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Abstract— In this paper we present a new approach for natural
feature extraction using a laser scanner for the purpose of
localization in outdoor environments. In semi-structured outdoor
environments, naturally predominant features such as trees and
edges are considered. The proposed method applies a batch
processing which carries out feature extraction after measure-
ments from a full scan are received. The algorithm consists
of data segmentation and parameter acquisition. A modified
Gauss-Newton method is proposed for fitting circle parameters
iteratively. The natural features extracted through this approach
are more robust than those obtained by existing methods. In
order to reduce the estimation error caused by the linearization
in the extended Kalman filtering (EKF), a particle filter is applied
to realize the prediction and validation by integrating data from
both the laser range sensor and encoder in outdoor environments.
The proposed feature extraction and localization algorithms are
verified in a real world experiment.

Index Terms— Feature extraction, Localization

I. INTRODUCTION

Localization is a fundamental competence for autonomous
mobile robot navigation systems. For almost every land naviga-
tion application we can always find an appropriate combination
of dead reckoning sensors that can be used to obtain a
reasonable prediction of the trajectory of the vehicle. Different
sensors have different shortcomings. For outdoor applications,
GPS is widely used but its accuracy can’t be guaranteed when
the satellite signal is blocked by trees or buildings. Ultrasonic
sensors have been applied in indoor environment, but they are
not adequate for outdoor situations due to the range limitation
and bearing uncertainties. Stereo vision should be a promising
technology, but its complexity and poor dynamic range make
it unreliable for outdoor applications. Millimeter wave radar
has enormous potential but it’s very expensive. Recently, laser
sensors have become one of the most attractive sensors for
localization purpose due to their accuracy and low cost [1]
[2]. Most laser sensors provide bearing and range information
with sub degree resolution and an accuracy of the order of 1-
10 cm and range detected can be up to 80 meters. In the past
several years, the use of laser range measurement systems for
autonomous navigation tasks has been on the rise [3], [4], [2],
[5], [6]. However, the predominant domain of their use has
been in indoor environments [3], [4], [5].

From a statistical point of view, robot localization is an
on-line filtering problem: estimate the current state of the
robot, given a sequence of observations [7], [8]. Many existing
approaches rely on the EKF for robot state estimation [9]
[10]. Although the EKF constitutes a powerful framework,
its applicability is restricted by the required linearization of a
nonlinear system and the assumption of Gaussian noises. This
weakness may result that the EKF is very sensitive and gives
inaccurate estimates. A popular algorithm which is able to deal
with non-Gaussian distributions and nonlinear problems is the
particle filter [11] [12].

In this paper, measurements from a laser sensor and en-
coders are combined to estimate the vehicle pose by using
naturally occurring landmarks (trees or tree-like objects) in
outdoor environments. A novel feature extraction approach is
proposed. It applies a curve gradient model to detect large
discontinuities of the environment in the process of data seg-
mentation. A modified Gauss-Newton optimization approach is
then proposed for acquisition of circle parameters. It is worth
noting that there are few existing papers focused on outdoor
feature extraction. The existing methods for tree detection can
only give a rough estimate of circle parameters by a batch
calculation [13] [14], therefore the results are very sensitive
to measurements of large errors. The proposed method is
more robust and more accurate in detecting circle features
and acquiring the feature parameters. To test the effectiveness
of this feature detection method, a particle filter based data
association and localization framework is proposed. Under
the model-based feature representation, the data association
will be shown simplified. We only need to match the circle
center coordinates using a validation gate. In order to deal
with the nonlinear problem, a particle filter based algorithm is
implemented for localization and data association.

The paper is outlined as follows. In Section 2, a new algo-
rithm for natural landmark (tree or tree-like objects) extraction
is proposed. Section 3 presents a particle filter based data
association and localization implementation. Section 4 shows
the experimental results in a real world outdoor environment.
Finally, some conclusion is drawn in Section 5.
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Fig. 1. Gradient model. The first three ranges of scan points are used
to predict the next range value based on the assumption of similar
gradient change in a smooth surface.

II. FEATURE EXTRACTION

Our method to obtain reliable feature information for local-
ization purpose is to use trees or tree-like objects which are
the main class of features available in an outdoor environment.
The center and radius of a circle feature can be used for
navigation. We present a Unscented Kalman filter (UKF) and
Gauss-Newton optimization based feature extraction method
to obtain these natural features.

