Zθ
k ≡ Zk \ Zθ

k (25)

Mθ
k ≡ {

mm ∈ Mk

∣∣ ∃j, θ j = m
}

(26)

Mθ
k ≡ Mk \ Mθ

k . (27)

These define the sets of assigned and unassigned
measurements and landmarks. The full set measurement
likelihood on the right-hand side of (12) can then be
written as

p (Zk|Mk, x0:k) = p
(
Zk|

{
m1, m2, . . . , mm

}
, x0:k

)

= pκ (Zk)
|M k |∏

i

(
1 − PD

(
xk, mi

))∑
θ

|Zk |∏
j=1
θ j �=0

PD

(
xk, mθ j

)
p

(
zj

∣∣ mθ j

, x0:k

)
(
1 − PD

(
xk, mθ j

))
pκ

(
zj

)

= pκ (Zk)
|M k |∏

i

(
1 − PD

(
xk, mi

))∑
θ

⎛
⎝p

(
Zθ

k

∣∣Mθ
k , x0,k, θ

) ∏
m∈Mθ

k

PD (xk, m)

(1 − PD (xk, m))

∏
z∈Zθ

k

1

pκ (z)

⎞
⎠

=
∑

θ

⎛
⎜⎝p

(
Zθ

k

∣∣Mθ
k , x0,k, θ

) ∏
m∈Mθ

k

PD (xk, m)
∏

m∈Mθ
k

(1 − PD (xk, m))pκ

(
Zθ

k

)⎞
⎟⎠. (28)

The summation over θ considers all possible permutations
of assignments. Unpaired measurements give the clutter

factor pκ (Zθ
k ), while unpaired landmarks give the

misdetection factors (1 − PD(·)). Paired couples (where
θ j = i �= 0) provide the probabilities of detection PD(·)
and the measurement likelihood factor p(Zθ

k |Mθ
k , x0,k, θ).

Furthermore, using this strategy, the fraction of map
densities in (12) becomes

p (Mk|Z1:k−1, x0:k)

p (Mk|Z1:k, x0:k)

= m−n ∏n
i=1 p

(
mi

∣∣Z1:k−1, x0:k
)

m+n
∏n

i=1 p
(

mi
∣∣Z1:k, x0:k

) exp
(
m+ − m−)

. (29)

In Section V it will be shown that using the
multifeature strategy drastically improves the quality of
estimates over the empty-set and single-feature strategies
and produces a slight improvement over the SC-PHD
filter. The practical implementation of the proposed
method in a PHD SLAM framework will be detailed next.

IV. FILTER IMPLEMENTATION

In the random-vector form of the Bayes filter,
Gaussian assumptions allow the KF to be derived [31].
With RFSs, the map cardinality can be assumed to follow
a multiobject Poisson distribution. Clutter measurements
are also assumed to be multiobject Poisson distributed. By
approximating these distributions using their first
statistical moments, the Bayes filter can be approximated
as the PHD filter. Furthermore, by assuming the elements
within Mk to be Gaussian random vectors, the PHD of
landmarks can be expressed as a GM of an arbitrary
number N of Gaussians N r

k ≡ N (μr
k, �

r
k):

vk =
N∑

r=1

wr
kN r

k , (30)

where wr
k is the time-varying weight of the rth Gaussian,

with time-varying mean μr
k and covariance �r

k . From this,
the Bayes filter is approximated as the GM-PHD filter
[11], within which the (spatial) update of each Gaussian
can be performed using the KF or a derivative such as the
EKF for nonlinear systems.
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Returning to the desired factored posterior (6), recall
that the first term on the right-hand side is a conditional
probability density function on the robot trajectory and
can be sampled using particles. The second factor is the
density of landmarks conditioned on the trajectory.
Mullane et al. [4] used the GM-PHD filter to approximate
and calculate the second factor. The main steps in an
iteration of this filter will now be reviewed, with a focus on
the implementation of the particle importance weighting.

