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Abstract - Mobile MODRO is a modular mobile robot 
developed as a test platform for indoor applications at 
the Institute of Robotics, ETH Ziirich. The modularity is 
ensured for all components of the robot: electronics, 
sensors, software and mechanics. The benchmark task 
for the modular mobile robot is planned to be the distri- 
bution of internal mail in the new institute building of 
the Institute of Robotics, currently under construction. 

This paper reports the progress thus far with respect 
to hardware, sensors and software system. 

1.0 Introduction 
In recent years, the construction and analysis of mbot 

navigation algorithms which guarantee the safe conver- 
gence of the trajectory of a mobile robot from a point of 
origin to a point of destination, has become a growing 
concern. The main stream of the research done so far is 
the development of control technologies to enable 
mobile robots to operate within simple laboratory envi- 
ronments. On the other hand, industrial mobile robots of 
today address only a limited aspect of the overall navi- 
gation problem as they are usually restricted to follow- 
ing previously positioned beacons. Furthermore, there is 
often a lack of communication between industrial devel- 
opment and achdemic research in mobile robotics. In an 
attempt to bridge this gap, we intend to realize a mobile 
robot for mail distribution in office type environments. 

2.0 Hardware 
For the sake of simplicity and ease of alterations, sen- 

sor mounting and adaptation of electronics, the mecha- 
nism of the robot is built up using standard industrial 
profiles. The configuration of the robot can be seen in 
fig. 1. The robot is actuated through the front wheel, 
where the steering angle L and the tangential velocity of 
the wheelw is controlled. This gives the coordinate 
transformations in Eq. 1 and Eq. 2. 

As the mobile MODRO is intended for indoor appli- 
cations, and as in our experience discontinuities (such as 
door thresholds) are a major cause of problems when 
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Figure 1. Mobile MODRO configuration. 
navigating in buildings, the wheels were developed so 
that such floor discontinuities are absorbed through a 
spring damper system, similar ideas are expressed in [ 11. 
The wheel is shown in fig. 2 together with the associated 
two mass oscillator model. The parameters of the model 
are as follows: 

mvehicle = 50 kg 
mwheel = lo kg 
c, = 15 kN/m (rubber spring spring constant) 
c, = 10 kN/m (tyre spring constant) 
d, = 0.5 kNs/m (rubber spring damping factor) 
4 = 0.65 kNs/m (tyre damping factor) 

A simulation of the wheels hitting a step in the floor 
of 0.04 m at a velocity of 1.0 m/s can be seen in fig. 3. 
The disturbance input is the vertical component of the 
trajectory a solid wheel would follow when traversing 
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igure 2. Wheel mechanism and associated model. 
such a discontinuity assuming that the horizontal veloc- 
ity stays constant. Clearly the shock is absorbed by the 
spring damper system. Analysis of the second derivative 
of fig. 3 shows that the acceleration of the vehicle frame 
is reduced by a factor of 5 compared to a wheel mecha- 
nism without a suspension system. This is a useful fea- 
ture since it reduces the forces exerted on any 
component mounted onto the vehicle frame. 

---- D l m t u r b r n c e  i n p u t  
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Figure 3. Response of the vehicle to a 0.04 m step on 
the floor. 

2.1 Sensor Configuration 

ity in three layers: 
low level bumpers 
high level bumpers 
LIDAR (Light Intensity Detection and Ranging) 
The low level consists of contact bumpers all around 

the vehicle, which provide a failure fkee last resort sen- 
sor system. 

The next level consists of a virtual bumper with a 
range of 0.5 m. This is realized with a Ultrasonic (US) 
system employing several US sensors actuated in paral- 
lel. This sensor provides a signal when an obstacle is 
within the sensor range, and an indication as to where 

The sensor system is designed for maximum reliabil- 

the obstacle was detected. Since all the sensors are actu- 
ated in parallel the update time of the sensor system is 
greatly reduced compared to conventional US sensor 
systems. Since the Sensors are all active simultaneously 
the problems of specular reflections [3] are reduced. 