The essential components of this algorithm consist in two
parts: the first is the segmentation of data from a scan and the
other is the parameter acquisition.

During the data segmentation process, we apply a UKF to
a curve gradient model to realize the data segmentation. Only
large discontinuities of the measurement data are identified so
as to divide the scan data into several groups. Then for each
data group, a modified Gauss-Newton iteration optimization
algorithm is applied to calculate the center and radius of each
tree trunk. The estimated parameters are used for localization.

A. Data Segmentation

Segmentation is a process of aiming to classify each scan
data into several groups, each of which possibly associates with
different structures of surrounding. The segmentation process
is realized through the UKF [15]. At each time instant the
range estimate is compared to the range measurement based
on their statistics in order to decide if an edge has been
detected. When the difference between the measured range and
the predicted range is beyond certain threshold, we consider
that an edge has been detected. This can be achieved by using
a validation gate during the prediction process with the UKF.

Firstly, we shall establish a general curve gradient model for
data segmentation. This gradient model is shown in Figure 1.
The change in gradient between AB and BE is ∆| dys

dxs
|xs=B ,

which can be determined as a function of di, di+1, di+2 and
γ.

∆
∣∣∣∣ dys

dxs

∣∣∣∣
B

=
num

den
(1)

num = (didi+1 + di+1di+2 − 2didi+2cosγ)sinγ

den = d2
i+1 − didi+1cosγ − di+1di+2cosγ + didi+2cos2γ

For smooth surfaces, one can assume a similar change in
gradient. The curve gradient model will be used to examine
the feasibility of using the constant change in gradient estimate
to detect large discontinuities (edges). From the estimate of
∆ dys

dxs
, a minimum value for the next range reading d−i+3 is

predicted, based on the negative spatial gradient change of
−∆ dys

dxs
, and a maximum value d+

i+3 is predicted based on the
positive gradient change of +∆ dys

dxs
. From the figure we can

obtain:

d−i+3 =
(2di − di+1)di+2

di − 2di+1cosγ + 2dicos2γ
(2)

d+
i+3 = d−i+3 +

2di+2(d2
i + d2

i+1 − 2didi+1cosγ

di − 2di+1cosγ + 2dicos2γ

×2didi+2cosγ − didi+1 − di+1di+2

R + S + T + U
(3)

where R, S, T and U are given by:

R = −2did
2
i+1 − d2

i di+2 − d2
i+1di+2

+2d2
i di+1cosγ + 2d3

i+1cosγ

S = didi+1di+2cosγ − did
2
i+1cos2γ + d2

i di+2cos2γ

T = d2
i+1di+2cos2γ − d2

i di+1cos3γ − 2didi+1di+2cos3γ

U = d2
i di+2cos4γ

According to the two different changes in gradient for a smooth
surface, there will be a minimum and a maximum predicted
range values. If the observed range reading is not within 3σ
bounds of the minimum or maximum predicted value, the filter
will be re-initialized and an edge is found.

1) System Model: To form a recursive prediction formula,
we can rewrite (2) and (3) by defining:

x1(k) = di;x2(k) = di+1;x3(k) = di+2

thus, we get the discrete system model for UKF:



x1(k + 1)
x2(k + 1)

x−
3 (k + 1)or
x+

3 (k + 1)


 =




x2(k)
x3(k)

f−(x1(k), x2(k), x3(k))or
f+(x1(k), x2(k), x3(k))


 + υ1(k)

(4)
where f−(x1(k), x2(k), x3(k)) or f+(x1(k), x2(k), x3(k))
can be calculated from (2) and (3). Equation (4) represents
a system model which will be used to predict the next range
value from the sensor before the actual range measurement is
recorded.

2) Observation Model: Since there is almost no angular
uncertainty for the Sick sensor, we assume that its bearing is
known precisely at each time instant, so we only consider the
range measurement. Therefore, our observation model is:

z(k) = [ 0 0 1 ]




x2(k)
x3(k)

f−(x1(k), x2(k), x3(k))or
f+(x1(k), x2(k), x3(k))


 + ω1(k)

(5)



where ω1(k) is a zero mean Gaussian noise with a known vari-
ance σ2

r . By studying the statistics of the range measurement
of the laser scanner, we found that the sensor noise follows
approximately a Gaussian distribution with standard deviation
ranging from 0.015 to 0.020 meter. We thus take the variance
to be σ2

r = 0.00040. The UKF is used to realize the prediction
and validation process.

