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Abstract— In this paper we present an efficient integer
programming (IP) based data association approach to
simultaneous localization and mapping (SLAM). In this
approach, the feature based SLAM data association problem is
formulated as a 0-1 IP problem. The IP problem is approached
by first solving a relaxed linear programming (LP) problem.
Based on the optimal LP solution, a suboptimal solution to
the IP problem is then obtained by applying an iterative
heuristic greedy rounding (IHGR) procedure. Unlike the
traditional nearest-neighbor (NN) algorithm, the proposed
algorithm deals with a global matching between existing
features and measurements of each scan and is more robust
for an environment of high density features which is usually
the case in outdoor environments. We provide a simulation
study where the NN algorithm fails whereas our proposed
algorithm performs satisfactorily. Experimental results also
demonstrate the effectiveness and efficiency of our approach.

Index Terms— Data association, Integer programming

I. INTRODUCTION

A feature based approach to simultaneous localization and
mapping (SLAM) is to use the information obtained by
sensors mounted on a vehicle to build and update a map of
the environment and compute the vehicle location in that map
[1], [2], [3], [4]. One of the critical problems in obtaining a
robust SLAM solution is data association, i.e. relating sensor
measurements to features in the map that has been built thus
far [5], [6], [7], [8], [9]. Correct correspondences between the
sensed feature observations and map landmarks are essential
for consistent map construction since any single false match-
ing may invalidate the entire process [10]. Simple localization
may be able to recover from a minor mis-association, because
only the vehicle pose estimate is affected, but with SLAM
the map is also altered and these inconsistencies tend to be
self-propagating, causing divergence. Hence, data association
failure is a much more serious problem for SLAM than for
any other localization.

There have been some approaches to data association.
In stochastic mapping, the simplest method is the nearest
neighbor (NN) algorithm which is a classical technique in
tracking problems [11], [12], [13], [14], [15], [16]. The great
advantage of NN is its O(mn) computational complexity
except its conceptual simplicity. It is reliable for features
where clutter density is low and sensor precision is high.
However, during the process of SLAM, especially in complex
outdoor environments, clutter level is high and the innovations

in the matchings of different observations obtained from the
same vehicle position are correlated. In this situation, the
NN algorithm may accept a wrong matching, which leads
to divergence in state estimation. In order to improve the
robustness of data association, Neira and Tardós [6] presented
an approach using joint compatibility test based on the branch
and bound search with a computational cost which is accept-
able in indoor environments. Juan Nieto et al. [17] gives a fast
SLAM algorithm for data association by applying multiple
hypotheses tracking method in a variety of outdoor environ-
ments. But these two algorithms did not give a theoretical
analysis of the algorithm complexity and experimental results
demonstrated that if the observation feature number in one
scan is large, the algorithm will not be fast for real time
implementation. In other approaches, Baley et al. [18] con-
sidered relative distances and angles between points and lines
in two laser scans and used graph theory to find the largest
number of compatible pairings between the measurements
and existing features. The work of Lim and Leonard [19]
applies a hypotheses test to implement data association of the
relocation in SLAM using geometrical constraints. Castellanos
and Tardós [1] uses binary constraints to localize the robot
with an a priori map using an interpretation tree. In these
methods, geometric constraints among features are used to
obtain hypotheses with pairwise compatible parings. However,
pairwise compatibility doesn’t guarantee joint compatibility
[6], and additional validations are required.

In our work, we propose a single-frame 0-1 integer pro-
gramming (IP) approach to data association. Firstly, we for-
mulate the data association of SLAM as an integer pro-
gramming problem. In order to reduce the computational
burden, a validation gate is applied to reduce the size of
the solution space. An iterative heuristic greedy rounding
process based on linear programming techniques instead of
the traditional Lagrangian relaxation algorithm [20], [21]
is proposed to obtain a suboptimal solution to the integer
programming problem. The algorithm has moderate computa-
tional requirement. Simulation results show that the proposed
method is more efficient than the NN algorithm. In fact,
for the given simulation study, the NN algorithm leads to a
diverged state estimation of vehicle pose whereas the proposed
algorithm performs satisfactorily. Experimental results further
demonstrate the real-time applicability of the algorithm. As
compared to the other existing methods aforementioned, our



approach has a lower computational complexity by using a
modified suboptimal optimization algorithm. Further, it can
be easily extended to multi-scan cases when considering joint
compatibility of matching with a much lower computational
requirement than the existing methods [6] [17].

The paper is organized as follows: Section 2 is devoted to
an IP formulation for the data association of SLAM. Section
3 presents an iterative heuristic greedy rounding algorithm
for the IP problem. Section 4 shows the simulation and
experimental results. Some conclusions are drawn in Section
5.

