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Radar Noise Reduction Based on Binary Integration

Daniel Liihr, Member, IEEE, and Martin Adams, Senior Member, IEEE

Abstract—Short range radars can provide robust informa-
tion about their surroundings under atmospheric disturbances,
such as dust, rain, and snow, conditions under which most
other sensing technologies fail. However, this information is
corrupted by received power noise, resulting in false alarms,
missed detections, and range/bearing uncertainty. The reduction
of radar image noise, for human interpretation, as well as
the optimal, automatic detection of objects, has been a focus
of radar processing algorithms for many years. This paper
combines the qualities of the well established binary integration
detection method, which manipulates multiple images to improve
detection within a static scene, and the noise reduction method
of power spectral subtraction. The binary integration method is
able to process multiple radar images to provide probability of
detection estimates, which accompany each power value received
by the radar. The spectral subtraction method then utilizes these
probabilities of detection to form an adaptive estimate of the
received noise power. This noise power is subtracted from the
received power signals, to yield reduced noise radar images.
These are compared with state-of-the-art noise reduction methods
based on the Wiener filter and wavelet denoising techniques. The
presented method exhibits a lower computational complexity than
the benchmark approaches and achieves a higher reduction in
the noise level. All of the methods are applied to real radar data
obtained from a 94-GHz millimetre wave FMCW 2D scanning
radar and to synthetic aperture radar data obtained from a
publicly available data set.

Index Terms—Binary integration, CFAR, data integration,
image denoising, millimeter wave radar, noise reduction, noise
subtraction, radar detection, radar imaging, wavelet denoising,
Wiener filter, SAR.

I. INTRODUCTION

ANDMARK identification concerns the detection of
signals from noisy measurement data. When time is
available to obtain multiple images from a static scene at
the same location, it is possible to exploit the correlation in
the sequence of images to reduce noise, and consequently
improve detection. A noise reduction method applied to radar
data using these concepts is presented in this work.
Several methods have been developed in the field of
image processing to reduce noise in both stationary and
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dynamic image sequences in applications as diverse as object
tracking surveillance, autonomous navigation, motion analy-
sis, and astronomical and medical imaging [1]. A sequence
of 2D images is represented by a 3D volume where the
third dimension corresponds to the temporal dimension or
the sequence index. Many of the methods to process such
3D signals have been developed by generalising well known
2D filtering techniques by extending the support of a filter in
the temporal domain. The classical Wiener filter [2], extended
to a 3D form, is an example of such an approach. The
Wiener filter is a linear time-invariant estimator which adopts
a Minimum mean square error (MSE) statistical approach.
Adaptive noise cancelling, developed as a variation of the
original Wiener optimal filtering theory, was presented in [3].
The adaptive noise cancelling application uses a reference
signal correlated with the noise to obtain a noise estimate.
This estimate is then subtracted from the noisy signal.
An application of Wiener filtering to 3D medical imaging
data [4] extends the classical Wiener implementation by esti-
mating the filter parameters using a sequence of observations
based on the calculation of local statistics (calculated in a small
window around the point of interest). In radar applications, a
2D Wiener filter, also using local statistics, has been used to
reduce noise in weather radar data [5].

Work by Donoho and Johnstone [6]-[8] introduced the
denoising capabilities of the Wavelet transform. The basic
method is Denoising by Thresholding [9]. It is analogous to
frequency domain filtering based on the Fourier transform.
The wavelet time-frequency approach however, attempts to
reduce noise by preserving a number of coefficients associated
with components with high information energy, and discarding
the rest. It is assumed that noise (often considered to be
additive Gaussian) is spread homogeneously among all signal
frequency components. Thus by discarding the coefficients
of the components not highly correlated with the signal, a
significant amount of noise is eliminated. Coefficients with
a magnitude higher than the threshold are considered to
hold mostly signal information, and those lower than the
threshold are considered to carry mainly noise energy. In radar
applications several articles have demonstrated the use of
wavelets to reduce noise. Chen [10] proposed a recursive
thresholding method for radar image denoising, while Aly
demonstrated the use of wavelet packet transforms and higher
order statistics to detect and localise RF radar pulses in noisy
environments [11]. In general, most noise reduction algorithms
(both ‘classical’ and wavelet-based) assume the noise to be
additive Gaussian [1], [9], which is useful for a broad range
of applications. However, in radar imaging, the Gaussian
noise assumption is often unrealistic. Another critical aspect
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of wavelet denoising is the appropriate threshold selection.
An adaptive threshold method was introduced by Chen [12],
which adapts the threshold to the coefficients’ statistics, relax-
ing the Gaussian assumption of most wavelet based methods.
Another adaptive method, presented by Jin [13] uses abrupt
changes in the signal to adapt weights to calculate local means
and variances. This approach is reported to reduce the ripple-
like artifacts usually found around edges when using wavelet
denoising techniques.

