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A B S T R A C T

The determination of hardness and approximate mineral composition of rocks and classifying these litholo-
gies aids in controlling various processes in the plant, such as reducing the grinding process, which accounts
for about 50% of its energy consumption. In this paper, a new method for rock lithological classification is
presented, based on color as well as 3D laser based features. The method uses color and laser range images,
acquired from rocks on a conveyor belt, to compute Gabor and LBP (Local Binary Pattern) features. Various
Gabor and LBP features are tested, including rotation invariant features. The images are tessellated into sub-
images in which the features are computed. The classification is performed in two stages. In the first stage,
the sub-images are classified by using a support-vector machine (SVM) classifier. In the second stage, the
classification is improved by a voting process among all the sub-images of each rock. The method was tested
on a database with five different rock lithologies taken from a copper mine which has been used in previous
studies, allowing comparison with our new results. The results show that the classification performance was
improved significantly by adding the 3D laser texture features, and using a combination of rotation invari-
ant Gabor and LBP features, achieving a classification accuracy of 99.24% on the database. Using the CMIM
(Conditional Mutual Information Maximization) feature selection method showed that only 10% of the total
extracted features are required to achieve the maximum correct classification rate and that using the 3D
laser features, (for the first time in our rock classification method to the best of our knowledge) is important
for maintaining high classification performance.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Rock type classification is of great importance in many stages
of mine operations. Possible applications range from mine planning
to the control of processes, such as grinding (Casali et al., 2001;
Chatterjee et al., 2010b) which consumes about 50% of the energy
used in a mining plant. For example, the energy employed in the
mill operation could be optimized if the actual rock types and hard-
ness could be determined, saving significant resources and reducing
CO2 production. Rock type could also be used to control the feeding
and speed of the mill, minimizing energy consumption and opti-
mizing the extraction process (Guyot et al., 2004; Tessier et al.,
2007). Another possible application is ore sorting. Usually the clas-
sification and characterization of rocks is carried out visually by
geologists and mineralogists, or by laboratory tests (Chatterjee et al.,
2010b). Nevertheless, manual classification is time consuming, since
it is sometimes necessary to stop the processing of the material for
classification and impossible to apply at all during certain steps of the
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grinding process. Moreover, manual classification is only an approx-
imation, because it is usually carried out using coarse sampling.
Consequently, automatic rock classification would be beneficial,
making it possible to address the previously mentioned applications
and to provide a constant flow of information for controlling various
tasks (Guyot et al., 2004). In the past, most studies have focused on
the development of on-line methods to estimate rock size, with the
objective of reducing power consumption and avoiding mill overload
(Tessier et al., 2007). The first methods for estimating the size and
shape of the rocks were based on 2D image analyses. Nevertheless,
2D methods have some restrictions (Potts and Ouchterlony, 2005;
Thurley, 2009): such as the difficulty of identifying boundaries when
rocks are of the same type and overlap each other. Such partially
occluded rocks are often classified as smaller in size than they really
are (Thurley, 2002).

One of the first methods to measure the size of rocks, using com-
puter vision techniques in 2D images, was proposed by Carlsson and
Nyberg (1983). In Oestreich et al. (1995), a system based on color
images was presented for estimating the composition of rocks. This
method used the angle between color vectors to estimate the com-
position of a mix of two minerals, chalcopyrite and molybdenite. In
Perez et al. (1999), a method based on neural networks for classifying
7 different rock lithologies using color images was introduced.
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Other methods have been developed since then, such as the one
presented in Casali et al. (2001), in which features were computed
from 2D images. The features were optimized by genetic algorithms
and used to classify the ore by a neural network. The energy required
for the grinding process was also estimated. In Salinas et al. (2005),
the size distribution of the rocks was estimated using filters, mor-
phological operators, and the watershed transform method.

An industrial rock classification system that combines local tex-
ture information and co-occurrence likelihoods was introduced in
Paclík et al. (2005). In Lepistö et al. (2005), a rock classification
method which uses Gabor filters applied in different color spaces was
introduced. A case study of classification of ferruginous manganese
ore using histogram analysis in the RGB space, combined with textu-
ral analysis based on a co-occurrence matrix of gray levels and edge
detection, was presented in Singh and Rao (2006).

In Wang (2006) the size of the rocks was approximated by the
best-fit rectangle. A method was presented in Al-Thyabat et al.
(2007), in which images of rocks on a conveyor belt were segmented
semi-manually, and then the performances of different measures
for estimating the size distribution of the rocks were evaluated. In
Tessier et al. (2007) an automatic system mounted in a pilot plant for
the estimation of rock mixture composition was presented. The clas-
sification method used a support vector machine (SVM) to classify
5 different minerals, and principal components analysis (PCA) and
wavelet texture analysis (WTA) to extract color and textural features,
respectively.

A method based on neural networks combined with PCA and
frequency measures to classify 26 rock types was introduced in
Kachanubal and Udomhunsakul (2008). In Murtagh and Starck
(2008), a method using wavelets and curvelet moments to classify
images of aggregates was presented. A classification method for rock
textures based on a hierarchical neuro-fuzzy model was introduced
in Gonçalves et al. (2009). In Al-Batah et al. (2009) neural networks
were used with features extracted from 2D images to classify aggre-
gates for concrete. In Koh et al. (2009), illumination from different
angles was used to improve the segmentation of wooden spheres and
pebbles in order to estimate size distribution.