II. PROBLEM FORMULATION

In this section we formulate the data association of SLAM
as a 0-1 integer programming problem similar to [22]. To this
end, a mathematical framework of SLAM which is based on
the extended Kalman filter should be firstly understood. The
details can be seen in [23].

Data association of SLAM is a decision process of asso-
ciating measurements (observations) with existing features in
the stochastic map. It should be noted that the term “mea-
surements” (observations) in this paper refers to the observed
features after the feature extraction rather than the raw sensor
measurements. Generally, the number of the measurements
obtained in each scan is not equal to the number of features
whose positions are estimated by the EKF. Each measurement
may either (1) belong to a previously known geometric feature
or (2) be a new geometric feature or (3) be a spurious mea-
surement (also called a false alarm). On the other hand, there
also exist features that do not have associated measurements
in the current scan. A dummy element is applied to denote
the case of a false alarm or a new start feature or a feature
that does not have an associated measurement [21].

Assume that there are M measurements from the latest scan
which are to be assigned to N existing features in the map
built based on the previous scans. Typically, M �= N . Define
the binary assignment variable

xnm =
{

1 if measurement m is assigned to feature n
0 otherwise

(1)
Note that xn0 = 1 implies that the feature n has no associated
measurement in the current scan, and x0m = 1 implies that
measurement m is not assigned to any of the existing N
features, but instead, assigned to a dummy feature–false alarm
or newly initialized feature. In the data association process,
one measurement originates from at most one feature, and
one feature can produce at most one measurement. Therefore,
the following constraints can be imposed to the association
variables:

M∑
m=0

xnm = 1, n = 1, 2, . . . , N (2)

N∑
n=0

xnm = 1, m = 1, 2, . . . ,M (3)

Our goal is to match the sensor’s observations with the
features by providing estimates of features’ positions at the
time of current scan. In order to formulate the 2-D assignment
problem, a generalized likelihood ratio which involves feature
state estimates for the candidate associations is used to assign
costs to each association. Similarly to the multitarget tracking
problem [21], we maximize a likelihood function LH as
follows:

LH =
∏

{n,m∈Enm}
Λ(zm, fn) (4)

Λ(zm, fn) =
1

|2πs|1/2
exp{1

2
[zm − ẑn]T s−1[zm − ẑn]}

m �= 0, n �= 0 (5)

where the likelihood ratio Λ(zm, fn) denotes the probablity
that the mth measurement matches the nth feature in the cur-
rent sensor scan. zm means the mth measurement of the scan
and ẑn can be calculated from the EKF estimation process. s is
the covariance of zm−ẑn. Enm means all possible assignment
pairs. In order to constitute the format of the 2D-assignment
optimization problem, instead of maximizing the product of
matching probabilities, we can minimize the negative log-
likelihood ratio. To this end, define:

Cnm = −ln Λ(zm, fn) m �= 0, n �= 0

Then, an equivalent cost function for (4) can be written as
follows:

Minimize
∑

{n,m∈Enm}
Cnmxnm

where Cnm = 0, when m = 0 or n = 0. Thus, the data
association of SLAM can be formulated as the following 0-1
integer programming problem:

min
∑

{n,m∈Enm}
Cnmxnm (6)

subject to

M∑
m=0

xnm = 1, n = 1, 2, . . . , N (7)

N∑
n=0

xnm = 1, m = 1, 2, . . . ,M (8)

where xnm ∈ {0, 1} and

Cnm =
{

0 if m = 0 or n = 0
−ln Λ(zm, fn) otherwise

(9)

III. THE IHGR ALGORITHM FOR INTEGER PROGRAMMING

In this section, we propose a method to solve the data as-
sociation problem formulated in the last section. The method
is a combined iterative heuristic greedy rounding and linear
programming. In order to reduce the computational burden,
a validation gate is applied first to reduce the above global
association into several local associations.



A. Gating

In order to reduce the solution space, a gating is applied
before applying the LP. Only measurements that are close
enough to the prediction state of an existing feature are
considered possible candidates of association with the feature.
The criterion of gating is given by:

τij = νT
ijs

−1
i νij ≤ ε

i = 1, 2, · · · , N ; j = 1, 2, · · · ,M
where

νij(k + 1) = zj(k + 1) − ẑi(k + 1)

and si is the covariance of the innovation νij .
Note that since νij is a Gaussian random variable, τij

is a random variable following the χ2 distribution. Thus, a
validation gate, ε, is used to decide whether the measurement
zj(k + 1) is a close enough match to the predicted feature
position. From the χ2 distribution table, we know that τij <
6.63 with a probability of 0.99. Here we set ε = 6.63.