In this work a different approach for radar image denoising
is introduced and compared to the classical Wiener filter and
to the more recent wavelet based denoising approaches. The
proposed method’s implementation presents a lower compu-
tational complexity than both the 3D Wiener filter and the
3D wavelet approaches. The method further reduces the mean
noise value when compared with the other two methods. It uses
statistical information provided by the Binary integration
detector to identify parts of the received signal corresponding
to noise. It uses those parts to obtain an estimate of the noise
power spectrum by recursive averaging. This noise estimate
is then used for power spectral subtraction [14] (or noise
subtraction) to reduce noise. In particular, Binary Integration
(BI) combines the output of several single-observation detec-
tors to improve the detection probability, while maintaining
the desired, acceptable false alarm rate. The single-observation
detector used is a member of the Constant False Alarm
Rate (CFAR) family of stochastic detectors, widely used in
radar [15].

The following section summarises classical radar detection
and demonstrates its application to scanning radar images.
Section IIT presents the three different noise reduction tech-
niques, which will be applied to scanned radar data for
comparison purposes. Section IV then explains the implemen-
tation details of the methods and analyses the implementation
complexity for the three different approaches. Finally, results
using millimetre wave (MMW) radar data in an outdoor
environment and an open Synthetic Aperture Radar SAR data
set are also presented in Section V.

II. RADAR DETECTION

Targets of interest in radar data are usually embedded in
noise and clutter. Thus, landmark detection is necessary to
identify landmark signals from the noisy power measurement
data. In this work, statistical information provided by detection
methods is used to obtain a noise estimate from a sequence of
radar measurements of the same scene. The noise estimate is
then used in a noise subtraction method to obtain a reduced
noise version of the radar power measurement data.

This section briefly describes the detection methods used,
their main equations and parameters and their most important
aspects.

Adaptive, stochastic, landmark detection techniques offer
principled methods of detection based on a predefined accept-
able probability of false alarm and quantifiable probabilities
of detection. The Constant False Alarm Rate (CFAR) concept
refers to a family of adaptive algorithms widely used in radar
to detect target returns against a background of noise, clutter
and interference.

In most radar signal processing literature to date, a Cell
Averaging (CA) CFAR detector is the preferred method of
target detection [16]-[18]. A CA-CFAR processor is used on
the experimental data presented in Section V-B.

[19] shows that the detection probability PEA'CFAR(q) of
a Rayleigh fluctuating target, embedded in exponential noise
or clutter, can be determined from the CA-CFAR parameters

; CA-CFAR 1
PEACEAR (4 [1 T (

v ()] 0

where Wy is the size of the CFAR window and g CA-CFAR g
defined as
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where Sﬁfldar(q) is the linearised received power from the
radar in the ¢'" (bearing-range) bin, and T (S (q)) is
the CFAR test statistic, which in the case of CA-CFAR,
corresponds to the sample mean of the neighbouring cell’s
power values in the CFAR window. The adaptive threshold is
then defined as

S R (q) = TR T (S (g)). @

Several other CFAR methods have been developed and
current research focuses in CFAR methods with adaptive
parameters [20]. In particular, the Ordered Statistic (OS)
CFAR has been reported to perform well for large targets (with
respect to the spatial resolution) and in SAR images, due to
their noise and clutter being usually modelled by Weibull or
K distributions, and the higher effect of multiplicative speckle
noise present in such images. The OS-CFAR method is used
on the SAR data set presented in Section V-C.

In the OS-CFAR method the test statistic T(Sﬁﬁdalr (g)) is
obtained by choosing the k' value from the ordered set of
power values in the CFAR window

S =S =S = =Sy sy ©®

a value of k = % has been suggested in [21] to represent

a good estimate for typical radar applications. The parameter

7OS-CFAR needs to be calculated numerically from
= Wi —i
OS-CFAR __ -
Pra - H Wy — i + 7OS-CFAR )

where Pf%S'CFAR is the chosen acceptable OS-CFAR probabil-

ity of false alarm. The probability of detection, PDOS'CFAR(q),
is obtained from

k—1

We—i

OS-CFAR f

PD (6]) = H . 7OS-CFAR )
i—o Wr—i+ 1175V (3)

Unfortunately, the noise and target distribution assumptions
in CFAR are often violated, yielding higher false alarm
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and missed detection rates than those theoretically derived.
To reduce this problem, and if time is available to acquire
multiple scans of a fixed environment, it makes sense to exploit
the high target correlation between scans to further reduce
the uncertainty in the existence of objects and reduce the
noise. Techniques which implement this concept are generally
referred to as integration methods. A simple but effective
method widely used in the radar community is the Binary
Integration (BI) Method [19].