A method that uses genetic algorithms, k-means clustering and
neural networks to predict the ore grade in samples extracted from
a drill-hole in a lead-zinc deposit was presented in Chatterjee et
al. (2010a,b). A method to identify the texture of different basalts
in RGB or grayscale images using a neural network was introduced
in Singh et al. (2010). In Fernández et al. (2011) the performances
of different types of Local Binary Patterns (LBP), Coordinated Clus-
ters Representation (CCR) and ILBP (Improved Local Binary Patterns)
were measured for the classification of granite tiles under rotations,
concluding that the ILBPs were the best features. A system for aggre-
gate classification was presented in Isa et al. (2011). The classification
method extracts the Hu and Zernike moments from the rock seg-
mentation, and the classification is performed by a neural network. A
rock classification method that uses multi-way PCA to extract color
features and Wavelet Texture Analysis (WTA) to compute texture
features was presented in Perez et al. (2011). The method selects
a subset of features using mutual information, and uses an SVM to
perform the classification. The classification is improved by a voting
process among the classified sub-images of each rock. The same vot-
ing method was used in Perez et al. (2015), using multi-scale Gabor
features. In Bianconi et al. (2012) a classification system for granite
tiles was presented. Different features were tested, and the best per-
formance was obtained with co-occurrence matrices. A method to
classify limestone rock-types by using color image histogram-based
features and probabilistic neural network (PNN) was introduced in
Patel and Chatterjee (2016).

Rock classification performance was improved with methods
using shape and size information in laser range 3D images. The
3D information is not affected by color or illumination variations.

Moreover, using 3D information, it is easier to detect the rocks near
the surface without occlusions, to classify shape, and to improve
segmentation. A method for segmenting aggregates on a conveyor
belt using a laser triangulation scanner was introduced in Kim et al.
(2003). The method used the Canny edge detector and the watershed
transform. However, the rocks were isolated on the conveyor belt
without occlusions among them in this study.

In Lee et al. (2005) a method for computing the angularity of
rocks using 3D information acquired by laser triangulation was pre-
sented. The method used mathematical morphology techniques to
simulate the natural wear process that makes rock particles become
rounded. In Thurley and Ng (2005), a method to segment the surface
of rock piles using 3D information was presented. Irregularly spaced
3D coordinate surface data was processed using morphology oper-
ators and image segmentation algorithms. The same method was
used in Thurley and Ng (2008), but extended to detecting partially
occluded rocks on the surface of rock piles. In Thurley (2009), laser
triangulation was used to measure rock size inside underground
LHD (Load-Haul-Dump) unit buckets. The method takes overlap-
ping rocks into account, and identifies areas of fine material below
the resolution of the 3D sensor. In Thurley and Andersson (2008), a
method for measuring the size of iron ore green pellets on a conveyor
belt by using a laser triangulation acquisition system was presented.
The method identified non-overlapped pellets, and used mathemati-
cal morphology techniques, and the watershed transform. The same
method was used in Thurley (2011) to measure the size distributions
of limestone particles on a conveyor belt.

Textures have specific orientations for some rock lithologies as
has been reported in previous research for classifying types of gran-
ites (Bianconi et al., 2012; Fernández et al., 2011), but they have not
been included in general ore classification. Accordingly, features that
include rotation invariance are considered in this work. Some meth-
ods achieve rotation invariance by performing a transformation of
the features into another space, for example, by using the Discrete
Fourier Transform (DFT). The shift invariance property of the DFT is
used in Riaz et al. (2013) to build rotation and scale invariant Gabor
features, and the DFT of histograms of LBP is used in Zhao et al. (2012)
to achieve rotation invariance. Other methods perform a rearrange-
ment of feature vectors, such as in Hegenbart and Uhl (2015), where
the rotation invariance of LBP is achieved by explicit alignment of
features at the extraction level using a robust estimate of global
orientation. In Arivazhagan et al. (2006), the rotation invariance of
Gabor features is achieved by a circular shift of the features according
to the orientation with the highest total energy. Other methods com-
pute features or statistics across the features obtained at different
angles; for example, in Han and Ma (2007), the rotation invariance
of Gabor features is achieved by the summation of the Gabor filters
along the different angles on the same scale. Some methods use fea-
tures that take rotation invariance into account implicitly, such as
the rotation invariant LBP (Ojala et al., 2002). All the strategies to
achieve rotation invariance mentioned above are taken into account
in this work. The features used are explained in Section 2.3. In pre-
vious cited papers above the problem of lithology classification is
addressed using 2D images. In the literature, 3D range images have
been used to address only the problem of size estimation.

In this work, we introduce 3D laser range images to improve
lithological classification. Our proposed method extracts color fea-
tures as well as 3D laser range features for classifying the rock type.
Our hypothesis is that classification performance can be improved
by combining 3D laser range and color features. Invariant fea-
tures have shown to be very relevant in image processing, see for
example Lecun et al. (1998), Perez et al. (2010, 2007), Zhang and Tan
(2002). Additionally, our method uses both color and the 3D data for
rock segmentation. First, the images are tessellated into sub-images
which are classified by using color and 3D texture features. Then,
the rocks of each image are segmented to improve classification by
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Fig. 1. Block diagram of the proposed lithological classification method.

a voting process among the sub-images of each rock. The method is
validated on a database with 5 different rock lithologies.

2. Methods and materials

The lithological classification method proposed in this paper is
based on color and laser range (3D) images. Fig. 1 shows a block
diagram of the proposed method. The images are tessellated into
sub-images where features are computed. A SVM is used to clas-
sify the lithology of each sub-image by using the extracted features.
With the purpose of improving rock classification, the rocks are seg-
mented, and a voting process is performed among the sub-images of
each rock.

2.1. 3D range image and color image acquisition systems

A SICK ColorRange Ranger-E55444 camera1 was mounted per-
pendicular to a conveyor belt for data acquisition. This camera can
acquire 3D range and high-definition color images. The camera is
equipped with a CMOS sensor which is used as a line-scan, acquir-
ing the images line by line as objects move. The CMOS sensor has
15 high resolution lines with 3072 columns. Three of these lines are
used to acquire the red, green, and blue channels of the color images
using LED illumination. Another section of the CMOS sensor has an
infrared-pass filter. This section is composed of 411 lines with 1536
columns, and is used to acquire the range image by infrared (IR) laser
triangulation. An IR laser was mounted at 45◦ in relation to the con-
veyor belt. The laser projects a line that is deformed as the rocks
move on the conveyor belt, and this deformation is detected along
the columns of the CMOS sensor with the infrared-pass filter. The
3D surface of the rocks is computed by using the laser line deforma-
tion and a previous calibration. Fig. 2 shows the complete acquisition
system for the laser range and color images.