B. Iterative Heuristic Greedy Rounding

In order to improve the computation speed, here we use an
iterative heuristic greedy rounding procedure to solve the 0-1
IP problem.

By changing the integer constraint xnm ∈ {0, 1} to 0 ≤
xnm ≤ 1, the IP problem is relaxed to a linear programming
(LP) one. The LP problem can be solved by basic LP
algorithms, such as the Simplex algorithm [24]. If the optimal
solution xop of the LP-relaxation is fully integer-valued (in
this case all decision variables will have the value of either
0 or 1) then the solution xop is optimal for the 0-1 IP
problem (6) [25]. Otherwise, we apply a procedure called
iterative heuristic greedy rounding (IHGR) (see, e.g. [26]).
Observe that the larger the decision variable xnm, the higher
the probability that the m-th measurement associates with
the n-th feature. Hence, the algorithm starts with setting the
maximum decision variable (with a value close to 1) to 1
and all other entries in the same row and column to zero to
meet the constraints (7) and (8). Then, solve the LP problem
for the rest of the assignment matrix and repeat the IHGR
procedure to decide the next pairing of measurement and
feature. The process is carried on until all measurements have
been assigned. In this manner, a feasible (but not necessarily
optimal) solution for the original IP is constructed.

If there is no predominant variable that is near to 1, i.e. a
tie occurs, then we will calculate all the possible combination
cost of (6), and select the lowest cost. In the IHGR procedure,
when xnm is set to 1, all variables in the column and row
associated with the specific set in Enm must be set to 0.
Once a variable is forced to a certain value, it is not allowed
to change any more. To achieve this, all rounded variables
and all implicated variables are discarded from the IHGR
procedure. In this way, the IHGR will never set the value
of a variable twice. This deletion of variables also applies to
the initial LP solution, i.e. all variables with value 1 and all

zero-valued variables implicated by them, are removed. The
IHGR algorithm repeats the actions of selection, rounding and
deletion until there are no variables left. The outcome will
then be a feasible solution to (6). Observe that the IHGR
can be implemented efficiently, but it is clear that there is
no guarantee that this heuristic procedure yields the optimal
solution of the IP problem. However, the experiments to
be discussed in the following section show that the IHGR
does result in acceptable feature-measurement assignments of
which the achieved cost is close to the optimal cost.

C. Algorithm Complexity

Due to the application of the gating process that is affected
by random factors, we cannot give an exact description of the
complexity. However, we know that in any fixed dimension,
linear programming can be solved in strongly polynomial
linear time (linear in the input size) [27]. For our case, the
input size is M × N . Thus, we can roughly know the worst-
case complexity of the proposed algorithm is O(MN +(M −
1)(N −1)+ . . .+(| M −N | +1)×1) for the IHGR process.

Neira and Tardos [6] presented a data association approach
using joint compatibility test based on the branch and bound
search (JCBB). JCBB performs incremental construction and
search of an interpretation tree of joint association hypotheses.
The gating determines acceptable hypotheses and performs
branch and bound pruning of the search space. The discussion
in [6] does not provide any theoretical bound, but gives an
empirical complexity estimate of O(1.53N ), where N is the
number of observed features. But for the IHGR algorithm,
the worst-case computational burden is O(MN×min{M,N})
without considering the gating. Therefore, when the observed
feature number is large (such as more than 30), our algorithm
can work much more efficiently than the JCBB.

IV. EXPERIMENTAL RESULTS

The algorithm presented was tested in two different envi-
ronments, an artificial environment and a real outdoor environ-
ment. In these two environments, the SLAM was implemented
by using the data association algorithm proposed in the last
section. The experimental results show that the algorithm is
efficient in SLAM.

A. Simulation environment

The first test environment is established by randomly gener-
ating some features and assuming the vehicle trajectory along
a circle whose radius is 5 meters. The robot moves at a
constant speed and the heading angle changes 1 degree at each
sampling instant. We choose 12 features and their locations
(the x,y coordinates) are random numbers between 0 and 20
meters in global coordinates.

For 200 times we change the features’ positions randomly at
each time and apply the NN data association algorithm and the
IHGR data association method to perform the SLAM process,
respectively. The successful data association rate when using
the IHGR algorithm is 97.5% (195/200) while it is only
80.5% (162/200) for the NN algorithm. When the features
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Fig. 1. The unsuccessful mapping when applying NN data association
algorithm in the SLAM process.

are closely located, the NN algorithm fails. Figure 1 and
Figure 2 show the SLAM results for the NN algorithm and
the proposed IHGR algorithm. In this case, the positions of
5 features in the environment are fixed and they are located
at (2.9, 2.3); (2.6, 1.9); (2.4, 1.9); (2.5, 2.6); (2.7, 2.8), respec-
tively. The remaining 7 features are randomly distributed. It
can be observed from Figure 1 that the NN algorithm leads
to diverged estimates of vehicle pose and feature positions.
On the other hand, our IHGR method performs very well as
observed from Figure 2. In fact, the vehicle’s truth path is
almost overlapped with the estimated one during the SLAM
process.