A. Particle Propagation

At time step k, each particle [ι] with state x[ι]
k−1,

sampled from the prior trajectory distribution

p (x0:k−1|Z1:k−1, u1:k−1) , (31)

is propagated forward in time by sampling the process
noise δ

[ι]
k−1and using the motion model (1) [32]:

x[ι]
k = g

(
x[ι]

k−1, uk−1, δ
[ι]
k−1

)
. (32)

B. Generation of Birth Gaussians

For each particle, its PHD from the previous update,
v

+[ι]
k−1, is added to |Zk−1| new Gaussians with (arbitrarily

small) weights wB, representing potential new targets or
landmarks:

v
−[ι]
k (m) = v

+[ι]
k−1 +

|Zk−1|∑
b

wBN b,[ι]
k

(
μ

b,[ι]
k , �

b,[ι]
k

)
, (33)

where the intensity v
+[ι]
0 initially contains no Gaussians.

The parameters of the birth Gaussians can be determined
by using the inverse measurement model, derived from (2).

C. Map Update

The PHD for each particle is updated with
measurements according to the PHD filter corrector
equation

v
+[ι]
k (m) =

N
−[ι]
k∑

r=1

(
1 − P

r,[ι]
D

)
w

r,[ι]
k N r,[ι]

k

+
|Zk |∑
j=1

N
−[ι]
k∑

r=1

w
(j,r),[ι]
k N (j,r),[ι]

k , (34)

where N
−[ι]
k is the number of Gaussians that compose

v
−[ι]
k . The first term in (34) reflects the possibility of

misdetections. The second term adds a new Gaussian for
each measurement-to-Gaussian pairing, such that every
measurement is used to update every Gaussian. The
weighting factor is determined as

w
(j,r)[ι]
k =

P
r,[ι]
D w

r,[ι]
k q

(
zj

k ,N
r,[ι]
k

)

κ +
N

−[ι]
k∑

l=1
P

l,[ι]
D w

l,[ι]
k q

(
zi
k,N

l,[ι]
k

) , (35)

where q(·) is the measurement likelihood given a Gaussian
within the current map intensity. The mean and covariance

for a new Gaussian created from measurement j and
Gaussian r in (34) is determined using the EKF update
step.

D. Merging and Pruning of the Map

Gaussians with small weights are eliminated from the
intensity function, while those that are close to each other
are merged together. This approximation is critical in
limiting the computational requirement of the GM-PHD
filter, which would otherwise grow exponentially [11].

E. Importance Weighting and Resampling

From (12)–(14), the importance weighting factor γ
[ι]
k

of particle ι can be evaluated as

γ
[ι]
k = ηp

(
Zk| x[ι]

0:k,Z1:k−1

)
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= ηp
(
Zk|Mk, x[ι]

0:k

) ∏
m∈Mk

v
−[ι]
k (m)

∏
m∈Mk

v
+[ι]
k (m)

× exp
(
m+[ι] − m−[ι]

)
γ

[ι]
k−1, (37)

where m− and m+ can be calculated by summing all the
Gaussian weights in v−

k and v+
k , respectively:

m−[ι] =
N

−[ι]
k∑

r=1

w
r,[ι]
k , m+[ι] =

N
+[ι]
k∑

r=1

w
r,[ι]
k . (38)

When the weighting for all particles has been calculated,
resampling occurs, with higher-weighted particles having
a higher probability of being sampled. The normalizing
constant η will be ignored from here on, since all particle
weights will be multiplied by this same constant, thus
having no effect on the particle resampling procedure. The
implementation of each weighting strategy now follows.

1) The Empty-Set Strategy: Following the results
from (18), for the empty-set strategy (37) simplifies to

γ
[ι]
k = c|Zk |

Nc

exp
(
m+[ι] − m−[ι]

)
γ

[ι]
k−1. (39)

2) The Single-Feature Strategy: For the single-feature
strategy, (37) simplifies to

γ
[ι]
k

=
⎡
⎣(1−PD)

c|Zk |

exp Nc

+PD

∑
zk∈Zk
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× v
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k (m) exp
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)
v
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k (m) exp

(
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)γ
[ι]
k−1, (40)
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where, for example, m could be selected to equal the mean
of the highest-weighted Gaussian in the GM posterior map
intensity.