When integrating L scans, the probability of detection
yielded by this method is

L : .
PE= > L '(P[EIA-CFAR>1(1 _ PgA-CFAR)L’J
Pl JUL = !
®)
where PSA’CFAR is the probability of detection in a single

scan, and M Bl < L is the optimal BI parameter for a given L.
Likewise, if P {ACFAR is the probability of false alarm in a
single scan, then the probability of false alarm for the binary
integration method is

L
! . :
P BaI — 2 : j'(LL; o (PfCaA-CFAR)J (1 _ PfCaA-CFAR)L*J
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BI offers a robust technique to identify which parts of signal
are noise. The detection probability obtained by means of
the BI method will be used as a target existence probability
estimate in the radar noise reduction method presented in
section III-C.

III. NOISE REDUCTION METHODS

In this section three different noise reduction approaches
are described. The first state of the art method is based on
a version of the linear Wiener filter which uses estimates of
the local means and variances in order to estimate the noise
characteristics. The second, more recent, non-linear method, is
a wavelet denoising approach. The final method, proposed in
this article, is based on spectral noise subtraction. This method,
is capable of preserving non-linear features.!

A. Wiener Filter

This method of noise reduction corresponds to the applica-
tion of a discrete-time minimum-mean-square-error filter. Such
a filter is known as a Wiener-Kolmogorov filter or Wiener filter
for short [22], [23].

Wiener filters assume additive noise and that the signals are
stationary, linear stochastic processes. Because radar images,
as well as natural images, consist of smooth areas, tex-
tures and edges, they are not globally stationary, but can be
treated as locally stationary. This led to the derivation of the
Lee filter [24], which has been extensively used in video
denoising, where it has proved to be successful in terms of

Lnon-linear features refer, in general, to sharp edges or discontinuities within
a signal. E.g., in radar data, the sudden change in received power caused by
the presence of a target.
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noise removal and preserving some important image features
(e.g. edges) [13]. The Lee filter assumes that all samples within
a local window are from the same structure (local stationarity).
This assumption is invalid when sharp edges are encountered
within the window, therefore the mean is blurred and the
variance increases near the edges, which results in a degraded
image near those regions.

B. Wavelet Denoising

Some of the limitations of the Wiener filter, particularly
its inability of preserving non-linear features in the data, can
be overcome by using non-linear filters. However, in general,
finding the parameters for a non-linear filter is a complex
task. Since the introduction of the wavelet denoising methods
by Donoho and Johnstone [6]-[8] a powerful, yet simple to
implement non-linear filter for noise reduction has become
available and is widely used in practical implementations.

The particular thresholding function used in this work
is the wuniversal threshold proposed by Donoho and
Johnstone [25], [26] with the soft-thresholding method pro-
posed in [6].

This method generates an estimated signal with a smaller
amplitude than the original one, but it retains the regularity?
of the signal.

C. Spectral Noise Subtraction

Noise subtraction methods were originally devised for noise
reduction in noisy speech signals [27]. In the case of radar
data, the binary integrator’s probability of detection can be
used to identify sections which have low probability of having
any target information and therefore they can be used to
estimate the noise magnitude.

The noise power estimate PR (1), when the observation
has been received, can be calculated as in Equation (10),
which corresponds to a recursive smoother using a fixed
parameter o4, and the binary integration probability of
detection from Equation (8).

S0 = (@l = D)+ (1 = a)SEO) (1 - PF0)
+3,.( - 1) x PEY) (10)

lth

where [ corresponds to the observation number. The first
term on the right of Equation (10) represents the smoothed
(averaged) noise power, weighted by (1 — P[])gl(l)) during
target absence sections of the signal, while the second term
shows that the previous estimate is preserved and not updated
if there is a high probability of target presence (PDBI(I) — 1).
Introducing

aq(l) = aq + (1 —aq) PF(0) (11)
Equation (10) can be rewritten as
£0() = G0l — ) +[1— G O]S2= @) (12)

In Equation (11), a4(/) is a time varying smoothing para-
meter. Hence the noise spectrum can be estimated using past

2regularity corresponds to areas in which the signal is continuous, while
discontinuities correspond to irregular points.
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Fig. 1. Block diagram summarizing the time varying parameter d,.
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Fig. 2. Binary integration noise reduction block diagram.

spectral received power values, together with a smoothing
parameter which itself varies according to the BI probability of
detection P[])H(l). The adaptive noise estimator is summarised
in the block diagrams of Figures 1 and 2.