A comparison on execution time between the NN algorithm
and the IHGR algorithm versus the number of features is
shown in Figure 3 (the algorithms are run on Pentium IV
PC, 1.7GHz) for the cases when the NN algorithm is able
to give a successful SLAM. In the simulation, we extract
data at each scan under different feature number and assume
that the number of measurements is the same as that of the
existing features (this is the most time consuming case). The
result shows that our IHGR is implementable in real-time
application.

B. Real outdoor environment

In order to implement the IHGR data association algo-
rithm in a SLAM process for a real environment, we use
the experimental data set from [28] which is obtained by
Guivant and Nebot. The testing site is a car park at Sydney
University. The vehicle is equipped with GPS, laser sensor
and encoders. A kinematic GPS system of 2 cm accuracy was
used to evaluate the ground truth. Thus, the true navigation
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Fig. 2. The mapping and vehicle path when applying IHGR data association
method in the SLAM process.

map was available for comparison purpose. Wheel encoders
give an odometric measurement of the vehicle location. The
dead reckoning sensors and laser range sensor are combined
together to predict the vehicle’s trajectory using extended
Kalman filter and to build up the map at the same time. Note
that the most commonly encountered feature in an outdoor
environment is tree trunks. The feature detection was done
by using a geometric analysis of the range measurement to
obtain the most likely center of the tree trunk. The laser scans
are processed using Guivant’s algorithm to detect tree trunks’s
center and estimate their radii.

We run continuous SLAM for about 5000 time steps
and obtained a map shown in Figure 4 using our proposed
IHGR data association during the SLAM process. It can be
seen that the IHGR method performs well for the SLAM
implementation in real time. Figure 5 and Figure 6 gives
the measurement (range and angle) innovation and their 2σ
confidence bounds during the SLAM process, respectively.
The results show that the IHGR algorithm works well during
the SLAM process.

In order to check the effectiveness of the IHGR data
association, we randomly choose two scans (scan 68 and scan
87) and show the matching matrix xnm after the IP problem is
solved. In scan 68, the laser sensor obtained 2 measurements
and the existing feature number has accumulated to 11.
As mentioned, the term “measurement” means the extracted
features. Measurement 1 is associated with feature 3 and
measurement 2 is associated with feature 2. The rest of the
features are all undetected in this scan. In table 2, for scan
87, measurement 1 is matched with a dummy element which



5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
mean execution time vs feature number

feature number (seconds)

m
e
a
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

 IHGR algorithm
NN algorithm

Fig. 3. The mean execution time of the IHGR algorithm and the NN
algorithm. The mean execution time of IHGR is nearly linear with respect to
the observed feature number by repeated experiments

−10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

East (Meters)

N
o
rt

h
 (

M
e
te

rs
)

SLAM Path

Estimated path
Estimated Beacons
Beacons
GPS

Fig. 4. The SLAM path and the feature map during SLAM process with
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process with IHGR data association
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TABLE I

THE MATCHING MATRIX IN SCAN 68

Existed feature number and dummy element
1 2 3 4 5 6 7 8 9 10 11 0

scan 68 1 0 0 1 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 1 1 1 1 1 1 1 0

TABLE II

THE MATCHING MATRIX IN SCAN 87

Existed feature number and dummy element
1 2 3 4 5 6 7 8 9 10 11 12 13 14 0

Scan 87 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

means this is a new feature or false alarm. From the property
of laser sensor, we regard it as a new feature. The other
measurements and features are similar to those in scan 68
which can be seen in the above table.

V. CONCLUSIONS

The popular NN algorithm for data association is very
sensitive to the high density feature situation and the increase
in vehicle and sensor error. This paper presented a new data
association algorithm for SLAM which is more effective than
the NN algorithm in complex case. We first formulated the
data association problem in SLAM as a 0-1 IP problem. In
order to obtain a fast solution, the 0-1 IP problem is firstly
relaxed to a LP. Then we proposed to use the IHGR proce-
dure in conjunction with basic LP algorithms. The proposed
algorithm has been shown to be robust and performed very
well as compared to the commonly used NN algorithm. It
has also been demonstrated that the IHGR algorithm has low
computational complexity and is suitable for real time SLAM.
Simulation and experimental results have proven its efficiency
and effectiveness.
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