As explained above, the acquired color and range images are com-
posed of 3072 and 1536 columns, respectively. The images were
transformed, obtaining images of 3017 columns with isotropic pixels
of approximately 0.12 × 0.12 mm. The resolution of the range image
is approximately 0.0234 mm. on the z axis. Fig. 3 (a) and (b) show
a color and a range image, respectively. Fig. 3 (c) shows the range
image superimposed on the registered color image.

2.2. Rock segmentation in range and color images

After registering the color and range images, rocks are segmented
to be able to classify each rock type. Range images are segmented
first because it is simpler to identify each rock in the range images.

Range images contain noise produced by reflections of ambi-
ent light from the rock surfaces. Morphological closing and opening

1 http://www.sick.com/group/EN/home/products/product_portfolio/vision/Pages/
high-end_cameras.aspx

is performed with a square structural element of 3 × 3 pixels to
reduce the noise. Because laser triangulation is performed in only
one direction, the range images have some areas without informa-
tion corresponding to occlusions of the laser by the rocks. The rock
boundaries are identified using the edges of the occluded areas and
the range information (Thurley, 2011). The occlusion areas are bina-
rized and those with areas of less than 40 mm2 of area are ignored.
The remaining areas are dilated by a structural element of 3 × 3
and the original binary image is subtracted to find the edges. Then,
morphological closing with the same structural element is applied.
Next, the range information is used to detect rock edges. The dif-
ference between the dilation and erosion of the range image by a
3 × 3 structural element is used to compute its gradient. Gradients
of more than 5 mm of depth and 4 mm of length are binarized and
kept as edges. These new edges are combined with the edges com-
puted from the occlusion areas, and the distance transformation is
computed in the obtained image. Then, the morphological h-maxima
operation is used to detect the local maxima of less than 4 mm.
The maxima which do not occur in occlusion areas are binarized
and filtered using the seed growing algorithm (Thurley and Ander-
sson, 2008; Thurley and Ng, 2005). Next, the watershed algorithm
(Beucher and Lantuéjoul, 1979; Bieniek and Moga, 2000) is used to
obtain the segmentation of the range image. The binarized maxima
are used as seeds of the watershed transformation applied to the gra-
dient of the range image. After segmentation, the known range level

Fig. 2. Acquisition system for 3D laser range and color images.

http://www.sick.com/group/EN/home/products/product_portfolio/vision/Pages/high-end_cameras.aspx
http://www.sick.com/group/EN/home/products/product_portfolio/vision/Pages/high-end_cameras.aspx
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Fig. 3. Registration of range and color images. (a) Color image. (b) Range image where the color represents the height in mm. (c) Range image registered and superimposed on
the color image.

of the conveyor belt in the range image is used to detect the areas
of segmentation that correspond to the background. Finally, the bor-
ders between each segmented object and its neighbors are analyzed
to detect objects that correspond to the same rock. The objects that
share an edge of less than 5 mm of depth and 20 mm of length are
combined as part of the same rock. Fig. 4 (a) shows an example of the
range image segmentation technique.

The color image is segmented after the range image. First, the
color image is transformed into grayscale, and a bilateral filter
(Chaudhury, 2013) is used to smooth the surface of the rocks without
affecting their boundaries. The watershed algorithm (Beucher and
Lantuéjoul, 1979; Bieniek and Moga, 2000) is applied to the gradi-
ent of this gray image for segmentation. Because there are both rocks
and background (conveyor belt) in our images, we need to compute
rock and background seeds to be used in the watershed algorithm.
To find the rock seeds, the segmentation of the range image is bina-
rized and eroded by a 30 × 30 structural element. Seeds for the
background are obtained using the range and the gray level image,
as follows: The gray level value corresponding to the peak of the
gray image histogram in a test area of the conveyor belt is consid-
ered to be the background gray level threshold. The gray level image
is binarized using this background, considering the pixels below the
threshold as background seeds. The pixels with a height lower than
5 mm over the known level of the conveyor belt in the range image
are also considered to be background seeds. If there are intersec-
tions between the background and rock seeds, these intersections are
removed from the background seeds. Moreover, in order to be sure if

any background seed intersects a rock, its size is reduced as follows:
The distance transform of the background seed image complement
is computed, and only the seed pixels that have a distance less than
the mean of the distance transform in each seed are kept. Finally, the
rocks and background seeds are used in the watershed algorithm.
Fig. 4 (b) shows the segmentation of a color image.

2.3. Feature extraction in range and color images

Features are extracted from the range and color images which are
tessellated into sub-images of 60 × 60 pixels, in a similar way to that
proposed by Tessier et al. (2007). The pixels of each sub-image may
belong to different rocks placed side by side, or in different heights if
one occludes a portion of another. Also, some pixels of one sub-image
may belong to the background (conveyor belt). The problem of hav-
ing background or more than one rock in one sub-image is addressed
in Section 2.4.

All extracted features are computed within the sub-image. These
features are based on Gabor filters, Local Binary Patterns (LBP), and
chromatic features. Gabor filters and LBPs are complementary fea-
tures, because the Gabor filter can extract global features, whereas
LBP captures the local structure of the texture (Liao et al., 2009; Liu
et al., 2014). The texture features based on Gabor filters and LBP are
computed in the range and color images, and are then concatenated
to build a feature vector. The color image is transformed into the
HSV space, and then the texture features are computed in each of the
three channels. In order to investigate the effect of separating texture

Fig. 4. Registration and segmentation of range and color images. (a) Segmentation of the range image. (b) Segmentation of the color image.