3) The SC Filter: From (21), it was shown in [5] that
the particle weighting from the SC-PHD filter can be
calculated using the prior map PHD v

−[ι]
k as

γ
[ι]
k = exp

(
m−[ι]

)
×

∏
z∈Zk

(
κ(z)+PD

N
−[ι]
k∑

r=1

p
(
z|N r,[ι]

k , x[ι]
0:k

)
w

r,[ι]
k

)
γ

[ι]
k−1. (41)

It is interesting to note that in [33], in an attempt to
reduce the computational complexity of evaluating the set
measurement likelihood, a similar equation to (41) was
presented that did not include the exponential term. A
physical interpretation of the equation in [33] (product of
sums of individual likelihoods) is akin to summing all
possible permutations of likelihoods—as in (28)—but
allowing measurements to be paired with more than one
landmark.

4) The Multifeature Strategy: From (28) and (29), a
particle’s importance-weighting factor based on the
proposed multi-feature strategy can be calculated as
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In Mk , all the landmark positions from the posterior map
within a particle’s FOV should be included. These can be
obtained from the posterior map intensity by selecting the
means of Gaussians that have weights above a threshold
value.

Solving the multifeature set measurement
likelihood—that is, the summation term in (42)—is
computationally complex if a brute-force approach is
used. The most expensive method is to iterate through
every possible set of correspondences (i.e., through
methods such as lexicographical ordering). The factorial
complexity of this approach makes calculating the
measurement likelihood infeasible when the number of
landmarks and measurements exceeds eight to ten [28]. In
many navigation scenarios, the number of targets or
landmarks and measurements greatly exceeds this limit.
Hence, it is essential to find computationally efficient
methods for approximating the set measurement
likelihood. The following two methods were implemented.

a) Landmark and measurement grouping: In general,
the measurement likelihood between any landmark and
measurement is nonzero. For practical purposes, small

likelihood values (from landmarks and measurements that
are spatially well separated) below a certain threshold can
be assumed to be 0. This allows landmarks and
measurements to be grouped in a way such that a
landmark from one group has (almost) zero likelihood
based on measurements from any other group. This
divide-and-conquer method is similar to techniques used
in multiple-target tracking for determining likely
data-association hypotheses [34]. However, the evaluation
of the set measurement likelihood requires not merely the
best hypotheses, but the likelihood of all hypotheses.

One possible method to execute the grouping
process—the one used in this article—is to represent
landmarks and measurements as nodes in a graph, where
an edge exists between nodes with nonzero measurement
likelihood (after thresholding). A connected-component
analysis [35] can be performed to identify the
landmark–measurement groups. The complexity of this
method is linear in the number of nodes and edges. After
division into smaller groups, it is possible to find the
overall measurement likelihood by taking the product of
each group’s set measurement likelihood.

b) Matrix permanent: The permanent of an n × n
matrix M with elements mi,j is defined as

perm (M) =
∑
π∈	

n∏
i=1

mi,πi
, (43)

where 	 is a symmetric group that includes all possible
permutations of one-to-one matchings between the row
and column indices of M and π is a specific permutation.
This is closely related to the evaluation of the set
measurement likelihood, where the permutations are the
different assignments. Matrix M can be constructed as a
square matrix of size |Mk| + |Zk|. An element in the first
|Zk| rows and |Mk| columns should take the form
p(zj

k |mj , x0,k)PD(xk, mj

k ), zi
k ∈ Zk, mj

k ∈ Mk . The
submatrix from the last |Mk| rows and first |Mk| columns
should be diagonal with entries of the form
(1 − PD(xk, mj

k )). The submatrix from the first |Zk| rows
and last |Mk| columns should also be diagonal, with
entries of the form c(zi

k)/exp Nc. The remaining submatrix
from the last |Mk| rows and |Zk| columns should be filled
with 1s.