2.2 Amplitude Modulated Continuous Wave 
Range Estimation 

Part of the mobile robot’s sensing structure consists of 
an amplitude modulated continuous wave (A.M.C.W.) 
lidar described in [lo]. The sensor produces two ana- 
logue output signals: 
1. The phase difference between the transmitted and 

detected A.M.C.W signals, thus giving a range esti- 
mate. 

dependent upon both target range and surface reflec- 
2. The amplitude of the returned signal which is 

tivity. 

2.2.1 Noise Propagation within the Sensor 
In reality the phase estimate produced by such a sen- 

sor becomes more useful when it is combined with the 
amplitude or strength of the returned light signal. The 
strength of the returned signal has a large effect upon the 
behaviour of the sensor. It gives an indication of the 
confidence we can place in the phase measurement. At 
the phase comparator the range is estimated from the 
phase difference shown in fig. 4. 

W 

Figure 4. Phase estimation in the presence of noise. 
The relationship between the standard deviation in the 

absolute phase of the received signal q to the combined 
electronic and photon noise standard deviation a,, 
transmitted by the receiver electronics, can be seen 
graphically as a noise triangle, [ll] which, from fig. 4 
gives: 
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where the right hand side of Eq. 3 is the magnitude of 
the change of received signal voltage with phase at the 
zero crossing - i.e.: when the wave cuts the cry axis. 

Under this analysis it is possible to derive the rela- 
tionship between the range variance a: and the ampli- 
tude of the received signal V, [lo]: 

where A is the modulating wavelength, a: the con- 
stunt receiver diode shot noise and a: the constant 
additive electronic noise effect caused after the signal is 
received. 

2.2.2 Lidar Depth Maps 
The left hand scan in fig. 5 shows a 3600 scan result, 

taken in a laboratory environment. The triangle shows 
the position of the mobile robot transporting the sensor 
and each small cross represents a data point. 

Figure 5. The left hand plot shows data produced by 
the lidar. In the right hand scan, lines of length 20, are 
centred on the range observations to show the 
uncertainty associated with each range sample. 

Each range sample in fig. 5 is accompanied by a 
range variance estimate, so that data can be accepted or 
rejected according to uncertainty associated with each 
point. 

3.0 Software Structure 

(and thus the robot) must have the following abilities: 
safely interact with humans 
be robust (i.e. have extensive error recovery features). 
adapt to changes in the environment 
We intend to achieve these properties by using artif- 

cial neural networks and fuzzy logic as well as classical 
information processing techniques (figure 6). For this 
purpose, we have developed new ANN-models for opti- 
mization of rule based systems (M-RCE) and for fuzzy 
controllers 0. 

Considering the benchmark application, the software 

To allow a safe software development for different 
information processing methods, a modular software 
architecture is used [21. The software architecture is 
grouped in three main parts: the controller, sensor data 
processing and task planning. 

The controller is realized in three hierarchic layers: 
basic controllers, local navigator, global planner. The 
algorithms for the realization of these are described in 
the following sections. 

The sensor data processing makes the filtering and the 
basic inteqmtation of the sensor signals. The pme- 
dures in this module return the distance to the next 
object or a binary value specifying whether there is an 
object in the sensor measurement range or not. There is 
such a procedure for each sensor. In the next step, algo- 
rithms for combining the partly contradictory informa- 
tions from the different sensors (sensor fusion) will be 
developed. 
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Figure 6. The software architecture. 
The task planning will be realized according to the 

distribution task of the robot. 