F. Galdames et al. / International Journal of Mineral Processing 160 (2017) 47–57 51

and color information, the images were also classified using texture
features (Gabor filters, LBP) computed in grayscale. In this way, the
classification is performed by using texture information computed in
grayscale, and chromatic features computed in the HSV space which
are described in Section 2.3.3.

2.3.1. Gabor features for feature extraction from rocks
Gabor filters are frequency filters, localized in space, and with a

particular orientation. Gabor features are computed using 5 scales
defined by 0 ≤ m ≤ 4, and 8 orientations defined by 0 ≤ l ≤ 7. The
Gabor filters are defined by:

Xm,l(x, y) = exp

⎛
⎜⎝−

∣∣∣�k∣∣∣2∣∣�r∣∣2
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y

]
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]
, and con-

stants f =
√
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4, 4

√
2, 8, 8

√
2, 16

}
in pixels. In order to extract Gabor features, a

convolution between the Gabor filters and the sub-images is per-
formed, i.e.,

Gl,m,i(x, y) = Xm,l ∗ Ii, (2)

where Ii is the sub-image i of image I. Since Gabor filters are complex,
the values of Gl,m,i(x, y) are complex numbers, and can be represented
by their magnitude Ml,m,i(x, y) = |Gl,m,i| and phase Vl,m,i(x, y) =
arg(Gl,m,i). The magnitude Ml,m,i gives information about the frequen-
cies presented, and the gradient of the phase Gl,m,i(x, y) = ∇(Vl,m,i)
gives information about how these frequencies change. Accord-
ingly, the first Gabor features computed in each sub-image are the
mean and the standard deviation of the magnitude, Ml,m,i, std(Ml,m,i),
respectively; and the mean and the standard deviation gradient of
the phase Gl,m,i, std(Gl,m,i), respectively. Different Gabor features are
computed using these Gabor basic features, some of which include
rotation invariance: Gstat, Grea and GDFT. The computed Gabor features
for classification are the following:

GM: Using the features Ml,m,i and std(Ml,m,i). These features con-
sider scale and orientation; however, they include neither rota-
tion invariance nor the phase of the Gabor filters.
GMP: Using the features Ml,m,i, std(Ml,m,i),Gl,m,i and std(Gl,m,i).
These features do not consider rotation invariance.
Gstat: The features Gstat consider rotation invariance by computing
simple statistical values across the angles. The mean and standard
deviation of the features Ml,m,i, std(Ml,m,i),Gl,m,i and std(Gl,m,i), are
computed across the angles of each scale, and are used as features.
In this way, 8 features are obtained in each spatial scale.
Grea: The features Grea are the same as those used in GMP, how-
ever Grea considers rotation invariance. The rotation invariance is
achieved by rearranging the features according to an angle. The
mean of Ml,m,i is computed across the scales in every orientation,
and the orientation lmax with maximum value is considered as
the reference:

lmax
i = arg max

l

4∑
i=0

Ml,m,i. (3)

Then, the features Ml,m,i, std(Ml,m,i),Gl,m,i and std(Gl,m,i) are rear-
ranged according to lmax

i and used in the classification process.
GDFT: Although the features GDFT use the same features as GMP,
nevertheless a rotation invariance is achieved by using the
shift invariance property of the DFT. The DFTs of the features

Ml,m,i, std(Ml,m,i),Gl,m,i and std(Gl,m,i) are computed across the ori-
entations, in every scale. Then these DFTs are used as features for
the classifying process.

2.3.2. Local binary patterns for feature extraction from rocks
The LBP features use binary comparisons between pixels by sam-

pling within a neighborhood around each pixel where the code is
computed to characterize texture. The gray level of a pixel xc is com-
pared with the gray levels of p neighbors evenly distributed in a circle
of radius r (Ojala et al., 2002):

LBPr,p =
p−1∑
n=0

s (xr,p,n − xc) 2n, s(x) =

{
1, x � 0

0, x < 0
. (4)

The LBP is computed at each pixel in the image, and the texture is
described by the histogram vector of these LBPs. Given p neighbors,
the maximum number of different LBPs is 2p. In order to perform a
multi-resolution analysis, LBPs with different radius r are computed,
and the resulting histograms are concatenated to build the feature
vector. The number of neighbors used in this work was p = 8, and
the scales r = {1, 3, 5, 7, 9}. Two types of LBP features were used for
comparison, which are described as follows:

LBPriu2: The Rotation Invariant Uniform patterns, LBPriu, were
proposed in Ojala et al. (2002). These LBPs use a uniformity mea-
sure U, which corresponds to the number of spatial transitions
(0/1) in the binary pattern (s(x)). The number of transitions pro-
posed in Ojala et al. (2002) is at most 2. The LBPriu2 also considers
that all the rotated versions of the same binary pattern cor-
respond to the same feature. The result is a rotation invariant
feature described by:

LBPriu2
r,p =

{∑p−1
n=0 s (xr,p,n − xc) if U(LBPr,p) � 2

p + 1 otherwise,
(5)

where

U(LBPr,p) =
p−1∑
n=1

∣∣s(xr,p,n − xc) − s(xr,p,n+1 − xc)
∣∣ . (6)

The histogram vector of the LBPriu2 computed in the image is used
as the feature vector.
BRINT_CS_CM: The BRINT (Binary Rotation Invariant and Noise
Tolerant) LBP was proposed in Liu et al. (2014). It is invariant
under rotation, and includes local thresholds, and an average
in the sampling of pixels in the neighborhood to achieve more
robustness. The BRINT_CS_CM is computed by using three types
of LBPs: BRINT_S (BRINT_Sign), BRINT_M (BRINT_Magnitude),
and BRINT_C (BRINT_Center) which will be explained in the
following:

First, the neighbors of xc are grouped in p arcs of q points, and an
average is taken from each group:

yr,p,i =
1
q

q−1∑
k=0

xr,pq,(qi+k), i = 0, . . . , p − 1. (7)

Then, a LBP called BNT_S (Binary Noise Tolerant Sign) can be com-
puted by comparing the means yr,p,i with the central pixel xc:

BNT_Sr,p =
p−1∑
n=0

s(yr,p,n − xc)2n. (8)
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Rotation invariance is introduced to compute the BRINT_S. Equal
versions of binary representations under rotations are grouped by
assigning code numbers to the resulting groups in the same way as
used in the rotation invariant version of the LBP (Pietikäinen et al.,
2000):

BRINT_Sr,p = min (ROR(BNT_Sr,p, i)|i = 0, . . . , p − 1) , (9)

where ROR(x, i) performs a circular i-step bit-wise right shift on x, i
times.

The BRINT_M is based on the complementary LBP, CLBP_M (CLBP-
Magnitude), proposed in Guo et al. (2010). The BRINT_M performs
comparisons between xc and a local threshold to generate the binary
code. First, the absolute value of the local differences between xc and
its neighbors are computed:

Dr,pq,i =
∣∣xr,pq,i − xc

∣∣ , i = 0, . . . , p(q − 1). (10)

Then, the means, zr,p,i, of the Dr,pq,i are computed in each of the p arcs,
as in Eq. (7):

zr,p,i =
1
q

q−1∑
k=0

Dr,pq,(qi+k), i = 0, . . . , p − 1. (11)

The zr,p,i are used to compute the BNT_M (BNT_Magnitude) binary
pattern:

BNT_Mr,p =
p−1∑
n=0

s(zr,p,n − lr,p)2n, (12)

where lr,p is a local threshold computed as:

lr,p =
1
p

p−1∑
n=0

zr,p,n. (13)

The BRINT_M local binary pattern is defined by using the BNT_M
as:

BRINT_Mr,p = min (ROR(BNT_Mr,p, i)|i = 0, . . . , p − 1) . (14)

The last LBP included in the BRINT_CS_CM is the BRINT_C which
represents the center pixel in one of two bins:

BRINT_Cr = s(xc − lI,r), (15)

where lI,r is a threshold defined as the mean of the whole image
excluding boundary pixels:

lI,r =
1

(M − 2r)(N − 2r)

M−r∑
i=r+1

N−r∑
j=r+1

x(i, j). (16)

Finally, the BRINT_CS_CMr,p descriptor is the joint histogram
BRINT_C ∗ BRINT_Sr,p concatenated with BRINT_C ∗ BRINT_Mr,p. As
recommended in Liu et al. (2014), the value of q was 1 for r = 1, and
q = 3 in the other scales.

2.3.3. Chromatic features for rock classification
Two chromatic features are extracted, besides the texture infor-

mation in gray scale. The image is transformed into the HSV color
space, and then the mean and standard deviation of the H and S
channels are used as chromatic features. These chromatic features

are used together with the texture features (Gabor filters, LBPs)
computed on the image in gray levels.

2.4. Classification

Lithological classification is performed in two stages: classifica-
tion by sub-image, and classification by rock, which are described as
follows:

2.4.1. Classification by sub-image
The computed features are concatenated, obtaining a feature vec-

tor in each sub-image. For example, 80 features are obtained if the
GM features are computed with 8 orientations and 5 scales; and 50
features are obtained if the LBPriu2 features are computed using 8
neighbors and 5 scales. Therefore, a feature vector of length 520 is
created for each sub-image, if the GM and LBPriu2 features are used in
color (3 channels) and range (1 channel) images.

Since the aim of our work is to propose a new and improved
method for lithological classification of rock using new features, a
state-of-the-art classification method must be used to evaluate the
performance obtained by using the different features. The Random
Forest and the SVM were the classifiers with best performance in
Fernández-Delgado et al. (2014), where 179 classifiers arising from
17 families were evaluated. Also, the SVM has become a very popular
classification method because of excellent results in many different
fields. For these reasons, an SVM is used in this work to classify each
sub-image using its feature vector. The publicly available LibSVM
(Chang and Lin, 2011) implementation of SVMs was used. The C-SVC
(Support Vector Classification) SVM formulation was used (Cortes
and Vapnik, 1995), which maps input vectors using a non-linear
transformation to a high-dimensional space where linear decision
hyperplanes are constructed for class separation. Radial basis func-
tions (K(u, v) = exp(−c ∗ |u − v|2)) were used as kernel functions
to map the input vector. The optimal values for the regularization
parameter C of the SVM (defined in Chang and Lin, 2011), and for the
parameter c of the radial basis functions, are searched in a subset of
the data. As suggested in Chang and Lin (2011), the optimal values
for parameters C and c are searched using cross validation in a grid
of parameters with logarithmic scale. In order to measure the perfor-
mance of the method, the dataset is divided into subsets, and a cross
validation is carried out using one subset as validation set and the
other subsets as training set. The classifier is trained with the train-
ing set, and then is tested on the validation set using the sub-images
as inputs. Since the rocks do not cover the whole image, the conveyor
belt is visible in some sub-images. Only sub-images with more than
90% of rock, according to the color image segmentation method, are
processed using the SVM. The others are discarded because most of
them contain mostly background. Also, the pixels of one sub-image
may belong to different rocks. This may produce a sub-image mis-
classification; nevertheless, these misclassifications are corrected in
the classification by rock presented in Section 2.4.2.