3) The Recursive UKF Process and Validation Gate: From
the state equation (4), it is observed that the curve gradient
model is highly non-linear and its Jacobian matrix would
be very complex, which would lead to a high computational
demand, if the EKF is to be applied. Realizing this difficulty,
we shall propose to use the UKF [15]. We apply the UKF to
realize the prediction and validation process. But it is noted
that during the UKF realization process for the curve gradient
model, we choose ν =min{f−(x1(k), x2(k), x3(k)) − z(k +
1); f+(x1(k), x2(k), x3(k)) − z(k + 1)} to do the prediction
and validation. For each instant, we need to calculate two
predictions of the system variable using equation (4).

In order to identify if a measurement is associated with a
new edge, certain criterion needs to be established. Use the
innovation ν(k + 1) and the innovation variance s(k + 1) to
define:

d(k + 1) = ν(k + 1)T s−1(k + 1)ν(k + 1) (6)

Note that since ν is a Gaussian random variable, d is a random
variable following the χ2 distribution. The smaller the d(k +
1), the higher the probability that the measurement z(k + 1)
is obtained from the smooth surface. Thus, a validation gate,
δ, is used to decide whether the measurement z(k + 1) is a
close enough match to the predicted data point to continue the
filter update. If the measurement is such that d(k + 1) > δ, a
discontinuity is found. From the χ2 distribution table, we know
that if the observation is from the expected model surface,
then d(k + 1) < 6.63 with a probability of 0.99. If a small
δ is selected, there will be more edges found. In the present
application, the validation gate can be set to be large to tolerate
those measurements that don’t match the prediction very well,
thus only the large discontinuities can be detected. Here we
set δ = 6.63. After the prediction and validation process, the
large discontinuities can be found, thus, the data is divided
into several groups.

After the data segmentation process, we need to decide if
each segment of data is associated with an arc or not. In our
algorithm, an accuracy limit or a maximum iterative number (if
the accuracy limit can not be reached) is defined according to
the experimental data to distinguish the arc data group from an
“non-arc” data group. For an arc, we shall need to estimate its
parameters (the center and the radius) of the arc so that future
measurements of the arc may be used for robot navigation.
In the following, the modified Gauss-Newton optimization
method [16] is applied to obtain the parameters of each arc
similar to [17].

B. Parameter Acquisition

A circle can be defined by the equation

(x − x0)2 + (y − y0)2 = r2 (7)

where (x0, y0) and r are the center and the radius of the
circle, respectively. For a circle fitting problem, the data set
(x, y) is known and the circle parameters (x0, y0, r) need to
be estimated. Assume that we have obtained M measurements
(xm, ym), m = 1, 2, . . . M , of the circle. Our objective is to
find p = (x0, y0, r) that minimizes

E(p) = E(x0, y0, r) =
M∑

m=1

[(xm − x0)2 + (ym − y0)2 − r2]2

(8)
This is equivalent to performing the nonlinear least-squares
process using the equations

fm(x0, y0, r) = (xm − x0)2 + (ym − y0)2 − r2 = 0,

m = 1, 2, . . . ,M (9)

Equation (9) is not linear about the unknown parameters x0,
y0, and r, therefore it is a nonlinear least-squares problem.
We propose to use the modified Gauss-Newton optimization
(Levanberg-Marquart) method [16] to solve the problem.

In our case the Jacobian matrix for the modified Gaussian-
Newton algorithm is

A =




∂f1
∂x0

∂f1
∂y0

∂f1
∂r

∂f2
∂x0

∂f2
∂y0

∂f2
∂r

...
...

...
∂fM

∂x0

∂fM

∂y0

∂fM

∂r


 (10)

Let f̄ = (f1 f2 . . . fM )T with fm as defined in (9). At the k-th
step, using the modified Gauss-Newton method to search the
solution according to the following equation:

(AT
k Ak + λkI)�pk = −AT

k f̄k (11)

where �pk = pk+1 − pk and pk is the estimate of p =
[ x0 y0 r ]T at the k-th iteration. We set the initial value
λ0 = 0.01 and carry out the following iterations for calculating
an suboptimal p:

Step 1: Calculate �pk using (11);
Step 2: Calculate the sum error E(pk + �pk) by equation

(8);
Step 3: Compare with the sum error of last step E(pk), if

E(pk +�pk) > E(pk), increase λk by a factor of 10, and go
back to Step 1;

step 4: If E(pk + �pk) < E(pk), decrease λk by a factor
of 10, update the trial solution, i.e. replace pk by pk + �pk

and go back to Step 1 until the algorithm converges.
The convergence condition can be defined by the sum of the

error square and the iterative step number. Thus the solution of
x0, y0, and r will be acquired by the above multiple iterations.