The noise power estimate fn (!) can be used to obtain a
Binary Integration Noise Reduction (BINR) power estimate
S‘I?HINR (1) using the method of power spectral subtraction [14].
In the basic spectral subtraction algorithm, the average noise
power, o (/) is subtracted from the noisy range spectrum.
In [28], a method which further reduces background noise
for SNPs between —5 and 20 dB was devised based on
subtracting an over-estimate of the noise power and preventing
the resultant spectral components from reaching below a preset
minimum level, termed the “spectral floor”. This method leads
to a reduced noise power estimate S‘IBINR(Z) given by

in
SBINR )y _ Sﬁﬁdar(l) - Cin(l)
lin ( ) - d ’2‘
X n(l)

if S92 () > ¢, (1)

in
otherwise
(13)

where ¢ is an over-subtraction factor (¢ > 1) and d is the
spectral floor parameter (0 < d < 1). A value of ¢ which
is larger than 1 represents the fact that it is necessary to
subtract more than the expected value of the noise (which is a
smoothed estimate) to make sure that most of the noise peaks
are removed. The spectral floor parameter d, when greater
than zero, ensures that the remnants of the noise peaks are
masked by neighbouring spectral components of comparable
magnitude. This results in a reduction of broadband noise,
when compared with the original power spectral subtraction
method. [28] further demonstrated the advantages of an adap-
tive over-subtraction factor ¢, which varies between frames of
recorded spectra, as a function of the estimated signal.

IV. IMPLEMENTATION AND COMPUTATIONAL
COMPLEXITY

This section discusses the implementation and computa-
tional complexity, as a function of the data size, of all three
noise reduction methods. All the algorithms were implemented

using the SciPy signal processing toolbox [29]. The same
received radar power signal S is used as the input for all the
methods. The signal includes additive noise. It is a 3D array
formed by stacking L radar scans. Each radar scan S(/)
corresponds to a B-scope of size N, = N, x N;, cells (pixels),
where N, represents the number of range bins (rows) while
Np the number of bearing bins (columns). The first dimension
in the 3D array represents range (r), the second represents
bearing (b) and the third represents the scan number (/). The
sequence of L power values for a particular range and bearing
is denoted as S, while an individual voxel is referred to
as Sy p,;. The total number of voxelsin S is N, = Np x N, x L.
The complexity analysis will be carried out in terms of N, and
L (N, = Np x L), to separate the effects of the radar image
size from those related to the number of observations.

A. Wiener Filter

The Wiener filter noise reduction technique used in this
work requires a support volume, in order to calculate the local
means and variances. For a given voxel, the cells contained in
the support volume around it will be used to calculate the local
statistics. Let 2K, +1), 2Kp+1), (2K;+1) be the dimensions
of this volume in the range (rows), bearing (columns) and
observation (depth) dimensions. K, and K, are related to the
expected range and bearing size of targets. If these parameters
are set too high the local mean and variance of a target voxel
will incorporate not only target values but also undesired noise
values. On the other hand, if they are to small, the local mean
and variance estimates would be degraded. 2K; + 1 = L has
been chosen for the window to incorporate information from
all observations at each value in the temporal (/) dimension.
This algorithm exhibits a complexity of the order O(N,, x L?).

B. Wavelet Denoising

The 3D wavelet denoising method has been separated into
two sequential wavelet denoising problems. The first carries
out scan by scan 2D spatial wavelet denoising, while the
second executes 1D time domain wavelet denoising for each
range-bearing cell sequence. General wavelet methods have
a complexity of order O(N log N), where N corresponds to
the data size (total number of pixels for 2D, or signal length
for the 1D case). Therefore, the first part is of the order
O(L x Np log Np) while the second part presents a complexity
of the order O(N, x LlogL). Hence the total complexity of
the wavelet method is of the order O(L x N, log N, + N, x
Llog L) which reduces to O((N,, x L)log(N, x L)).

C. Binary Integration Noise Reduction

The optimum parameters required for Binary Integration,
MO%{ and PfCaA'CFAR, can be calculated off-line and they are
not included in the algorithm, but given as inputs. Also, the
BI probability of detection, which is dependent on MO%{ and L,
can also be defined offline, and the corresponding polynomial
in PDCrA'CFAR is therefore, pre-calculated. The combination of
the CA-CFAR, BI and noise subtraction parts of the algorithm
yields a complexity of the order O(N, x L).
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In summary, with respect to observations L, the Wiener filter
algorithm has the highest complexity (quadratic), followed by
the linearithmic® complexity of the Wavelet approach, while
the binary integration noise reduction’s linear complexity
makes it the least complex. On the other hand, the Wiener
filter and the binary integration noise reduction are the least
complex (linear time) with respect to the data size N,,.

V. RESULTS

All of the noise reduction methods have been tested with
real data obtained in a local park environment and with an
open SAR image data set. The results show reduced noise
radar power in PPI representation, as well as, the average noise
level versus observation number. In order to demonstrate the
usefulness of each reduced noise data set, the CFAR detection
method is finally applied to each set. CA-CFAR is used in the
park data set due to its compliance to the detector requirements
as described in Section II, while OS-CFAR is used in the
SAR data set, which has been proven to be more effective
with this kind of data [34]. The reduced noise CFAR output
is then compared to the CFAR detector’s result on the original
noisy data. The computational times of the algorithms are also
compared.