2.4.2. Classification by rock
As described in Perez et al. (2011, 2015), the classification

obtained by using the feature vectors from the sub-images can be
improved by performing a voting process with all the sub-images
that belong to a single rock. The sub-images that compose each rock
are identified by using the color image segmentation method as
described in Section 2.2. Sub-images with more than 50% of back-
ground in the segmentation stage are considered to be background
and are not classified. Each sub-image that is not considered to be
background is assigned to the rock with the largest area in it. Then,
the most common lithology in the classified sub-images of each rock
is identified. If the percentage of sub-images with this lithology in
the rock is over a confidence threshold, all the sub-images within
the rock are assigned to this lithology. This process corrects some
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misclassified sub-images, improving the performance of the overall
classification.

3. Database and experiments

A database was built using ore samples from a copper mine in
Chile (Perez et al., 2015). The ore samples are composed of rocks that
can be grouped into five different lithologies: Andesite (AN), Dacitic
Diatreme (DD), Rhyolitic Diatreme (RD), Porphyritic Dykes (PD), and
Other Breccias (OB). Sets of 40 range and color images were acquired
for these five types of lithologies using a conveyor belt in the labora-
tory as shown in Fig. 2. Different images of the same samples were
acquired by randomly changing the placement and orientation of the
rocks, following a similar procedure as that described in Chatterjee
et al. (2010b). Fig. 5 shows sample color images of the five litholo-
gies. It can be observed that many of the rocks have some overlap
or are adjacent to neighboring rocks with no background between
them. The database was divided into 10 subsets, and a leave-one-
out cross validation was performed using 9 subsets for training and
one for validation in performing the experiments. The same number
of examples of each class was used in the training stage. The mean
number of rock sub-images (more than 90% of rock, Section 2.4.1) in
each image was 650. Therefore, the SVM was trained with approxi-
mately 23400 examples of each class and tested with approximately
2600 examples of each class in each iteration of the cross valida-
tion. In each experiment, the optimal parameters of the SVM were
searched on a grid with a logarithmic scale using a 5-fold cross val-
idation in a subset of the training set. The values of the grid were
in the range log2(C) = [−6, 15] and log2(c) = [−14, 6] for C and c,
respectively. First, the search was performed using a step of length
2. Then, a fine-tuning of parameters around the first optimal point
was carried out using a step of length 0.4. To search C and c, 1% of
the available sub-images was randomly selected (approximately 234
examples of each class).

For testing each type of feature using the available information,
the performance was first measured using color and range images
together (see Table 1). Then, the two Gabor features with perfor-
mances over 90% were used together with the best of the two
tested LBP features. These features were tested using color and range
images separately, and also using both images together (color +
range in Table 2). The performance of the Gabor and LBP texture
features in the color images transformed into grayscale, together
with chromatic features to encode the color information, was also
tested. The performance of the texture features computed in these
gray images was tested using the gray images alone, and using gray
and laser range images together (gray + range in Table 2). Addition-
ally, the classification performance obtained using only chromatic
features was computed.

Finally, a feature selection method based on mutual information
(Estevez et al., 2009; Vergara and Estévez, 2014) was used to ana-
lyze the number of features required in the classification. We chose
the CMIM feature selection method (Brown et al., 2012; Fleuret,
2004; Guyon et al., 2006; Wang and Lochovsky, 2004) because it

Table 1
Classification performance based on sub-images and rock boundaries, considering dif-
ferent types of features, and using the color + range images. The best performances
achieved by the Gabor and LBP features are marked in bold. The SVM was employed
for classification based on sub-images, and then the classification was improved by
using voting among the sub-images within the rock boundary. The table shows the
results obtained with a leave-one-out 10-fold cross validation. In each iteration of the
cross validation, the SVM was trained and tested with approximately 23400 and 2600
sub-images of each class, respectively (see Section 3). The results are in the format
[mean] ± [standard deviation].

Sub-image classification Rock classification

Feature Training set Validation set Training set Validation set

GM 81.55 ± 0.22 76.95 ± 2.14 96.75 ± 0.16 94.26 ± 2.40
GMP 100.00 ± 0.00 88.25 ± 1.42 100.00 ± 0.00 98.88 ± 0.81
Gstat 93.31 ± 0.27 90.01 ± 0.68 99.30 ± 0.03 97.69 ± 0.84
Grea 96.35 ± 0.09 90.84 ± 0.68 99.74 ± 0.09 97.66 ± 1.10
GDFT 100.00 ± 0.00 84.23 ± 1.31 100.00 ± 0.00 98.41 ± 0.79
LBPriu2 84.69 ± 0.09 81.40 ± 1.05 98.88 ± 0.08 97.85 ± 0.83
BRINT_CS_CM 93.24 ± 0.09 86.50 ± 1.03 99.86 ± 0.03 98.93 ± 0.57

selects relevant features, avoids redundancy, and includes variable
complementarity. Also, unlike other methods that perform a trans-
formation of the feature space, such as PCA, using CMIM makes it
possible to select only the relevant features and to avoid the compu-
tation (or acquisition) of non-relevant features when the method is
used for online classification. In each iteration of the feature selec-
tion method, CMIM selects the features that maximize the mutual
information with the class to be predicted, given each one of the
features already selected separately. CMIM considers that a feature
is relevant only if it provides high information about the predicted
class, and if this information is not contained in any of the fea-
tures already selected (Tapia et al., 2016). A comparison between
the result obtained by using CMIM and by using the classical PCA
method was also carried out. In the comparison, the number of prin-
cipal components selected was equal to the minimum number of
features selected by CMIM with which the rock classification per-
formance is not significantly affected. The classification method was
implemented in Matlab for training and testing.