A starting guess for these parameters are required. We use
the first three points (xi, yi) i = 1, 2, 3 on the arc to compute
an estimated initial value of (x0, y0, r). The more accurate the
initial value is, the faster the algorithm converges.



III. DATA ASSOCIATION AND LOCALIZATION BY PARTICLE

FILTER

A. Navigation Loop

The navigation loop is based on encoders and range/ bearing
information provided by a laser sensor. The models for the
process and observation are highly nonlinear. The encoders
provide velocity and steering angle information that is used
with a kinematic model of the vehicle to predict position and
orientation. The prediction is updated with external range and
bearing information provided by a laser sensor. A GPS is also
used as a reference to judge if the pose estimation of the
vehicle is accurate or not.

1) Vehicle Model: The vehicle named Cycab that is used
in our research is a typical car-like vehicle; see Figure 2. We
make the basic assumptions of planar motion, i.e. the vehicle
is a rigid body and there is no slippage of tire. The status of the
vehicle in motion can be described in the global coordinates by
using the “bicycle model” [18]. To describe the vehicle motion,
a global coordinate X-Y is fixed on the horizontal plane on
which the vehicle moves. The motion status of the vehicle at
an arbitrary moment can be described using the Bicycle Model
as illustrated in Figure 3.

Reference point G is chosen at the center of gravity of the
vehicle body. Its coordinates (xv, yv) represents the position
of the vehicle; Vehicle Velocity v is defined at the reference
point G; Heading Angle θv is the angle from the X-axis to
the longitudinal axis of the vehicle body; Side-slip Angle β
is the angle from the longitudinal axis of the vehicle body
to the direction of vehicle velocity, v; Turning radius r is the
distance between the reference point G and the Instant Rotating
Center O; Front Wheel Velocity vf is the velocity defined at
the intersection of the mid-plane of the virtual front wheel and
the front wheel axle; Rear Wheel Velocity vr is the velocity
defined at the intersection of the mid-plane of the virtual rear
wheel and the rear wheel axle; Front wheel steering angle δf

is the angle from the longitudinal axis of the vehicle body to
the direction of vf . The vehicle model is as follows:

Fig. 2. The Cycab, a car-like vehicle in our experiment
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Fig. 3. The Cycab’s Kinematic Model


xv(k + 1)

yv(k + 1)
θv(k + 1)


 =


xv(k) + ∆ · v cos(θv(k) + β)

yv(k) + ∆ · v sin(θv(k) + β)
θv(k) + ∆ · v

lr


 + v2(k)

(12)
where ∆ is the sampling interval; v and β are the control
inputs that are computed from encoder increments during the
interval ∆. The above can be put into the general form:

�x(k + 1) = f(�x(k), u(k)) + �v2(k) (13)

2) Sensor Model: The state observation process can also
be modelled in state-space notation by a non-linear vector
function. Given the current vehicle position �x(k) and the
position of an observed feature xi(k), the observation of range,
zr(k) and bearing, zθ(k), can be modelled (similar to [1]) as
follows:

�zi(k) =
[

zri(k)
zθi(k)

]

=
[ √

(xv(k) − xi(k))2 + (yv(k) − yi(k))2

arctan( (yv(k)−yi(k))
(xv(k)−xi(k)) ) − θv(k)

]
+ �w

where �zi(k) is the measurement from the ith feature to the
vehicle. It can be written in the following general form:

�zi(k + 1) = hi(�x(k + 1), �ηi) + �wi(k) (14)

where �ηi = [xi, yi]T denotes the ith feature state, �x(k + 1)
is the vehicle state and �wi(k) is the measurement noise of the
ith feature.