A. Computational Time

The computational time used by the different algorithms,
plotted against observation number L, is shown in Figure 3.
The results are consistent with the analysis presented in
section IV. The Wiener filter’s complexity grows approxi-
mately quadratically with L, while the wavelet exhibits lin-
earithmic complexity. A linear time complexity is achieved
by the BINR method.

B. Experimental Data

An experimental radar data set, captured* in a public park
in Santiago, is used to test the noise reduction schemes.

3A linearithmic function is of the form nlogn. An algorithm with a time
complexity of the order O(nlogn) is said to run in linearithmic time.
4using an Acumine 94 GHz, scanning radar [31].
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Fig. 4. Park environment where radar data was captured (obtained from
Google Earth).

TABLE 1
OPTIMAL MBI PARAMETER FOR DIFFERENT
NUMBER OF OBSERVATIONS L

5 10 15 20
MBL 1 2 4 5 7

1) Noise Reduction: Noise values in real radar data do
not conform to perfect Gaussian or exponential distributions,
as assumed by the noise reduction methods, which impairs
their performance. An analysis of the noise reduction methods
considering the park environment now follows. Although the
methods were applied to the B-Scope radar data (range vs.
bearing), the results are shown in plan position indicator (PPI)
form for clearer visualisation. The test environment is shown
in Figure 4. The area corresponds to a main paved track
approximately 65 m wide. On the sides of the track there are
lamp posts and some trees. There are also fences and concrete
walls. The radar was located on the track.

The CA-CFAR window size was 9 bins in the bearing
direction and 7 bins in the range direction. The guard cells
window size was 5 in the bearing dimension and 3 bins in
the range direction. These parameters were found suitable, in
preliminary experiments, for detecting the lamp posts and trees
surrounding the radar, by considering the power spread these
features produce in the acquired data.

The BI false alarm rate used was 1 x 107%. The optimal
MPB! has been previously obtained for different L values.
Some of the values are listed in Table I. The results presented
correspond to L = 20 observations. For the noise subtraction
algorithm, the chosen parameters were agy = 0.9, ¢ = 50.0
and d = 0.1. A high a4 ensures that the previous value of
the noise estimate has more weight than the new observation
which is desirable given the high noise levels present in radar
data. Parameter ¢, controlling over-subtraction, was selected
by testing different values between 10 and 100. Similarly,
the spectral floor parameter d was tested for different values
between 0.05 to 0.5, with the chosen value yielding good
results in the reduction of the broadband noise.
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Raw power and reduced noise power PPI plots of the park area. (a) PPI showing noisy input data from the park environment. (b) PPI showing

Wiener filtered data from the park environment. (c) PPI showing Wavelet denoised data from the park environment. (d) PPI showing BINR data from the

park environment.

The Wiener support region was 3 bins in the range and
bearing direction, which is the expected power spread of the
targets of interest.

In the case of the spatial (2D) wavelet denoising, the
Daubechies 3 wavelet function was used, while the Haar
wavelet was selected for the 1D (temporal) dimension.

The noisy raw radar input data from the park is presented in
Figure 5a. The ground truth location of lamp posts and trees
are marked with green circles and a cross in their centre.

Wiener filtering (Figure 5b) exhibits a smoother noise back-
ground but the main objects identified in the scene are blurred
by the filter, thus losing localisation detail. Wavelet denoising
(Figure 5c), is able to preserve the location and edges of tar-
gets. It does, however, produce several negative values in noise
only sections, which are truncated to a small value to allow
visualisation. Nevertheless, the average noise level is reduced.
Finally, the BINR method in Figure 5d shows its ability to
retain details as well as to reduce the noise level. It can, how-
ever, be observed that some of the maximum power peaks have
been reduced in magnitude (e.g. tree at (—49.1 m, 48.6 m);
with a raw power value of 86.02 dB and a BINR power value
of 82.73 dB). This is due to the fact that at some observation
[ those particular targets were not detected, therefore their
power values were considered noise and thus subtracted from
them. Note that wavelet denoising (Figure 5c) reduces some
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Fig. 6. Noise mean values and variances from a noise only area.

noise-only areas to very low values. However, the noise
background is not homogeneous, therefore, the sharp edges
between noise areas near the average noise level and those
greatly reduced by the wavelet method can yield several false
detections as will be shown, after applying the CA-CFAR
detector.

Figure 6 shows mean noise power values from each method,
in an area which is known to contain no targets. The BINR
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CA-CFAR detector applied to raw and reduced noise power in the park area. (a) CA-CFAR PPI showing noisy input data from park environment.

(b) CA-CFAR PPI showing Wiener filtered data from park environment. (c) CA-CFAR PPI showing Wavelet denoised data from park environment.