4.0 Controllers 

4.1 The Basic Controllers 
The steering angle Aand the wheel tangential velocity 

or is controlled using a PD and P controller respec- 
tively. In fig. 7 and fig. 8 the step responses for velocity 
and angle is shown. Notice that the actual velocity is 
able to follow the desired signal within 2.3 seconds lag. 
Notice also that the controller is able to turn the wheel at 
maximum speed during at least 90% of the rotational 
trajectory. Hence minimum time steering control is 
almost attained. 
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4.2 The Local Navigator 
We have developed seveml algorithms for the local 

navigation of mobile robots and we have implemented 
them in our own developed simulator environment. In 
the following sections, these algorithms and some simu- 
lation results are presented. 
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Figure 7. Propulsion step response (w-) 
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Figure 8. Steering step response (A) 

4.2.1 Rule Based System 
A very efficient method for the realisation of the local 

navigation for a mobile robot is to work with a rule base. 
We have set up a rule base with the following strategy: 
The information from the sensors in the directions front, 
left and right are divided in three regions: near, medium 
and far. This partition defmes a 3-dimensional area in 
the sensor space. To have a consistent rule base, rules 
for each region in this area has to be defmed. The result- 
ing rule base successfully drives the mobile robot to a 
goal position. 

4.2.2 Artificial Neural Networks (ANN) 
The rule base as explained in the last section some- 

times produces non satisfactory trajectories. A well 
known problem is oscillations of the robot while driving 
parallel to a wall. The reason for an oscillation is the fol- 
lowing: While moving towards a goal, if the robot 
detects a wall, it makes a movement to the right or to the 
left, depending on the rule base, to avoid it. The next 
moment after it turns off the wall, if it is not near enough 
to the wall, the sensors on the side of ihe robot do not 
detect the wall any more, so the robot turns back and 
detects the wall again, etc. 

For solving this problem, we have used the ANN- 
model M-RCE (Modified Restricted Coulomb Energy) 

[4] for optimizing the rule base to eliminate such prob- 
lems. M-RCE is a feedforward ANN model with a 
supervised learning strategy, a dynamic architecture and 
discrete outputs. Its main idea is to approximate classes 
with hyperrectangles. As each rule in an n-dimensional 
feature space can be described with an n-dimensional 
box (figure lo), this ANN model is very well suited for 
unequivocal rule translation into and from the net. 

The non-optimal rule base was translated into a M- 
RCE network and it was trained with examples showing 
how to behave at several distances from a wall. After 
only 2 training epochs (i.e. each example was presented 
2 times), the net was able to drive the robot without 
oscillations parallel to a wall. For efficiency reasons, the 
knowledge of the network was translated back into a 
rule base afterwards. 

The learning algorithm of M-RCE splits the three sen- 
sor regions (near, medium and far) until a finer resolu- 
tion is reached thus resulting in non-oscillatory motion 
in the vicinity of the wall. In a next step, this rules based 
system will be extended to operate with the data deliv- 
ered by the optical sensor discussed in section 2.2. The 
ANN model M-RCE will be used as an optimisation 
algorithm for the rule base 

The optimization of rule bases with M-RCE networks 
compared to manual modifications of rules has the big 
advantage that the rule base never gets inconsistent, as 
the training algorithm of M-RCE does not allow rules 
with different THEN-parts if there are overlap between 
their IF-parts. So it is not possible to have contradictory 
rules. This allows a fast and safe improvement of the 
rule base. 

4.23 Fuzzy Logic (FL) 
As an altemative to the rule based system described 

above, which works with binary logic, a fuzzy controller 
has been developed for the local navigation of the 
mobile robot. For this purpose, the fuzzy development 
tool FLIE (Fuzzy Logic Inference Engine) has been 
implemented. 

The inputs to the fuzzy controller are: goal direction, 
measurements of three sensors (front, left, right) and the 
change in these measurements, the actual driving direc- 
tion and the actual steering angle. Its output is the steer- 
ing angle. 

The results of the simulation are very satisfactory, 
because the robot was able to reach the goal with noisy 
sensor data and inexact position update. 

4.2.4 FUN: Combination &ANN & FL 
Experience with Fuzzy Logic show that this tech- 

nique allows a fast development of controllers. How- 
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ever, due to the large number of parameters and little 
knowledge about their exact influence on the behaviour 
of the controller optimization is difficult. 