B. Particle Filter Based Implementation for Data Association
and Localization

1) Particle Filter Implementation: In order to simplify the
presentation, we rewrite the (13) and (14) as follows:

xk+1 = f(xk, uk, υk) (15)



zi,k+1 = hi(xk+1, ηi, ωi,k) (16)

Based on the Bayesian estimation formula, the particle filter
implementation algorithm for localization is derived as fol-
lows:

(1). Initialization: generate xl
0 ∼ px0 , l = 1, . . . , N . Each

sample of the state vector is referred to as a particle. That is,
start from a random measure with equal weight on each of the
N sample values.

(2). Prediction: predict new particles, i.e.,

x
(l)
k+1 = f(x(l)

k , uk, υ
(l)
k ), l = 1, . . . , N

using different noise realizations of υk for the particles.
Compute the weights

w
(l)
k+1 = p(zk+1 | x

(l)
k+1)

and normalize the weight,

w̃
(l)
k+1 = w

(l)
k+1/

N∑
j=1

w
(j)
k+1, l = 1, . . . , N

In this step, we can also get the observation particles for the
ith feature:

z
(l)
i,k+1 = hi(x

(l)
k+1, ηi) (17)

ν
(l)
i,k+1 = zi,k+1 − z

(l)
i,k+1 (18)

Their mean is given by

ν̂i,k+1 =
N∑

l=1

w̃
(l)
k+1ν

(l)
i,k+1 (19)

The variance of ν̂i,k+1 is:

ŝi,k+1 =
N∑

l=1

w̃
(l)
k+1(ν

(l)
i,k+1 − ν̂i,k+1)(ν

(l)
i,k+1 − ν̂i,k+1)T (20)

(3). Update: generate a new set {xl∗
k+1}N

l=1 by resampling with
replacement N times from {xl

k+1}N
l=1, where

Pr(x(l∗)
k+1 = x

(l)
k+1) = w̃

(l)
k+1 l, l∗ = 1, . . . , N

Here, the mean of x
(l∗)
k+1 is:

x̂k+1 =
N∑

l∗=1

1
N

x
(l∗)
k+1

(4). Increase k and go back to step (2).
2) Particle Filter Based Data Association: Because the

centers of the trees are applied as features for navigation, they
are relatively stable and easy to match each other. We use
the Nearest Neighbor data association method [14] here. The
squared normalized innovation between the observation and
the feature location, d2

i , is then compared against a validation
gate for the association being considered.

d2
i,k = ν̂T

i,kŝ−1
i,k ν̂i,k

where ν̂i,k and ŝi,k can be calculated from (19) and (20)
for each feature. The validated measurement nearest to the
predicted measurement is used for updating the state of the
vehicle.

IV. EXPERIMENTAL RESULTS

The navigation algorithms presented were tested in the
outdoor environment as shown in Figure 4. There are several
tall trees and building walls and some bushes. The vehicle is
Cycab, a car-like vehicle, as shown in the previous section.
It is equipped with a laser range sensor–Sick LMS 200 and
dead reckoning capabilities. There are four encoders fixed on
the wheels of the vehicle and we can use this information
to calculate the vehicle’s position. A DGPS with up to 2cm
accuracy is used as a reference to give the ground truth of the
vehicle pose to get the estimation error. In the experimental
environment, there are 8 tall trees and the vehicle moves along
the path as shown in Figure 5 where the stars indicate the
locations of the trees, the dashed blue line indicates the real
pose of the vehicle and the real line means the estimated path
using the proposed algorithms. Figure 6 shows a typical laser
scanner frame. The dashed line box A indicates the region
whose clearer view is shown in Figure 7. We can find that the
trees are all detected. Compared to the ground truth, the radius
and center coordinates are accurately extracted. In this case,
we use the centers of the trees as features. It is more robust
than only using raw sensor data [14].

Figure 8 shows the vehicle’s position and orientation error
in the prediction and their 3σ bounds error. The 3σ bounds of
the error demonstrate that the estimation is satisfactory.

Fig. 4. The experimental environment (the whole scene).

V. CONCLUSION

This paper presented a new feature detection algorithm for
outdoor environment and the implementation of this approach
using a particle filter based localization algorithm. The method
has been realized in a real outdoor environment and satisfac-
tory results have been obtained. It was demonstrated that the
algorithm successfully extracted features of trees or tree-like
objects which are robust for navigation because the center of a
circle is relatively stable when vehicle moves. The 3σ bounds
of the estimation error also showed that the particle filter based
localization performed well in real-time implementation. The
main contribution of this paper is the natural feature detection
algorithm and the particle filter based localization and their
implementation.
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