(d) CA-CFAR PPI showing BINR data from the park environment.

method exhibits the the lowest mean noise power for all
L values. Its variance, on the other hand, is higher than that
of the Wiener for small L values, but as more observations
are included, BINR achieves also the lowest noise variance.
The Wiener filter mean noise power stays above that of the
raw data, but keeps the variance at a low value. The Wavelet
denoising method is able to reduce the mean noise power
lower than the raw data but is not able to reach the value of
the BINR method. The Wavelet’s variance remains high and
oscillates due to the ripple effect mentioned before. The noise
assumptions which form the basis of all three noise reduction
techniques are violated in practice. In particular, the Wiener
filter is not optimal for non-Gaussian noise distributions. In the
case of the wavelet method, the universal threshold is not
able to correctly estimate a noise threshold to separate the
noise and information based wavelet coefficients. Furthermore,
noise information is no longer spread homogeneously across
all wavelet coefficients. Likewise, the CFAR method used in
the BINR yields a higher false alarm rate than expected, since
exponential noise is assumed, as will be shown in the next
section.

2) Target Detection: The CA-CFAR detector is applied to
the reduced noise data, in order to demonstrate the usefulness
of each noise reduction method. In this case a more relaxed

CA-CFAR probability of false alarm is applied (Pr, =
1 x 10*3), which reduces tCACFAR and increments the
PDCA'CFAR (see Equations (1) and (2)). This is possible since
the reduced noise data is expected to yield a lower false alarm
rate, and it helps to overcome the lower target power values
obtained in all three methods due to smoothing, thresholding
or noise subtraction.

Figure 7a shows the result of the detector applied to the
raw noisy input data. The detector itself is able to reduce
false alarms to some extent in the raw data. Again, the green
circles in the figure denote the ground truth location of some
relevant targets (trees and lamp posts at the side of the track)
obtained using multiple scans from a laser scanner. CA-CFAR
detections are marked with black dots, when these dots are in
the vicinity of a ground truth marker, they are considered cor-
rect detections. Red square markers are used to show missed
detections, while magenta coloured diamonds are used to
mark false alarms. The Wiener filter (Figure 7b), interestingly,
shows a remarkable reduction of background noise, but its
blurring effects present some problems. In particular, small
and medium size targets with low SNP are blurred in such a
way that their size is reduced and even completely removed
from the CA-CFAR detector output. On the other hand, high
SNP targets become increased in size (more pixels surrounding
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TABLE II
A POSTERIORI DETECTION AND FALSE ALARM RATES

Method Tp Tg Ty, Ty Rp Ry /1073
Raw 16 18 23 81919 0.89 0.2807
Wiener 14 18 14 81943 0.78 0.1708
Wavelet 17 18 88 81712 0.94 1.0758
BINR 15 18 2 81977 0.83 0.0244

the landmark are marked as detections), for instance, the tree
at coordinates (—27.0 m, 48.4 m). In general, edge details are
lost. Figure 7c presents the results of applying the detector
to the wavelet denoised data. The method, is able to keep
feature details but it shows more false alarms than expected,
especially in broad ‘“noise-only” areas. This is due to the
noise background not being homogeneous, which leads to the
ripple effect of the chosen wavelet function, and the universal
threshold not being able to correctly discriminate between
information and noise wavelet coefficients. The BINR method
(Figure 7d), is able to preserve localisation details, e.g. targets
at (—25.1 m, —26.6 m), (68.4 m, —37.6 m) and (100.7 m,
—33.4 m), as well as reduce the number of false alarms when
compared to the detector applied to raw data and the other
noise reduction methods.

A posteriori detection and false alarm rates can be derived
from the results. Detection rate, Rp, is obtained by divid-
ing the number of correctly detected ground truth targets, Tp,
and the total number of ground truth targets, Tg,
ie. Rp = Ty/Tg. The False alarm rate, Ryr,, on the
other hand, is calculated by dividing the number of pixels
corresponding to false alarms, Ty, and the sum of pixels
correctly identified as noise, Ty, plus the false alarm pix-
els, ie. Rra = Tfa/(Tra + Tn). Table II summarises the
detection and false alarm rates calculation. Note that the area,
where the experiment was carried out, exhibits a lower false
alarm rate than expected (0.281 x 10~3), with a detection
rate of 89%. The Wiener filter yields a lower false alarm
rate (0.171 x 1073) but in the same order of magnitude. The
detection rate is also lower (78%) than in the raw image.
Wavelet denoising’s detection rate is higher (94%), but its false
alarm rate is higher by an order of magnitude (1.076 x 1073).
BINR is able to reduce the false alarm rate by an order of
magnitude (0.024 x 1073), with a detection rate (83%) higher
than the Wiener filter, but lower than the raw data. From this
result, it can be seen that using BINR it is safe to increase the
P %A'CFAR value in order to get a higher detection rate while
still achieving a low false alarm rate.