4. Results

Table 1 shows the classification performance of the proposed
method by sub-images and by rock boundary, using each of the
Gabor and LBP texture features. The features were computed in
the color + range images, and became the inputs to the SVM that
was used for classification. The classification by sub-images assesses
the performance of each type of feature. The classification by rock
boundary is affected by the rock segmentation. Table 1 shows that
the Gabor features with the best performance were Gstat and Grea

(marked in bold) which includes rotation invariance; and the LBP
feature with the best performance was BRINT_CS_CM (marked in
bold). Results in Table 1 shows that the performance of all the
features, using color + range images, are significantly higher than
the previous reported results in both, classification by sub-images

Fig. 5. Examples of the five different lithologies included in the database: (a) Andesite, (b) Dacitic Diatreme, (c) Rhyolitic Diatreme, (d) Porphyritic Dykes and (e) Other Breccias.
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Table 2
Percentage of correct classification of sub-images based on combinations of the best features (shown in Table 1). The best performance is marked in bold. Tests were performed
on the color image alone, the range image alone, color + range images, color images transformed into grayscale, and gray + range images. The chromatic features were used to
encode the color information when gray images were used. The performance achieved using only the chromatic features is also shown. The results shown in Table 2 were obtained
using a leave-one-out 10-fold cross validation method. In each iteration of the cross validation, the SVM was trained and tested with approximately 23400 and 2600 sub-images
of each class, respectively (see Section 3). The results are in the format [mean] ± [standard deviation].

Sub-image classification Rock classification

Features Image Type Training set Validation set Training set Validation set

Gstat + BRINT_CS_CM Color 100.00 ± 0.00 86.85 ± 0.98 100.00 ± 0.00 98.10 ± 0.67
Gstat + BRINT_CS_CM Range 69.49 ± 0.11 64.52 ± 1.19 91.00 ± 0.18 88.35 ± 1.95
Gstat + BRINT_CS_CM Color + range 95.92 ± 0.13 91.52 ± 0.35 99.86 ± 0.03 98.72 ± 1.10
Grea + BRINT_CS_CM Color 100.00 ± 0.00 87.52 ± 1.91 100.00 ± 0.00 97.77 ± 1.52
Grea + BRINT_CS_CM Range 75.02 ± 0.14 65.94 ± 1.75 94.45 ± 0.19 89.65 ± 2.50
Grea + BRINT_CS_CM Color + range 96.46 ± 0.11 92.65 ± 1.45 99.81 ± 0.07 99.24 ± 0.87
Gstat + BRINT_CS_CM + chroma Gray 80.96 ± 0.11 70.29 ± 1.56 96.13 ± 0.15 89.67 ± 2.16
Gstat + BRINT_CS_CM + chroma Gray + range 81.66 ± 0.09 78.66 ± 1.05 97.21 ± 0.14 96.04 ± 1.23
Grea + BRINT_CS_CM + chroma Gray 76.47 ± 0.18 69.94 ± 1.23 93.94 ± 0.13 89.18 ± 1.96
Grea + BRINT_CS_CM + chroma Gray + range 84.42 ± 0.12 79.21 ± 2.16 98.01 ± 0.20 96.45 ± 1.67
Chroma Color 51.27 ± 0.19 50.14 ± 1.82 58.00 ± 0.53 58.64 ± 3.10

and by rock boundary. In order to verify the statistical significance
(p < 0.05) of the differences between the sub-image classifica-
tion performances, an analysis of variance (ANOVA), and a multiple
comparison test were carried out. The Fisher’s least significant dif-
ference procedure was used in the multiple comparison test. The
performance of the feature with best performance, Grea, has only a
non-significant difference from the second best feature, Gstat. Fea-
ture Gstat has a non-significant difference from Grea and GMP. The best
LBP feature, BRINT_CS_CM, has significant differences from all other
features.

Table 2 shows the classification performance using combinations
of the best features from Table 1. Table 2 also shows the performance
of those features computed in the color images transformed into
grayscale together with the chromatic features to encode the color
information. The results were computed using a leave-one-out 10-
fold cross validation. It can be inferred from the results that the best
performances were obtained using color + range images, followed
by the results obtained using only color, and only range images. The
best performance was achieved by the combination of features Grea

and BRINT_CS_CM, computed in the color + range images (marked
in bold in Table 2). This feature combination reached a performance
of 92.65% accuracy with the sub-image classification, and 99.24%
with the rock boundary classification. Our method classified 14.4%
more sub-images correctly than was reported in the last publica-
tion of work with the same sets of rocks (Perez et al., 2015), that
showed a performance of 84.8%. In order to verify that the sub-image
classification performances are statistically different (p < 0.05), an
ANOVA test was performed. Then, a multiple comparison test using
the Fisher’s least significant difference procedure was carried out.
The performances of the two features with best performance, Grea +
BRINT_CS_CM and Gstat + BRINT_CS_CM, have non-significant dif-
ferences between them, but they are statistically different from the
other types of features.

Fig. 6 shows the classification performance of the best case con-
sidering combinations of features Grea + BRINT_CS_CM in color +
range images when the number of features is reduced using the
CMIM method. The figure shows that even if only 10% of the features
are used (144 features), a performance of over 99% is achieved in the
rock classification, and of 88.56% in the sub-image classification. This
result is very important because it allows a reduction in the number
of computations by ignoring 90% of the extracted features, without
significantly affecting classification performance. This reduction in
the number of required features has a direct impact on the compu-
tational time required to operate a rock type classification system.

Fig. 6. Classification performance of the feature combination Grea and BRINT_CS_CM
as the number of features is reduced. The CMIM method was used to select the most
relevant features. The features were computed in color + range images. The graph
shows the results of the sub-image and rock classifications.

Fig. 7 shows the percentage of Grea and BRINT_CS_CM features, com-
puted in color or range images, selected as the number of features
is reduced using the CMIM method. As can be observed in Fig. 7,
the percentage of features computed in the range image does not
decrease as the number of features is reduced. This indicates that the

Fig. 7. Percentage of Grea and BRINT_CS_CM features, computed in color or range
images, selected when the number of features used is reduced using the CMIM
method. The feature reduction was computed based on the best case obtained, which
uses the combination of features Grea + BRINT_CS_CM in color + range images. Fig. 6
shows the classification performance as the number of features is reduced.
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3D texture features are relevant for rock classification. It can also be
noted that the percentage of Gabor and LBP features stays relatively
constant as the number of features decreases. This demonstrates that
both types of features are relevant and complementary in rock type
classification.