As mentioned previously, computing (43) is expensive,
but this is performed on small subgroups of measurements
and landmarks. Furthermore, the Ryser formula [36] can
be used to calculate (43) exactly, and has a lower,
exponential complexity in comparison to the brute-force
factorial complexity. The results presented in this article
are generated with the implementation of the Ryser
formula. It is possible to further reduce computational
costs by approximating the matrix permanent [37]. Jerrum
et al. [38] developed an approximation method that has
polynomial complexity (of power 7) and is based on fully
polynomial randomized approximate schemes. However,
Huang and Jebara [39] have pointed out that in practice,
the method in [38] does not provide computational
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advantages unless the size of the matrix is large.
Alternatively, the method developed in [39] provides an
approximation based on graphical models and belief
propagation that has cubic complexity. Compared with
other RFS filtering methods, the GLMB class of filters
also achieves cubic complexity through the use of Murty’s
algorithm [40] to curb the exponential growth of
components in the multiobject densities. In the
predecessor to this article [28], Murty’s algorithm was
also proposed. For the purpose of evaluating the set
measurement likelihood, however, it was not possible to
quantify the error that would be introduced. Therefore,
methods for approximating the matrix permanent with a
known error bound are preferred. It is also worth noting
that a physical interpretation of the matrix-permanent
approach is the summation of likelihoods from all
permutations of one-to-one measurement-to-landmark
correspondences, which differs from the approximation in
[33] that allows for many-to-one correspondences.

V. EXPERIMENTS

Simulations and hardware experimental data sets are
used to evaluate the performance of the proposed
multifeature strategy for the PHD SLAM filter in various
navigation and mapping scenarios. Comparisons will be
made with the empty-set strategy, the single-feature
strategy, the SC-PHD filter, and FastSLAM from the
traditional vector formulation.

A. Simulations

Simulations allow the detection and clutter statistics to
be controlled and the ground truth (vehicle trajectory and
landmark positions) to be known exactly. The vehicle has
a simulated range-bearing sensor, and landmarks between
the sensing distances of 5–25 m in any direction may be
detected with a predefined probability of detection.
Independent of the real detections, false measurements are
added uniformly in the measurement space at each time
step, with their number being Poisson distributed with a
predefined intensity value. The results from a specific
simulation trial will be examined first. In all cases, 200
particles were used for each filter, and the start of the
simulated trajectory was at the origin.4 With the
probability of detection set to 0.5 and clutter intensity set
at 0.005 m−2 (9.45 expected false measurements per time
step), the results from various filters are shown in Fig. 1.

The FastSLAM algorithm [25] is based on the
traditional random-vector formulation. As a well-known
navigation and mapping filter, it will serve as a benchmark
for comparisons.5 Data association was performed

4 All other filter parameters, such as spatial uncertainty, can be found in
the open-source C++ library at https://github.com/kykleung/RFS-
SLAM.git, which has an implementation of all the filters used in this
article.
5 FastSLAM 1.0 is used because it is algorithmically more similar to
PHD SLAM. FastSLAM 2.0 [41] is expected to run faster with fewer
particles but show similar results, as it still relies on a data-association

by choosing the set of correspondences that maximizes the
joint likelihood of all the measurements at a time step. This
is accomplished by using optimal assignment algorithms
such as [43, 44]. A binary Bayes filter was implemented
to track the probabilities of existence for landmarks. This
takes into account measurement statistics, and is needed for
map-management purposes. The method is not expected
to perform well in the presence of clutter, as is evident
in Fig. 1a, where darker shading on a landmark-estimate
ellipse corresponds to a higher probability of existence.
The high-clutter setting caused mistakes in data
association, which led to estimate divergence.