Research on the possibilities of combining these two 
techniques has been done for several years, especially in 
Japan [5],[61,[71. The common factor of these methods 
is that they do not allow a simple bijective mapping 
from the rulebase into the net. Where a learning method 
is used, there is no possibility to extract the result from 
the net. There is no solution to the problem, where both 
rules and membership functions are learned simultane- 

We have developed a new neural network model, 
FUN [8], which is very well suited to represent logic 
expressions. In order to enable an unequivocal transla- 
tion of fuzzy rules and membership functions into the 
network, special neurons have been defined, which, 
through their activation functions, can evaluate logic 
expressions. 

The network consists of an input, an output and three 
hidden layers. The neurons of each layer have different 
activation functions representing the different stages in 
the calculation of fuzzy inference. The activation func- 
tions can be chosen individually for different problems 
(e.g. AND can be implemented as the MIN-function, the 
dot product function, or any other function). 

The network is initialized with a fuzzy rulebase and 
the corresponding membership functions. The network 
can then be trained with supervised or reinforcement 
learning (RL) strategies to optimize the rules and/or the 
membership functions. FUN contains two different 
training algorithms for the optimization of the rules and 
the optimization of the membership functions. 

It is very difficult to create learning examples for the 
mobile robot navigation problem, so the FU strategy 
was used for the optimization of the fuzzy controller. 
For RL a cost function must be defined. The cost func- 
tion provides us with an evaluation of the path, and 
hence the rule base. The learning algorithm then 
attempts to optimize the cost function by adapting the 
network / rule base. The execution continues until 
either: the goal is reached, or the robot collides with an 
obstacle, or a predefined time, T, has elapsed. At the end 
of the execution the cost function is calculated as given 
below: 

if robot drives into wall 

ously. 

Constant 

cost = L ~ ~ o a l - ~ c t u a l ~ Z l  otherwise 

The input-output signals of the fuzzy controller opti- 
mized by FUN are shown in fig. 9. Clearly, for having 
better results, the inputs must be extended with informa- 

tions described in the previous chapter. Our aim was to 
test the performance of FUN with a small example. 

I I left -4----l 

Figure 9. Inputs and outputs of FUN 
An untrained net with an a priori defined rule base 

would typically perform as seen in fig. 10, after optimi- 
zation the controller performed as in fig. 11. The oscilla- 
tion in fig. 10 is a result of contradictory rules in the rule 
base. A more demanding environment and the corre- 
sponding performance of the (optimized) controller can 
be seen in fig. 11. The path produced by the controller 
for the environment given in fig. 11 is clearly not opti- 
mal with respect to length. However, since the cost 
function takes no account of the path length this was 
expected. 

Figure 10. Path of the mobile mbot before learning 

Figure 11. Path of the mobile robot after learning 

_____ 

Figure 12. Path of mobile robot in a more complex 
environment (after optimization with FUN) 

4.3 The Global Planner 
The road map used for the mobile MODRO is repre- 

sented in a partly connected, directed graph. The graph 
nodes describe points in the building where the mobile 
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robot can drive, e.g. corridors, doors, etc. Graph nodes 
contain information about regions represented by them, 
e.g. distance to the next node, a measure for the diffi- 
culty to reach the next node (narrow corridor, crowded 
region, doors on the way, etc.) 

Trajectory planning is realized with the classical 
graph search algorithm A*, which uses the data in the 
graph nodes as heuristics for choosing one of several 
possible trajectories. The heuristics are defined using 
linguistic rules and linguistic sets [14] and [15]. 

The output of the global planner is a sequence of knot 
points which the robot has to attain (in succession) in 
order to arrive at its destination. Between each knot 
points the robot employs a local planner, as described in 
the previous sections. 

5.0 Conclusions 
We have presented a modular structure for the design 

of a mobile robot for autonomous navigation in indoor 
environments. At the lowest level we have considered 
the stability of the platform in the presence of floor dis- 
continuities and have shown that it is possible to achieve 
near optimal steering and speed control. 

By also considering noise somes and their propaga- 
tion through an optical sensor, we have derived a model 
for an A.M.C.W. lidar which produces range uncertainty 
information with each range estimate. 

At the highest level, efficient global and local path 
planning can be achieved using traditional search meth- 
ods in combination with ANN and fuzzy logic based 
controllers. 
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