In order to perform a comparison between the result obtained
by using CMIM and by using the classical PCA method, the first 144
principal components of the training features obtained using Grea +
BRINT_CS_CM were computed in each iteration of the cross valida-
tion. The first 144 principal components explain 79.57% of the total
variance in the features. The performance in sub-image classification
obtained by using PCA was 85.22 ± 1.32% (Fig. 6) and by using CMIM
it was 88.58 ± 1.55%. This difference is statistically significant with a
p-value = 2.96e−05 using a two-sample t-test.

4.1. Comparison with our previous work

The same set of rock samples was used in this work as in our
previous work Perez et al. (2015) making the results comparable.

In Perez et al. (2015), 40 images from each lithology were
acquired using a digital IP-camera. The image size was 2048 × 1536
pixels. The images were tessellated into sub-images of 64×48 pixels,
i.e., each axis was divided into 32 sections. The features were com-
puted using Gabor filters with 8 orientations, and 5 spatial scales. The
mean and standard deviation of the magnitude of the Gabor filters in
each sub-image were used as features. The features were computed
in each channel of the HSV color space, and then were concatenated
in a feature vector. These features are equivalent to GM in the current
work. An SVM was used to classify the sub-images. A second classi-
fication was performed based on voting among sub-images that fall
within the rock contour. Morphological operations and the water-
shed transform method were used to segment the rocks in the color
images.

Table 3 shows a comparison between the results reported in Perez
et al. (2015) and those of our present work. The feature GM is the
same type of feature as was used in Perez et al. (2015), and there-
fore it is included in Table 3. The feature Grea + BRINT_CS_CM is also
included since it is the feature with the best performance in the cur-
rent work. Table 3 shows that the performance is improved if GM is
used in the new color images. This improvement is probably caused
by the better resolution of the new images, 3072 columns com-
pared with 2048. The classification performance is not improved if
GM is used in color + range images. Nevertheless, when the features
Grea + BRINT_CS_CM are used in color + range images, the perfor-
mance improves. This shows that the feature GM is not suitable for
extracting information from the 3D texture.

5. Conclusions

Rock classification is an important task in mining operations.
Classification information can be used to control many processes,
such as grinding or mine planning. The aim of this study was to
develop a new method of rock type classification using color and
laser range images. According to our literature review, this is the first

method that uses 3D laser range features from rocks to classify rock
type. Our study shows that the 3D laser range features can be used
to improve rock type classification significantly.

The images were tessellated into sub-images and a classification
process with two stages was performed. In the first stage, every
sub-image was classified using an SVM. In the second stage, a vot-
ing process was performed among the sub-images within the rock
boundary to improve the classification. The contour information of
each rock was used to select those sub-images intervening in the
voting process. The experiments were performed using a database
with 5 types of lithologies acquired from rocks on a conveyor belt for
experimentation.

In order to use its complementary nature (Liao et al., 2009; Liu
et al., 2014), different features based on Gabor filters, with and with-
out rotation invariance, and LBP’s were used in this study. Chromatic
features were also tested with the aim of encoding the color infor-
mation in these features, and the texture information in the Gabor
and LBP’s features.

A set of features was selected using a leave-one-out 10-fold cross
validation in the database (Table 1). Then, combinations of these
features were tested using different types of images (color, range,
color + range, gray and gray + range) in an independent cross vali-
dation in the same database (Table 2). The classification performance
obtained using only color images was better than that using only
range images. Nevertheless, the best performance was obtained
using color and range images together. This result shows that the 3D
texture is useful for classifying rock type. The best performance was
achieved by a combination of the features Grea and BRINT_CS_CM.
The feature Grea is based on Gabor filters, and BRINT_CS_CM is based
on LBP’s (Liu et al., 2014). This result confirms the complementary
nature of Gabor and LBP features. The results also show that the
rotation invariance must be taken into account in rock type classifi-
cation. Both features incorporate rotation invariance; Grea rearranges
the feature vector according to a main computed orientation, and
BRINT_CS_CM takes the rotation invariance into account implicitly
in its computation. The performance of the proposed classification
method was very high, achieving the correct classification of 99.24%
of the sub-images, which is higher than the best previously reported
result with the same set of rocks which was 84.8% (Perez et al., 2015).

The CMIM feature selection method was used to analyze the num-
ber of features needed for classification. The result obtained, (99.22%)
accuracy using only 10% of the features, was not significantly differ-
ent from that obtained using all the features. This method allowed a
reduction in the number of features from 1440 to 144 with no sig-
nificant loss in classification performance. This set of 144 features
still has some degree of redundancy; therefore, a greater reduction
in the number of features could be achieved, but with a small drop in
performance. For example, a classification performance of 96.8% was
achieved using only 29 features (Fig. 6). Perhaps this performance
could be improved by using another feature selection method in a
future work. An important result is that the percentage of features
computed in the range image is not reduced while the number of
features is decreased. This result also shows that the 3D rock texture
features are relevant in rock type classification.

Table 3
Comparison of the results of rock classification in our present work and those in Perez et al. (2015), which used the same set of rock samples. The results show the [mean] ±
[standard deviation].

Sub-image classification Rock classification

Features Image type Training set Validation set Training set Validation set

GM (Perez et al., 2015) Color 70.50 66.90 86.80 84.80
GM Color 81.13 ± 0.37 76.46 ± 1.97 96.36 ± 0.24 93.48 ± 2.05
GM Color + range 81.55 ± 0.22 76.95 ± 2.14 96.75 ± 0.16 94.26 ± 2.40
Grea + BRINT_CS_CM Color + range 99.46 ± 0.11 92.65 ± 1.45 99.81 ± 0.07 99.24 ± 0.87
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