Estimation results from the PHD SLAM filter
using the previously established empty-set and single-
feature strategies are shown, respectively, in Figs.
1b, 1c. The shading on the landmark-estimate ellipses
corresponds to the weight of a Gaussian in the GM, with
darker shading representing a higher weight. The solution
from the empty-set strategy can be seen to diverge shortly
after the start of the trajectory. This poor performance can
be attributed to the strategy’s reliance on only the change
in the number of landmark estimates, which ignores
measurement likelihoods by assuming all measurements
are clutter—see (18) and (39). The single-feature strategy
yields slightly better estimation results, although both
trajectory and landmark estimates still have large errors.
For the implementation of this strategy, the single feature
is selected as the mean of the highest-weighted Gaussian
in the map intensity function. Although the likelihood of
all measurements to this single landmark is considered, all
measurements but one are still assumed to be clutter. This is
considered as the contributing factor to the poor estimation
results. The estimation results produced from the SC-PHD
filter are shown in Fig. 1d, and both trajectory and landmark
estimates appear to contain small errors. The results
using the proposed multifeature strategy are shown in
Fig. 1e. For implementation, the means of all Gaussians in
the map intensity with weights higher than 0.75 and within
the FOV of a particle were included in the multifeature
set for particle weighting. Good estimates were
obtained for the vehicle trajectory and landmark positions.

To examine the estimation errors in a more quantified
manner, Fig. 2a compares the robot trajectory
displacement errors for the various filters. The error from
dead reckoning is also shown, and can be seen to be better
than the estimate from the empty-set strategy during most
of the simulation. The errors from FastSLAM and the
single-feature strategy are similar, but the SC-PHD filter
performed better. The PHD SLAM filter with the proposed
multifeature strategy has the lowest trajectory estimation
error.

The cardinalized optimal linear assignment (COLA)
metric [45] in Fig. 2b is used to quantify the performance

routine that is separate from the filter. Multihypothesis implementations
for FastSLAM such as [42] may improve robustness slightly, but they are
computationally more expensive.
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Fig. 1. 2-D navigation simulation results from various RFS and vector-based filters, with axis units in meters.

of the landmark estimates. This metric is similar to the
optimal subpattern assignment metric [46] that has been
used in other work in RFS filtering to quantify
performance. While the optimal subpattern assignment

metric is more appropriate for target-tracking problems
where the performances from test scenarios involving
different numbers of ground-truth targets need to be
compared, the COLA metric is suitable for making
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Fig. 2. 2-D simulation errors from the various RFS and vector-based
approaches.

comparisons when the ground truth (map) is fixed [45].
Gaussians in the intensity map that have a weight higher
than 0.75 were used in the evaluation of the metric. The
landmark estimates of FastSLAM and the empty-set and
single-feature strategies have high errors. Estimates
generated by the SC-PHD filter have a lower error, but still
higher than those of the PHD SLAM filter with the
proposed multifeature strategy. Fig. 2c shows the
cardinality estimate errors for all the tested methods.
FastSLAM underestimated the number of landmarks,
while the SC-PHD filter slightly overestimated the number
of landmarks. The PHD SLAM filter performed best. The
dashed black line shows the theoretically correct number
of features which have passed through the simulated
sensor’s FOV.

To gain a better understanding of how each filter
performs over a spectrum of detection statistics, over 2000
simulation trials were conducted to obtain the averaged
trajectory and landmark estimate COLA errors under
different probabilities of detection and clutter intensities.
These are shown in Figs. 3 and 4, respectively. FastSLAM
showed very low errors except in nonideal conditions,
where the probabilities of detection are low and clutter
intensity is high. These are the conditions that justify the
use of RFS filters. The empty-set strategy performed the
worst, with high errors regardless of the detection-statistic
settings. The single-feature strategy performed only
moderately better. Both the multifeature strategy and the
SC-PHD filter performed similarly and were able to
produce estimates with relatively low errors when the
probability of detection is low and the clutter intensity is
high.