3) Quantifying Detection Performance: While there are
several metrics to quantify the error between detected and
true targets, a metric is now applied (which jointly considers
errors in target location, and number estimates), based on a
pth order Wasserstein construction [30]. This metric has been
recently introduced and has been shown to produce more
consistent results than others (Hausdorff, OMAT) in multi-
object systems. It is formulated in terms of the ground truth
set of targets M and the detected set M. If M| > |/\//\l |, it is

TABLE III
OSPA METRIC APPLIED TO EACH METHOD

L Raw power Wiener Wavelet BINR

2 1.6747 1.6225  1.6565 1.5401

5 1.7055 1.6174  1.8435 1.5230

10 1.6770 1.6377  1.7328 1.4486

15 1.7013 1.6230 1.8673  1.4365

20 1.6796 1.6025 1.7878 1.5114

given by,
®) ! & ®) (0
a® A — : d® ~i _ 7(i)\P

MAD (|M|(£‘r‘¢z (. m™)

i=

. 1/p
+ 0P (M| - |M|))) (14)

where 7 corresponds to the permutation in II; (the set of
permutations on {1,2,...,k}) which minimises the sum of
the distances between the elements from M and M, while

dO @@, m™ ) = min(v, [|@" —m™ D)) (15)
is the minimum of the cut-off parameter, v, and the Euclidean
distance between the ground truth target location, 7' and the
detected target location m™ D If | M| < |/\//\l| the metric is
obtained through d®) (M, /\7). To find the optimal 7 € Il a
special case of integer linear programming is required, which
can be solved efficiently using the Hungarian method for
optimal point assignment.

This metric was applied to the CA-CFAR output of
the reduced noise images to quantify the performance of
each method. The results for different L values are shown
in Table IIl. Because of the range and angular resolution
of the radar used in this experiment, for each ground truth
landmark, more than one point is marked as a detection.
This increases the error measured by the metric because extra
points are considered as false alarms. Thus, the metric output
starts to converge to the cut-off parameter, as the second
term to the right of Equation (14) dominates. A method
to reduce this effect is to combine multiple detections in
close proximity using a clustering method, e.g. connected
component labelling [32]. A different approach, consisting of
duplicating the elements of the ground truth set, was used
in this implementation, which effectively reduces the effect
described above, without altering the results. For all L values,
the BINR methods yields a smaller value of the metric
meaning that the produced map is closer to the ground truth
than that generated by the raw data and the other methods.
The Wiener filter is also capable of producing a map with a
lower error than the raw data. On the other hand, the Wavelet
denoising shows a poor performance due to the false alarms
in the background noise caused by the ripple effect within the
Wavelet transform.
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Yahoo Satellite
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Fig. 8. Yahoo Satellite view (left) and Raw SAR image of the area (right).

C. UAVSAR Data Set

Detection and noise reduction methods in radar are not
only used in classical A-Scopes, B-Scopes and PPIs, they
can also be used in other forms of radar data such as SAR
images [20], [33].

SAR images, being constructed in a fundamentally different
way than the classical radar images, are also affected by noise
in a different way. In SAR images, noise and clutter are
usually modelled by a Weibull or K distribution. Also, the
effect of multiplicative speckle noise in SAR images is higher
than in other forms of radar data. Under these conditions, the
Ordered Statistics (OS) CFAR detection method has proven to
be effective when applied to SAR images [34].

In this section the results of using the BINR method on a set
of SAR images obtained from the NASA Jet Propulsion Lab
(JPL)’s Uninhabited Aerial Vehicle SAR (UAVSAR) mission’
are presented.

The images correspond to a location near Sacramento, CA,
which covers an area of crop fields with isolated buildings in
the north-most part (top) of the image and a suburban area
with high density housing in the south-most part (bottom).
Figure 8 (left) shows a Yahoo Satellite image of the area,
with its corresponding SAR image (right). The area is 1.6 km
in the horizontal (east-west) direction and 2.88 km in the
vertical (north-south) direction. These SAR images represent
backscatterred radar power, polarised in the HH, HV and VV
components. The magnitude of each component is encoded in
the image’s red, green and blue channels, respectively.

BINR based on the OS-CFAR detector has been used to
first reduce the noise in a series of multiple (L = 6, MB! = 3)
observations of the same area. Then the OS-CFAR detector
is applied to the reduced noise data to detect buildings.
The OS-CFAR window size was 7 bins in the x and y
coordinates, while the guard cells window size was 3 bins

SUAVSAR data courtesy NASA/JPL-Caltech. http://uavsar.jpl.nasa.gov/
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TABLE IV
MEAN NOISE POWER AND VARIANCE IN NOISE ONLY AREA IN dB

HH HV \'AY%
Method Mean Var. Mean Var. Mean Var.
Raw 24.96 160.85 29.14 35091 28.62 169.56
Wiener 27.58 159.20 36.59 437.78 32.74 180.68
Wavelet -13.64 143488 -9.62 916.63 -9.75 1042.87
BINR 14.38 166.84 20.30 383.10 19.26 204.06

in both directions. The threshold’s constant parameter chosen
was 7OSCFAR — 416707, this value is obtained by solving
Eq. (6) using the OS-CFAR window size and the desired value
for PJQaS'CFAR. Finally, the noise subtraction parameters used
were ag = 0.9, c =50.0 and d = 0.1.