B. Victoria Park Data Set

To conduct a more realistic evaluation of the proposed
multifeature weighting strategy, the publicly available
Victoria Park data set [47] was used.6 The data set
contains a low amount of clutter, insufficient to cause
estimate divergence except when the empty-set and
single-feature strategies are used with the PHD SLAM
filter. This is shown in Figs. 5a, 5b. The results obtained
from FastSLAM are shown in Fig. 5c, and are consistent
with the results shown in [25, 41]. To make the detection
conditions less ideal and provide a more challenging
scenario for all the algorithms, artificial clutter was added
to the data set. The number of false measurements at each
measurement time followed a Poisson distribution, and the
false measurements were uniformly distributed within the
sensor FOV. Hence, on top of the 52 974 measurements in
the data set, about 21 500 artificial clutter measurements
were added. Fig. 6 shows an image of the entire robot
trajectory with all the gathered measurements
superimposed. With the artificial clutter, the FastSLAM
estimate diverged as shown in Fig. 5d. In the same

6 In this data set, GPS-positioning ground-truth robot trajectory data are
available only intermittently.
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Fig. 3. Averaged trajectory-estimate errors under various probabilities of detection and clutter intensities.

Fig. 4. Averaged landmark-estimate (COLA) errors under various probabilities of detection and clutter intensities.

conditions, the SC-PHD filter and the proposed
multifeature strategy generated reasonable estimates, with
the latter performing slightly better in terms of the
trajectory estimate. Overall, the results are consistent with
the simulations.

C. Parque O’Higgins Data Set

Since clutter had to be artificially added to the Victoria
Park data set to create less ideal detection conditions,
another data set was gathered in a more realistic
high-clutter park environment. The vehicle platform,
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Fig. 5. Filtering results from Victoria Park data set, with axis units in meters.

shown in Fig. 7, was deployed in Parque O’Higgins in
Santiago, Chile, where the vehicle traversed an
approximate figure-eight path once and returned to its
starting position. This dirt path can be seen from the

satellite-image underlays in Fig. 8. GPS coverage was
poor and thus the GPS track is not shown. A SICK
LD-LRS1000 scanning lidar mounted on the vehicle
provided planar 2-D scans of the environment, and a
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Fig. 6. All measurements (with artificial clutter) superimposed, with
axis units in meters

Fig. 7. Vehicle platform and scanning laser range finder used in
generating Parque O’Higgins data set.

feature extractor was used to extract nearly circular
objects (such as tree trunks) from each scan [48]. These
features were used as measurements and include a great
deal of clutter generated by pedestrians, foliage, cars, and
other moving objects. Wheel displacements were also
measured via encoders. Landmark ground-truth positions
were obtained from a separate data set, where point clouds
from 17 static scan positions were aligned. From this,
tree-trunk positions were manually identified. The results
generated from the various filtering methods are shown in
Fig. 8, with Fig. 8f showing all the measurements acquired
over the entire trajectory superimposed onto one image.

Similar to previous results for high-clutter scenarios,
FastSLAM and the empty-set and single-feature strategies
did not perform well. The presence of clutter caused the
FastSLAM trajectory estimate to diverge shortly after
commencing the traverse. The empty-set and
single-feature strategies failed to assign proper weightings
to particles to generate good trajectory estimates, and their

trajectory estimates are off the figure-eight dirt path in
Figs. 8b, 8c. The SC-PHD filter performed better in terms
of its trajectory estimate, with the endpoint close to the
starting position. The multifeature strategy appears to have
performed equally well, with a slight improvement in the
end-position estimate.

Overall, since the SC-PHD filter has been shown to
perform well in many scenarios, it is postulated that the
multitarget Poisson assumption made on the map is one
that is reasonable. Hence, it is believed that the same
assumptions made on the map densities in the proposed
multifeature weighting strategy are also valid. Therefore,
it is the assumption made on the map set for particle
weighting that has a more pronounced effect on the filter
performance, and the results in this article have shown that
the empty-set and single-feature map assumptions often
cause filter divergence. The multifeature strategy makes
use of all the Gaussians in the map intensity, in a manner
similar to the SC-PHD filter. One important point that
must be remembered with the RFS formulation is that the
set measurement likelihood accounts for all possible
association of measurements to landmarks according to
the detection statistics (which also need to be estimated).
In reality, a measurement is generated from one single
landmark, and there is only one true set of
correspondences for all measurements. Both the proposed
method in this article and the SC-PHD filter account for
this set of correct correspondences, and it makes up a large
portion of the calculated weight of a particle. Both
methods also account for all the incorrect correspondences
in their own ways, but those make up only a small portion
of the particle-weight calculation, since individual
measurement likelihoods for incorrect correspondences
are small and close to zero in most cases. This is
hypothesized as the reason that both SLAM filters (based
on different derivations and assumptions) generate similar
results.

D. Computation

The increase in robustness and the quality of the
estimates from the PHD SLAM filter with the proposed
multifeature strategy come with increased computational
costs. Fig. 9 shows the CPU timing analysis from
processing simulation trials with different detection
conditions and the Victoria Park data set. The times were
measured on a single computer core of an Intel i7 2.4 GHz
CPU. The times in each figure are further subdivided
according to the different activities during the filtering
process.

Fig. 9a shows that under low clutter and high
probabilities of detection, the proposed multifeature
strategy is the slowest, while FastSLAM is the fastest.
Note, however, that the use of RFS filters is unnecessary
under such almost-ideal conditions. Under nonideal
conditions, Fig. 9b shows that the multifeature strategy is
only slower than the SC-PHD filter. The single-feature
strategy, empty-set strategy, and FastSLAM are slower
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Fig. 8. Filtering results from Parque O’Higgins data set, with axis units in meters.

due to estimate divergence, causing the generation of
many spurious landmarks. This has an especially profound
effect on computational time for FastSLAM, in which a
large computational time for data association is necessary.

Figs. 9c, 9d are timing data from the Victoria Park data
set, and both show similar results. Although FastSLAM
has the fastest time, its estimate diverged when artificial
clutter was added. Note that the amount of artificial clutter
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Fig. 9. CPU timing performance for various filters; RM = multifeature strategy, RS = single-feature strategy, RE = empty-set strategy, C =
SC-PHD filter, F = FastSLAM.

added here is much less than in the simulation. Therefore,
the data-association time for FastSLAM did not increase
substantially as in the case of the simulations. In the
Victoria Park data set, the SC-PHD filter was also faster
than the proposed multifeature strategy, but it also
produced less accurate estimates.

VI. CONCLUSIONS

The PHD SLAM filter is an RFS-based filter
applicable to navigation and mapping problems. Previous
implementations of this RB-PF-based method are not
robust in regularly producing consistent estimates. This is
mainly attributed to the importance-weighting calculation
in the RB-PF, which uses either the empty-set or
single-feature strategy. This article proposed and derived a
more sophisticated multifeature strategy for importance
weighting, which allows the PHD SLAM filter to be more
robust against divergence and to generate higher-accuracy
estimates. Methods for the efficient implementation of the
proposed strategy were presented. The multifeature
strategy was first validated using 2-D simulations, and
comparisons were made to existing random-vector-based
and RFS-based filters. It was shown that the presented
particle-weighting method outperforms all of the

previously established approaches in the simulations
tested. The proposed strategy was also validated using real
experimental data. Similar to the simulation results, PHD
SLAM filtering with the multifeature strategy performed
better than existing methods. Computational-timing
analysis revealed that the increase in estimation
performance incurs greater computational cost, but only if
the other filters also converge. Overall, the proposed
method is still practical and computationally feasible. An
implementation of the proposed approach and all the
filters tested in this article, as well as their configurations
and settings, can be found in an open-source C++ library
at https://github.com/kykleung/RFS-SLAM.git.
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