The parameters for Wavelet denoising and Wiener filtering
were the same as those used in the experimental data set
presented in Section V-B.

All three polarisation components have been processed.
Buildings, in general, reflect radar waves similarly in all
polarisations while vegetation and other terrain considered
to be clutter in this case, usually exhibit different back-
scatter intensity at the different polarisations. The raw power
(left) and the output of the OS-CFAR detector are shown
in Figure 9a. In the OS-CFAR image, the red, green and
blue pixels corresponds to detections in the HH, HV and VV
polarisations, respectively. Cyan, magenta and yellow pixels
represent detections in the respective combinations of two
polarisations, while white pixels represent detections in all
three polarisations. Buildings appear in the OS-CFAR image
with white pixels (detections in all polarisations), while parks
and crop fields present detections in single polarisations or no
detection at all.

The Wiener filtering results are presented in Figure 9b. The
reduced noise image appears blurred, as expected from the
Wiener filter, and the OS-CFAR detector is unable to detect
buildings from the crop fields.

The wavelet denoising output is shown in Figure 9c. The
power image shows darker colours meaning that the average
noise power has been reduced, but several areas present a high
variance, particularly in the crop fields. The OS-CFAR output
confirms this, and the detector is unable to detect building
structures.

Figure 9d corresponds to BINR output. It can be observed
that the areas corresponding to crop fields appear smoothed
when compared to the raw image. It can also be observed
that the number of detections in single polarisations, mostly
located in areas corresponding to crop fields, is reduced in the
BINR image. On the other hand, most pixels corresponding
to building like structures are preserved.

In this data set it is not possible to apply the OSPA metric
as the real ground truth is unavailable. An analysis on the
noise statistics in an area with no targets, as was carried out
in the park data set, quantifies the performance of the noise
reduction methods. Table IV shows the mean noise power and
variance per polarisation channel. It can be observed that the



LUHR AND ADAMS: RADAR NOISE REDUCTION BASED ON BINARY INTEGRATION 775

Raw Power Raw OS-CFAR

-+ -

Fig. 9.

+
+

(d)

Raw and reduced noise power SAR images and OS-CFAR applied to them. (a) Raw power SAR image (left) and OS-CFAR applied to it (right).

(b) Wiener reduced noise SAR image (left) and OS-CFAR applied to it (right). (c) Wavelet reduced noise SAR image (left) and OS-CFAR applied to it (right).

(d) BINR SAR image and OS-CFAR applied to it.

Wavelet presents the lowest mean noise power, but at the same
time it yields a very high variance. The Wiener and BINR
methods keep a variance similar to that of the original data,
but BINR is able to reduce the mean noise level considerably,
while the Wiener filter noise level stays at a similar or higher
value than the raw data.

VI. CONCLUSION

In this work, a noise reduction method based on the binary
integrator detector and spectral noise subtraction has been
introduced. Its performance has been compared with two
other general, widely used, noise reduction methods, Wiener
filtering and wavelet denoising.

As detailed in Section V, the BINR method exhibits
good noise reduction capabilities, which result in a higher
signal-to-noise power ratio than the other two techniques.
Importantly, BINR has the ability to preserve most of
the signal’s spatial details. Also, the BINR algorithm’s
computational time is lower than the other two methods. The
reduced time complexity shown by the BINR method and its
denoising capabilities make it an appealing noise reduction
alternative to be used as a pre-processing step for radar data.

The encouraging results obtained open the door for sev-
eral improvements for radar data noise reduction. One track
for improvement lies in enhancing the standard Wiener or
Wavelet methods by making them adaptable to different
noise distributions. This approach has been adopted for some
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wavelet denoising applications in which different thresh-
old functions are derived for some non-Gaussian noise
distributions [12], [35], [36]. This can then be the basis for
the integration of 2 or more of the methods. This has been
carried out for Wiener and Wavelet filtering in the work
of Jin et al. [13]. This work exploited the advantages of
both methods simultaneously, but even though the theoretical
improvement in peak-to-peak SNR was expected to be 3dB,
only 0.5dB was achieved. Also the time complexity of
Jin et al’s method corresponds to the combination of both
the Wiener and wavelet methods. In particular, it would
be interesting to evaluate optimised combinations of the
Wiener filter and BINR, Wavelet denoising and BINR, and
the Wiener-Wavelet and the BINR method, in terms of their
computational complexities. These combinations would be
expected to yield the advantages of the individual methods,
for instance, the smooth background noise presented by the
Wiener filter, the reduction in the mean noise power value
provided by the BINR method, and the faithful representa-
tion of the original signal achieved when applying wavelet
denoising.
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